WorldWideScience

Sample records for trencin water power

  1. Report on state of the environment of the Trencin region to 2002

    International Nuclear Information System (INIS)

    Proksa, P.; Rolkova, M.; Adamkovicova, A.; Bebej, J.; Bodova, E.; Bohus, P.; Bracinikova, J.; Gajdos, L.; Goryczkova, A.; Hajnikova, M.; Chocholova; Jancarik, A.; Jecmenova, I.; Kanianska, R.; Kapusta, P.; Knazovicka, J.; Kovalova, A.; Kralik, A.; Lacuska, M.; Novacky, K.; Slamkova, M.; Vaculcikova, B.; Merka, M.

    2003-01-01

    The report on state of environment of the Trencin region to 2002 is presented. In this report the following parts are reviewed: Basic information about region; Compositions of the environment and their protection; Nature protection and landscape management; Environmental regional classification of the environment; Reasons and consequences of the environment; Risk factors in the environment; Environmental care

  2. The Power of Water

    Science.gov (United States)

    Petrova, Zhaneta; Miteva, Kamelia

    2013-04-01

    The Power of Water Zh. Petrova, K. Miteva Bio Games, Sofia, Bulgaria (petrova.jani@gmail.com; miteva.kamelia@gmail.com) Lessons "The Power of Water" Due to our belief in the initial creativity of the children and their capacity for discover and perceive logically the world, we consider that the primary and even the pre-school learning have a significant influence in the process of suggesting the idea of respect to the natural forces. These classroom activities include a variety of hand- and self-made simulation models with natural materials and toys which lead the children to easy understanding of what could 'friendly' water do and how powerful, dangerous and not-friendly it could be. During the lessons the children draw their own conclusions of the causes and possible solutions of natural hazards caused by water in each of its forms - avalanches, inundations, floods, the water influence in activation of landslides. The children make on their own some of the models and test them via simulations. In the end they discuss what they have learned in groups.

  3. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    ... of 0.2 1/hr without requiring electrical power. A low-leakage, hole-in-the-wall micro valve was demonstrated that provided fluidic resistance 255 times higher in the closed state than in the open state...

  4. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  5. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  6. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  7. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  8. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  9. 2014 Water Power Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  10. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  11. 2009 Water Power Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Michael [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Higgins, Mark [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Reed, Mike [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-04-01

    This report contains the findings of the 2009 Water Power Peer Review Panel, as well as the Water Power Program's responses to those findings. This Peer Review focused on the Program's marine and hydrokinetic energy projects.

  12. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  13. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  14. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  15. Water intaking facility of nuclear power plant

    International Nuclear Information System (INIS)

    Koyama, Kazuhito; Iwata, Nobukatsu; Ochiai, Kanehiro.

    1994-01-01

    In a water intaking facility of a nuclear power plant, a dam is disposed at a position near a sea shore for preventing sea water introduced in open conduit from flowing to the outer sea upon ebbing of tsunamis. The upper end of the dam is set lower than the lower end of a water-intake pipe of a sea water pump of an ordinary system. A water-intake pipe is disposed to such a length that a sea water pump of an emergency system continues to suck the sea water when the water level of the introduced sea water is lowered than the upper end of the dam during the ebb tide. In addition, a means for stopping the operation of the sea water pump of the ordinary system upon starting of the ebb is disposed. Upon reactor scram for occurrence of earthquakes and the like, either the sea water pump in the ordinary system or the seawater pump in the emergency system operates to ensure required amount of sea water for cooling the reactor. In addition, even if the level of the sea water is lowered than the upper end of the dam, since the sea water pump in the emergency system continues to suck sea water, unnecessary suction for sea water by the ordinary sea water pumps can be eliminated. (N.H.)

  16. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  17. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  18. Heavy water physical verification in power plants

    International Nuclear Information System (INIS)

    Morsy, S.; Schuricht, V.; Beetle, T.; Szabo, E.

    1986-01-01

    This paper is a report on the Agency experience in verifying heavy water inventories in power plants. The safeguards objectives and goals for such activities are defined in the paper. The heavy water is stratified according to the flow within the power plant, including upgraders. A safeguards scheme based on a combination of records auditing, comparing records and reports, and physical verification has been developed. This scheme has elevated the status of heavy water safeguards to a level comparable to nuclear material safeguards in bulk facilities. It leads to attribute and variable verification of the heavy water inventory in the different system components and in the store. The verification methods include volume and weight determination, sampling and analysis, non-destructive assay (NDA), and criticality check. The analysis of the different measurement methods and their limits of accuracy are discussed in the paper

  19. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  20. 76 FR 66284 - Wind and Water Power Program

    Science.gov (United States)

    2011-10-26

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's... 2011 Water Power Peer Review Meeting will be held November 1 through November 3, 2011 in Alexandria, VA...

  1. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  2. Water cooled type nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Shigeki.

    1981-01-01

    Purpose: To construct high efficiency a PWR type nuclear power plant with a simple structure by preparing high temperature and pressure water by a PWR type nuclear reactor and a pressurizer, converting the high temperature and high pressure water into steam with a pressure reducing valve and introducing the steam into a turbine, thereby generating electricity. Constitution: A pressurizer is connected downstream of a PWR type nuclear reactor, thereby maintaining the reactor at high pressure. A pressure-reducing valve is provided downstream of the pressurizer, the high temperature and pressure water is reduced in pressure, thereby producing steam. The steam is fed to a turbine, and electric power is generated by a generator connected to the turbine. The steam exhausted from the turbine is condensed by a condenser into water, and the water is returned through a feedwater heater to the reactor. Since the high temperature and pressure water in thus reduced in pressure thereby evaporating it, the steam can be more efficiently produced than by a steam generator. (Sekiya, K.)

  3. Pressurized water reactor nuclear power training center

    International Nuclear Information System (INIS)

    Koshiro, Toshimasa; Maezawa, Yoshikazu; Tokuda, Kazuho; Takashima, Osao; Kido, Katsu.

    1976-01-01

    In spite of the necessity of training nuclear power plant operators so as to carry out proper operation, it is almost impossible to utilize real plants for training. Under such condition, Nuclear Power Training Center, Ltd. has been established in Tsuruga City, Fukui Prefecture. The introduced simulator simulates the No.1 unit of Zion Nuclear Power Plant, Illinois, U.S.A. The simulator is placed in a computer room and a control room, and consists of three digital computers, an analog electrohydraulic controller panel, an instructor console, a reactor panel, a safety protecting panel, an alarm panel and others. The features of this simulator are the functions of initial conditions, snap shot, back track, freeze, local operation, malfunction, operation record and others. The main object of training is the operators who are on duty in the central control rooms of nuclear power plants with pressurized water reactors. Training program includes the beginner course and retraining course. Anyone, who possesses the scholarly attainments equal to or higher than those of senior high school graduates and the experiences in a thermal power plant as the qualification, is allowed to receive the training. The training period is 22 weeks, but 10 days for the retraining course. In addition, the general training course for those concerned with nuclear power generation is prepared, and curricula for these courses are briefly described. (Wakatsuki, Y.)

  4. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  5. 2015 Key Water Power Program and National Laboratory Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2016-01-01

    The U.S. Department of Energy Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States.

  6. Water Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  7. 77 FR 38277 - Wind and Water Power Program

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... public meeting. SUMMARY: The Department of Energy (DOE) Wind and Water Power Program is planning a... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager, Office...

  8. 43 CFR 418.16 - Using water for power generation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to releases charged against Project diversions, precautionary drawdown...

  9. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  10. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    The Rehab power plant located in the Northern part of Jordan is presented as a case study of industrial water management. This power plant consumes boiler feed water in the amount of 200 m3/d of the fresh ground water available from nearby wells and it produces 193 m3/d of wastewater. Fifty seven water samples were ...

  11. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  12. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... The given scenarios will result in monetary savings and in aesthetical benefits. Key words: Boiler ... Electrical power plants in Jordan. Power plant location. Method of energy generation. Water resource. Water consumption. (M3/y)*. Power plant capacity ..... the economic feasibility of reuse alternatives is.

  13. Water hammer in USA nuclear power plants and it's evaluation

    International Nuclear Information System (INIS)

    Liu Shuqian.

    1987-01-01

    The results of evaluations about the water hammer events in USA nuclear power plants in recent years are summarily reported. The evaluations included underlying causes and frequency of water hammer events, damages incurred and systems affected. Through the evaluations about water hammer events and on the basis of past operation experiences in nuclear power plants, the design and operational modifications to prevent or mitigate water hammer events were presented. The NRC's current opinions relating to the water hammer problems are summarized, the importance of water hammer events for nuclear power plants construction in China is indicated

  14. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  15. Managing Scarce Water Resources in China's Coal Power Industry

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  16. Water Use in the US Electric Power Sector: Energy Systems ...

    Science.gov (United States)

    This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress

  17. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  18. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle a...

  19. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  20. Feel the Force of Cogs, Pulleys and Water Power

    Science.gov (United States)

    Pugh, Julie

    2016-01-01

    Quarry Bank Mill in Cheshire was built in 1784 and was one of the first water-powered cotton mills of the Industrial Revolution. While the machines are now powered by electricity, the water wheel still turns and the machines run. Linking the two are cogs, shafts and belts, so it is possible to see how the power of the river was captured and then…

  1. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  2. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    Science.gov (United States)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  3. Water footprint of hydro power in Norway

    Science.gov (United States)

    Engeland, Kolbjørn; Tallaksen, Lena; Haakon Bakken, Tor; Killingtveit, Ånund

    2015-04-01

    The IPCC Special Report on Renewable Energy (IPCC, 2012) assesses the potential for renewable energy sources to replace fossil-based fuels and benchmarks the technologies with respect to a set of criteria, including their water footprint measured as m3/MWh. While most of the renewable technologies show a typical range of 1-5 m3/MWh, the very sparse data on hydropower range from a minimum of 0.04 to a maximum of 209 m3/MWh. More recent studies on water footprint from hydropower indicate that the water consumption rates could go even far beyond the numbers published by IPCC (2012). The methodological approach behind these numbers are, however, criticized as it appears over-simplistic and several issues need to be defined and clarified in order to present the 'true picture' of the water footprint of hydropower. Despite this, the rather high numbers for hydropower may imply a reputational risk for the sector and also be a direct investment risk in new projects if hydropower is considered a "large-scale water consumer". Estimation of water footprint has two important components (i) definition of water footprint (including system boundaries), and (ii) estimation of evaporation, which is assumed to constitute the main water loss from hydropower. Here we will mainly address the second topic and have chosen to use a water footprint definition based on net evapotranspiration from reservoirs. Thus, we need estimates of evapotranspiration from the land surface prior to inundation and the evaporation from the reservoir after it has been filled up. The primary objective of the study is to estimate water footprint of hydropower in Norway and in particular to answer the following questions: (i) How does different environmental variables influence water footprint estimation in Norway?, and in particular (ii) What is the total/specific water footprint from Norwegian hydropower production? To answer these questions we tested how environmental variables like climate and vegetation

  4. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  5. Water hammer in nuclear power plants

    International Nuclear Information System (INIS)

    1979-07-01

    In the past few years, licensees of operating reactors have reported a large number of water hammer events during commercial operation. Most of these events resulted in damage to piping supports and restraints. A few cases involved small cracks or ruptures in feedwater systems. As a result, in 1977 the NRC staff initiated a review of reported water hammer events and of the potential for occurrence of water hammer in all fluid systems that could have an impact on plant safety. The objectives of the review were to identify the causes of water hammer events that could affect reactor safety and to recommend further staff actions needed to reduce the likelihood of such events

  6. Water chemistry in Soviet nuclear power plants

    International Nuclear Information System (INIS)

    Dragunov, Yu.G.; Markov, Yu.V.; Rybalchenko, I.L.; Ryazantsev, I.L.; Chabak, A.F.

    1992-01-01

    WWER reactors operate with water coolant which is alkalized by a mixture of ammonia and potassium hydroxide. Ammonia dissociates to give hydrogen which suppresses coolant radiolysis. The narrow range of pH maintained ensures low material corrosion. Corrosion product transport and deposition on fuel cladding surfaces are also suppressed. The specified water quality is controlled by a system of ion exchange demineralizers with mixed or separate beds of resins. The dose rate from the primary circuit equipment is mainly due to inner surface deposits of activated corrosion products. WWERs are equipped with horizontal steam generators with stainless steel 0x18H10T steam generator tubes. With this design of steam generator and choice of SG tube material, satisfactory operation of the equipment is achieved with less stringent water chemistry specifications. RBMK reactors are cooled with demineralized water. In order to suppress the corrosion of coolant circuit, oxygen is injected in the feed water circuit downstream of the condensate polishing plant and then removed from the water in the deaerator. At present injection of hydrogen is proposed as the remedy for stainless steel piping IGSCC. Current R and D work is directed towards further optimization of the chemical system and to improve the NPP safety and reliability. (author). 1 fig., 3 tabs

  7. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Membrane-based processes for sustainable power generation using water.

    Science.gov (United States)

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  9. Speed and power preparation of qualified water polo players

    Directory of Open Access Journals (Sweden)

    M.V. Ostrovs'kij

    2013-02-01

    Full Text Available The scientific information of the improve of power and speed preparation of qualified water polo players were presented in the article. The application of power training exercises, similar in structure and composition with competitive acts of water polo players and also their purposeful use for developing power endurance, ultimate speed and explosive power, ensure their greatest development. It has been recognized determined that the use of speed training exercises in the middle of the training session is the most effective. In water polo training the practice of developing speed skills at the end of training session is the least effective. Combination of speed qualities training variants at different parts of training session throughout the year-round cycle of training adds the positive effect of speed qualification of water polo players in general.

  10. Water: A critical resource in the thermoelectric power industry

    International Nuclear Information System (INIS)

    Feeley, Thomas J. III.; McNemar, Andrea; Skone, Timothy J.; Stiegel, Gary J. Jr.; Nemeth, Michael; Schimmoller, Brian; Murphy, James T.; Manfredo, Lynn

    2008-01-01

    Water availability represents a growing concern for meeting future power generation needs. In the United States, projected population growth rates, energy consumption patterns, and demand from competing water use sectors will increase pressure on power generators to reduce water use. Water availability and use also exhibit strong regional variations, complicating the nature of public policy and technological response. The US Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is engaged in a research and development (R and D) program to reduce freshwater withdrawal (total quantity of water utilized) and consumption (portion of withdrawal not returned to the source) from existing and future thermoelectric power generating facilities. The Innovations for Existing Plants (IEP) Program is currently developing technologies in 5 categories of water management projects to reduce water use while minimizing the impacts of plant operations on water quality. This paper outlines the freshwater withdrawal and consumption rates for various thermoelectric power generating types and then estimates the potential benefits of IEP program technologies at both the national and regional levels in the year 2030. NETL is working to protect and conserve water resources while leveraging domestic fossil fuel resources, such as coal, to increase national energy security. (author)

  11. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  12. The Water-Use Implications of a Changing Power Sector

    Science.gov (United States)

    Peer, R.; Sanders, K.

    2016-12-01

    Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.

  13. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  14. Valuation of Embalse Nuclear Power Plant and of heavy water

    International Nuclear Information System (INIS)

    Martin, D.E.

    2008-01-01

    The author describes the Nuclear Power Plant characteristics, the building work, the heavy water valuation criteria and the reasons why he considers that any capital good can be valuated by means of cash-flow. The value of replacement of Embalse Nuclear Power Plant is of U$S 1.593.538.000 (authors) [es

  15. Embalse nuclear power plant and heavy water valuation

    International Nuclear Information System (INIS)

    Martin, Daniel E.

    2008-01-01

    The author describes the nuclear power plant characteristics, the building work, the heavy water valuation criteria and the reasons why he considers that any capital good can be valued by the cash-flow method. The Embalse nuclear power plant replacement value is of U$S 1.593.538.000. (author) [es

  16. Transboundary water interaction II: the influence of 'soft' power

    NARCIS (Netherlands)

    Zeitoun, M.; Mirumachi, N.; Warner, J.F.

    2011-01-01

    This paper seeks to broaden the analysis of transboundary water interaction, by examining and interpreting the influence of ‘soft’ power therein. The ‘soft’ power of persuasion is understood to be exercised through discursive and to a lesser extent ideational means, and is interpreted in terms of

  17. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  18. Power distribution effects on boiling water reactor stability

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.

    1989-01-01

    The work presented in this paper deals with the effects of spatial power distributions on the stability of boiling water reactors (BWRs). It is shown that a conservative power distribution exists for which the stability is minimal. These results are relevant because they imply that bounding stability calculations are possible and, thus, a worst-possible scenario may be defined for a particular BWR geometry. These bounding calculations may, then, be used to determine the maximum expected limit-cycle peak powers

  19. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change

    International Nuclear Information System (INIS)

    Koch, Hagen; Voegele, Stefan

    2009-01-01

    According to the latest IPCC reports, the frequency of hot and dry periods will increase in many regions of the world in the future. For power plant operators, the increasing possibility of water shortages is an important challenge that they have to face. Shortages of electricity due to water shortages could have an influence on industries as well as on private households. Climate change impact analyses must analyse the climate effects on power plants and possible adaptation strategies for the power generation sector. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short- and medium-term. In the long-term, the water demand will change as old units are phased out and new generating units appear in their place. In this paper, we describe the integration of functions for the calculation of the water demand of power plants into a water resources management model. Also included are both short-term reactive and long-term planned adaptation. This integration allows us to simulate the interconnection between the water demand of power plants and water resources management, i.e. water availability. Economic evaluation functions for water shortages are also integrated into the water resources management model. This coupled model enables us to analyse scenarios of socio-economic and climate change, as well as the effects of water management actions. (author)

  20. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  1. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  2. Fusion power plant for water desalination and reuse

    International Nuclear Information System (INIS)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N.; Velikhov, E.P.

    2001-01-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ∼0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ∼6000000 m 3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity

  3. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  4. USE of mine pool water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  5. Sea water magnesium fuel cell power supply

    Science.gov (United States)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.

    2015-08-01

    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  6. Naegleria fowleri in cooling waters of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cerva, L.; Kasprzak, W.; Mazur, T.

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  7. Fish culture using cooling water from thermal power plants

    International Nuclear Information System (INIS)

    Holmberg, B.

    1976-01-01

    Special problems associated with the use of heated effluents from thermal power plants in aquaculture include fluctuating temperatures, chemicals added to cooling water, gas supersaturation, and inflexibility in the effluent temperature, in many cases obviating a continuous one year culture cycle. In Sweden, salmonids are the preferred cultural species as long as water temperatures do not exceed 20 deg C during the summer. A pilot fish farm is now using cooling water from he Oskarshamn nuclear power plant. An additional concern in this case will be the accumulation of radioisotopes. (E.C.B.)

  8. Naegleria fowleri in cooling waters of power plants.

    Science.gov (United States)

    Cerva, L; Kasprzak, W; Mazur, T

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  9. Water for fish, water for power : finding a balance

    International Nuclear Information System (INIS)

    1998-08-01

    The impact of British Columbia Hydro's operations on the 100 different species and sub-species of fish found in the rivers of BC is discussed. The utility operates 30 hydroelectric facilities and 31 reservoirs in 6 major river basins and 27 watersheds. Three-quarters of the hydroelectricity is produced at major installations on the Peace and Columbia river systems. This booklet describes how, in their water use planning and decision-making, the utility considers impacts on aquatic and terrestrial habitats, flood control, domestic water supply and transport, as well as aesthetic requirements and recreational use. figs

  10. Simulation of a pressurized-water nuclear power station

    International Nuclear Information System (INIS)

    Larminaux, Robert; Ourmann, Michel

    1978-01-01

    Faced with the large programme of fitting out PWR nuclear power stations, Electricite de France have undertaken a series of studies with a view to ensuring the best possible adaptation of the secondary part -particularly the feed water heating section- to the nuclear boiler. In order to undertake such studies it has been necessary to finalize simulation models of the entire power station. So as to verify the validity of the models, experiment-calculation comparisons were made during transient operating states recorded at the Ardennes power station as well as during starting up trials at the Tihange I power station [fr

  11. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  12. Heating of water by nuclear power stations

    International Nuclear Information System (INIS)

    Many studies have been carried out both in France and abroad to determine the magnitude of the thermal effects due to cooling of conventional or nuclear open-circuit electricity-generating stations. After an account of the main effects observed and the information derived from these results the discussion centres on the conclusions drawn from American research by the two bodies responsible for checking the impact of nuclear stations on the environment in the United States. The possible effects on aquatic organisms exposed to hot water discharges are of two kinds: the direct thermal effects (changes in the metabolism, growth rate and period of sexual maturity increase in mortality, etc..) and the indirect thermal effects (asphyxia due to a drop in the dissolved oxygen concentration, changes in the sensitivity to certain toxic substances, in resistance to infection, in the food chain) [fr

  13. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  14. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    OpenAIRE

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were com...

  15. Power Efficient Plasma Technique for Rapid Water Sterilization

    Science.gov (United States)

    Hershcovitch, Ady

    2015-11-01

    Water especially good quality drinking water is a dwindling resource for significant segments of the world population. The BBC quoted this article (http://www.ft.com/cms/s/2/8e42bdc8-0838-11e4-9afc-00144feab7de.html) for a claim that water shortage is a bigger problem than climate change. One option for increasing the water supply is to recycle waste and polluted water by inexpensive, environmentally friendly methods. First steps involve filtrations while the last step is water disinfection. Presently disinfection is done chemically and/or UV radiation. Some chemicals cannot be used in large quantity due to residual toxicity, while UV disinfection systems consume a great deal electricity. Plasmas in water are very attractive for water sterilization due to UV radiation, ozone, etc. generation inside the water volume. Commercially available devices like NK-03 Blue Ballast System are used aboard ships for water purification. But, presently utilized plasmas: glow, pulsed arcs are not power efficient. Vortex stabilized plasmas, which are power efficient, can even degrade medications (antibiotics) advancing the state-of-the-art by orders of magnitude, especially when combined with electron beams. Disinfection scheme will be presented. Work supported by Contract No. DE-AC02-98CH1-886 with the US DOE.

  16. Clean hydrogen and power from impure water

    Science.gov (United States)

    Acar, Canan; Dincer, Ibrahim; Naterer, Greg F.

    2016-11-01

    This paper presents a new photoelectrochemical (PEC) H2 production system which is capable of providing clean energy and water, and multi-generation of H2, electricity, heat and industrial chemicals from a single clean, abundant and renewable source: sun. This novel system maximizes solar spectrum utilization and increases system efficiencies by generating more outputs from solar energy alone. The hybrid PEC-chloralkali system, coupled with PV/T (Photovoltaic Thermal), is capable of producing H2, Cl2, electricity, and heat simultaneously. Incoming solar light is split into high-energy photons (with wavelengths lower than 400 nm) and low-energy photons. The high-energy portion is used to generate photocurrent in the reactor, and the remaining part is sent to the PV/T. This PV/T supports the electricity needs of the system and also provides electricity output for the end user. Moreover, the heat recovered from PV/T is a system output. The findings suggest that this system is capable of producing H2 and Cl2 as well as heat and electricity with higher efficiencies than the reported PV electrolysis and PEC-based H2 production efficiencies in the literature.

  17. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  18. An evaluation of water hammer in nuclear power plants

    International Nuclear Information System (INIS)

    Serkiz, A.

    1983-01-01

    Water hammer can occur as a result of to steam-void collapse, steam-driven slugs of water, pump startup into voided lines, and inadverdent closures of valves; the result is large hydraulic pressure loads. Since 1968, about 150 water hammer events have been reported in U.S. nuclear power plants; damage has been confined to pipe hangers and snubbers. The increase in reported water hammer events in the 1970s led to the designation of water hammer as Unresolved Safety Issue A-1 in 1979. Since the mid-1970s reported occurrences and their underlying phenomena have been studied, and corrective design and operational measures have been implemented. This paper presents the results of generic evaluations of water hammer occurrence and reported damage and sets forth technical findings. These findings indicate that good design practices and operational procedures can minimize the occurrence of water hammer

  19. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    Science.gov (United States)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  20. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  1. Cooling water in the study of nuclear power plants sites

    International Nuclear Information System (INIS)

    Martinez, J.J.C.

    1990-01-01

    The location of an electric power plant has its limitations as regards the availability of apt sites. The radiosanitary risk, seismic risk and the overload capacity of the ground can be generically enumerated, being the cooling water availability for an electric power plant a basic requirement. Diverse cooling systems may be employed but the aim must always be that thermal contamination in the immediate environment be the least possible. (Author) [es

  2. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  3. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Webber, M.

    2016-12-01

    Energy, food and water are precious resources, and they are interconnected. The energy sector uses a lot of water, the food sector uses a lot of energy and water, the water sector uses a lot of energy, and as a nation we are contemplating a biofuels policy that uses food for energy. The thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. The food system uses over ten percent of national energy consumption. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt, while energy and water challenges pose constraints to our food system. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global food, energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  4. Set up for simultaneous water desalination and power generation

    International Nuclear Information System (INIS)

    Hasan, S.W.; Mookhi, M.B.; Sadiq, M.A.; Hasan, Z.; Zaidi, S.I.; Shah, W.A.

    2010-01-01

    Instead of following the conventional fuel oriented power generation methods and dissipating its heat into environment, we evaporate saline water into steam and use its energy to generate power. Using this scheme would make sea water usable in power generation which at the moment is only being used for cooling purposes in the power plants. The steam used for generating electricity is eventually collected, condensed and used for potable purposes. The proposed scheme may be seen as Steam Power Generation with additional feature of desalination. We set up an experimental test bed in order to calculate the electric power available using this scheme. To ensure safety for human consumption, we also perform chemical tests on the desalinated water to see whether it is fit to be used for drinking and agricultural purposes. Our conclusions are based on actual experiments and laboratory tests; procedures outlined here may be used at larger scale for more in-depth analyses. We also highlight future extensions and modifications in this work. (author)

  5. Automatic power control for a pressurized water reactor

    International Nuclear Information System (INIS)

    Hah, Yung Joon

    1994-02-01

    During a normal operation of a pressurized water reactor (PWR), the reactivity is controlled by control rods, boron, and the average temperature of the primary coolant. Especially in load follow operation, the reactivity change is induced by changes in power level and effects of xenon concentration. The control of the core power distribution is concerned, mainly, with the axial power distribution which depends on insertion and withdrawal of the control rods resulting in additional reactivity compensation. The utilization of part strength control element assemblies (PSCEAs) is quite appropriate for a control of the power distribution in the case of Yonggwang Nuclear Unit 3 (YGN Unit 3). However, control of the PSCEAs is not automatic, and changes in the boron concentration by dilution/boration are done manually. Thus, manual control of the PSCEAs and the boron concentration require the operator's experience and knowledge for a successful load follow operation. In this thesis, the new concepts have been proposed to adapt for an automatic power control in a PWR. One of the new concepts is the mode K control, another is a fuzzy power control. The system in mode K control implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial power shape change, which allows automatic control of the axial power distribution. And the mode K enables precise regulation, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1000-MWe PWR which is a reference plant for the YGN Unit 3. The simulation results illustrate that the mode K would be

  6. Maximum power point tracking techniques for photovoltaic water pumping system

    OpenAIRE

    Aashoor, Fathi

    2015-01-01

    An investigation into the design of a stand-alone photovoltaic water pumping system for supplying rural areas is presented. It includes a study of system components and their modelling. The PV water pumping system comprises a solar-cell-array, DC-DC buck chopper and permanent-magnet DC motor driving a centrifugal pump. The thesis focuses on increasing energy extraction by improving maximum power point tracking (MPPT). From different MPPT techniques previously proposed, the perturb and observe...

  7. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  8. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hydroelectric power... BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Hydroelectric Power Water Use Charges § 420.51 Hydroelectric power plant water use charges. (a) Annual base charges. Owners of...

  9. Water chemistry related problems in captive power plant of Heavy Water Plant [Manuguru

    International Nuclear Information System (INIS)

    Prasada Rao, G.; Mohapatra, C.

    2000-01-01

    This study is intended to improve the power generating capacity of Turbo Generator-3 in CPP. It was observed that steam flow through TG-3 was not as per rated; however there were no abnormal vibrations. After stopping and opening the turbine, deposits were found on turbine blade. Turbine blade scales were analysed for all the stages, HP, middle, LP, casings. Boiler drum water, feed water, DM water, filter water chemistry were studied. LP blade scale mainly consists of silica, whereas HP blade scale consists of iron oxide, sodium phosphate, silica etc. It was concluded that less generating capacity of power was because of scaling on turbine blade. (author)

  10. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  11. Heavy-Water Power Reactors. Proceedings Of A Symposium

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  12. Japanese aquaculture: use of thermal water from power plant

    International Nuclear Information System (INIS)

    Kuroda, Takeya

    1983-01-01

    There is some merit of thermal water from power plants in the effect to marine life. Since 1963, the research and development on the aquaculture using this warm water have been carried out at some twenty power plants, seven nuclear and thirteen thermal, some of which are now in the commercial stage. These fish farming projects are operated variously from seed to adult fish production. They can also be classified as land and sea facilities, conforming to the characteristics of the respective sea areas. The current situation in this field and the future prospect are described: thermal aquaculture including seed production and adult fish farming; the projects in nuclear and thermal power plants, respectively; future problems in the facilities, breeding environment and marine life for cultivation. (Mori, K.)

  13. Water chemistry control of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Hino, Yuichi; Makino, Ichiro; Yamauchi, Sumio; Fukuda, Fumihito.

    1992-01-01

    In PWR power plants, the primary system taking heat out of nuclear reactors and the secondary system generating steam and driving turbines are completely separated by steam generators, accordingly, by mutually independent water treatment, both systems are to be maintained in the optimal conditions. Namely, primary system is the closed water circulation circuit of simple liquid phase though under high temperature, high pressure condition, therefore, water shows the stable physical and chemical properties, and the minute water treatment for restraining the corrosion of structural materials and reducing radioactivity can be done. Secondary system is similar to the condensate and feedwater system of thermal power plants, and is the circuit for liquid-vapor two-phase transformation, but due to the local concentration of impurities by evaporation, the strict requirement is set for secondary water quality. However, secondary system can be treated in the state without radioactivity, and this is a great merit. The outline, basic concept and execution of primary water quality control, and the outline, concept, control criteria, facilities and execution of secondary water quality control are reported. (K.I.)

  14. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  15. Analysis of water hammer events in nuclear power plants

    International Nuclear Information System (INIS)

    Sato, Masahiro; Yanagi, Chihiro

    1999-01-01

    A water hammer issue in nuclear power plants was one of unresolved safety issues listed by the United States Nuclear Regulatory Commission and was regarded as resolved. But later on, the water hammer events are still experienced intermittently, while the number of the events is decreasing. We collected water hammer events of PWRs in Japan and the United States and relevant documents, analyzed them, and studied corrective actions taken by Japanese plants. As a result, it is confirmed that preventive measured in design, operation etc. have been already taken and that mitigation mechanisms against water hammer have also been considered. However, it is clarified that attention should be continuously paid to operation of valves and/or pumps, as the prevention of water hammer still relies on operation. (author)

  16. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  17. Hybrid Reactor Simulation of Boiling Water Reactor Power Oscillations

    International Nuclear Information System (INIS)

    Huang Zhengyu; Edwards, Robert M.

    2003-01-01

    Hybrid reactor simulation (HRS) of boiling water reactor (BWR) instabilities, including in-phase and out-of-phase (OOP) oscillations, has been implemented on The Pennsylvania State University TRIGA reactor. The TRIGA reactor's power response is used to simulate reactor neutron dynamics for in-phase oscillation or the fundamental mode of the reactor modal kinetics for OOP oscillations. The reactor power signal drives a real-time boiling channel simulation, and the calculated reactivity feedback is in turn fed into the TRIGA reactor via an experimental changeable reactivity device. The thermal-hydraulic dynamics, together with first harmonic mode power dynamics, is digitally simulated in the real-time environment. The real-time digital simulation of boiling channel thermal hydraulics is performed by solving constitutive equations for different regions in the channel and is realized by a high-performance personal computer. The nonlinearity of the thermal-hydraulic model ensures the capability to simulate the oscillation phenomena, limit cycle and OOP oscillation, in BWR nuclear power plants. By adjusting reactivity feedback gains for both modes, various oscillation combinations can be realized in the experiment. The dynamics of axially lumped power distribution over the core is displayed in three-dimensional graphs. The HRS reactor power response mimics the BWR core-wide power stability phenomena. In the OOP oscillation HRS, the combination of reactor response and the simulated first harmonic power using shaping functions mimics BWR regional power oscillations. With this HRS testbed, a monitoring and/or control system designed for BWR power oscillations can be experimentally tested and verified

  18. Recovery of condensate water quality in power generator's surface condenser

    Science.gov (United States)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  19. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  20. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  1. Study of hybrid power system potential to power agricultural water pump in mountain area

    Science.gov (United States)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  2. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  3. Nuclear power plants and the environment. Water samplings and releases

    International Nuclear Information System (INIS)

    Hartmann, Philippe; Bordet, Francois; Chevalier, Christian; Colin, Jean-Luc; Khalanski, Michel

    2013-01-01

    This voluminous and illustrated guide aims at giving detailed information on the nature of waters used by nuclear power plants and of releases, on how these samplings and controls are performed, on the associated risks for the environment and public health, and on how public is informed. After a general overview of these issues, a chapter addresses the protection of nature and biodiversity and the actions performed by EDF in this respect. The next chapter deals with public information. The next chapters discuss the water needs of a nuclear power plant, effluent releases and their impacts. Two chapters are dedicated to the monitoring and control of the environment, and to the various techniques of environmental metrology. Legal and regulatory aspects are then presented

  4. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  5. Coatings used in light-water nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The guide is intended to provide a common basis in the selection of test methods which may be required to evaluate and qualify protective coatings (paints) to be used in a light-water nuclear power plant. Standard test methods for the determination of fire resistance, chemical resistance, physical properties, effects of radiation, decontaminability, thermal conductivity, repairability, and for evaluation under accident conditions are included

  6. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  7. Financial tools to induce cooperation in power asymmetrical water systems

    Science.gov (United States)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2017-04-01

    In multi-purpose water systems, power asymmetry is often responsible of inefficient and inequitable water allocations. Climate Change and anthropogenic pressure are expected to exacerbate such disparities at the expense of already disadvantaged groups. The intervention of a third party, charged with redefining water sharing policies to give greater consideration to equity and social justice, may be desirable. Nevertheless, to be accepted by private actors, this interposition should be coupled with some form of compensation. For a public agency, compensation measures may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are subject to uncertainty. In this context, index based insurance contracts may represent a viable alternative option and reduce the cost of achieving socially desirable outcomes. In this study we explore soft measures to achieve global change mitigation by designing a hybrid coordination mechanism composed of i) a direct normative constraint and ii) an indirect financial compensatory tool. The performance of an index-based insurance (i.e. hedging) contract to be used as a compensation tool is evaluated relative to more traditional alternatives. First, the performance of the status quo system, or baseline (BL), is contrasted to an idealized scenario in which a central planner (CP) maximizes global efficiency. Then, the CP management is analyzed in order to identify an efficient water rights redistribution to be legally imposed on the advantaged stakeholders in the BL scenario. Finally, a hedging contract is designed to compensate those stakeholders more negatively affected by the legal constraint. The approach is demonstrated on a multi-purpose water system in Italy, where different decision makers individually manage the same resource. The system is characterized by a manifest power asymmetry: the upstream users, i.e., hydropower companies, are free to release their stored water in time

  8. Water supply pipe dimensioning using hydraulic power dissipation

    Science.gov (United States)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  9. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  10. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Directory of Open Access Journals (Sweden)

    Xu Ping

    2015-01-01

    Full Text Available Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS, protein (PN, and polysaccharide (PS in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  11. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  12. Neural Network Controller for the Pressurized Water Reactor Power Control

    International Nuclear Information System (INIS)

    Haggag, S.S.; Kotb, S.A.

    2017-01-01

    Although there have been some severe nuclear accidents such as Three Mile Island (USA), Chernobyl (Ukraine) and Fukushima (Japan), nuclear fission energy is still a source of clean energy that can substitute fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR) is the most widely used nuclear fission reactor, it is safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs (Pressurized Water Reactors ). This paper presents the effect of utilizing the Neural Network controller methodology in the power control model of the PWR. The Neural Network Controller was tested on a PWR model using the Matlab Simulink Interface. Two case studies were performed on the model using both the Neural Network method and the traditional rod speed program for controlling the nuclear power plant variables. The proposed controller presents a higher performance than that of the traditional rod speed program controller.

  13. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  14. Seismic qualification for water chillers of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chunming

    2005-01-01

    Water chillers are important components of the electric building chilled water system of Nuclear Power Plant. In this article, we describe the seismic qualification methodology. A united method of seismic analysis and experiment testing were applied. Since the seismic classification of the evaporator, condenser and oil separator is 1F, the chillers must satisfy the function criteria. The functional and performance of the control panel were qualified by seismic test. In order to get the seismic time histories of the base of the motor, compressor and control panel, we did time histories analysis for the whole chillers using the seismic acceleration time history of the building floor on which the water chillers was located. Then, these curves were translated into required response spectrum (RRS), which were used by the seismic test of water chillers compressor sets. All passive components, such as evaporator, condenser, oil separator and support, were qualified by seismic stress analysis method. These components were verified to satisfy the standard when they were subjected to the seismic, gravitational, operational pressure and nozzle loads. The Chillers' components were qualified to the specification and the standard. The motor-compressor set and control panel were qualified to the functional and performance criteria. The applied of this methodology qualified the function of the water chillers compressor sets effectively, especially after the aging test. (author)

  15. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  16. High Local Power Densities Permissible at Siemens Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Kuehnel, Klaus; Richter, Klaus-Deiter; Drescher, Gerhard; Endrizzi, Ivo

    2002-01-01

    Operating nuclear fuel to higher discharge burnups reduces not only fuel cycle costs but also the volume of radioactive waste requiring disposal. In pressurized water reactors (PWRs), high local power densities are a prerequisite for achieving a high batch burnup.The range of maximum power densities that can be exploited for in-core fuel management and operational flexibility is restricted by the limiting conditions for operation obtained from analyses of anticipated operational occurrences and hypothetical accidents.Since utilities mainly use available margins for implementing advanced in-core fuel management strategies or for power uprating, a suitable parameter for making a rough comparison of the present thermal-hydraulic design status of different PWRs is the maximum local heat flux achieved during actual cycles under steady-state full-power conditions. A comparison between Siemens PWRs and the PWR designs of other vendors shows that the maximum local power densities during steady-state operation are usually higher in Siemens PWRs.The main reasons why higher power densities are permissible can usually be attributed to different core surveillance concepts (instrumentation and control) in conjunction with different control assembly management schemes. Moreover, two representative studies conducted with a new methodology using the three-dimensional neutronics/thermal-hydraulics coupled code PANBOX for core transient analysis present additional margins. Especially in plants using the Siemens core surveillance concept, the new methodology yields significant additional margins for PWRs to be operated with even higher permissible local power densities.The additional departure from nucleate boiling ratio (DNBR) margin gained in the representative studies was 0.38. However, utilization of this additional margin is accompanied by larger void fractions within the upper section of the hot channel during normal operation. Therefore, increasing steady-state maximum power

  17. Remerschen nuclear power station with BBR pressurized water reactor

    International Nuclear Information System (INIS)

    Hoffmann, J.P.

    1975-01-01

    On the basis of many decades of successful cooperation in the electricity supply sector with the German RWE utility, the Grand Duchy of Luxemburg and RWE jointly founded Societe Luxembourgeoise d'Energie Nucleaire S.A. (SENU) in 1974 in which each of the partners holds a fifty percent interest. SENU is responsible for planning, building and operating this nuclear power station. Following an international invitation for bids on the delivery and turnkey construction of a nuclear power station, the consortium of the German companies of Brown, Boveri and Cie. AG (BBC), Babcock - Brown Boveri Reaktor GmbH (BBR) and Hochtief AG (HT) received a letter of intent for the purchase of a 1,300 MW nuclear power station equipped with a pressurized water reactor. The 1,300 MW station of Remerschen will be largely identical with the Muelheim-Kaerlich plant under construction by the same consortium near Coblence on the River Rhine since early 1975. According to present scheduling, the Remerschen nuclear power station could start operation in 1981. (orig.) [de

  18. Power handling capability of water-cooled beam stops

    International Nuclear Information System (INIS)

    Tran-Ngoc, T.

    1992-01-01

    Doubling the beam power on the RFQ1-1250 linear accelerator at Chalk River and designing a 40 kW beam diagnostic system for Tokamak de Varennes required a detailed investigation into the power handling capabilities of beam stops. Different techniques for augmentation of the critical heat flux on the cooling channel surface of beam stops are reviewed. In the case of a beam stop with twisted tape inserts, the swirl flow condition yields a higher critical heat flux than that of a straight axial flow. Although a critical heat flux in the order of 10 kW/cm 2 could be obtained at high flow velocities such as 45 m/s, such flows are not always practical in the design of beam stop cooling systems. At a water velocity of 4 m/s, the highest beam power density is estimated to be 1.4 kW/cm 2 for a beam stop design that uses double rows of cooling tubes. A similar design, where cooling channels are machined on a common copper block, would handle a power density up to 2.6 kW/cm 2 . Some preliminary hydraulic test results, related to a third design where high flow turbulence is created by two rows of intersected-channels, are also reported. (Author) 5 refs., 4 figs

  19. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  20. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  1. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  2. Hydroelectric power plant with variable flow on drinking water adduction

    Science.gov (United States)

    Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.

    2018-01-01

    The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.

  3. Modeling Power Plant Cooling Water Requirements: A Regional Analysis of the Energy-Water Nexus Considering Renewable Sources within the Power Generation Mix

    Science.gov (United States)

    Peck, Jaron Joshua

    Water is used in power generation for cooling processes in thermoelectric power. plants and currently withdraws more water than any other sector in the U.S. Reducing water. use from power generation will help to alleviate water stress in at risk areas, where droughts. have the potential to strain water resources. The amount of water used for power varies. depending on many climatic aspects as well as plant operation factors. This work presents. a model that quantifies the water use for power generation for two regions representing. different generation fuel portfolios, California and Utah. The analysis of the California Independent System Operator introduces the methods. of water energy modeling by creating an overall water use factor in volume of water per. unit of energy produced based on the fuel generation mix of the area. The idea of water. monitoring based on energy used by a building or region is explored based on live fuel mix. data. This is for the purposes of increasing public awareness of the water associated with. personal energy use and helping to promote greater energy efficiency. The Utah case study explores the effects more renewable, and less water-intensive, forms of energy will have on the overall water use from power generation for the state. Using a similar model to that of the California case study, total water savings are quantified. based on power reduction scenarios involving increased use of renewable energy. The. plausibility of implementing more renewable energy into Utah’s power grid is also. discussed. Data resolution, as well as dispatch methods, economics, and solar variability, introduces some uncertainty into the analysis.

  4. Networked Water Citizen Organisations in Spain: Potential for Transformation of Existing Power Structures in Water Management

    Directory of Open Access Journals (Sweden)

    Nuria Hernández-Mora

    2015-06-01

    Full Text Available The shift from hierarchical-administrative water management toward more transparent, multi-level and participated governance approaches has brought about a shifting geography of players, scales of action, and means of influencing decisions and outcomes. In Spain, where the hydraulic paradigm has dominated since the early 1920s, participation in decisions over water has traditionally been limited to a closed water policy community, made up of economic water users, primarily irrigator associations and hydropower generators, civil engineering corps and large public works companies. The river basin planning process under the Water Framework Directive of the European Union presented a promise of transformation, giving access to non-economic water users, environmental concerns and the wider public to water-related information on planning and decision-making. This process coincided with the consolidation of the use of Information and Communication Technologies (ICTs by the water administration, with the associated potential for information and data generation and dissemination. ICTs are also increasingly used by citizen groups and other interested parties as a way to communicate, network and challenge existing paradigms and official discourses over water, in the broader context of the emergence of 'technopolitics'. This paper investigates if and in what way ICTs may be providing new avenues for participated water resources management and contributing to alter the dominating power balance. We critically analyse several examples where networking possibilities provided by ICTs have enabled the articulation of interest groups and social agents that have, with different degrees of success, questioned the existing hegemonic view over water. The critical review of these cases sheds light on the opportunities and limitations of ICTs, and their relation with traditional modes of social mobilisation in creating new means of societal involvement in water

  5. Integrating water use into Southern California's power dispatch: an evaluation of the potential for cost-effective water conservation

    Science.gov (United States)

    Bolorinos, J.; Ajami, N.; Yu, Y.; Rajagopal, R.

    2016-12-01

    Urban water supply and energy systems in the arid Southwestern United States are closely linked. Freshwater use by the electricity sector in particular represents a sizable portion of total water consumption in the region. Nonetheless, the dispatch of water and energy resources is managed separately, and no research to-date has examined the water conservation potential presented by the electricity sector. This study gauges the potential water savings that could be achieved including water use in the power dispatch process in Southern California by simulating a DC Optimal Power Flow for a simplified model of the region's power network. The simulation uses historical power consumption data, historical power production data and water use data from the US Geological Survey, the California Energy Commission and the US Energy Information Administration to estimate freshwater consumption by the region's thermoelectric power generation fleet. Preliminary results indicate that power system freshwater consumption could be reduced by as much as 20% at a minimal cost penalty, with potential for even greater savings. Model results show that Southern California's power system has the ability to competitively shift the use of some of the region's water resources from electricity to urban consumption, and suggests that water use should be incorporated into the policy-making process to enhance the efficient use of the state's interconnected water and energy resources.

  6. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    Fukutomi, S.; Takigawa, Y.

    1992-01-01

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  7. The South African water management framework : Lethabo power station as a case study / Sadie de Bod

    OpenAIRE

    De Bod, Sadie

    2012-01-01

    South Africa is considered to be a water scarce country and it is estimated that by 2030 the water demand would have surpassed the water supply. There are therefore serious implications if all sectors of South Africa do not utilise natural water resources efficiently. The power generation sector is one of the more dominant water users, utilising more than 2 % of the available water resources. Since Eskom is guaranteed a 99.5 % water supply from the Department of Water Affairs, ...

  8. The optimum design of power distribution for pressurized water reactor

    International Nuclear Information System (INIS)

    Dai, Chunhui; Wei, Xinyu; Tai, Yun; Zhao, Fuyu

    2012-01-01

    Highlights: ► A two-level optimization method is developed. ► LP is optimized by backward diffusion calculation theory. ► Pontryagin’s maximum principle is used to investigate the optimum BP arrangement. ► NSGA-II is applied to coordinate the interrelationship between LP and BP. ► The optimized core saves fuel while providing a large power. -- Abstract: The aim of this work is to develop a two-level optimization method for designing the optimum initial fuel loading pattern and burnable poison placement in pressurized water reactors. At the lower level, based on the fuel loading pattern (LP) optimized by backward diffusion calculation theory, Pontryagin’s maximum principle is employed to investigate the optimum arrangement of burnable poison (BP) that can generate the lowest radial power peaking factor (PPF). At the upper level a multi-objective problem (MOP), with LP and BP as two objective functions, is proposed by coordinate the interrelationship of LP and BP, and optimized by non-dominated sorting genetic algorithm (NSGA-II). The results of optimum designs called ‘Pareto optimum solutions’ are a set of multiple optimum solutions. After sensitivity analysis is performed, the final optimum solution which is chosen based on a typical VVER-1000 reactor reveals that the method could not only save the fuel consumption but also reduce the PPF in comparison to published data.

  9. Water constraints on European power supply under climate change: impacts on electricity prices

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Vögele, S.; Rübbelke, D.

    2013-01-01

    Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power

  10. State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

    OpenAIRE

    Guoxu Wang; Jie Wu; Bifan Zeng; Zhibin Xu; Wanqiang Wu; Xiaoqian Ma

    2017-01-01

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reacto...

  11. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    Science.gov (United States)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  12. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    . Temperature changes will shift a portion of the electricity demand from winter to summer months, resulting in increased electricity prices. The reduction of water availability caused by climate change will increase the competition between irrigation and power production, leading to a sharper trade-off between......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... are expected to reduce hydropower generation and cooling water availability for thermal power generation; and higher temperatures are expected to increase (decrease) summer (winter) electricity demand, when water resources are already constrained. We use coupled hydrological and power system models to study...

  13. Titanium-Water Heat Pipe Radiator for Spacecraft Fission Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop titanium/water heat pipes suitable for Spacecraft Fission Power. NASA is examining small fission power reactors for future space...

  14. The power control system of the Siemens-KWU nuclear power station of the PWR [pressurized water reactors] type

    International Nuclear Information System (INIS)

    Huber, Horacio

    1989-01-01

    Starting with the first nuclear power plant constructed by Siemens AG of the pressurized light water reactor line (PWR), the Obrigheim Nuclear Power Plant (340 MWe net), until the recently constructed plants of 1300 MWe (named 'Konvoi'), the design of the power control system of the plant was continuously improved and optimized using the experience gained in the operation of the earlier generations of plants. The reactor power control system of the Siemens - KWU nuclear power plants is described. The features of this design and of the Siemens designed heavy water power plants (PHWR) Atucha I and Atucha II are mentioned. Curves showing the behaviour of the controlled variables during load changes obtained from plant tests are also shown. (Author) [es

  15. Water desalting plants' exploitation experience on the nuclear powered icebreakers and the nuclear-powered freight-carrier ''Sevmorput''

    International Nuclear Information System (INIS)

    Kovalenko, V.K.; Pavlov, E.A.

    1997-01-01

    The experience from water desalting plants M4C-1 on nuclear-powered icebreakers and M3C on the nuclear-powered freight-carrier ''Sevmorput'' are discussed. The specific design features, including those for maintaining distillate quality, to be considered under conditions of roll, heel and hull impact loading are highlighted. (author). 3 figs

  16. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  17. Specific safety aspects of the water-steam cycle important to nuclear power plant project

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1986-01-01

    The water-steam cycle in a nuclear power plant is similar to that used in conventional power plants. Some systems and components are required for the safe nuclear power plant operation and therefore are designed according to the safety criteria, rules and regulations applied in nuclear installations. The aim of this report is to present the safety characteristics of the water-steam cycle of a nuclear power plant with pressurized water reactor, as applied for the design of the nuclear power plants Angra 2 and Angra 3. (Author) [pt

  18. An optimized Fuzzy Logic Controller by Water Cycle Algorithm for power management of Stand-alone Hybrid Green Power generation

    International Nuclear Information System (INIS)

    Sarvi, Mohammad; Avanaki, Isa Nasiri

    2015-01-01

    Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.

  19. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  20. Tests of cooling water pumps at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Travnicek, J.

    1986-01-01

    Tests were performed to examine the operating conditions of the 1600 BQDV cooling pumps of the main coolant circuit of unit 1 of the Dukovany nuclear power plant. For the pumps, the performance was tested in the permissible operating range, points were measured below this range and the guaranteed operating point was verified. Pump efficiency was calculated from the measured values. The discussion of the measurement of parameters has not yet been finished because the obtained values of the amount delivered and thus of the pump efficiency were not up to expectation in all detail. It was also found that for obtaining the guaranteed flow the pump impeller had to be opened to 5deg -5.5deg instead of the declared 3deg. Also tested were pump transients, including the start of the pump, its stop, the operation and failure of one of the two pumps. In these tests, pressures were also measured at the inlet and the outlet of the inner part of the TG 11 turbine condenser. It was shown that the time course and the pressure course of the processes were acceptable. In addition to these tests, pressure losses in the condenser and the cooling water flow through the feed pump electromotor cooler wre tested for the case of a failure of one of the two pumps. (E.S.)

  1. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  2. Water-hydraulic power transmission for offshore wind farms

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.; Kempenaar, A.S.

    2012-01-01

    The current state of the art of offshore wind turbine power transmission technology is expensive, heavy and maintenance intensive. The Delft Offshore Turbine project considers a radically new concept for power transmission in an offshore wind farm: using seawater as power transmission medium. For

  3. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  4. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    International Nuclear Information System (INIS)

    McCall, James; Macknick, Jordan; Macknick, Jordan

    2016-01-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  5. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  6. Output control system in a boiling water atomic power plant

    International Nuclear Information System (INIS)

    Sadakane, Ken-ichiro.

    1975-01-01

    Object: To provide a line in bypass relation with a water heater, a flow rate of said bypass being adjusted to thereby perform quick responsive sub-cool control of a core inlet. Structure: A steam line and a water line are disposed so as to feed water from the reactor core to the water heater via turbine and thence to the core. A line disposed in bypass relation with the water heater arranged in the water line includes a control valve for controlling water passing through the bypass line and a main control for sending a signal to said control valve, said main control receiving loads from the outside, whereby a control signal is transmitted to the control valve, causing water passing through the water heater and water line to the core to be bypassed, a period of time for supplying time to be reduced, and quick response to be enhanced. (Kamimura, M.)

  7. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  8. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  9. Joint optimization of regional water-power systems

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders

    2016-01-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method fo...

  10. Purification of ammonia-containing trap waters from atomic power plant by ozone treatment

    International Nuclear Information System (INIS)

    Grachok, M.A.; Prokudina, S.A.; Shulyat'ev, M.I.

    1990-01-01

    The aim of research was to study the process of ozonation of ammonia-containing trap waters from the Kursk Atomic Power Plant both on the model solutions and on real ones. Different factors (pH of the medium, temperature, concentration of the initial substances) have been studied for their effect on ozonation of aqueous ammonia solutions, model solutions of trap waters from the Kursk Atomic Power Plant as well as ammonia-containing trap waters and liquid radioactive wastes delivered to special water treatment at the Kursk Atomic Power Plant. It is shown that in all the cases the highest rate of ammonia oxidation by ozone is observed in the alkaline medium (pH 1.4-11.0) and at 55 deg C. The obtained results have shown that a method of ozonation followed by evaporation of water to be purified can be used to treat ammonia-containing waters from atomic power plant

  11. Distribution of phthalate esters in underground water from power ...

    African Journals Online (AJOL)

    This study investigates the distribution of phthalateacid esters (PAEs) in groundwater from some power stations in Delta State. Groundwater samples were collected from eight power transmission and distribution stations. Concentrations (μg/L) of six phthalate acid esters compounds in the groundwater ranged from ...

  12. Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER

    International Nuclear Information System (INIS)

    Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.

    2005-01-01

    Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels

  13. Some aspects of improvement of chemical water conditions for thermal power plants

    International Nuclear Information System (INIS)

    Martynova, O.I.; Gladyshev, B.P.; Zhivilova, L.M.; Yurchevskij, E.B.

    1989-01-01

    Some general aspects of preventing corrosion of thermal power plant equipment are considered. Application of oxidation water chemistry regime, high purity feedwater, automatic control of water quality indices (conductivity, content of chlorides, sulfides, sodium, oxygen, hydrogen) is recommended. Necessity in statistics and creation of methods for quantitative evalution of economic losses during power equipment failures due to violation of water chemistry regime standards is indicated

  14. Power control of water reactors using nitrogen 16 activity measurements

    International Nuclear Information System (INIS)

    Gariod, R.; Merchie, F.; O'byrne, G.

    1964-01-01

    At the Grenoble Nuclear Research Centre, the open-core swimming pool reactors Melusine (2 MW) and Siloe (15 MW) are controlled at a constant overall power using nitrogen-16 channels. The conventional linear control channels react instantaneously to the rapid power fluctuations, this being necessary for the safety of the reactors, but their power indications are erroneous since they are affected by local deformations of the thermal flux caused by the compensation movements of the control rods. The nitrogen-16 channels on the other hand give an indication of the overall power proportional to the mean fission flux and independent of the rod movements, but their response time is 15 seconds, A constant overall power control is thus possible by a slow correction of the reference signal given by the automatic control governed by thu linear channels by means of a correction term given by the 'N-16' channels: This is done automatically in Melusine and manually in Siloe. (authors) [fr

  15. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  16. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  17. Battery powered cost effective TDS logger intended for water testing.

    OpenAIRE

    Alexandru Ivan, Ioan; Stihi, Valentin; Ivan, Michaela; Stihi, C.; Rakotondrabe, Micky; Jelea, Adrian

    2011-01-01

    International audience; The paper presents a cost-effective device designed for measuring and monitoring the TDS (total dissolved solids) level of drinkable, surface (lakes, rivers) and/or industrial waters. Providing a first reading of potential water pollutions, the device is dedicated to the sectors of environment and consumer protection. The device was implemented and a series of continuous measurements is depicted, discovering some abnormalities in the quality of Targoviste city water ut...

  18. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  19. CALCULATING WATER CONSUMPTION AND WITHDRAWAL FROM POWER PLANTS GLOBALLYUsing machine learning, remote sensing and power plant data from the Power Watch platform

    Science.gov (United States)

    Kressig, A.

    2017-12-01

    BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per

  20. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  1. Increasing photovoltaic panel power through water cooling technique

    Directory of Open Access Journals (Sweden)

    Calebe Abrenhosa Matias

    2017-02-01

    Full Text Available This paper presents the development of a cooling apparatus using water in a commercial photovoltaic panel in order to analyze the increased efficiency through decreased operating temperature. The system enables the application of reuse water flow, at ambient temperature, on the front surface of PV panel and is composed of an inclined plane support, a perforated aluminum profile and a water gutter. A luminaire was specially developed to simulate the solar radiation over the module under test in a closed room, free from the influence of external climatic conditions, to carry out the repetition of the experiment in controlled situations. The panel was submitted to different rates of water flow. The best water flow rate was of 0.6 L/min and net energy of 77.41Wh. Gain of 22.69% compared to the panel without the cooling system.

  2. US Power Production at Risk from Water Stress in a Changing Climate.

    Science.gov (United States)

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  3. The gender education gap in China: the power of water

    OpenAIRE

    Maimaiti, Yasheng; Siebert, William Stanley

    2009-01-01

    We investigate girls' school dropout rates, bringing forward a novel variable: access to water. We hypothesise that a girl's education suffers when her greater water need for female hygiene purposes after menarche is not met because her household has poor access to water. For testing we use data from rural villages in the China Health and Nutrition Survey. We find that menarche is associated with an increase in the school dropout rate, and indeed the effect is weaker for girls who have good a...

  4. Integrated assessment of water-power grid systems under changing climate

    Science.gov (United States)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  5. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  6. Power-generation system vulnerability and adaptation to changes in climate and water resources

    Science.gov (United States)

    van Vliet, Michelle T. H.; Wiberg, David; Leduc, Sylvain; Riahi, Keywan

    2016-04-01

    Hydropower and thermoelectric power together contribute 98% of the world’s electricity generation at present. These power-generating technologies both strongly depend on water availability, and water temperature for cooling also plays a critical role for thermoelectric power generation. Climate change and resulting changes in water resources will therefore affect power generation while energy demands continue to increase with economic development and a growing world population. Here we present a global assessment of the vulnerability of the world’s current hydropower and thermoelectric power-generation system to changing climate and water resources, and test adaptation options for sustainable water-energy security during the twenty-first century. Using a coupled hydrological-electricity modelling framework with data on 24,515 hydropower and 1,427 thermoelectric power plants, we show reductions in usable capacity for 61-74% of the hydropower plants and 81-86% of the thermoelectric power plants worldwide for 2040-2069. However, adaptation options such as increased plant efficiencies, replacement of cooling system types and fuel switches are effective alternatives to reduce the assessed vulnerability to changing climate and freshwater resources. Transitions in the electricity sector with a stronger focus on adaptation, in addition to mitigation, are thus highly recommended to sustain water-energy security in the coming decades.

  7. Study on power generation performance of sea water evaporation steam

    Science.gov (United States)

    Zhao, Chenguang; Ma, Jinghuan; Liu, Ying; Shen, Dongfang

    2018-02-01

    Seawater with softening pretreatment was used as the medium for experiment evaporation, and the influence of influent water, influent water temperature and flue gas flow on the steam flow and evaporation rate is discussed in this paper. The results show that with the increase of water inflow, the evaporation rate decreases at the beginning and then increases. Steam flow increases with the increasing water inflow; the increase of influent temperature has great influence on the evaporation rate and steam flow, however, the evaporation rate hardly changes when the influent temperature reaches a certain value; Steam flow and evaporation rate increases with increasing flue gas flow, and increases slightly with increasing before reaching 90m3/h. The surface of the heating tube was analyzed by means of SEM and X-ray diffraction. These discussions and results has some guiding significance in designing evaporation equipment using softening pretreatment.

  8. Low-Power, Lightweight Cloud Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of cloud water content is of great importance in understanding the formation of clouds, their structure, and their radiative properties which in turn...

  9. Low-Power, Lightweight Cloud Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The water content of clouds, whether in liquid or ice form, is a key variable to be measured when either calibrating remote sensing systems or when calculating the...

  10. Microwave Powered Gravitationally Independent Medical Grade Water Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative microwave system is proposed for the continuous production of medical grade water. This system will utilize direct absorption of microwave radiation to...

  11. Power oscillation and stability in water cooled reactors

    International Nuclear Information System (INIS)

    Por, G.; Kis, G.

    1998-01-01

    Periodic oscillation in measured temperature fluctuation was observed near to surface of a heated rod in certain heat transfer range. The frequency of the peak found in power spectral density of temperature fluctuation and period estimated from the cross correlation function for two axially placed thermocouples change linearly with linear energy (or surface heat) production. It was concluded that a resonance of such surface (inlet) temperature oscillation with the pole of the reactor transfer function can be responsible for power oscillation in BWR and PWR, thus instability is not solely due to reactor transfer function. (author)

  12. Utilization of water power in the Hochsauerland District. Possibilities of utilizing water power plants while deriving profits for tourism. Wasserkraftnutzung im Hochsauerlandkreis. Moeglichkeiten zur Inwertsetzung der Wasserkraftanlagen im Rahmen einer touristischen Route

    Energy Technology Data Exchange (ETDEWEB)

    Peyrer, U.

    1994-01-01

    The idea of utilizing water power plants while driving profits for tourism intends to promote regional tourism and support the district at the same time. Since both precipitation and discharge conditions and the Hochsauerland relief provide favorable conditions for water power utilization, one finds various water wheel uses, i.e. corn mills or saw mills, water wheels for the metal-working industry, and hammer mills. This volume contains a comprehensive documentation of the water power plants in the Hochsauerland District. (BWI)

  13. The Northeastern United States Energy-Water Nexus: Climate Change Impacts and Alternative Water Management Strategies for the Power Sector

    Science.gov (United States)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.

    2014-12-01

    The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.

  14. 384 Power plant waste water sampling and analysis plan

    International Nuclear Information System (INIS)

    Hagerty, K.J.; Knotek, H.M.

    1995-01-01

    This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1)

  15. The environmental impacts of wind and water power

    International Nuclear Information System (INIS)

    Twidell, J.W.

    1994-01-01

    The success of a typical renewable energy project depends about 40% on technology and about 60% on institutional factors. The latter include regulations, financing and environmental impact, with many of the regulations and some financial factors themselves relating to environmental impact. This paper attempts to define and categorize aspects of environmental impact, especially regarding wind and hydro power projects. (author)

  16. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  17. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Researchers and engineers at the National Wind Technology Center have developed a wide range of computer modeling and simulation tools to support the wind and water power industries with state-of-the-art design and analysis capabilities.

  18. Capital cost: pressurized water reactor plant. Commerical electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate

  19. Titanium-Water Heat Pipe Radiator for Spacecraft Fission Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase II program Advanced Cooling Technologies, Inc. (ACT) proposes to develop titanium/water heat pipes suitable for Spacecraft Fission Power...

  20. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  1. Cycle water chemistry based on film forming amines at power plants: evaluation of technical guidance documents

    Science.gov (United States)

    Dyachenko, F. V.; Petrova, T. I.

    2017-11-01

    Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.

  2. Power Watch - A global, open database of power plants that supports research on climate, water and air pollution impact of the global power sector.

    Science.gov (United States)

    Friedrich, J.; Kressig, A.; Van Groenou, S.; McCormick, C.

    2017-12-01

    Challenge The lack of transparent, accessible, and centralized power sector data inhibits the ability to research the impact of the global power sector. information gaps for citizens, analysts, and decision makers worldwide create barriers to sustainable development efforts. The need for transparent, accessible, and centralized information is especially important to enhance the commitments outlined in the recently adopted Paris Agreement and Sustainable Development Goals. Offer Power Watch will address this challenge by creating a comprehensive, open-source platform on the world's power systems. The platform hosts data on 85% of global installed electrical capacity and for each power plant will include data points on installed capacity, fuel type, annual generation, commissioning year, with more characteristics like emissions, particulate matter, annual water demand and more added over time. Most of the data is reported from national level sources, but annual generation and other operational characteristiscs are estimated via Machine Learning modeling and remotely sensed data when not officially reported. In addition, Power Watch plans to provide a suite of tools that address specific decision maker needs, such as water risk assessments and air pollution modeling. Impact Through open data, the platform and its tools will allow reserachers to do more analysis of power sector impacts and perform energy modeling. It will help catalyze accountability for policy makers, businesses, and investors and will inform and drive the transition to a clean energy future while reaching development targets.

  3. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ...-Water-Cooled Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...

  4. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide...

  5. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  6. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  7. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  8. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Grubert, E.; Webber, M.

    2017-12-01

    Although it is widely understood that energy and water are the world's two most critical resources, their vital interconnections and vulnerabilities are less often recognized. This talk offers a holistic way of thinking about energy and water—a big picture approach that reveals the interdependence of the two resources, identifies the seriousness of the challenges, and lays out an optimistic approach with an array of solutions to ensure the continuing sustainability of both. The talk discusses how current population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, the talk identifies a hopeful path toward wise long-range water-energy decisions and a more reliable and abundant future for humanity.

  9. The latest make-up water treatment plant for power plants

    International Nuclear Information System (INIS)

    Yokomizo, Yuichi

    1997-01-01

    As the change of the outside environment surrounding power stations, the strengthening of the environmental standard of water quality and the upgrading of required water quality standard are described. The reduction of colloidal silica in thermal power plant water and the reduction of iron and organic chlorine in PWR water are necessary. Recently it became difficult to secure water for power stations, and in dry season, the water for power stations is sometimes cut for securing livelihood and agricultural water. For the means of securing stable water source, the installation of seawater desalting plants increased. The types, the constitution of the plants and the operation performance are reported. Recently the water treatment technology using MF, UF and RO membranes has become to be adopted. The relation of the substances to be removed to the range of filtration of respective membranes is shown. The conventional method is the combination of coagulative sedimentation, filtration and ion exchange resin, but the membrane technology uses UF and RO membranes. The technical features of UF (ultrafiltration) and RO (reverse osmosis) membrane facilities and deaerating membrane are explained. (K.I.)

  10. Climate and water resource change impacts and adaptation potential for US power supply

    Science.gov (United States)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  11. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  12. Renewable Production of Water, Hydrogen, and Power From Ambient Moisture

    Science.gov (United States)

    2016-12-01

    extraction from the surroundings is accomplished for the most part through the heating , ventilation and air conditioning (HVAC) systems in every building...the system are part of the OPTimus Series ( PV model type: OPT270-60-4-1B0) manufactured by Suniva. Each panel is capable of producing a max power...ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research, Energy Systems Technology Evaluation

  13. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S... Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the... power plants. ADDRESSES: Please refer to Docket ID NRC-2012-0293 about the availability of information...

  14. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  15. Distribution of Phthalate Esters in Underground Water from Power ...

    African Journals Online (AJOL)

    ADOWIE PERE

    reservoir bottle; calibrated syringe; ultrasonic bath; bunsen burner; drying oven; muffle furnace; desiccators; measuring cylinders; test tubes; pasteur pipettes; calibrated pipette. Sample Handling and pre-treatment: Water samples were collected in amber glass containers. Conventional sampling practices were followed. No.

  16. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  17. Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China

    Directory of Open Access Journals (Sweden)

    Jiahai Yuan

    2014-10-01

    Full Text Available Currently, 58% of coal-fired power generation capacity is located in eastern China, where the demand for electricity is strong. Serious air pollution in China, in eastern regions in particular, has compelled the Chinese government to impose a ban on the new construction of pulverized coal power plants in eastern regions. Meanwhile, rapid economic growth is thirsty for electric power supply. As a response, China planned to build large-scale coal power bases in six western provinces, including Inner Mongolia, Shanxi, Shaanxi, Xinjiang, Ningxia and Gansu. In this paper, the water resource implication of the coal power base planning is addressed. We find that, in a business-as-usual (BAU scenario, water consumption for coal power generation in these six provinces will increase from 1130 million m3 in 2012 to 2085 million m3 in 2020, experiencing nearly a double growth. Such a surge will exert great pressure on water supply and lead to serious water crisis in these already water-starved regions. A strong implication is that the Chinese Government must add water resource constraint as a critical point in its overall sustainable development plan, in addition to energy supply and environment protection. An integrated energy-water resource plan with regionalized environmental carrying capacity as constraints should be developed to settle this puzzle. Several measures are proposed to cope with it, including downsizing coal power in western regions, raising the technical threshold of new coal power plants and implementing retrofitting to the inefficient cooling system, and reengineering the generation process to waterless or recycled means.

  18. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  19. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  20. Report of the national committee on the evaluation of special water releases for electric power plants

    International Nuclear Information System (INIS)

    2004-01-01

    During summer 2003, because of high temperatures monitored in french rivers and to guarantee the electric power supply in France, the government authorized some power plants of EDF to depart from the rules normally applied in terms of release temperatures of cooling water in rivers. This report presents the main observations realized by the Committee responsible of the electric power plants control on the ecological impacts, the prevention means and the crisis management bound to the meteorological phenomena and the consequences on the water policy. (A.L.B.)

  1. State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

    Directory of Open Access Journals (Sweden)

    Guoxu Wang

    2017-02-01

    Full Text Available A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP. The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  2. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  3. Water and Power Systems Co-optimization under a High Performance Computing Framework

    Science.gov (United States)

    Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.

    2016-12-01

    Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide

  4. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  5. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Parvan, M.; Ohai, D.

    2009-01-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor

  6. Water-power resources of Crystal River, Colorado

    Science.gov (United States)

    Lawrence, Fred Forrest

    1953-01-01

    The Crystal River drains the western slope of the Elk Mountains, a relatively small range in the southern Rocky Mountain province, and flows into the Roaring Fork 13 miles southeast of Glenwood Springs, Colo. The lower 7 miles of the valley is cultivated, but upstream from this stretch the valley is narrow and is used mainly for summer grazing and recreation. Above the mouth of Thompson Creek, numerous dam sites are available, but the narrow valley and steep gradient do not favor storage for regulation of streamflow. The potential power from the natural flow of the stream in an average year is estimated to be 4,750 kilowatts for 95 percent of the time; 5,102 kw for 90 percent of the time; 10,570 kw for 50 percent of the time; and 36,940 kw at mean flow. Using the regulated flow resulting from the utilization of reservoirs at Marble and Redstone, the potential power is estimated to be 26,510 kw for 90 percent of the time and 27,810 kw for 50 percent of the time.

  7. Proposal of electric power generation from generators to water edge in the region of Sarapiqui

    International Nuclear Information System (INIS)

    Rodriguez Fallas, Cindy Veronica

    2013-01-01

    A proposed electric power generation is developed from generators to water edge in the region of Sarapiqui. The environmental characteristics, such as the hydrological network, hydrogeology, soil type, life zones, climatology, precipitation, temperature, evapotranspiration and water supply and demand, of rivers crossed by basin in the region of Sarapiqui, are determined by bibliographic consultations to implement the proposal. The most recent production statistics of the electric subsector of Costa Rica are described to reveal the growing annual demand and need for satisfaction. The zone of Sarapiqui is diagnosed as the right place to allow the generation of electric power from generators to water edge [es

  8. Present status of fish culture using warm waste water from power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The research of fish culture using warm waste water from power stations in Japan has history of over ten years. It is being gradually commercialized, but still various problems remain. Among the fish culture activities, those related to nuclear power generation are described as follows: Tokai ponds of Warm Water Fish Culture Development Society of Japan (culturing crimson sea bream, ear shell, flatfish, prawn, and eel); Fukui Prefectural Fisheries Experimental Station (culturing sweetfish and young yellowtail); and, Warm Water Utilization Center of Shizuoka Prefecture (culturing ear shell). (Mori, K.)

  9. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    a complete combustion for wood. In addition, thermoelectric generators (TEG) produce power that can be used to satisfy all basic needs. In this study, a water-base cooling system is designed to increase the efficiency of TE generators that also produces hot water for residential uses. Through a range....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  10. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    Science.gov (United States)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  11. The drinking-water-powered small hydro-power installation in Welschenrohr, Switzerland; Trinkwasserkraftwerk Muehlacker Welschenrohr (SO). Programm Kleinwasserkraftwerke. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Schindelholz, B.; Spescha, P.

    2006-07-01

    This preliminary study for the Swiss Federal Office of Energy (SFOE) takes a look at the possibility of implementing a small hydro-power installation that is to be installed in the drinking-water supply in Welschenrohr, Switzerland. The proposed project could not only supply 11 kW of 'green' electrical power, but also - via a heat-pump - heat for space-heating. The report describes the situation presently to be found. Two ground-water pumping stations and a reservoir are available. Water-flows in winter and summer are noted. The heating potential available for use with the heat pump is noted. The system's concept is described and the steps necessary for project implementation are looked at. Further, the economical viability of the power generation and the heat-pump installation and a number of legal aspects are examined. Finally, further investigations to be made and further action to be taken are discussed.

  12. Study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Kueppers, Christian; Claus, Manuel

    2014-01-01

    The study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply covers the following issues: estimation of possible source terms and radioactive materials release rates, airborne water contamination, water contamination by direct pollution, consequences for the drinking water supply, emergency measures in case of a drinking water contamination, routine surveillance of surface and ground water and improvement possibilities in nuclear power plants.

  13. Pressurized water reactor nuclear power plant. Environmental characterization information report

    International Nuclear Information System (INIS)

    1981-01-01

    The typical plant chosen for characterization is a 10000-MWe nameplate rating with wet-natural-draft cooling towers and modern radwaste control and processing equipment. The process, plant operating parameters, resources needed, and the environmental residuals and products associated with the power plant are presented. Annual resource usage and pollutant discharges are shown in English and metric units, assuming an annual plant capacity factor of 70%. In addition to annual quantities, the summary table gives quantities in terms of 10 12 Btu (about 293 million kWh) of electrical energy produced for comparison among energy processes. Supporting information and calculation procedures for the data are given. Thirteen environmental points of interest are discussed individually. Cost information, typical radioactive releases, and use of cooling ponds as an alternative cooling method are discussed in appendixes. A glossary and list of acronyms and abbreviations are provided

  14. Siting of light-water reactor power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1975-01-01

    The nuclear power plant site requirements formulated for environment protection in Germany allow nuclear power plants to be built at any site provided these requirements are duly taken into account in preparing and monitoring the site and in the design of the proposed power plant. After a brief discussion of light water reactor power plant sites, prevailing practice in site planning, site selection criteria, licensing procedure and used criteria, rules and guidelines, this paper reports on some considerations taken into account by the expert advisers and by the licensing authorities and future site planning. (orig.) [de

  15. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  16. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  17. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  18. IAEA specialists' meeting on power ramping and cycling behaviour of water reactor fuel. Summary report

    International Nuclear Information System (INIS)

    1983-06-01

    At its fourth Annual Meeting, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended that the Agency should hold a second Specialists' Meeting on 'Power Ramping and Cycling Behaviour of Water Reactor Fuel'. As research activities related to power ramping and cycling of water reactor fuel have been pursued vigorously, it was the objective of this meeting to review and discuss today's State of the Art and current understanding of water reactor fuel behaviour related to this these. Emphasis should be on practical experience and experimental investigations. The meeting was organised in five sessions: Power ramping and power cycling programs in power and and research reactors; Experimental methods; Power ramping and cycling results; Investigations and results of separate effects, especially related to PCI, defect mechanism, mechanical response, fuel design, and specially related to fission gas release; Operational strategies, recommendations and economic implications. The session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report

  19. Water intake flow efficiency study for micro-hydro power plant

    Science.gov (United States)

    Pop, Radu; Vaida, Liviu; Bot, Adrian

    2017-12-01

    The water intake from the micro-hydro power plants captures water in two ways, namely, in summer through a surface grill and in winter by "winter intake", by water immersion below freezing level. The water flow captured for energy production is influenced by the river flow and fish ladder flow, respectively. The fish ladder flow should ensure a minimum servitude flow, downstream for fish migration. The paper presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. This optimization should be made by keeping a constant flow through the fish ladder. The increase on the efficiency as a function of the river flow is presented.

  20. Effect of Lakhara chemical power station (LPTS) effluents on the river Indus water quality

    International Nuclear Information System (INIS)

    Mahar, R.B.; Memon, H.M.; Khushwar, M.Y.

    2000-01-01

    The variation of the quality of river Indus water with respect to the seasonal changes, discharge of water and dilution with the effluents of Lakhra Thermal Power Station (LTPS), has been monitored. The studies were focussed on the river Indus water quality before and after mixing the effluents of the power station. The samples were collected monthly from the representative locations of the river Indus, and analyzed for the residues (total, filterable, non-filterable, volatile and fixed), pH, temperature (air and water), conductance, chloride, hardness, alkalinity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD) /sub 5/- nitrate, phosphate, sulfate, ammonia, ammonium, silicates, magnesium, potassium, calcium and sodium. The results have been compared with the permissible limits of ECC (European Economic Community) standards for drinking and surface water. (author)

  1. Using the gravitational energy of water to generate power by separation of charge at interfaces.

    Science.gov (United States)

    Sun, Yajuan; Huang, Xu; Soh, Siowling

    2015-06-01

    When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.

  2. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  3. Method of controlling the power up by fluid poisons in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Shibuya, Mikio; Masuoka, Ryuzo.

    1980-01-01

    Purpose: To increase power by the gradual decrease in the amount of fluid poisons mixed in moderators or coolants of heavy water moderated reactors. Method: Power fluctuation rate for the period of time in multiple integer of one cycle period in the main loop of moderators (coolants) is determined by the detection signals for the reactor power and the deviation between it and the power fluctuation rate required for the operation is determined. Pulse signals of different series are generated depending on the polarities of the deviation by the number corresponding to the magnitude of the deviation, and the power control in the reactor power up is conducted by these pulses while operating the fluid supply device which issues a certain amount of fluid per one pulse and mixing the moderators (coolants) containing no substantial poisons or moderators (coolants) having poison density higher than that in the moderators (coolants) in the main loop. (Horiuchi, T.)

  4. A design study of high electric power for fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  5. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  6. Water Stress on U.S. Power Production at Decadal Time Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Auroop R. [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.. Civil and Environmental Engineering Dept.; Ganguli, Poulomi [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.; Kumar, Devashish [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.

    2014-09-01

    Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the contiguous United States at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand. While a planning horizon of zero to about thirty years is occasionally prescribed by stakeholders, the challenges to risk assessment at these scales include the difficulty in delineating decadal climate trends from intrinsic natural or multiple model variability. Current generation global climate or earth system models are not credible at the spatial resolutions of power plants, especially for surface water quantity and stream temperatures, which further exacerbates the assessment challenge. Population changes, which are difficult to project, cannot serve as adequate proxies for changes in the water demand across sectors. The hypothesis that robust assessments of power production at risk are possible, despite the uncertainties, has been examined as a proof of concept. An approach is presented for delineating water scarcity and temperature from climate models, observations and population storylines, as well as for assessing power production at risk by examining geospatial correlations of power plant locations within regions where the usable water supply for energy production happens to be scarcer and warmer. Our analyses showed that in the near term, more than 200 counties are likely to be exposed to water scarcity in the next three decades. Further, we noticed that stream gauges in more than five counties in the 2030s and ten counties in the 2040s showed a significant increase in water temperature, which exceeded the power plant effluent temperature threshold set by the EPA. Power plants in South Carolina, Louisiana, and Texas are likely to be vulnerable owing to climate driven water stresses. In all, our analysis suggests that under various combinations of plausible climate

  7. Hydro power potentials of water distribution networks in public universities: A case study

    Directory of Open Access Journals (Sweden)

    Olufemi Adebola KOYA

    2017-06-01

    Full Text Available Public Universities in Southwestern Nigeria are densely populated student-resident campuses, so that provision of regular potable water and electricity are important, but power supply is not optimally available for all the necessary activities. This study assesses the hydropower potential of the water distribution networks in the Universities, with the view to augmenting the inadequate power supplies. The institutions with water distribution configuration capable of accommodating in-pipe turbine are identified; the hydropower parameters, such as the flow characteristics and the pipe geometry are determined to estimate the water power. Global positioning device is used in estimating the elevations of the distribution reservoirs and the nodal points. The hydropower potential of each location is computed incorporating Lucid® Lift-based spherical turbine in the pipeline. From the analysis, the lean and the peak water power are between 1.92 – 3.30 kW and 3.95 – 7.24 kW, respectively, for reservoir-fed distribution networks; while, a minimum of 0.72 kW is got for pipelines associated with borehole-fed overhead tanks. Possible applications of electricity generation from the water distribution networks of the public universities are recommended.

  8. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  9. Systematic methodology for diagnosis of water hammer in LWR power plants

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Husaini, S.M.

    1990-01-01

    The paper gives the dimensions of the knowledge base that is necessary to carry out a diagnosis of water hammer susceptibility/root cause analyses for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) nuclear power plant systems. After introducing some fundamentals, water hammer phenomena are described. Situations where each phenomenon is encountered are given and analytical models capable of simulating the phenomena are referenced. Water hammer events in operating plants and their inclusion in the knowledge base is discussed. The diagnostic methodology is presented through an application on a system in a typical light water reactor plant. The methodology presented serves as a possible foundation for the creation of an expert water hammer diagnosis system. (orig.)

  10. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  11. Development and implementation of the heavy water program at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Bourassa, C., E-mail: ram.davloor@brucepower.com, E-mail: carl.bourassa@brucepower.com [Bruce Power, Tiverton, ON (Canada)

    2014-07-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  12. Development and implementation of the heavy water program at Bruce Power

    International Nuclear Information System (INIS)

    Davloor, R.; Bourassa, C.

    2014-01-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  13. Water Grabbing and the Role of Power: Shifting Water Governance in the Light of Agricultural Foreign Direct Investment

    Directory of Open Access Journals (Sweden)

    Andrea Bues

    2012-06-01

    Full Text Available In recent years, the trend for foreign actors to secure land for agricultural production in low-income countries has increased substantially. The concurrent acquisition of water resources changes the institutional arrangement for water management in the investment areas. The consequences of 'land grabbing' on the local water governance systems have not so far been adequately examined. This paper presents an institutional analysis of a small-scale irrigation scheme in Ethiopia, where foreign and national horticultural farms started to use water from an irrigation canal that was formerly managed as a user-group common-pool resource by local smallholders. The study follows a qualitative case-study approach with semi-structured interviews as the main source of data. For the analysis we employed the Common-pool Resource Theory and the Distributional Theory of Institutional Change. We found that the former management regime changed in that most of the farmers’ water rights shifted to the investment farms. We found three key characteristics responsible for the different bargaining power of the two actor groups: dependency on natural resources, education and knowledge, and dependency on government support. We conclude that not only the struggle for land but also the directly linked struggle for water is led by diverging interests, which are determined by diverging power resources.

  14. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  15. Power asymmetry in conflict resolution with application to a water pollution dispute in China

    Science.gov (United States)

    Yu, Jing; Kilgour, D. Marc; Hipel, Keith W.; Zhao, Min

    2015-10-01

    The concept of power asymmetry is incorporated into the framework of the Graph Model for Conflict Resolution (GMCR) and then applied to a water pollution dispute in China in order to show how it can provide strategic insights into courses of action. In a new definition of power asymmetry, one of the decision makers (DMs) in a conflict can influence the preferences of other DMs by taking advantage of additional options reflecting the particular DM's more powerful position. The more powerful DM may have three different kinds of power: direct positive, direct negative, or indirect. It is useful to analyze a model of a conflict without power asymmetry, and then to analyze a power-asymmetric model. As demonstrated by analysis of the water quality controversy that took place at the border separating the Chinese provinces of Jiangsu and Zhejiang, this novel conflict resolution methodology can be readily applied to real-world strategic conflicts to gain an enhanced understanding of the effects of asymmetric power.

  16. Integration of Hydropower in a Competitive power market model for water-energy scenario analysis

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Carrion-Sanchez, Laura; Arnbjerg-Nielsen, Karsten

    2011-01-01

    ; and the demands from one system to the other are computed by both models jointly. For this purpose, we develop a bidding strategy for a price-taker hydropower generator based on reservoir volumes and expected electricity prices. The results from the methodology are comparable to those from a dynamic program....... The hydropower bidding strategy showed reasonable performance when tested in a simplified model of a competitive power market....... for the management of both water and energy resources, and should be assessed. We propose a coupled water-energy modeling approach in which a hydrological model imposes the water constraints on the power system model; hydropower generation is bid to the power market based on the hydrological state of the system...

  17. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  18. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  19. Conserving water in and applying solar power to haemodialysis: 'green dialysis' through wiser resource utilization.

    Science.gov (United States)

    Agar, John W M

    2010-06-01

    Natural resources are under worldwide pressure, water and sustainable energy being the paramount issues. Haemodialysis, a water-voracious and energy-hungry healthcare procedure, thoughtlessly wastes water and leaves a heavy carbon footprint. In our service, 100 000 L/week of previously discarded reverse osmosis reject water--water which satisfies all World Health Organisation criteria for potable (drinking) water--no longer drains to waste but is captured for reuse. Reject water from the hospital-based dialysis unit provides autoclave steam for instrument sterilization, ward toilet flushing, janitor stations and garden maintenance. Satellite centre reject water is tanker-trucked to community sporting fields, schools and aged-care gardens. Home-based nocturnal dialysis patient reuse reject water for home domestic utilities, gardens and animal watering. Although these and other potential water reuse practices should be mandated through legislation for all dialysis services, this is yet to occur. In addition, we now are piloting the use of solar power for the reverse osmosis plant and the dialysis machines in our home dialysis training service. If previously attempted, these have yet to be reported. After measuring the power requirements of both dialytic processes and modelling the projected costs, a programme has begun to solar power all dialysis-related equipment in a three-station home haemodialysis training unit. Income-generation with the national electricity grid via a grid-share and reimbursement arrangement predicts a revenue stream back to the dialysis service. Dialysis services must no longer ignore the non-medical aspects of their programmes but plan, trial, implement and embrace 'green dialysis' resource management practices.

  20. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  1. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Vine, Gary

    2010-01-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes 'Best Technology Available' for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant's steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R and D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  2. Standardization of the water heat carrier quality at Russian thermal power plants

    Science.gov (United States)

    Larin, B. M.; Larin, A. B.; Suslov, S. Yu.; Kirilina, A. V.

    2017-04-01

    The necessity of developing a new industry-specific standard of the heat carrier quality for the operating, newly commissioned, and prospective power-generating units of the thermal power plants is substantiated. The need of extending the scope of the automatic chemical monitoring and the possibility of indirect measurements of some basic standardized and diagnostic indices of the water chemistry using the specific conductance are shown. Investigations proved the possibility of automatic chemical monitoring of the phosphating of the drum boilers and quantitative control of potentially acidic impurities in the feed water in oncethrough boilers. The normative STO NP INVEL document developed at OAO VTI in 2009 is proposed as the basis for alterations and amendments. A new index, the total organic carbon, is introduced into this document. The standardized value of this index in the drum boiler feed water and steam is 100 μg/dm3. According to the above normative document, the scope of the chemical monitoring should be extended by measurements of the specific conductance of the direct and H-cation samples of both the feed and the boiler water. The content of chlorides should also be standardized. For the first time, normative restrictions are suggested on amine-containing water chemistry of the power-generating units with the combined cycle gas turbines. Flowcharts are proposed for pretreatment of the make-up water on the basis of low-mineralized natural waters with high organic substance contents, which reduces the oxidizability by 70-80%.

  3. Safe corrosion inhibitor for treating cooling water on heat power engineering plants

    Science.gov (United States)

    Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.

    2017-08-01

    Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.

  4. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    Science.gov (United States)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  5. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  6. Safety procedures relating to nuclear powered or armed vessels in Australian waters

    International Nuclear Information System (INIS)

    1988-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the Committee considered submissions from the Australian Nuclear Science and Technology Organisation, People for Nuclear Disarmament, Department of Defence, Australian Defence Force and the Coalition against Nuclear Armed and Powered Ships

  7. Improving the Efficiency of Natural Raw Water Pretreatment at Thermal Power Stations

    Science.gov (United States)

    Dremicheva, E. S.

    2018-02-01

    In the treatment of make-up water for thermal power stations (TPS) and heat networks, raw water from surface water bodies is used. It contains organic and mineral pollutants in the form of particulates or colloids. Coagulation and flocculation are reagent methods for removing these pollutants from water. Chemicals are used to assist in the formation of large structured flakes that are removed easily from water. The Kuibyshev water reservoir was selected as the object of investigation. Basic physical and chemical properties of the raw water are presented. The application of various coagulating agents, their mixtures in different proportions, and flocculating agents for clarifying the Volga water was examined. The required dose of a coagulant or flocculant was determined based on test coagulation of the treated water. Aluminum sulfate and iron (III) chloride were used a coagulant, and Praestol 2500 (nonionic) as a flocculant. A method of enhancement of coagulation and flocculation by injecting air into the treated water is examined. The results of experimental investigation of the effect of water treatment method on water quality indices, such as alkalinity, pH, iron content, suspended material content, and permanganate value, are presented. It is demonstrated that joint use of ironand aluminum containing coagulation agents brings the coagulation conditions closer to the optimum ones. Aeration does not affect the coagulation process. The methods for supplying air to a clarifier are proposed for practical implementation.

  8. Water and power for the desert -- Energy solutions for the Near and Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Siersdorfer, D.

    2007-07-01

    2007 will mark a unique milestone in human history: for the first time ever, more people on earth will live and work in cities than in rural areas. Moreover, only four of the twenty biggest megacities with populations over 10 million will be in industrial nations; the others will be in threshold and developing countries. Accelerating urbanization and economic growth will fuel a massive demand for adequate infrastructures - such as power and water supplies. Reliable and economical supply of power and water to populations in regions of harsh environments, e.g. in the Near and Middle East, ensures basic survival rather than merely providing for a pleasant life. Economical supply of power and water for desert regions requires a wide mix of reliable technologies already available today and new technologies under development for future needs. Siemens Power Generation's Energy Solution Division, having proven its responsiveness in the past by playing a vital role in the development of the Near and Middle East, will continue to provide answers in future for meeting power and water demand within the regionally specific environment. (auth)

  9. A capacity expansion planning model for integrated water desalination and power supply chain problem

    International Nuclear Information System (INIS)

    Saif, Y.; Almansoori, A.

    2016-01-01

    Highlights: • Water and power supply chain is considered by a discrete optimization model. • The model examines the capacity expansion and operation of the supply chain problem. • Renewable/alternative power technologies and carbon mitigation are considered. • A case study of Abu Dhabi in UAE is examined as an application of the model. - Abstract: Cogeneration of water and power in integrated cogeneration production plants is a common practice in the Middle East and North Africa (MENA) countries. There are several combinations of water desalination and power technologies which give significant adverse environmental impact. Renewable and alternative energy technologies have been recently proposed as alternative power production paths in the water and power sector. In this study, we examine the optimal capacity expansion of water and power infrastructure over an extended planning horizon. A generic mixed integer linear programming model is developed to assist in the decision making process on: (1) optimal installation of cogeneration expansion capacities; (2) optimal installation of renewable and alternative power plants; (3) optimal operation of the integrated water and power supply chain over large geographical areas. Furthermore, the model considers the installation of carbon capture methods in fossil-based power plants. A case study will be presented to illustrate the mathematical programming application for the Emirate of Abu Dhabi (AD) in the United Arab Emirates (UAE). The case study is solved reflecting different scenarios: base case scenario, integration of renewable and alternative technologies scenario, and CO 2 reduction targets scenario. The results show that increased carbon tax values up to 150 $/ton-CO 2 gives a maximum 3% cost increase for the supply chain net present value. The installation of carbon capture methods is not an economical solution due to its high operation energy requirements in the order of 370 kW h per ton of captured CO 2

  10. Low flows and water temperature risks to Asian coal power plants in a warming world

    Science.gov (United States)

    Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Bielicki, J. M.

    2017-12-01

    Thermoelectric power generation requires cooling, normally provided by wet cooling systems. The withdrawal and discharge of cooling water are subject to regulation. Therefore, operation of power plants may be vulnerable to changes in streamflow and rises in water temperatures. In Asia, about 489 GW of coal-fired power plants are currently under construction, permitted, or announced. Using a comprehensive dataset of these planned coal power plants (PCPPs) and cooling water use models, we investigated whether electricity generation at these power plants will be limited by streamflow and water temperature. Daily streamflow and water temperature time series are from the high-resolution (0.08ox0.08o) runs of the PCRGLOBWB hydrological model, driven by downscaled meteorological forcing from five global climate models. We compared three climate change scenarios (1.5oC, 2oC, and 3oC warming in global mean temperature) and three cooling system choice scenarios (freshwater once-through, freshwater cooling tower, and "business-as-usual" - where a PCPP uses the same cooling system as the nearest existing coal power plant). The potential available capacity of the PCPPs increase slightly from the 1.5oC to the 2oC and 3oC warming scenario due to increase in streamflow. The once-through cooling scenario results in virtually zero available capacity at the PCPPs. The other two cooling scenarios result in about 20% of the planned capacity being unavailable under all warming scenarios. Hotspots of the most water-limited PCPPs are in Pakistan, northwestern India, northwestern and north-central China, and northern Vietnam, where most of the PCPPs will face 30% to 90% unavailable nameplate capacity on annual average. Since coal power plants cannot operate effectively when the capacity factor falls below a minimum load level (about 20% to 50%), the actual limitation on generation capacity would be larger. In general, the PCPPs that will have the highest limitation on annual average

  11. Feasibility study and energy efficiency estimation of geothermal power station based on medium enthalpy water

    Directory of Open Access Journals (Sweden)

    Borsukiewicz-Gozdur Aleksandra

    2007-01-01

    Full Text Available In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 °C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 °C, Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .

  12. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    Science.gov (United States)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  13. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  14. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  15. The reliability evaluation of reclaimed water reused in power plant project

    Science.gov (United States)

    Yang, Jie; Jia, Ru-sheng; Gao, Yu-lan; Wang, Wan-fen; Cao, Peng-qiang

    2017-12-01

    The reuse of reclaimed water has become one of the important measures to solve the shortage of water resources in many cities, But there is no unified way to evaluate the engineering. Concerning this issue, it took Wanneng power plant project in Huai city as a example, analyzed the reliability of wastewater reuse from the aspects of quality in reclaimed water, water quality of sewage plant, the present sewage quantity in the city and forecast of reclaimed water yield, in particular, it was necessary to make a correction to the actual operation flow rate of the sewage plant. the results showed that on the context of the fluctuation of inlet water quality, the outlet water quality of sewage treatment plants is basically stable, and it can meet the requirement of circulating cooling water, but suspended solids(SS) and total hardness in boiler water exceed the limit, and some advanced treatment should be carried out. In addition, the total sewage discharge will reach 13.91×104m3/d and 14.21×104m3/d respectively in the two planning level years of the project. They are greater than the normal collection capacity of the sewage system which is 12.0×104 m3/d, and the reclaimed water yield can reach 10.74×104m3/d, which is greater than the actual needed quantity 8.25×104m3/d of the power plant, so the wastewater reuse of this sewage plant are feasible and reliable to the power plant in view of engineering.

  16. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  17. French experience in operating pressurized water reactor power stations. Ten years' operation of the Ardennes power station

    International Nuclear Information System (INIS)

    Teste du Bailler, A.; Vedrinne, J.F.

    1978-01-01

    In the paper the experience gained over ten years' operation of the Ardennes (Chooz) nuclear power station is summarized from the point of view of monitoring and control equipment. The reactor was the first pressurized water reactor to be installed in France; it is operated jointly by France and Belgium. The equipment, which in many cases consists of prototypes, was developed for industrial use and with the experience that has now been gained it is possible to evaluate its qualities and defects, the constraints which it imposes and the action that has to be taken in the future. (author)

  18. The photovoltaic-powered water desalination plant 'SORO' design, start up, operating experience

    Science.gov (United States)

    Neuhaeusser, G.; Mohn, J.; Petersen, G.

    Design features, operational parameters, and test results of a year of operation of the SORO prototype photovoltaic (PV) reverse osmosis salt water desalinization plant are described. Chemicals are added to the salt water to control the pH, prevent formation of compounds which could plug the flow system, and kill bacteria and slime which might grow in the solution. The water is pressurized and forced into contact with membranes which separate the fresh water from the brackish or sea water. The flow rate in the project was 180 l/h, with the main electrical energy load being the high pressure pump and the well pump. Batteries are charged before current is switched to power the desalinization system. The plant yielded 1.50 cu of fresh water/day and is concluded to be a viable design for scale-up to larger production figures, besides being economically competitive with solar desalinization installations where the salt content is 2000 ppm.

  19. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  20. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  1. Simulation of chlorinated water discharges from power plants on estuaries and rivers

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Lietzke, M.H.; Fischer, S.K.; Kalmaz, E.V.

    1977-01-01

    The fast-transient (tidal-transient) one-dimensional discrete-element chemical transport model and its associated computer code CHMONE were applied to study the effects of chlorinated water discharges from power plants on tidal estuaries and controlled rivers. The mathematical model has the capability to predict simultaneously the hydrodynamic, thermal, and chemical composition of water as one-dimensional time-dependent distributions

  2. The Dokka delta - consequences of water power development in the River Dokka

    International Nuclear Information System (INIS)

    Halvorsen, Gunnar; Sloreid, Svein-Erik; Walseng, Bjoern

    1997-11-01

    The report concerns an investigation done in Norway on environmental consequences of hydroelectric power development in the Dokka river. This development has reduced the water flow through the Dokka delta to about 50% of its natural level. The biological effect of the reduction has been studied in the period from 1987 to 1990, comprising two years before and two years after the reduction. Sedimentation, water chemistry, planktonic and littoral crustaceans and bottom fauna have been studied. 223 refs., 58 figs., 9 tabs

  3. Flow rate pulsations of water with flicker power spectrum in an industrial sodium steam generator

    International Nuclear Information System (INIS)

    Reshetnikov, A.V.; Koverda, V.P.; Skokov, V.N.; Karpenko, A.I.; Govorov, P.P.; Bel'tyukov, A.I.

    2005-01-01

    The study on the spectral characteristics of the water flow pulsations in the evaporating modulus of the steam generator with sodium power unit BN-600 at the nominal capacity is carried out. It is shown that the outflow pulsations capacity spectrum changes inversely with the frequency (flicker pulsations). Origination of the identified high-energy low-frequency pulsations of the water outflow is related to the critical mode of the heat exchange, realized in the evaporation modulus [ru

  4. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  5. Improving of the water preparation systems in the industry thermal power plants

    Directory of Open Access Journals (Sweden)

    Choshnova Daniela

    2018-01-01

    Full Text Available Some modern possibilities for modernization of the water preparation in the heat power plants of metallurgical enterprises are presented. It is focused on the ecological and technological advantages of the methods for obtaining of ultra-pure water. This work is not intended to justify the need of usage of particular technology in an object. This is a separate task requiring in-depth consideration.

  6. Calibration of ultrasonic power output in water, ethanol and sodium polytungstate

    Science.gov (United States)

    Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig

    2017-10-01

    Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.

  7. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  8. Numerical Study of the Effect of a Power Plant Cooling Water Discharge in the Montevideo Bay

    Directory of Open Access Journals (Sweden)

    Mónica Fossati

    2011-01-01

    Full Text Available The numerical simulation of the water temperature in the Río de la Plata River and Montevideo's Bay was done using the numerical model of finite elements RMA-10 in its 2D vertical integrated mode. Parameters involved in the formulations of thermal exchange with the atmosphere were adjusted using measurements of water temperature in several locations of the water body. After calibrating the model, it was used to represent the operation of a power plant located in Montevideo's Bay. This central takes water from the bay in order to cool its generators and also discharges high-temperature water into the bay. The correct representation of temperatures at the water intake and discharge of the plant reflects that the model is able to represent the operation of the central. Several analysis were made to study the thermal plume, the effects of the water discharge on the water intake of the power plant, and the effect on environmental variables of the study area like currents.

  9. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  10. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    Science.gov (United States)

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  11. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  12. Blow-off device for limiting excess pressure in nuclear power plants, especially in boiling-water nuclear power plants

    International Nuclear Information System (INIS)

    Kuehnel, R.

    1979-01-01

    In a blow-off device for limiting excess pressure in nuclear power plants, at least one condensation tube disposed so that a lower outlet end thereof is immersed in a volume of water in a condensation chamber having a gas cushion located in a space above the volume of water, and the upper inlet end of the condensation tube extending out of the volume of water and being connectible to a source of steam that is to be condensed or a steam-air mixture, the outlet end of the condensation tube, for smoothing the condensation, being provided with wall parts forming passages extending in axial direction, delimited from one another and terminating in the water volume, the wall parts serving to subdivide steam flow from the source thereof and bubbles produced thereby in the water volume, the wall parts being constructed as a tube attachment and being formed with an opening corresponding to the outlet end of the condensation tube and by means of which the tube attachment is mounted on the outlet end of the condensation tube, a first group of the wall parts in the tube attachment being disposed in alignment with the outlet end of the condensation tube, and a second group of the wall parts surrounding the first group thereof, the passages formed by the second group of the wall parts communicating laterally with the passages formed by the first group of the wall parts, the passages formed by the second group of the wall parts, at least at the upper ends thereof, communicating with the water volume

  13. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    Science.gov (United States)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  14. Stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit in Jaworzno III Power Plant - Power Plant II

    Science.gov (United States)

    Karpiński, Marcin; Kmiecik, Ewa

    2017-11-01

    In Poland, electricity is still produced mainly in conventional power plants where fuel and water are materials necessary to generate the electricity. Even in modern power plants operating according to the principles of the sustainable development, this involves a high intake of water and considerable production of wastewater. This, in turn, necessi-tates the application of some technological solutions aimed at limiting the negative impact on the environment. The Jaworzno III Power Plant - Power Plant II is located in Jaworzno, Silesian Province, Poland. In order to minimise the negative impact on the surface water, the plant replenishes the cooling circuit with the mining water obtained from the closed-down Jan Kanty mine. The paper presents a stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit based on the data from 2007-2017.

  15. The circulation of materials which endanger water in power plant operations

    International Nuclear Information System (INIS)

    Wilhelm, M.; Hoelscher, W.; Langen, H.J.

    1994-01-01

    Legal regulations for the circulation of materials which endanger water stipulate that the possibility of water contamination insofar as human judgment can determine shall be excluded. In power station operation, numerous components are lubricated with oil. Equally, attention must be paid to this as to water protection when chemicals are used. The potential of endangerment depends on the type of material used, its quantity and the hydrogeological data of the site of the plant. Future control equipment will provide for the multiplicity of applications between than before. (orig.) [de

  16. Near field resonant inductive coupling to power electronic devices dispersed in water

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  17. Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power

    NARCIS (Netherlands)

    Molle, F.; Mollinga, P.P.; Wester, P.

    2009-01-01

    Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the

  18. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  19. Cultural politics and the hydrosocial cycle: Water, power and identity in the Andean highlands

    NARCIS (Netherlands)

    Boelens, R.A.

    2014-01-01

    This paper explores interactions among water, power and cultural politics in the Andes. It analyzes the hydrosocial cycle as the political–ecological production of a time- and place-specific socionature, enrolling and co-patterning the social, the natural and the supernatural to reflect dominant

  20. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    Pinedo V, J.L.

    1979-01-01

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  1. Safety procedures relating to nuclear powered or armed vessels in Australian waters

    International Nuclear Information System (INIS)

    1986-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the committee considered the submissions of the Department of Defence

  2. Safety procedures relating to nuclear powered or armed vessels in Australian waters

    International Nuclear Information System (INIS)

    1987-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the Committee considered evidence presented by Mr T.P. Speed

  3. Safety procedures relating to nuclear powered or armed vessels in Australian waters

    International Nuclear Information System (INIS)

    1988-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the Committee considered the submissions of the Australian Ionising Radiation Advisory Council

  4. Safety procedures relating to nuclear powered or armed vessels in Australia waters

    International Nuclear Information System (INIS)

    1987-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the Committee considered the submissions of the Australian Atomic Energy Commission

  5. Safety procedures relating to nuclear powered or armed vessels in Australian waters

    International Nuclear Information System (INIS)

    1988-01-01

    The inquiry into the adequacy of current contingency planning by Federal and State authorities to deal with the accidental release of ionizing radiation from visiting nuclear powered or armed vessels in Australian waters and ports commenced on 17 September 1986. This meeting of the Committee considered the submissions from SANA, Scientists Against Nuclear Arms

  6. High power water load for microwave and millimeter-wave radio frequency sources

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  7. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  8. Floating nuclear power station of APWS-80 type for electricity generation and fresh water production

    International Nuclear Information System (INIS)

    Zverev, K.V.; Polunichev, V.I.; Sergeev, Yu.A.

    1997-01-01

    To solve the problem of seawater desalination and electric energy generation, the designing organizations of Russia have developed two variants of floating nuclear desalination plant. The KLT-40 type reactors, with maximum 160 MW thermal power, is used as the power source for such plant. Depending on the customer requirement one or two power unit could be installed in the floating desalination plant. There are APWS-80 with two reactors, producing 80,000 m 3 desalinated water per day and APWS-40 with one reactor, producing 40,000 m 3 desalinated water per day. The advantages of floating desalination plants are the possibility to build and test them at the ship-build plant of the supplier country and to hand them over on turnkey base. (author). 5 figs

  9. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  10. Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power

    Directory of Open Access Journals (Sweden)

    François Molle

    2009-10-01

    Full Text Available Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the 20th century. Whether out of a need to increase food production, raise rural incomes, or strengthen state building and the legitimacy of the state, governments – North and South, East and West – embraced the 'hydraulic mission' and entrusted it to powerful state water bureaucracies (hydrocracies. Engaged in the pursuit of iconic and symbolic projects, the massive damming of river systems, and the expansion of large-scale public irrigation these hydrocracies have long remained out of reach. While they have enormously contributed to actual welfare, including energy and food generation, flood protection and water supply to urban areas, infrastructural development has often become an end in itself, rather than a means to an end, fuelling rent-seeking and symbolising state power. In many places projects have been challenged on the basis of their economic, social or environmental impacts. Water bureaucracies have been challenged internally (within the state bureaucracies or through political changes and externally (by critiques from civil society and academia, or by reduced funding. They have endeavoured to respond to these challenges by reinventing themselves or deflecting reforms. This paper analyses these transformations, from the emergence of the hydraulic mission and associated water bureaucracies to their adjustment and responses to changing conditions.

  11. Performance of water cooled nuclear power reactor fuels in India – Defects, failures and their mitigation

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy

    2015-01-01

    Water cooled and moderated nuclear power reactors account for more than 95% of the operating reactors in the world today. Light water reactors (LWRs) consisting of pressurized water reactor (PWR), their Russian counterpart namely VVER and boiling water reactor (BWR) will continue to dominate the nuclear power market. Pressurized heavy water reactor (PHWR), also known as CANDU, is the backbone of the nuclear power program in India. Updates on LWR and PHWR fuel performance are being periodically published by IAEA, OECD-NEA and the World Nuclear Association (WNA), highlighting fuel failure rate and the mitigation of fuel defects and failures. These reports clearly indicate that there has been significant improvement in in – pile fuel performance over the years and the present focus is to achieve zero fuel failure in high burn up and high performance fuels. The present paper summarizes the status of PHWR and LWR fuel performance in India, highlighting the manufacturing and the related quality control and inspection steps that are being followed at the PHWR fuel fabrication plant in order to achieve zero manufacturing defect which could contribute to achieving zero in – pile failure rate in operating and upcoming PHWR units in India. (author)

  12. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  13. Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

    Science.gov (United States)

    Larin, B. M.

    2018-01-01

    Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

  14. Design of a water-powered DTH hammer for deep drilling application

    Science.gov (United States)

    Cho, Min Jae; Kim, Donguk; Oh, Joo Young; Yook, Se-Jin; Kim, Young Won

    2017-11-01

    A DTH (Down-the-hole) hammer powered by highly pressurized fluid is a drilling tool using the motion of percussion of a drill bit. In retrospect, a DTH by using compressed air as a power source has been widely used in drilling industries such as applications of mining, geothermal etc. On the other hand, another type of a DTH that uses pressurized water, called a water hammer, has recently seen deep drilling applications, while it has been rarely investigated. In this study, we designed a water-powered DTH hammer which mainly consists of several components such as a piston, a poppet valve, a cap and a bit for deep drilling applications. We optimized the components of the hammer on the basis of the results of 1D analysis using commercial software of AMESIM. An experimental study has been also conducted to investigate a performance of the designed water hammer. We measured a pressure distribution inside the hammer system as a function of time, and it thus estimates a frequency of impaction of the bit, which has been also analyzed in frequency domain. In addition, some important parameters have been discussed in conjunction with a limitation of impaction frequency as input pressure. We believe that this study provides design rules of a water-based DTH for deep drilling applications. This work is supported by KITECH of Korean government.

  15. Experience with feed water heaters performance and renovation at Tarapur Atomic Power Station -1 and 2

    International Nuclear Information System (INIS)

    Ramu, A.; Gupta, V.K.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.

    2006-01-01

    Tarapur Atomic Power Station is a twin unit Boiling Water Reactors (BWRs) built in 1960's and each unit is operating presently at 160 MWe. TAPS unit was designed to generate 210 MWe out of which 70 % was from reactor primary steam and the remaining from Secondary Steam Generators. The thermal cycle is Regenerative Rankine cycle with feed water heating, like any other thermal power plant, TAPS also has a series of feed water heaters. These feed water heaters utilize wet steam extracted from different stages of turbine for heating the condensate. Feed water heaters increase thermal efficiency of cycle. These heaters were in operation since 1969 and subjected to various degradation mechanisms. This includes corrosion and erosion-corrosion (EC) of the heaters shell and fretting failures of tubes. Thorough review was made to improve the feed water heaters performance keeping the remnant life of the plant in view. One solution was to replace the tube bundles and the second option was to replace the heaters with modified design eliminating the problems faced so far. TAPS has developed the specification incorporating various changes required to overcome the corrosion and EC problems in close consultation with Nuclear Power Corporation of India Ltd.-HQ. The development of these feed water heaters was taken up indigenously and out of four heaters, three were replaced with improved design in both the units. The performance of new heaters has improved the cycle performance also, as on date. This paper gives the details of various degradation mechanisms and failures seen during the initial period of operation and the corrective measures taken to overcome these difficulties. In addition to this, design changes made in the feed water heaters are also discussed. (author)

  16. Solar-assisted MED treatment of Eskom power station waste water

    Science.gov (United States)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  17. Power ramping test in the JMTR for PCI study of water reactor fuel

    International Nuclear Information System (INIS)

    Nakata, H.; Kanbara, M.; Ichikawa, M.

    1984-01-01

    Power ramping test is essential for PCI study of water reactor fuel. Boiling water capsules have been used for the tests in the JMTR. Heat generation of fuel rod in the capsule can be changed by the He-3 power control facility during reactor operation. Four specially designed fuel rods have been ramped to about 41-43 kW/m; two of them have small gaps filled with iodine, the other two are equipped with centerline temperature thermocouple. Fuel rod elongation detector is equipped to each capsule. For the fuel rods with small gap, unique contraction followed by ordinary fuel relaxation behaviour was observed right after the fast ramping. None of them failed. Future programme includes a series of tests of fuel rods irradiated in the high-pressure water loop at the JMTR and a verification test of remedy fuel which allows daily-load-following operation of BWRs. (author)

  18. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  19. Sustainable power and scenic beauty: The Niagara River Water Diversion Treaty and its relevance today

    International Nuclear Information System (INIS)

    Sedoff, Andrei; Schott, Stephan; Karney, Bryan

    2014-01-01

    Niagara Falls and the Niagara River have always attracted great public interest due to their natural beauty, their enormous potential for electricity generation, their recreational value and as an important ecosystem. There have been simultaneous efforts to preserve this unique natural wonder and harness its power through hydroelectric development projects by both the United States and Canada. This paper explores the evolution of these efforts that culminated with the signing of the 1950 Niagara River Water Diversion Treaty that established minimum water flow rates to protect the “scenic beauty” of the falls, allowing the remaining water to be diverted for power production. We examine the rationale that led to specific water flow restrictions and question to what extent they are relevant today, as water intake capacity on the Canadian side has just been extended by around 25%. We find that current restrictions under the Niagara River Water Treaty (that expired in 2000) are not based on sound scientific evidence and estimate the upper limit of potential foregone benefits from clean electricity generation and greenhouse gas reductions. We identify a number of important issues that emerged in the last decades and that would justify an exploration of new treaty rules. - Highlights: • We examine the history of water diversion at Niagara Falls. • We examine the rationale that led to water flow restrictions over Niagara Falls and its relevance today. • We estimate the opportunity cost of foregone energy generation with the new Canadian intake capacity. • Water flow stipulations were not based on the sound scientific or ecosystem analysis. • A renegotiation of the 1950 Niagara River Water Diversion Treaty is overdue

  20. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  1. Karachi Nuclear Power Plant (KANUPP): As case study for techno-economic assessment of nuclear power coupled with water desalination

    International Nuclear Information System (INIS)

    Khan, Salah Ud-Din; Khan, Shahab Ud-Din

    2017-01-01

    This paper is focused on the development of technical and economical prospective of Karachi Nuclear Power Plant (KANUPP) in terms of various desalination technologies. During the first phase, an initial research contingency to desalination technologies already running at KANUPP was discussed and evaluated for economic assessment. In the next phase, mathematical model was developed for calculating various parameters of desalination technologies. During this step, simulation model from IAEA (International Atomic Energy Agency) named as DEEP & DE-TOP were used for calculating various desalination techniques including Reverse osmosis (RO), Multi effect desalination (MED), Multi stage desalination (MSF) and also for coupled technologies i.e., RO+MED and R0+MSF. Different parameters including capital/water cost and thermal desalination parameters were calculated for coupled desalination technologies for KANUPP. Number of stages for coupled KANUPP desalination plant in terms of experimental and computational analysis were carried out. The calculation shows that water cost for each coupled desalination technologies have varying trends. The objective of the research was to developed technical and economical viable model for coupled nuclear reactor desalination system. The research gives an indication to developed experimentally viable KANUPP desalination plant. - Highlights: • Techno-economic analysis of KANUPP for various desalination technologies. • Mathematical model development for calculating various desalination techniques. • Calculation shows that water cost for each coupled technologies have varying trends. • Viable techno-economical model for coupled nuclear reactor desalination system. • Solution for experimentally viable coupled KANUPP desalination plant.

  2. Water, Power and Identity. The cultural politics of water in the Andes

    NARCIS (Netherlands)

    Boelens, R.A.

    2015-01-01

    This book addresses two major issues in natural resource management and political ecology: the complex conflicting relationship between communities managing water on the ground and national/global policy-making institutions and elites; and how grassroots defend against encroachment, question the

  3. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  4. Approximation model of three-dimensional power distribution in boiling water reactor using neural networks

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2001-01-01

    Fast and accurate prediction of three-dimensional (3D) power distribution is essential in a boiling water reactor (BWR). The prediction method of 3D power distribution in BWR is developed using the neural network. Application of the neural network starts with selecting the learning algorithm. In the proposed method, we use the learning algorithms based on a class of Quasi-Newton optimization techniques called Self-Scaling Variable Metric (SSVM) methods. Prediction studies were done for a core of actual BWR plant with octant symmetry. Compared to classical Quasi-Newton methods, it is shown that the SSVM method reduces the number of iterations in the learning mode. The results of prediction demonstrate that the neural network can predict 3D power distribution of BWR reasonably well. The proposed method will be very useful for BWR loading pattern optimization problems where 3D power distribution for a huge number of loading patterns (LPs) must be performed. (author)

  5. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  6. Contribution of Water Saving to a Stable Power Supply in Vietnam

    Directory of Open Access Journals (Sweden)

    Takayuki Otani

    2015-06-01

    Full Text Available In Vietnam, the rapid expansion of cities is exceeding the supply capacity for water and electricity, and restrictions on water supply and blackouts occur on a daily basis. In this study, the authors examined whether water-saving equipment could solve these problems. This paper focused on toilet bowls that consumed a large amount of water, and on showers for which heat consumption was high. In Vietnam, the main heat source for showers is the electric water heater, typically having a power consumption of 2500–4500 W. Although the current diffusion rate of such water heaters is just 13%, their use will spread widely in the future. These heaters have already placed a peak load on electricity consumption in winter when a large amount of energy is consumed for heating water, and they will become a significant factor in blackout risks as their use becomes commonplace nationwide. It is clear that the introduction of water-saving showers will allow not only a more efficient use of water resources, but will also mitigate against the risk of blackouts.

  7. Water demand management in Yemen and Jordan: addressing power and interests.

    Science.gov (United States)

    Zeitoun, Mark; Allan, Tony; Al Aulaqi, Nasser; Jabarin, Amer; Laamrani, Hammou

    2012-01-01

    This paper investigates the extent to which entrenched interests of stakeholder groups both maintain water use practice, and may be confronted. The focus is on the agricultural sectors of Yemen and Jordan, where water resource policymakers face resistance in their attempts to reduce water use to environmentally sustainable levels through implementation of water demand management (WDM) activities. Some farmers in both countries that have invested in irrigated production of high-value crops (such as qat and bananas) benefit from a political economy that encourages increased rather than reduced water consumption. The resultant over-exploitation of water resources affects groups in unequal measures. Stakeholder analysis demonstrates that the more ‘powerful’ groups (chiefly the large landowners and the political elites, as well as the ministries of irrigation over which they exert influence) are generally opposed to reform in water use, while the proponents of WDM (e.g. water resource managers, environmental ministries and NGOs, and the international donor community) are found to have minimal influence over water use policy and decisionmaking. Efforts and ideas attempted by this latter group to challenge the status quo are classified here as either (a) influencing or (b) challenging the power asymmetry, and the merits and limits of both approaches are discussed. The interpretation of evidence suggests current practice is likely to endure, but may be more effectively challenged if a long-term approach is taken with an awareness of opportunities generated by windows of opportunity and the participation of ‘overlap groups’.

  8. Institutional impediments to using alternative water sources in thermoelectric power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP

  9. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  10. Prospects of water desalination in conjunction with nuclear power stations in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.

    1978-01-01

    The paper reviews Pakistan's land and water resources vis-a-vis the present and projected demand of water to sustain its economy which is predominantly based on irrigated agriculture. As expected, the per capita agricultural land and the corresponding diversion of irrigation supplies per capita are all along declining due to increasing population pressure, however, it is shown that further development of irrigated agriculture will be increasingly constrained by water availability rather than the land resources. A glance at the nation's culturable land potential and the projected water budget would fully demonstrate this fact. In this context the paper discusses the likely role which the desalination technology can be called upon to play in supplementing the existing means of fresh water supply. Studies have also indicated fast-growing demands both for electric power and potable water in the Karachi area, on the sea coast, where the possibility of having dual-purpose nuclear power-cum-seawater desalination plant(s) in the late 1980's is being investigated. (author)

  11. The calculation of proton and secondary electron stopping powers in liquid water

    International Nuclear Information System (INIS)

    Marouane, Abdelhak; Inchaouh, Jamal; Ouaskit, Said; Fathi, Ahmed

    2012-01-01

    The stopping power of energetic protons in liquid water has been calculated using a new model based on different theoretical and semi-empirical approaches. In this model, we consider the relativistic corrections along with the electronic and nuclear stopping power. The present work accounts for the different interactions made with electrons and nuclei inside the target. Interactions of the incident particle with the target's electrons dominate in the high energy regime; in the low energy regime, the interactions of the projectile with the target nuclei contribute importantly and are included in the calculation. We also compute the stopping cross sections and the stopping power of secondary electrons ejected from proton and hydrogen ionization impact, and generated by hydrogen electron loss processes. The consideration of secondary electrons' stopping power can contribute to the study of nano-dosimetry. Our results are in good agreement with existing experimental data. This calculation model can be useful for different applications in medical physics and space radiation health, such as hadron therapy for cancer treatment or radiation protection for astronauts. - Highlights: ► We discussed the stopping cross sections at the Bragg peak region of primary and secondary processes. ► We considered the corrections of incident particle energy focusing on the Rudds semi-empirical model. ► We calculated the electronic and nuclear stopping power, and we deduced the total stopping power. ► We calculated the stopping power of the secondary electrons.

  12. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  13. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  14. Physical modeling of stabilization water processes of reverse cooling system the thermal power plant

    Science.gov (United States)

    Vlasov, S. M.; Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Vinogradov, A. S.

    2017-11-01

    The system of reverse cooling is an integral part of combined heat and power plant and, respectively, demands constant control and regulation of structure and the number of deposits from circulating water for maintenance of the steady mode of equipment. Insufficient circulating water processing turns into a big internal problem for combined heat and power plant work and is a source of heat exchange, surfaces pollution sludge formation in device channels, equipment corrosion, biological fouling, biosludge formation, etc. Depending on the reverse cooling functioning at combined heat and power plant various problems demanding accurately differentiated approach to the decision are identified. Various criteria allowing to define existence and intensity of deposits and ways of fight against the formed deposits and equipment corrosion are offered. For each type of reverse cooling system the possible reasons of deposits formation on the heatpower equipment are analyzed and physical and chemical methods for circulating water stabilization are described. These methods safe water treatment installation modes in a case of the interfaced reverse cooling system and provide the minimum quantity of drains in a case with not interfaced system.

  15. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Wang, Jianyong; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A new combined cooling and power system is proposed. • Exergy destruction analysis is used to identify irreversibility of components in system. • Thermodynamic parameter analysis is performed for system. - Abstract: In order to achieve both power and cooling supply for users, a new combined cooling and power system using ammonia–water mixture is proposed to utilizing low grade heat sources, such as industrial waste heat, solar energy and geothermal energy. The proposed system combines a Kalina cycle and an ammonia–water absorption refrigeration cycle, in which the ammonia–water turbine exhaust is delivered to a separator to extract purer ammonia vapor. The purer ammonia vapor enters an evaporator to generate refrigeration output after being condensed and throttled. Mathematical models are established to simulate the combined system under steady-state conditions. Exergy destruction analysis is conducted to display the exergy destruction distribution in the system qualitatively and the results show that the major exergy destruction occurs in the heat exchangers. Finally a thermodynamic sensitivity analysis is performed and reveals that with an increase in the pressure of separator I or the ammonia mass fraction of basic solution, thermal efficiency and exergy efficiency of the system increase, whereas with an increase in the temperature of separator I, the ammonia–water turbine back pressure or the condenser II pressure, thermal efficiency and exergy efficiency of the system drop.

  16. Analytical data on contaminated water, rubble and other collected at the Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Asami, Makoto; Takahatake, Youko; Koma, Yoshikazu; Myodo, Masato; Tobita, Takeshi; Kobayashi, Kiwami; Usui, Yuka; Watahiki, Hiromi; Shibata, Atsuhiro; Nomura, Kazunori; Hayakawa, Misa

    2017-03-01

    At Fukushima Daiichi Nuclear Power Station (hereinafter referred to as '1F') owned by Tokyo Electric Power Company Holdings, Inc. (formerly called Tokyo Electric Power Co., Inc. and hereinafter referred to as 'TEPCO'), contaminated water (accumulated, treated), the secondary waste produced by treatment of the contaminated water, and rubble and soil were collected and analyzed. So, the collected analysis data is important to develop post-accident waste management strategies for 1F, and will be useful for other projects related to decommissioning work. Thus, all the data already opened to public was gathered and summarized in this report. The analysis data collected herein was already published by TEPCO, Japan Atomic Energy Agency (JAEA) and International Research Institute for Nuclear Decommissioning (IRID) until the end of March, 2016. There are 544 reported samples for contaminated water, 6 for the secondary waste from contaminated water treatment system, 45 for rubble, and 331 for soil. Sample analysis information and the radionuclide inventory have been tabulated. Concentrations of major radionuclides are also shown in figures as a function of time. In addition, text translated into English and the collected data are available in electronic file format. A DVD-ROM is attached as an appendix. (J.P.N.)

  17. U.S. power generation, water stress, and climate change: using science to understand "water-smart" electricity-sector decision making

    Science.gov (United States)

    Rogers, J. H.; Frumhoff, P. C.; Averyt, K.; Newmark, R. L.

    2012-12-01

    In 2011, nearly 90 percent of U.S. electricity came from thermoelectric (steam-producing) power plants that use water for cooling. These water demands can tax rivers and aquifers, threaten fish and wildlife, and spark conflicts between power plants and other water users. Climate change, driven by in large part by emissions from fossil fuel-based electricity generation, is adding to the strain. Higher temperatures raise electricity demand and lower cooling-system efficiency, while drought and changes in precipitation patterns may make freshwater supplies less reliable. Here we report new findings on the impacts, present and projected, of power-plant water use on local water stress across the United States, and its implications for understanding what constitutes "water-smart" energy decision making. This work was carried out under the auspices of the Energy and Water in a Warming World initiative (EW3), a research and outreach collaboration designed to inform and motivate U.S. public awareness and science-based public policy at the energy-water nexus. The research has involved cataloguing the water use characteristics of virtually every U.S. power generator in the nation to develop a robust assessment of the water resource implications of cooling the nation's power plants. By analyzing local water supply and demand conditions across the nation, we identified water basins where current power plant water use appears to contribute strongly to local water supply stress, and where water-intensive electricity choices could substantially exacerbate water stress. We also identified other potential approaches to considering stress, particularly related to water temperature. The research has also involved analyzing the water implications of different electricity pathways in the United States over the next 40 years. We used a high-resolution electricity model to generate a range of electricity mixes, particularly in the context of a carbon budget, and assessed the water

  18. Assessment of drinking water quality around Kudankulam nuclear power plant site using fuzzy synthetic evaluation

    International Nuclear Information System (INIS)

    Ramesh, S.; Pratheeba, V.; Murugesan, A.G.; Dahiya, S.

    2007-01-01

    A method based on concept of fuzzy set theory is used for decision-making in the assessment of physicochemical quality of drinking water. Conventional method for water quality assessment does not consider the uncertainties involved either in measurement of water quality parameters or in the limits provided by the regulatory bodies. Fuzzy synthetic evaluation model gives the certainty levels for the quality class of the water based on the prescribed limit of various regulatory bodies and opinion of the experts from the field of drinking water quality. In this paper application of fuzzy rule based method is illustrated with twelve drinking water samples from the residential locality in the vicinity of Kudankulam Nuclear Power Plant site. These samples were analysed for fifteen different physico-chemical parameters, out of them eleven important parameters were used for the quality assessment using fuzzy synthetic evaluation approach. From this study. it has been concluded that out of 12 samples seven are in desirable category with certainty level of 53-100 percent and rest of the samples belongs to acceptable category whose certainty level ranges from 67 to 96 percent. Water from these sources can be used for the drinking purpose if alternate water source is not available without any health concern on the basis of physicochemical characteristics. (author)

  19. Optimum fuel loading and operation planning for light water reactor power stations. Part I. Pressurized water reactor case study

    International Nuclear Information System (INIS)

    Hoshino, T.

    1978-01-01

    A planning tool for strategic operation of nuclear power plants has been presented with a wider view on the overall utility system management. The tool was flexible enough to be capable of checking the feasibility of the proposed alternative plans as well as optimizing the plans in terms of the minimization of system operating costs over several refueling cycles. The problem was defined in a small-scale utility system that consisted of a nuclear power plant and a replacement power station. The optimum design was made on an in-core refueling pattern, its associated number of fuel assemblies, and the time length of coastdown operation. The optimization was subject to several physical and engineering constraints on reactor operation. Following the general decomposition approach, the method utilized iterative linear programming and a gradient projection algorithm of nonlinear programming. A typical pressurized water reactor was studied. The economic gain was obtained mainly by filling margins originally involved in the reactivity and burnup limitations as well as by optimum coastdown operations. The flexibility of the method was especially enhanced in a case of recovery planning after unexpected plant outages with subsequent forced power reductions

  20. Normal and compact spent fuel storage in light water reactor power plants

    International Nuclear Information System (INIS)

    Kuenel, R.R.

    1978-01-01

    The compact storage of light water reactor spent fuel is a safe, cheap and reliable contribution towards overcoming the momentarily existing shortage in spent fuel reprocessing. The technical concept is described and physical behaviour discussed. The introduction of compact storage racks in nuclear power plants increases the capacity from 100 to about 240 %. The increase in decay heat is not more than about 14%, the increase in activity inventory and hazard potential does not exceed 20%. In most cases the existing power plant equipment fulfils the new requirements. (author)

  1. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  2. Candidate for solar power: a novel desalination technology for coal bed methane produced water

    International Nuclear Information System (INIS)

    Sattler, Allan; Hanley, Charles; Hightower, Michael; Wright, Emily; Wallace, Sam; Pohl, Phillip; Donahe, Ryan; Andelman, Marc

    2006-01-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U>S> as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared Figure 1: Candidate remote well sites for planned field implementation of new PV-powered desalination process: (a) Raton Basin and (b) San Juan Basin, New Mexico to other technologies, such as reverse osmosis. This coupled with the remoteness (Figure 1) of thousands these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness of this technology and of the attender energy requirements of this technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to drive the design of integrated PV-powered desalination systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Earlier laboratory (and very recent laboratory) studies of capacitive deionization have shown promise at common CBM salinity levels. The technology may require less energy. be less susceptible to fouling and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduced the ion concentrations in the liquid. This paper discusses the

  3. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around...

  4. 77 FR 66607 - Placer County Water Agency; Notice of Application for Approval of Contract for the Sale of Power...

    Science.gov (United States)

    2012-11-06

    ... license term of the Middle Fork American River Project No. 2079 (Middle Fork Project); and (b) a new power... Water Agency; Notice of Application for Approval of Contract for the Sale of Power for a Period... with the Commission an application for approval of: (a) The continuation of its existing power purchase...

  5. Minimization of water consumption under uncertainty for a pulverized coal power plant.

    Science.gov (United States)

    Salazar, Juan M; Zitney, Stephen E; Diwekar, Urmila M

    2011-05-15

    Coal-fired power plants are large water consumers. Water consumption in thermoelectric generation is strongly associated with evaporation losses and makeup streams on cooling and contaminant removal systems. Thus, minimization of water consumption requires optimal operating conditions and parameters, while fulfilling the environmental constraints. Several uncertainties affect the operation of the plants, and this work studies those associated with weather. Air conditions (temperature and humidity) were included as uncertain factors for pulverized coal (PC) power plants. Optimization under uncertainty for these large-scale complex processes with black-box models cannot be solved with conventional stochastic programming algorithms because of the large computational expense. Employment of the novel better optimization of nonlinear uncertain systems (BONUS) algorithm, dramatically decreased the computational requirements of the stochastic optimization. Operating conditions including reactor temperatures and pressures; reactant ratios and conditions; and steam flow rates and conditions were calculated to obtain the minimum water consumption under the above-mentioned uncertainties. Reductions of up to 6.3% in water consumption were obtained for the fall season when process variables were set to optimal values. Additionally, the proposed methodology allowed the analysis of other performance parameters like gas emissions and cycle efficiency which were also improved.

  6. Peak power and heavy water production from electrolytic H2 and O2 using CANDU reactors

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Bradley, W.J.; Butler, J.P.

    1976-04-01

    A combined energy storage - heavy water production system is presented. Off-peak nuclear energy is stored in the form of electrolytic H 2 (and O 2 ) from which a large fraction of the deuterium has been transferred to water in an H 2 /H 2 O deuterium exchange catalytic column. The main features and advantages of the combined electrolysis -catalytic exchange D 2 O process are discussed. Significant quantities of D 2 O could be produced economically at reasonable peak to base power cost ratios. Thirty to forty percent of the primary electric energy should be available for peak energy via either gas-steam turbines or fuel cells. (author)

  7. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Robertson, M.F.

    1996-01-01

    Recent studies on wear mechanisms of nuclear power plant components have shown that depending on the operating conditions and the environment, different wear mechanisms could occur during a wear process. There is also evidence that in an environment of pressurized high temperature water the wear rate could be significantly different from those obtained from room temperature studies. An experimental facility that is capable of performing tests in pressurized high temperature water environment with feedback controlled impact and reciprocating sliding motion has been built. A research project aimed at gaining better understanding of the mechanisms and mechanics involved in vibratory wear in such environment has been carried out

  8. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  9. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  10. The use of ferritic materials in light water reactor power plants

    International Nuclear Information System (INIS)

    Marston, T.V.

    1984-01-01

    This paper reviews the use of ferritic materials in LWR power plant components. The two principal types of LWR systems, the boiling water reactor (BWR) and the pressurized water reactor (PWR) are described. The evolution of the construction materials, including plates and forgings, is presented. The fabrication process for both reactors constructed with plates and forgings are described in detail. Typical mechanical properties of the reactor vessel materials are presented. Finally, one critical issue radiation embrittlement dealing with ferritic materials is discussed. This has been one of the major issues regarding the use of ferritic material in the construction of LWR pressure vessels

  11. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.

    1982-01-01

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  12. Development of underwater robot for cleaning cooling water intake channels in thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Hirai, Harumi; Ichiryu, Taku; Takenawa, Toshiya.

    1983-01-01

    To the long intake channels for seawater in thermal and nuclear power stations, marine organisms adhere and grow, and cause resistance to the flow, separate and enter into condensers to cause the clogging or corrosion erosion of cooling tubes. At present, the regular cleaning of the channels is carried out by man power, which requires much cost and many days. The underwater robot developed recently performs this cleaning work by remote control from on the ground. The performance and endurance tests of the robot were carried out in an actual channel, and it was able to be successfully put in practical use with good results. The features of this robot are as follows. It achieves the work safely without anyone entering a channel. It can clean all surfaces including ceiling without any additional structure. It can easily move. It can remove shells of 10 cm thickness. It does not require external power source. The system comprises a robot, a power unit, a hose reel, a control wagon and an underwater monitor. The robot is powered by oil hydraulic motors, and controlled through oil hoses. Cleaning is performed with rotary brushes, while it adheres to a wall by water jet power. The construction and performance of the main components and the results of trial operation are reported. (Kako, I.)

  13. Water use in the development and operation of geothermal power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology

  14. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  15. Effect of water quality in the Vltava river on the operation of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hanus, V.

    1990-01-01

    Water from the Vltava river will be used as the cooling and circulating water and as the technical water in the Temelin nuclear power plant. Requirements put on the two kinds of water are summarized. It is planned that make-up water will be subjected to acid clearing and the pH of this cleared water will be adjusted with lime water. Concentration of water in the cooling circuits is also feasible. Effects of the river water quality (and its deterioration) on the water treatment demands are discussed with respect to the cooling-and-circulating water treatment, chemical water treatment, and waste water treatment. (P.A.). 1 fig., 5 refs

  16. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  17. Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis

    International Nuclear Information System (INIS)

    Salgado, R.; Belmonte, J.F.; Almendros-Ibáñez, J.A.; Molina, A.E.

    2017-01-01

    A high percentage of the heat that is supplied to thermoelectric power plants is discarded to ambient and must be handled by an external cooling system. This cooling system typically consists of wet cooling towers because of the excellent thermo-physical properties of water. However, the amount of water consumed for power production has reached alarming levels in developed countries. Air-cooled heat exchangers (ACHXs) appear to be the most adequate technology to substitute for wet cooling towers, but the use of this technology has some limitations. The most important limitation is the higher condenser pressures in the cycle, which produce backpressures at the condensing turbine's exit, increases in heat rejection and losses in the net plant efficiency. This paper presents a concept for the use of ACHXs in the cooling systems of power plants using an absorption refrigeration system (ARS) as an intermediary. Heat from the steam condenser is handled by the evaporator of the ARS and “lifted” to a higher temperature level, where the ACHXs are fitted to work. The generator of the ARS is fed by the power plant itself, extracting (bleeding off) some of the steam that flows through the steam turbine at the correct pressure and temperature. - Highlights: • Integration of absorption refrigeration system into the Rankine cycle of power plant. • The absorption refrigeration system will be driven by bleeding off steam turbine. • Lift rejection temperatures to a higher level to operate with air cooled condensers. • The water savings are estimated to be in the range of 1.12–5.58 m 3 /MWh. • Studying the integration with single- and double-effect absorption machines.

  18. Entrainment and impingement of aquatic fauna at cooling water system of Madras Atomic Power Station (MAPS)

    International Nuclear Information System (INIS)

    Barath Kumar, S.; Das, N.P.I.; Satpathy, K.K.

    2015-01-01

    Marine organisms get impinged to the intake screens of Madras Atomic Power Station (MAPS) due to the suction force of the cooling water system of the power plant. The present work has studied the loss of aquatic organism at MAPS due to impingement at cooling water screens. In total 67 species of marine faunas impinged on the water intake screens of MAPS during the study. The proportion of fish, shrimp, crab, jellyfish and others, with respect to the total biomass of impinged organisms are 1.59 % (33 species), 0.30% (9), 2.77 % (16), 95.10% (3) and 0.24% (4), respectively. Jellyfishes were observed to be the largest entrained group covering around 44.85% of individual and constituting almost 94.82 % of biomass recorded during the study period and sea nettle jelly (Chrysaora quinquecirrha) was impinged with highest frequency. The diel study shows higher impingement occurred during night time, on full moon day and at low tides in contrast to their counterparts. Fishes accounts for 14.84 % of individual count and mere 1.67 % of biomass. Totally 33 number of fish species were observed. The highest impinged species were pony fishes (Secutor ruconius, Secutor insidiator, Photopectoralis bindus, Alepes kleinii and Leiognathus equulus) (21% occurrence). These few entrained fishes are mostly very small in size and have less commercial value. The total loss of marine fauna by impingement during study period was estimated to be 4779 (or 463.46 kg). The present data when compared with the impingement data from other coastal power plants, shows that the impinged fish biomass at MAPS cooling water system is much less than the other temperate and tropical power plants. (author)

  19. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  20. Aquatic ecology of the Kadra reservoir, the source of cooling water for Kaiga nuclear power plant

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Zargar, S.; Dhopte, R.; Kulkarni, A.; Kaul, S.N.

    2002-01-01

    The study is being conducted since July 2000 to evaluate impact of cooling water discharges from Kaiga Nuclear Power Plant on physicochemical and biological characteristics of Kadra reservoir. Besides marginal decrease of DO, sulfate, nitrate and potassium near discharge point at surface water, abiotic features of the water samples collected from three layers, viz. surface, 3-m depth and bottom at nine locations of the reservoir, did not show remarkable differences with reference to pH, phosphate, conductivity, suspended solids, sodium, hardness, chloride, alkalinity and heavy metals (Cu, Fe, Ni, Zn, Pb, Cd, Cr and Mn). The DT varied between 5 and 8.5 degC at surface water during the study. The abiotic characteristics of the reservoir water meet the specification of drinking water standard of Bureau of Indian Standards. While the counts of phytoplankton and zooplankton were reduced near discharge point, their population at 500 m off the discharge point was comparable to those near dam site at about 11 km down stream from plant site. Plamer's index (0-15) and Shannon's diversity index values (1.39-2.44) of the plankton at different sampling points indicate oligotrophic and semi productive nature of the water body. The total coliform (TC), staphylococcus and heterotrophic counts were, in general, less near discharge point. Based on TC count, the reservoir water, during most of the period, is categorized as 'B' following CPCB classification of surface waters. Generation of data needs to be continued till 2-3 years for statistical interpretation and drawing conclusions pertaining to extent of impact of cooling water discharges on Kadra reservoir ecology. (author)

  1. A technical learning on the Pressurized Water Nuclear Power Plants using animation

    International Nuclear Information System (INIS)

    Ito, Hajime; Tomohara, Yasutaka; Kubo, Setsuo; Ninomiya, Toshiaki

    2002-01-01

    The pressurized water nuclear power generation plants tends to reduce construction of its new plant from viewpoints of recent stabilization in power demand/supply balance, development of new siting points, and so on. And, together with reducing any opportunity to experience at site, generation alternation to younger engineers without such experiences is progressing. In order to carry out technical tradition with high quality , as it is important to understand experiences of troubles and so on as valuable inheritance to apply them to actual use, it can be thought, in doubt, to be one of solving measures to prepare some learning tools applying the newest technology. The Kansai Electric Co., Ltd. Developed a CAD software using animation and 3D pictures using a personal computer which is edited some processes of technical transition on nuclear energy as a reference on a shape of CD ROM as an object from initial period of nuclear power station to present APWR. (G.K.)

  2. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-15

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  3. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    International Nuclear Information System (INIS)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-01

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  4. High power and high energy lithium-ion batteries for under-water applications

    Science.gov (United States)

    Gitzendanner, R.; Puglia, F.; Martin, C.; Carmen, D.; Jones, E.; Eaves, S.

    Lithium-ion batteries have demonstrated excellent energy density, reliability, and life in commercial applications. Several new Navy and undersea applications are emerging that need the high energy density and high power capabilities that the lithium-ion technology offers. Such applications have historically utilized silver-zinc technology for their power source. However, life cycle costs, maintenance and logistics issues, and wet-life limitations are true detriments in these applications. Lithium-ion technology has demonstrated the energy and power density of silver-zinc, but with much improved cycle life, shelf life, and low maintenance properties. For these reasons, and others, many under water applications are looking to lithium-ion to provide the performance of the silver-zinc system, but at a greatly reduced life-cycle cost.

  5. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  6. Collector feedwater supply and stability of the power distribution in a pressurized-water reactor

    International Nuclear Information System (INIS)

    Budnikov, V.I.; Kosolapov, S.V.; Kramerov, A.Ya.

    1980-01-01

    It is necessary to determine how the collector feedwater supply affects the disposition of the stability limits and the instability period for the power distribution in such a reactor. The main reason for the fluctuations in feedwater flow rate were shown by additional calculations with the general power regulator switched out to be due to instability on the fundamental in the neutron distribution. The power-level fluctuations are due to oscillation of the feed valve in the level regulator, and consequently to oscillations in the feedwater flow rate. If collector feed is to be employed, it is desirable to improve the response of the pressure control system for the separator drum, because under certain emergency conditions there will be a considerable fall in pressure in the separator drum. The deviation from saturation for the water in the separator drum tube is less in the second method than it is in the first, so the cavitation margin in the principal pumps may be reduced somewhat. Calculations show that this reduction will not occur if the time constant of the turbine synchronizer is about 10 sec. Also, the dynamic characteristics of the nuclear power station in these modes of feedwater supply are appreciably influenced by the parameters of the pressure-control system and the water-level control for the separator drum

  7. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  8. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  9. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    Science.gov (United States)

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  10. Modern large 3000 rev/min steam turbines for pressurized water reactor power stations

    International Nuclear Information System (INIS)

    Muscroft, J.

    1989-01-01

    The general thermodynamic cycle requirements applying to modern 3000 rpm steam turbines for pressurised water reactor power stations are reviewed. Consideration is given to factors affecting thermal efficiency, including the optimisation of cycle parameters and the use of moisture separation and steam reheating. Principles of mechanical design, based on a modular design concept for turbine cylinders, are discussed with reference to a range of 3000 rpm turbines with outputs up to 1300 MW. The most recent developments, involving machines of 630 MW and 985 MW output currently under construction, are described. The importance of service experience with nuclear steam turbines associated with a variety of types of water cooled reactor is emphasized, and its relevance to the design of modern 3000 rpm turbines for pressurised water reactor applications discussed. (author)

  11. [Space-time water monitoring system at the Iriklinsk hydroelectric power station].

    Science.gov (United States)

    Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F

    2002-01-01

    The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.

  12. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  13. Cooling water intake and discharge facilities for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Ishihara, Hisashi; Iwabe, Masakazu

    1977-01-01

    Igata Nuclear Power Station is located at the root of Sadamisaki peninsula in the western part of Ehime Prefecture, Japan, and faces the Iyonada sea area in Seto Inland Sea. The most part of the shoreline forms the cliffs, and the bottom of the sea is rather steep, reaching 60 m depth at 300 m offshore. Considering warm water discharge measures in addition to the natural conditions of tide and current, temperature of sea water, water quality and wave data, it was decided that the deep layer intake system using bottom laid intake pipes and the submerged discharge system with caisson penetrable dike would be adopted for cooling water. The latter was first employed in Japan, and the submerged discharge system with caisson penetrable dike had been developed. The intake was designed to take sea water of about 38 m 3 per sec for each condenser unit at the depth of approximately 17 m with 4.8 m diameter and 116 m length pipes and its calculation details and construction are described. The discharge system was designed to provide a horseshoe-shaped discharge pond with inner diameter of approximately 50 m, surrounded by 17 concrete caissons, and to spout warm water discharge from eight openings of 1.58 m diameter, at the location of approximately 300 m eastward of the intake. Its hydraulic studies and model experiments and its construction are reported. (Wakatsuki, Y.)

  14. Water hammer calculation and analysis in main feedwater system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2010-01-01

    The main feedwater system of a nuclear power plant is an important part in ensuring the cooling of the steam generator. Moreover, it is the main pipe section where water hammers frequently occur. Studying the regular patterns of water hammers to the main feedwater system is significant to the stable operation of the system. The paper focuses on the study of water hammers through Flowmaster's transient calculating function to establish a mathematical model with boundary conditions such as a feedwater pump, control valves, etc.; calculation of the water hammers pressure when feedwater pumps and control valves shut down; exporting the instantaneous change in solution of pressure. Combined with engineering practical examples, the conclusions verify the viability of calculating the water hammers pressure through Flowmaster's transient function, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively, changing the intervals of closing signals to feedwater pumps and control valves to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (authors)

  15. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  16. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  17. Study on the selection method of feed water heater safety valves in nuclear power plants

    International Nuclear Information System (INIS)

    Shi Jianzhong; Huang Chao; Hu Youqing

    2014-01-01

    The selection of the high pressure feedwater heater's safety valve usually follows the principle recommended by HEI standards in thermal power plant. However, the nuclear power plant's heaters generally need to accept a lots of drain from a moisture separator reheater (MSR). When the drain regulating valve was failure in fully open position, a large number of high pressure steam will directly goes into the heater. It make high-pressure heater have a risk of overpressure. Therefore, the safety valve selection of the heaters for nuclear power plants not only need to follow the HEI standards, but also need to check his capacity in certain special conditions. The paper established a calculation method to determine the static running point of the heaters based on characteristic equations of the feed water heater, drain regulating valve and steam extraction pipings, and energy balance principle. The method can be used to calculate the equilibrium pressure of various special running conditions, so further determine whether the capacity of the safety valve meets the requirements of safety and emissions. The method proposed in this paper not only can be used for nuclear power plants, can also be used for thermal power plants. (authors)

  18. Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues

    International Nuclear Information System (INIS)

    Fernandez-Varea, Jose M; Carrasco, Pablo; Panettieri, Vanessa; Brualla, Lorenzo

    2007-01-01

    Water/medium stopping-power ratios, s w,m , have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm 2 . Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg-Gray values of s w,m calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol. 45 983-95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, s w,m changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of s w,m , reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung

  19. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    Science.gov (United States)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  20. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    Energy Technology Data Exchange (ETDEWEB)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to

  1. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  2. Stochastic study on entrainment of floating particles with intake of cooling water of a power plant

    International Nuclear Information System (INIS)

    Kadoyu, Masatake; Wada, Akira

    1979-01-01

    The mortality of ichthyoplanktons, contained in the sea water passing through the cooling water systems of a power plant, may be associated with rising temperature and mechanical effect. In this study, the range and the rate of entrainment of the organisms like ichthyoplanktons floating in the sea caused by the intake of cooling water were stochastically investigated by simulating the average current as well as the flow caused by the intake of water and by taking into consideration random velocity fluctuation without these flows, using a mathematical model. An intake was set along the straight coastline in semi-infinite sea, and the rate of inflow of particles into the intake was simulated by a mathematical model. In the numerical simulation, the average flow as coastal current component and the flow caused by the intake of water were obtained with the hydrodynamic equations of motion and continuity, and the rate of entrainment of floating particles was examined by giving turbulence to the particles in the sea and by calculating the position of each particle every moment. The results are as follows; 1) The range of entrainment of floating particles by the intake of cooling water and its probability were obtained in consideration of the flow rate of cooling water, coast current velocity and diffusion coefficient as parameters. 2) The extent of inflow of floating particles considerably varied with tidal amplitude, diffusion coefficient and the flow rate of cooling water in the sea where the coastal flow has clear periodicity. 3) The extent of entrainment was considerably influenced by the steady current velocity, the velocity distribution in offshore direction and the intake volume in the sea where periodicity is not observed. (Nakai, Y.)

  3. Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Hrayshat, Eyad S. [Tafila Technical University, P.O. Box 66, Tafila 66110 (Jordan)

    2008-08-15

    Desalination of brackish water as a viable option to cope with water scarcity and to overcome water deficit in Jordan is assessed. A stand alone reverse osmosis (RO) desalination unit powered by photovoltaic (PV) solar energy is proposed, and a computer code in C++ was generated in order to simulate the process, and to predict the water production at 10 selected sites based on the available solar radiation data, sunshine hours and salinity of the feed water (TDS of 3000, 5000, 7000, and 10,000 mg/L). It was found that most of the selected sites showed favorable application of the proposed system in Jordan. Tafila, Queira, Ras Muneef, H-4, and H-5 are the most favorable sites. With TDS of 7000 mg/L, the highest annual water production of 1679 m{sup 3}/year was observed in Tafila, followed by Queira with production of 1473 m{sup 3}/year. Ras Muneef, H-4, and H-5 showed close to each other production of 1363, 1345, and 1340 m{sup 3}/year, respectively. Among the most favorable sites (Tafila, Queira, Ras Muneef, H-4, and H-5), Ras Muneef was found to be the best site in terms of the daily amount of water produced during the driest months of the year (May-September). Its production during these months forms about 65% of its total daily water production during a 1-year cycle, while for each of the other most favorable sites namely Tafila, Queira, H-4, and H-5, a 61% of production was observed during the same period. (author)

  4. Water quality around proposed nuclear power plant at Gorakhpur Haryana, India

    International Nuclear Information System (INIS)

    Singh, Kuldeep; Yadav, Anoop; Garg, V.K.; Bishnoi, Mukul; Pal, Jitender; Pulhani, Vandana; Narayanan, Usha

    2012-01-01

    The surface and ground water are being polluted by natural as well as anthropogenic activities. Natural pollutants include acid rain and salts from rocks. Pollution added by anthropogenic activities include sewage and other wastes, industrial effluent as hardly 5% of total industries have adequate measures for the treatment of effluents. Water quality was assessed for its suitability for drinking purposes around proposed Nuclear Plant Site at Dist. Hisar/Fatehabad, Haryana. The study was undertaken to established baseline levels of water parameters during pre-operational phase of the proposed nuclear power plant. A total 103 samples were have been collected from different sampling locations around of around proposed Nuclear Plant Site. Water samples were collected from the bore-wells, wells, municipal water supplies, ponds, canal and hand pumps were analyzed for the various physico-chemical parameters including pH, Electrical Conductivity (EC), Total Dissolved Salts (TDS), Total Hardness (TH), Total Alkalinity (TA), Sodium, Potassium, Calcium, Magnesium, Carbonate, Bicarbonate, Chloride, Fluoride, Sulphate, Nitrate and phosphate. The samples were collected and analysed as per standard methods within 24h of sampling. The results indicate considerable variations in physic-chemical properties of the analysed water samples. The pH was neutral to alkaline at all the studied locations, ranging from 7.0-9.7 at different locations. Salinity ranged from 0.1-0.63 mg/l and Total alkalinity (as CaCO 3 ) ranged from 43.2-528 mg/l. Most of the samples were slightly to moderately hard. Total hardness content (as CaCO 3 ) ranged from 1.7-1512 mg/l. Fluoride content in the groundwater of the study area ranged from 0.4-2.1 mg/l for fluoride. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. Mostly, surface water (canal water) is supplied to the general public by the public water supply department for

  5. Contribution for a history of the regulation of the electric energy sector in Brazil: the Water Code of 1934 and the Water and Electric Power National Council

    OpenAIRE

    Corrêa, Maria Letícia; Universidade do Estado do Rio de Janeiro

    2005-01-01

    This study aims to analyse the history of the Brazilian electric power sector, throughout the development of the Water and Electric Power National Council (CNAEE), between 1939 and 1954. The CNAEE was originally created to execute the Water Code — an legislative act conceived in 1934, which represented the consolidation of federal public authority concerning strategic resources, defining its competencies, responsibilities and rights —, but it also undertakes the assignment o...

  6. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  7. Loss of Power and Water Hammer Event at San Onofre, Unit 1, on November 21, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    On November 21, 1985, Southern California Edison's Onofre Nuclear Generating Station, Unit 1, located south of San Clemente, California, experienced a partial loss of inplant ac electrical power while the plant was operating at 60% power. Following a manual reactor trip, the plant lost all inplant ac power for 4 minutes and experienced a severe incidence of water hammer in the feedwater system which caused a leak, damaged plant equipment, and challenged the integrity of the plant's heat sink. The most significant aspect of the event involved the failure of five safety-related check valves in the feed-water system whose failure occurred in less than year, without detection, and jeopardized the integrity of safety systems. The event involved a number of equipment malfunctions, operator errors, and procedural deficiencies. This report documents the findings and conclusions of an NRC Incident Investigation Team sent to San Onofre by the NRC Executive Director for Operations in conformance with NRC's recently established Incident Investigation Program

  8. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.; Amidpour, M.

    2012-01-01

    The performance of an ammonia–water power/cooling cogeneration cycle is investigated and optimized paying more attention on the economic point of view. Thermodynamic and thermoeconomic models are developed in order to investigate the thermodynamic performance of the cycle and assess the unit cost of products. A parametric study is carried out and the cycle performance is optimized based on the thermal and exergy efficiencies as well as the sum of the unit costs of the system products. The results show that the sum of the unit cost of the cycle products obtained through thermoeconomic optimization is less than by around 18.6% and 25.9% compared to the cases when the cycle is optimized from the viewpoints of first and second laws of thermodynamics, respectively. It is also concluded that for each increase of $3/ton in unit cost of the steam as the heat source, the unit cost of the output power and cooling is increased by around $7.6/GJ and $15–19/GJ, respectively. -- Highlights: ► The theory of exergetic cost is applied to the case of ammonia–water power/cooling cycle. ► The cycle is optimized from the viewpoints of thermodynamics and economics. ► The economic optimization leads to a considerable reduction in the system product costs.

  9. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  10. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    Full Text Available The research presented in the article conforms to the severe accident that took place at the Three Mail Island nuclear power plant in the USA. The research is focused on improving the reliability of the pressure compensator that is an important equipment of the primary circuit. In order to simulate such a situation, the stand has been developed to simulate the design of the pressurizer of the PWR-440 reactor, in particular an elliptical shape of the upper lid which has a steam outlet pipe at the top of the construction that creates conditions for occurrence of such water hammers. For the experiments, an installation has been created that makes it possible to measure and record the water hammering that occur when the tanks are filled. Measurement of the amplitude of the water hammering was carried out by a specially developed piezoelectric sensor, and the registration – by a light-beam oscilloscope. The technique of carrying out the experiment is described and the results of an experimental study of the water hammers arising when the vessels are completely filled are presented. Quantitative data were obtained on the amplitudes of the hydraulic impacts depending on the rate of filling of the vessel and the diameter of the outlet, the maximum pressure of the hydraulic shock was 7–9 atm. Comparison of calculated and experimental data has been performed. The allowable discrepancy is explained by the calculated value of the system stiffness coefficient, which did not take into account the presence of welded seams in the tank that imparts the system with additional rigidity. The calculated relationships are obtained, that make it possible to estimate the amplitudes of the water hammers through the acceleration of the water level in front of the outlet from a vessel with an elliptical bottom. The possibility of a water hammer in the pressure compensator is demonstrated by experiment and by theoretical calculations. Based on the experimental data, a

  11. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  12. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  13. Evaluation of Required Water Sources during Extended Loss of All AC Power for CANDU NPPs

    International Nuclear Information System (INIS)

    Jeon, Woo Jae; Lee, Kyung Jin; Kim, Min Ki; Kim, Keon Yeop; Park, Da Hee; Oh, Seo Bin; Chang, Young Jin; Byun, Choong Seop

    2016-01-01

    Fukushima accident was caused by lasting long hours of Station Black-Out (SBO) triggered from natural disaster. This accident had resulted in the reactor core damage. The purpose of this study is to evaluate the required water sources to maintain hot standby conditions until 72 hours during ELAP situation. The analysis was performed with CATHENA code. CATHENA code has been developed for the best-estimated transient simulation of CANDU plants. This study was carried out to evaluate the strategy to maintain hot standby conditions during ELAP situation in CANDU reactors. In this analysis, water was supplied to SG by MSSV open and by the gravity feed. It can cool the core without damage until the dousing tank depletion. Before dousing tank depletion, the emergency water supply pump was available by emergency power restoration. The pump continuously fed water to SG. So it is expected that the reactor core can be cooled down without damage for 72 hours if water source is enough to feed. This result is useful to make a strategy against SBO including ELAP situation

  14. Disintegration of water molecules in a steam-plasma torch powered by microwaves

    Science.gov (United States)

    Uhm, Han S.; Kim, Jong H.; Hong, Yong C.

    2007-07-01

    A pure steam torch is generated by making use of 2.45GHz microwave. Steam from a steam generator enters the discharge tube as a swirl gas at a temperature higher than 150°C. This steam becomes a working gas and produces a stable steam torch. The torch volume is almost linearly proportional to the microwave power. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a reddish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species and the reddish, dimmer region is hydrogen burning in oxygen. Study of water molecule disintegration and gas temperature effects on the molecular fraction characteristics in steam-plasma of a microwave plasma torch at the atmospheric pressure is carried out. An analytical investigation of water disintegration indicates that a substantial fraction of water molecules disintegrate and form other compounds at high temperatures in the steam-plasma torch. Emission profiles of the hydroxide radical and water molecules confirm the theoretical predictions of water disintegration in the torch.

  15. An experimental and analytical investigation of water chillers of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chunming

    2005-01-01

    Water chillers are important components of the electric building chilled water system of Nuclear Power Plant. In this article, we describe the seismic qualification methodology. A united method of seismic analysis and experiment testing were applied. Since the seismic classification of the evaporator, condenser and oil separator is 1F, the function criteria are necessary to be satisfied. The functional and performance of the control panel were qualified by seismic test. In order to get the seismic time histories of the base of the motor, compressor and control panel, we did time histories analysis for the whole chillers using the seismic acceleration time history of the building floor on which the water chillers was located. Then, these curves were translated into required response spectrum (RRS), which were used by the seismic test of water chillers compressor sets. All passive components, such as evaporator, condenser, oil separator and support, were qualified by seismic stress analysis method. These components were verified to satisfy the standard when they were subjected to the seismic, gravitational, operational pressure and nozzle loads. The Chillers' components were qualified to the specification and the standard. The motor-compressor set and control panel were qualified to the functional and performance criteria. The applied of this methodology adequately qualified the function of the water chillers compressor sets , especially after the aging test. (authors)

  16. Water feeding/condensating device and operation method in nuclear power plant

    International Nuclear Information System (INIS)

    Shibayama, Takashi.

    1989-01-01

    The present invention overcomes a problem in reactor water level control occurring upon operation of a water feeding/condensating system in a nuclear power plant. That is, the water feed system to a nuclear reactor is constituted with parallel circuit comprising a reactor feedwater pump driven by a steam turbine and a serial circuit composed of a reactor feedwater pump driven by an electrical motor and a pump adjusting valve for controlling the amount of feedwater at the exit of the motor driven feedwater pump. Further, a reactor feedwater control valve having a function of controlling the feedwater to the reactor is disposed to the bypass pipeway for bypassing the parallel circuit of feedwater pumps. In this constitution, water can be fed to the nuclear reactor by way of the reactor feedwater pump bypass control valve upon starting and stopping of a nuclear feedwater pump driven by electric motor upon starting and shutdown of the nuclear reactor. Accordingly, stable water level control can be conducted for the reactor core with no effect of rapid pressure fluctuation due to the starting and the stopping of the reactor feedwater pump driven by electric motor. (I.S.)

  17. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  18. Concentrating Solar Power and Water Issues in the U.S. Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Nathan [Western States Water Council, Murray, UT (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tovar-Hastings, Angelica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Komor, Paul [Univ. of Colorado, Boulder, CO (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Mehta, Shweta [Stanford Univ., CA (United States)

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  19. Research and development program for plutonium recycling in light water power plants: indirect nuclear action

    International Nuclear Information System (INIS)

    1977-01-01

    The report describes the state of advancement - 31/12/1976 - of the Community research and development programme on plutonium recycling in light-water power stations. The first part of the programme includes the forecast of the plutonium industry around 1990 and the assessment of the environmental impact due to the plutonium recycling in light-water power stations at this period. The forward study is available now, whereas the assessment studies concerning the environmental aspects have been the subject of a tender procedure among various European organizations. The improvement of scientific and technical knowledge which constitutes the second part of the programme, consists of three actions. The first one, practically achieved, collects the studies relating to the cross sections of higher plutonium isotopes and actinides and to the comparison of computer codes. The second one, relating to the safety and control of light-water reactors comprises seventeen projects which are under negociation with the contracting parties. The third one is composed of thirteen projects including post-irradiation examinations and isotopic analysis on plutonium fuels irradiated in L.W.R.'s; the available results are briefly described

  20. Stochastic Optimization in The Power Management of Bottled Water Production Planning

    Science.gov (United States)

    Antoro, Budi; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    This paper review a model developed to minimize production costs on bottled water production planning through stochastic optimization. As we know, that planning a management means to achieve the goal that have been applied, since each management level in the organization need a planning activities. The built models is a two-stage stochastic models that aims to minimize the cost on production of bottled water by observing that during the production process, neither interfernce nor vice versa occurs. The models were develop to minimaze production cost, assuming the availability of packing raw materials used considered to meet for each kind of bottles. The minimum cost for each kind production of bottled water are expressed in the expectation of each production with a scenario probability. The probability of uncertainly is a representation of the number of productions and the timing of power supply interruption. This is to ensure that the number of interruption that occur does not exceed the limit of the contract agreement that has been made by the company with power suppliers.

  1. Microbial mediated desalination for ground water softening with simultaneous power generation.

    Science.gov (United States)

    Hemalatha, Manupati; Butti, Sai Kishore; Velvizhi, G; Venkata Mohan, S

    2017-10-01

    A novel three-chambered microbial desalination cell (MDC) was designed for evaluating desalination of synthetic ground water with simultaneous energy generation and resource recovery. The specific design enabled efficient interelectrode communication by reducing the distance of separation and also maintained an appropriate surface area to volume ratio. MDC were evaluated in different circuitry modes (open and closed) to assess the desalination efficiency, bioelectricity generation, resource recovery, substrate utilization and bioelectrokinetics. The closed circuit operation has showed efficient desalination efficiency (51.5%) and substrate utilization (70%). Owing to the effective electron transfer kinetics, closed circuit mode of operation showed effective desalination of the synthetic ground water with simultaneous power production (0.35W/m 2 ). Circuitry specific biocatalyst activity was observed with higher peak currents (10.1mA; -5.98mA) in closed circuit mode. MDC can function as sustainable and alternative solution for ground and surface water treatment with power productivity and resource recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficiency analysis of the Solarflow. An innovative solar-powered desalination unit for treating brackish water

    Energy Technology Data Exchange (ETDEWEB)

    Dallas, Stewart; Sumiyoshi, N.; Kirk, J.; Mathew, K.; Wilmot, N. [UNEP-IETC Environmental Technology Centre, Murdoch University, Perth 6150, Western Australia (Australia)

    2009-02-15

    The Solarflow was invented at The Environmental Technology Centre, Murdoch University (the Murdoch ETC) in Perth, Western Australia as part of a doctoral thesis in the early 1990s researching suitable water treatment systems for remote indigenous communities. The design has been modified since this time by its original manufacturer but full commercialisation was not achieved. The current owner Solco Pty Ltd was keen to further improve the efficiency and lower the purchase cost of the unit and engaged the Murdoch ETC to undertake further testing. The Solarflow is a self-contained solar-powered unit capable of producing 400 L/day of high quality drinking water from brackish water via reverse osmosis and requires only 120 W of photovoltaic power. This is achievable due to its innovative energy recovery system. In order to assess the unit's efficiency more accurately the latest high-rate data logging technology from the ResLab laboratory at Murdoch University was employed. This enabled quantification of the Solarflow's unique and complex waveforms of the four key parameters: voltage, current, pressure and flow. The results of this testing are presented in this paper. (author)

  3. Feasibility study of self sustaining capability on water cooled thorium reactors for different power reactors

    International Nuclear Information System (INIS)

    Permana, S.; Takaki, N.; Sekimoto, H.

    2007-01-01

    Thorium fuel cycle can maintain the sustainable system of the reactor for self sustaining system for future sustainable development in the world. Some characteristics of thorium cycle show some advantages in relation to higher breeding capability, higher performance of burn-up and more proliferation resistant. Several investigations was performed to improve the breeding capability which is essential for maintaining the fissile sustainability during reactor operation in thermal reactor such as Shippingport reactor and molten salt breeder reactor (MSBR) project. The preliminary study of breeding capability on water cooled thorium reactor has been investigated for various power output. The iterative calculation system is employed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of PIJ module of SRAC2000. In this calculation, 1238 fission products and 129 heavy nuclides are employed. In the cell calculation, 26 heavy metals and 66 fission products and 1 pseudo FP are employed. The employed nuclear data library was JENDL 3.2. The reactor is fueled by 2 33U-Th Oxide and it has used the light water coolant as moderator. Some characteristics such as conversion ratio and void reactivity coefficient performances are evaluated for the systems. The moderator to fuel ratio (MFR) values and average burnups are studied for survey parameter. The parametric survey for different power outputs are employed from 10 MWt to 3000 MWt for evaluating the some characteristics of core size and leakage effects to the spectra profile, required enrichment, breeding capability, fissile inventory condition, and void reactivity coefficient. Different power outputs are employed in order to evaluate its effect to the required enrichment for criticality, breeding capability, void reactivity and fissile inventory accumulation. The obtained value of the conversion ratios is evaluated by using the equilibrium atom composition. The conversion ratio is employed based on the

  4. Passive safety systems and natural circulation in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2009-11-01

    Nuclear power produces 15% of the world's electricity. Many countries are planning to either introduce nuclear energy or expand their nuclear generating capacity. Design organizations are incorporating both proven means and new approaches for reducing the capital costs of their advanced designs. In the future most new nuclear plants will be of evolutionary design, often pursuing economies of scale. In the longer term, innovative designs could help to promote a new era of nuclear power. Since the mid-1980s it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially improve economics of new nuclear power plant designs. The IAEA Conference on The Safety of Nuclear Power: Strategy for the Future, which was convened in 1991, noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Some new designs also utilize natural circulation as a means to remove core power during normal operation. The use of passive systems can eliminate the costs associated with the installation, maintenance, and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are conducted in several IAEA Member States with advanced reactor development programmes. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, the IAEA

  5. Water and Climate Impacts on Power System Operations: The Importance of Cooling Systems and Demand Response Measures

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miara, Ariel [City College of New York, NY (United States); Ibanez, Eduardo [GE Energy Connections, Atlanta, GA (United States); Hummon, Marissa [Tendril, Denver, CO (United States)

    2016-12-01

    The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impacts on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.

  6. Radiant warmer power and body size as determinants of insensible water loss in the critically ill neonate.

    Science.gov (United States)

    Baumgart, S; Engle, W D; Fox, W W; Polin, R A

    1981-12-01

    Twelve critically ill neonates mechanically ventilated for respiratory failure (mean weight 1.33 kg, mean gestation 31 wk) were studied to quantitate the effects of radiant power from a radiant warming device, body weight, and body surface area on insensible water loss. Radiant power density (Mw/cm2) was measured using a wattmeter and thermopile transducer. Insensible water loss was measured using a Potter Baby Scale. Weight correlated inversely with insensible water loss, (r = -0.86, P less than 0.001). Radiant power density correlated inversely to weight, (r = -0.71, P less than 0.001). There was a significant increase in insensible water loss as radiant power density increased, (r = 0.54, P less than 0.05). Net radiant power received (W/kg) by infants over their exposed surface area, correlated directly to insensible water loss, (r = 0.67, P less than 0.01) irrespective of body weight. Critically ill neonates ventilated for respiratory failure and nursed under radiant warmers incurred greater insensible water losses than previously reported for well infants. The magnitude of this increased insensible water loss is inversely related to body size and is determined directly by the radiant power density required to maintain body temperature.

  7. THE OPERATION OF POWER EQUIPMENT DURING THE DISPOSAL OF COMBUSTIBLE GASES ASSOCIATED WITH GEOTHERMAL WATER

    Directory of Open Access Journals (Sweden)

    G. Ya. Akhmedov

    2017-01-01

    Full Text Available Objectives. The aim of the study is to assess the appropriateness of utilising combustible gases associated with geothermal water with  low gas factor and the possibility of its practical implementation with  the provision of power equipment operation of geothermal systems  with a nonscaling mode.Methods. The investigations were carried out by analysing the content of associated combustible gases in the underground  thermomineral waters of the Cis-Caucasian deposits on the basis of  an assessment of the feasibility of their utilisation for heating and  hot water supply.Results. A review of practically existing heat and power schemes  utilising geothermal water sources is carried out. Based on the  studies conducted, it is found that methane (70-90% is prevalent in the water under consideration; meanwhile, the content of heavy hydrocarbons does not exceed 10%. The concentration of carbon  dioxide is 3 ÷ 6%, nitrogen 1 ÷ 4%. Depending on the depth of the  aquifer, gas factors range from 1 to 5 m3/ m3. As a result of the  analysis of the operation of typical thermal distribution stations, it is  established that a violation of the carbon dioxide equilibrium in water leads to the formation of a solid phase of calcium carbonate on the  heat exchange surface. A technique for estimating the relationship between the partial pressure of methane and carbon dioxide with the total pressure in a solution of geothermal water is proposed. A  scheme for the efficient operation of thermal distribution stations  with the prevention of carbonate deposits formation by using the  combustion products of the used gas combined with the injection of waste water back into the aquifer is presented.Conclusion. As a result of the conducted studies, the possibility of  using associated combustible gases in geothermal wells is  established using differences in their solubility and that of carbon  dioxide. In this case, the protection of

  8. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  9. Analysis of power and cooling cogeneration using ammonia-water mixture

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Goekmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2010-01-01

    Development of innovative thermodynamic cycles is important for the efficient utilization of low-temperature heat sources such as solar, geothermal and waste heat sources. This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia-water mixture as the working fluid and produces power and cooling simultaneously. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using solar or geothermal energy. A thermodynamic study of power and cooling cogeneration is presented. The performance of the cycle for a range of boiler pressures, ammonia concentrations and isentropic turbine efficiencies are studied to find out the sensitivities of net work, amount of cooling and effective efficiencies. The roles of rectifier and superheater on the cycle performance are investigated. The cycle heat source temperature is varied between 90-170 o C and the maximum effective first law and exergy efficiencies for an absorber temperature of 30 o C are calculated as 20% and 72%, respectively. The turbine exit quality of the cycle for different boiler exit scenarios shows that turbine exit quality decreases when the absorber temperature decreases.

  10. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  11. A water-powered Energy Harvesting system with Bluetooth Low Energy interface

    International Nuclear Information System (INIS)

    Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.

    2016-01-01

    This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min. (paper)

  12. A water-powered Energy Harvesting system with Bluetooth Low Energy interface

    Science.gov (United States)

    Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.

    2016-11-01

    This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.

  13. Improving the reliability of service-water systems at nuclear power plants

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Johnson, K.I.; Daling, P.M.; Chang, T.Y.

    1989-01-01

    Fouling and clogging caused by sedimentation, corrosion, and the buildup of biological organisms is a persistent problem whenever raw water from a river, lake, or ocean is used as a heat exchange medium. The fouling caused by raw water cooling of service-water systems at nuclear power plants is a particular concern because of the potential for affecting safety-related heat exchangers and components, including online and redundant backup units. Open-cycle service-water, as discussed here, provide cooling to reactor support systems required during shutdown and emergency conditions and relate to those heat exchangers and components cooled directly by raw water. To resolve this issue, the NRC initiated a research program at the Pacific Northwest Laboratory (PNL), to study the conditions that allow fouling and to compare alternative surveillance and control programs to minimize service water system fouling. There is no single solution to biological, sediment, and corrosion fouling. An effective surveillance and control program must satisfy certain criteria to address major areas of the service-water system and the major fouling types. Three fouling program alternatives were developed. Value/impact (or cost/benefit) studies were performed on these three alternatives. The alternative chosen to be most cost effective is a baseline fouling program. It consists of two principal elements of a control program, continuous chlorination (for example during bivalve spawning seasons) and periodic flushing and flow testing of redundant and infrequently used cooling loops, to minimize flow blockage that would result from biofouling and sediment/corrosion product buildup. In addition, a surveillance program is recommended to regularly inspect the intake structure for macroscopic biological fouling organisms, sediment, and corrosion

  14. Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules.

    Science.gov (United States)

    Xu, Tong; Ding, Xiaoteng; Shao, Changxiang; Song, Long; Lin, Tengyu; Gao, Xue; Xue, Jiangli; Zhang, Zhipan; Qu, Liangti

    2018-02-26

    Converting ubiquitous environmental energy into electric power holds tremendous social and financial interests. Traditional energy harvesters and converters are limited by the specific materials and complex configuration of devices. Herein, it is presented that electric power can be directly produced from pristine graphene oxide (GO) without any pretreatment or additives once encountering the water vapor, which will generate an open-circuit-voltage of up to 0.4-0.7 V and a short-circuit-current-density of 2-25 µA cm -2 on a single piece of GO film. This phenomenon results from the directional movement of charged hydrogen ions through the GO film. The present work demonstrates and provides an extremely simple method for electric energy generation, which offers more applications of graphene-based materials in green energy converting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  16. Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures

    Science.gov (United States)

    Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.

    2017-05-01

    Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.

  17. Power density effect on feasibility of water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Sidik, Permana; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    Breeding is made possible by the high value of neutron regeneration ratio η for 233 U in thermal energy region. The reactor is fueled by 233 U-Th oxide and it has used the light water as moderator. Some characteristics such as spectrum, η value, criticality, breeding performance and number density are evaluated. Several power densities are evaluated in order to analyze its effect to the breeding performance. The η value of fissile 233 U obtains higher value than 2 which may satisfy the breeding capability especially for thermal reactor for all investigated MFR. The increasing enrichment and decreasing conversion ratio are more significant for MFR 233 U enrichment. Number density of 233 Pa decreases significantly with decreasing power density which leads the reactor has better breeding performance because lower capture rate of 233 Pa. (author)

  18. The behavior of fuel and fission products in manoeuvring the power of the water cooled reactors

    International Nuclear Information System (INIS)

    Luzanova, L.M.; Miglo, V.N.; Slavyagin, P.D.

    1987-01-01

    Problems relating to investigation of dioxide fuel behavior and variation of fission product activity in power manoeuvring in the WWER-type water-cooled reactors are considered. It is pointed out that at loads which do not result in onset of a zone of structural changes the behavior of fuel and that of fission products in the fuel-cladding gap and in the primary coolant under the stationary and transient conditions are determined only by the fuel-cladding interactions. At any power variations the fuel is not subject to structural changes and no excess release of fission products from the fuel occurs. In the presence of developed zones of structural changes in failed fuel elements release of radioactive fission products to the primary coolant is determined only by the thermal regime in the zone of structural changes and is practically independent of the degree of the fuel-cladding interaction. (author). 1 ref., 7 figs

  19. Comparative of fuel cycle cost for light water nuclear power plants

    International Nuclear Information System (INIS)

    Kocic, A.; Dimitrijevic, Z.

    1978-01-01

    Starting from ost general fuel cycle scheme for light water reactors this article deals with conceptual differences of BWR, PWR and WWER as well as with the influence of certain phases of fuel cycle on economic parameters of an equivalent 1000 MWe reactor using a computer program CENA /1/ and typical parameters of each reactor type. An analysis of two particular power plants 628 MWe and 440 MWe WWER by means of the same program is given in the second part of this paper taking into account the differences of in-core fuel management. This second approach is especially interesting for the economy of the power plant itself in the period of planning. (author)

  20. Thermoelectric topping cycles for power plants to eliminate cooling water consumption

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Hao, Menglong; Wu, Bin; Silaen, Armin K.; Zhou, Chenn Qian; Fisher, Timothy S.; Shakouri, Ali

    2014-01-01

    Highlights: • Complete system analysis of a thermoelectric topping generator in a power plant. • Topping application does not require high-ZT thermoelectrics to be effective. • The improved efficiency can be used to replace water cooling with air cooling. • The topping generator is superior to flue gas waste heat recovery in efficiency and less materials. - Abstract: This work shows that thermoelectric (TE) topping generators can add 4–6% to the overall system efficiency for advanced supercritical steam turbines (Rankine cycle) that nominally generate power with 40–42% efficiency. The analysis then considers how this incremental topping energy can replace cooling water flow with air-cooled condensers (ACC) while maintaining current power output and plant efficiency levels with commensurate economic benefit ($/kW h). The simulated TE modules are located inside a coal-fired boiler wall constructed of wet steam tubes. The topping TE generator employs non-toxic and readily available materials with a realistic figure-of-merit range (ZT = 0.5–1.0). Detailed heat transfer and thermal analyses are included for this high-temperature TE application (e.g., 800 K for the cold side reservoir). With the tube surface enhanced by fins, the TE elements are designed to perform optimally through a distributed configuration along the wall-embedded steam tubes that are more than 20 m high. The distribution of the gas temperature in the furnace along the wall height is predicted by thermo-fluid dynamic analysis. This foundational design and analysis study produces overall realistic efficiency predictions in accordance with temperature–entropy analysis for superheated Rankine cycles. Lastly, the approach also allows for the addition of waste heat recovery from the flue gas. The analysis shows that the power output from the topping TE generator is significantly larger, compared to that from the waste heat recovery, due to the larger available temperature difference

  1. ASSESMENT OF ZAPORIZKA NUCLEAR POWER STATION’S POND?COOLER WATER QUALITY BY BIOLOGICAL INDICATION METHOD

    Directory of Open Access Journals (Sweden)

    O. Okhrimenko

    2013-03-01

    Full Text Available The results of research of thephyto? and zooplankton communities of the Zaporizka Nuclear Power Station’s pond-coolerare presented. It is established the saprobity status of the water and the species diversity index of Shannon.

  2. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  3. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  4. Topics to be covered in safety analysis reports for nuclear power plants with pressurized water reactors or boiling water reactors in the F.R.G

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1977-01-01

    This manual aims at defining the standards to be used in Safety Analysis Reports for Nuclear Power Plants with Pressurized Water Reactors or Boiling Water Reactors in the Federal Republic of Germany. The topics to be covered are: Information about the site (geographic situation, settlement, industrial and military facilities, transport and communications, meteorological conditions, geological, hydrological and seismic conditions, radiological background), description of the power plant (building structures, safety vessel, reactor core, cooling system, ventilation systems, steam power plant, electrical facilities, systems for measurement and control), indication of operation (commissioning, operation, safety measures, radiation monitoring, organization), incident analysis (reactivity incidents, loss-of-coolant incidents, external impacts). (HP) [de

  5. Utilization of fuzzy mathematics method in thermohydraulic analysis of power water reactor

    International Nuclear Information System (INIS)

    Zhou Tao; Qiu Shuizheng; Jia Dounan; Shu Guanghui

    2001-01-01

    The basic principles of fuzzy mathematic method were described. According to the general requirement of the analysis of power water reactor (PWR), two examples about utilization of fuzzy mathematic method for thermohydraulic analysis of PWR have been given. These two examples include the determination of the engineering hot tube factor and hot point factor, and the selection of CHF formula. This is an exploration of the way of the utilization of fuzzy mathematic method in thermohydraulic analysis of PWR. The present results show the feasibility and potential of this method

  6. Data list of nuclear power plants of pressurized-water reactor type in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1981-08-01

    This report has collected and compiled the data concerning performances, equipments and installations for nuclear power plants of the pressurized-water reactor type in Japan. The data used in the report are based on informations that were collected before December in 1980. The report is edited by modifing changes of the data appeared after publication of 1979 edition (JAERI-M 8947), and extending the data-package to cover new plants proposed thereafter. All data have been processed and tabulated with a computer program FREP, which has been developed as an exclusive use of data processing. (author)

  7. [Tissue free water tritium in pine needles around a nuclear power plant].

    Science.gov (United States)

    Tokuyama, H; Igarasi, S

    1990-06-01

    The elevation of the concentration of tissue free water tritium (TFWT) in pine needles was discernible in trees growing around a nuclear power plant. The values varied from 2.6 Bq/l to 6.1 Bq/l with a mean value of 3.8 Bq/l. Analysis of pine needles collected at Fukui City as control samples was done. The values averaged 1.7 Bq/l and fell within 1.5 B/l-1.8 Bq/l which was obtained nation-wide survey of TFWT in pine needles in Japan. The present study also revealed that reactor tritium incorporated into pine needles decreased rapidly with a half time of 6 days and then tissue free water tritium has a short retention time.

  8. Determination of 90Sr in waters of discharge of nuclear power plants

    International Nuclear Information System (INIS)

    Campos, J.M.; Equillor, H.E.

    2010-01-01

    The determination of 90 Sr has some problems because it is a pure beta emitter, and despite the specificity of radiochemical techniques used, their full identification is not always easy, especially when detected low activities. In addition, samples water discharge presents a matrix consisting of a series of fission or activation products, beta / gamma emitters, several of which may interfere with the determination of 90 Sr. This paper describes a simple method for the determination of 90 Sr in water of discharge of nuclear power plants, which is based on the purification of 90 Y, which is used in the ARN since 2009 and has yielded good results to the present, as no interferences were detected in the analysis of the decay of 90 Y. (authors) [es

  9. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    International Nuclear Information System (INIS)

    Freeman, R.F. III; Sharma, R.K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV

  10. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  11. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, III, Richard F.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.

  12. Determination of 89Sr and 90Sr in highly radioactive water from a nuclear power plant

    International Nuclear Information System (INIS)

    Bojanowski, R.; Radecki, Z.; Duniec, S.

    1994-01-01

    The main criterion in assaying strontium radionuclides is to obtain radiochemically pure strontium sources for beta-particle counting. Nuclear power plant waters contain both 89 Sr and 90 Sr accompanied by many beta-particle and gamma-ray emitting fission and neutron-activation products. The latter activities can sometimes exceed those of strontium by a factor of 10 7 . Efficient purification procedures must be used to remove these products, preferably at an initial stage of analysis to reduce the radiation risk to personnel. A method has been developed in which a water sample is passed through a prefilter installed on top of an ion-exchange column filled with Dowex-50 resin in H + form. This prefilter is impregnated with ferrocyanides and manganese dioxide and retains most of the interfering radionuclides while the underlying cation-exchanger takes up strontium ions. A few additional purification steps result in a strontium salt that is free from other radioactivity. (orig.)

  13. Water chemistry experience following an extensive power up-rate in Oskarshamn 3 BWR

    International Nuclear Information System (INIS)

    Wegemar, Boerje; Nilsson, Jimmy; Lejon Johan; Bergfors, Asa; Arnberg, Bo

    2012-09-01

    The Swedish Oskarshamn 3 BWR plant, operated by OKG, was first connected to the grid in 1985. The plant has been power up-rated in two steps; from the original design, 3020 MWth, to 3300 MWth (109%, 1989) and recently to 3900 MWth (129%, 2009). Westinghouse Electric Sweden AB (former ASEA-Atom, OEM of the plant) was rewarded a major contract in the recently implemented up-rating project, the PULS project. The PULS project is quite unique since no operating experience has to date been reported from a similar major power up-rate in a BWR plant. Water chemistry experience from the first period of operation following the implementation of the PULS project is reported and discussed in the paper. Reported chemistry and radiochemistry measurements in feedwater (FW) and reactor water (RW) include corrosion products, activated corrosion products, dissolved oxygen and impurities like chloride, sulfate etc. Furthermore, a comparison of water quality prior to implementation of the PULS project is included. Several process systems have been modified, one of them being the condensate cleanup system (CCU), a Pre-coat filter system. The design criteria for the CCU system include the filter run-lengths, pressure drop before back-washing and requirements on water chemistry quality. The paper describes in some detail the CCU system modifications being implemented in order to fulfil the design criterion. CCU cleanup efficiency, operating temperature and influence of hydrogen peroxide on the CCU resin are all important issues being covered in the paper. As for the latter, it is well known that oxygen and hydrogen peroxide (from radiolysis in the core region) might cause partial deterioration of CCU standard cation resin resulting in increased RW sulfate concentrations. This aspect is covered in the paper as well. The reactor water cleanup system (RWCU) in Oskarshamn 3 consists of deep bed ion exchange filters (mixed bed filter). The purpose of RWCU is to maintain a low level of

  14. Construction and commissioning experience of evolutionary water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2004-04-01

    Electricity market liberalization is an established fact in several countries and there is a trend to adopt it in other countries. The essential aim of market liberalization is to improve the overall economic efficiency. In order that nuclear power remains a viable option for electricity generation, its costs should be competitive with alternative sources while, at the same time, it should have a safe and reliable operation record. The capital cost of nuclear power plants (NPPs) generally accounts for 43-70% of the total nuclear electricity generation costs, compared to 26-48% for coal plants and 13-32% for gas plants. Most of these expenditures are incurred during the construction phase of a NPP. The achievement of shorter construction periods using improved technology and construction methods has a significant benefit on the costs incurred prior to any production of electricity. This document is intended to make the recent worldwide experience on construction and commissioning of evolutionary water cooled NPPs available to Member States and especially to those with nuclear power plants under construction/planning, and to those seriously considering nuclear power projects in the future. The final aim is to assist utilities and other organizations in Member States to improve the construction of nuclear power plants and achieve shortened schedules and reduced costs without compromising quality and safety. This document aims to provide an overview of the most advanced technologies, methods and processes used in construction and commissioning of recent nuclear projects. To better achieve this objective the presentation is selectively focused more on the new developments rather than providing a full review of all issues related to construction and commissioning. The experience described in this TECDOC applies to managers, engineers, supervisors, technicians and workers in various organizations dealing with the site construction and commissioning of nuclear power plants

  15. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities.

    Science.gov (United States)

    Connelly, Nancy A; O'Neill, Charles R; Knuth, Barbara A; Brown, Tommy L

    2007-07-01

    Invasions of nonnative species such as zebra mussels can have both ecological and economic consequences. The economic impacts of zebra mussels have not been examined in detail since the mid-1990s. The purpose of this study was to quantify the annual and cumulative economic impact of zebra mussels on surface water-dependent drinking water treatment and electric power generation facilities (where previous research indicated the greatest impacts). The study time frame was from the first full year after discovery in North America (Lake St. Clair, 1989) to the present (2004); the study area was throughout the mussels' North American range. A mail survey resulted in a response rate of 31% for electric power companies and 41% for drinking water treatment plants. Telephone interviews with a sample of nonrespondents assessed nonresponse bias; only one difference was found and adjusted for. Over one-third (37%) of surveyed facilities reported finding zebra mussels in the facility and almost half (45%) have initiated preventive measures to prevent zebra mussels from entering the facility operations. Almost all surveyed facilities (91%) with zebra mussels have used control or mitigation alternatives to remove or control zebra mussels. We estimated that 36% of surveyed facilities experienced an economic impact. Expanding the sample to the population of the study area, we estimated 267 million dollars (BCa 95% CI = 161 million dollars - 467 million dollars) in total economic costs for electric generation and water treatment facilities through late 2004, since 1989. Annual costs were greater (44,000 dollars/facility) during the early years of zebra mussel infestation than in recent years (30,000 dollars). As a result of this and other factors, early predictions of the ultimate costs of the zebra mussel invasion may have been excessive.

  16. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Mergner, Hanna; Weimer, Thomas

    2015-01-01

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

  17. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  18. Water Hammer Analysis using RELAP5/MOD 3.3 for Yonggwang Nuclear Power Unit 1 and 2 Blowdown System

    International Nuclear Information System (INIS)

    Lee, Sang Il; Kim, Hea Zoo; Chu, Jung Ho; Ahn, Se Hong; Jung, Chang Ho

    2010-01-01

    Water hammer can be defined as a rapid pressure step occurring in the liquid in a closed pipe caused by a sudden change in the liquid velocity. This pressure acts for a period which is twice the transit time of sonic wave in the pipe. Generally, water hammer can occur in any thermal-hydraulic systems like nuclear power plant and is extremely dangerous for nuclear power plant piping system since, if the pressure induced exceeds the pressure range of the pipe given by the manufacturer, it can lead to the failure of the piping system integrity. For Yonggwang nuclear power unit 1 and 2, water hammer occurred repeatedly on the outlet piping of regenerative heat exchanger of steam generator blowdown system. Thus, design modification was performed to prevent the water hammer and the analysis of effect on water hammer before and after design modification was performed to verify the validity of the design modification

  19. Presence of pathogenic amoebae in power plant cooling waters. Final report, October 15, 1977-September 30, 1979. [Naegleria fowleri

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-03-01

    Cooling-water-associated algae and sediments from five northern and five southern or western electric power plants were tested for the presence of pathogenic amoebae. In addition, water algae and sediments from five northern and five southern/western sites not associated with power plants were tested. There was a significant correlation at northern power plants between the presence of thermophilic, pathogenic amoebae in cooling waters and thermal additions. Presence of the pathogenic did not correlate with salinity, pH, conductivity, or a variety of various chemical components of the cooling waters. Selected pathogenic isolates were tested serologically and were classified as Naegleria fowleri. Although thermal additions were shown to be contributing factor in predisposing cooling waters to the growth of pathogenic amoebae, the data suggest the involvement of other currently undefined parameters associated with the presence of the pathogenic amoebae. 35 refs., 21 tabs.

  20. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  1. THE IMPROVEMENT OF LOW-WASTE TECHNOLOGIES OF WORKING BODY OF WATER PREPARATION AT THERMAL AND NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    K. D. Rymasheuskaya

    2017-01-01

    Full Text Available In the present work the main directions of water desalination technologies improving have been analyzed. Possible techniques of high-quality treatment of water that enable the reduction of amounts of environmentally hazardous substances to be discharged into the hydrosphere are indicated. The purpose of the work was to improve the ecological efficiency and the effectiveness of water treatment equipment at heat power plants when designing new and the modernizing existing water treatment schemes. In order to achieve this goal the following problems have been solved: the one of analyzing the main directions of the improvement of technologies of working body of water preparation at thermal and nuclear power plants; of analyzing the main directions of reduction of total volume of highly mineralized power plant wastewaters; of developing the technological scheme of recycling of concentrate of membrane installations and regenerants of ionite filters in acid and alkali; of developing the technological scheme of transformation of the sludge in pre-processing waste into valuable commodity products. The results of research can be applied for the design of new and the modernization of existing water treatment installations of thermal and nuclear power plants. It will enable to reduce considerably the use of natural water and the amount of chemicals added as well as the volume of wastewater and the concentration of dissolved solids in it. As a consequence, the negative impact of thermal and nuclear power plants on the hydrosphere will be reduced. 

  2. Simulation of gas and water management strategies in PEM fuel cells for UAV power

    Science.gov (United States)

    Wade, Nasir; Smith, Sonya

    2008-11-01

    Proton exchange membrane fuel cells (PEMFC) a involve a number of complex fluid phenomena that are not well understood. The focus of this research is to design a fuel cell that addresses the issues of gas and water management for the power requirements for an Unmanned Arial Vehicle (UAV). Often in conventional stack design, PEM fuel cells are connected electrically in series to create the desired voltage and feed from a common fuel or oxidant stream. This method of fueling, often leads to an uneven distribution of fluid within the stack, causing issues such as cell flooding, dehydration of membrane and inevitably poor fuel cell performance. Generally, fuel cell designers and developers incorporate higher stoichiometric gas flow rates and use flow field designs with high pressure drops in order to counter this phenomenon, ensuring even gas distribution. This method, although effective for water removal, leads to added cost and higher levels of wasted fuel. Using a simulation based approach we demonstrate the feasibility and effectiveness of an individual fuel and oxidant flow distribution, integrated with an individual sequential exhaust technique for a 6-8 cell stack which outputs 300-500 Watts of power. Using varied exhaust configurations the most optimal active gas management strategy will be outlined and recommended to give the best stack performance.

  3. Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production

    International Nuclear Information System (INIS)

    Wagar, W.R.; Zamfirescu, C.; Dincer, I.

    2010-01-01

    In this paper, an ammonia-water based Rankine cycle is thermodynamically analyzed for renewable-based power production, e.g. solar, geothermal, biomass, oceanic-thermal, and nuclear as well as industrial waste heat. Due to the nature of the ammonia-water mixture, changes in its concentration allow thermodynamic cycles to adapt to fluctuations in renewable energy sources, which is an important advantage with respect to other working fluids. The non-linearity of the working fluid's behaviour imposes that each cycle must be optimized based upon several parameters. A model has been developed to optimize the thermodynamic cycle for maximum power output and carry out a parametric study. The lowest temperature state of the system is fixed, and three other parameters are variables of study, namely, maximum system temperature, ammonia concentration and energy ratio, which is a newly introduced parameter. Energy ratio indicates the relative position of the expansion state and is defined in terms of enthalpies. The study is conducted over a concentration range of 0-0.5, the maximum temperature studied varies between 75 deg. C and 350 deg. C for extreme cases, and the energy ratio from saturated liquid to superheated vapour. As a result, the optimal expansion energy ratio is predicted. The cycle efficiencies are drastically affected by the concentrations and temperatures. Depending on the source temperature, the cycle energy efficiency varies between 5% and 35% representing up to 65% of the Carnot limit. The optimal energy ratio has been determined for several concentrations and reported graphically.

  4. Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2013-12-01

    Full Text Available The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

  5. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  6. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  7. Ecology of Legionella within water cooling circuits of nuclear power plants along the French Loire River

    International Nuclear Information System (INIS)

    Jakubek, Delphine

    2012-01-01

    The cooling circuits of nuclear power plants, by their mode of operating, can select thermophilic microorganisms including the pathogenic organism Legionella pneumophila. To control the development of this genus, a disinfection treatment of water cooling systems with monochloramine can be used. To participate in the management of health and environmental risks associated with the physico-chemical and microbiological modification of water collected from the river, EDF is committed to a process of increasing knowledge about the ecology of Legionella in cooling circuits and its links with its environment (physical, chemical and microbiological) supporting or not their proliferation. Thus, diversity and dynamics of culturable Legionella pneumophila were determined in the four nuclear power plants along the Loire for a year and their links with physico-chemical and microbiological parameters were studied. This study revealed a high diversity of Legionella pneumophila subpopulations and their dynamic seems to be related to the evolution of a small number of subpopulations. Legionella subpopulations seem to maintain strain-specific relationships with biotic parameters and present different sensitivities to physico-chemical variations. The design of cooling circuits could impact the Legionella community. The use of monochloramine severely disrupts the ecosystem but does not select biocide tolerant subpopulations. (author)

  8. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  9. Testing the Waters. Duke Power State Park: An Environmental Education Learning Experience Designed for Grades 4-7.

    Science.gov (United States)

    Rinehart, William C., Jr.; Beazley, Lea J.

    This learning packet of hands-on activities was developed by the Duke Power State Park in North Carolina for grades 4-7 to acquaint students with the concepts of water quality, watersheds, aquatic sampling, water pollution, preservation of natural areas, and land use. The loose-leaf book is divided into these sections: (1) introduction to the…

  10. Water as Life, Death, and Power: Building an Integrated Interdisciplinary Course Combining Perspectives from Anthropology, Biology, and Chemistry

    Science.gov (United States)

    Willermet, Cathy; Mueller, Anja; Juris, Stephen J.; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2013-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power", brought together topics from the fields of anthropology, biology and chemistry to explore…

  11. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  12. An optimized power conversion system concept of the integral, inherently-safe light water reactor

    International Nuclear Information System (INIS)

    Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan

    2017-01-01

    Highlights: • Three power conversion systems (PCS) for the I 2 S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I 2 S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I 2 S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I 2 S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I 2 S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.

  13. Water Polo Game-Related Statistics in Women’s International Championships: Differences and Discriminatory Power

    Science.gov (United States)

    Escalante, Yolanda; Saavedra, Jose M.; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Dominguez, Ana M.

    2012-01-01

    The aims of this study were (i) to compare women’s water polo game-related statistics by match outcome (winning and losing teams) and phase (preliminary, classificatory, and semi-final/bronze medal/gold medal), and (ii) identify characteristics that discriminate performances for each phase. The game-related statistics of the 124 women’s matches played in five International Championships (World and European Championships) were analyzed. Differences between winning and losing teams in each phase were determined using the chi-squared. A discriminant analysis was then performed according to context in each of the three phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables were both offensive (centre goals, power-play goals, counterattack goal, assists, offensive fouls, steals, blocked shots, and won sprints) and defensive (goalkeeper-blocked shots, goalkeeper-blocked inferiority shots, and goalkeeper-blocked 5-m shots). The discriminant analysis showed the game-related statistics to discriminate performance in all phases: preliminary, classificatory, and final phases (92%, 90%, and 83%, respectively). Two variables were discriminatory by match outcome (winning or losing teams) in all three phases: goals and goalkeeper-blocked shots. Key pointsThe preliminary phase that more than one variable was involved in this differentiation, including both offensive and defensive aspects of the game.The game-related statistics were found to have a high discriminatory power in predicting the result of matches with shots and goalkeeper-blocked shots being discriminatory variables in all three phases.Knowledge of the characteristics of women’s water polo game-related statistics of the winning teams and their power to predict match outcomes will allow coaches to take these characteristics into account when planning training and match preparation. PMID

  14. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    International Nuclear Information System (INIS)

    Goffin, C.; Duvivier, L.; Girasa, E.; Brognez, J.

    2002-01-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this solution is no

  15. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  16. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  17. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  18. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    Science.gov (United States)

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-07

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  19. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  20. Water, Cities and Peri-urban Communities: Geographies of Power in the Context of Drought in Northwest Mexico

    Directory of Open Access Journals (Sweden)

    Rolando E. Díaz-Caravantes

    2014-10-01

    We argue that urban water augmentation strategies reveal a distinct set of urban-peri-urban relations of unequal social power where peri-urban water resources are transferred to urban areas; reflecting, over the last three decades (1981-2010, the demands of powerful, politically connected urban populations and large irrigation districts. While during the same period, peri-urban small-scale communal farmers or ejidatarios lost access to their water as it was moved or used to supply the needs of Hermosilloʼs expansion.

  1. An estimation method of the gross Beta activity in receiving river water of a nuclear power plant.

    Science.gov (United States)

    Huang, Yan-Jun; Tao, Yun-Liang; Zhang, Xiao-Feng; Shang-Guan, Zhi-Hong

    2010-08-01

    In this paper, an estimation method of gross beta activity from radionuclide concentrations in river water based on decay data was presented by introducing a concept of gross beta conversion factor. With the factors, the gross beta activities of some downstream water intakes and the locations downstream 1 km away from a planning nuclear power plant in inland China were estimated. The results indicated that the gross beta activities in the receiving river water due to the liquid effluent discharge of the nuclear power plant with 4 CPR 1,000 units during normal operation are lower than the recommended guideline level of 1 Bq L from the legal standard on these sites.

  2. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  3. Privatization by Other Means: Social Power, Tankers and Techno-Assemblages of Water Supply in Amman, Jordan.

    Science.gov (United States)

    Mustafa, D.

    2016-12-01

    Combined piped and tanker based water supply systems have become a ubiquitous feature of urban waterscapes in the global South. Jordanian water sector, and Amman in particular has been a recipient of considerable international financial and technical assistance over the past decades. The international assistance has coupled with the Jordanian state's own pro-market ideological stance, and its political compulsions to spawn a techno-social assemblage of water supply that represents a hybrid state and commercial water supply system. I present the results of a field study in Amman, Jordan on water tankers and water users to understand the techno-political underpinnings of the hybrid system and its impact on differential access to water. I explore how Actor Network Theory (ANT) based analysis of tankers, suction pumps and piped water system and their materiality may explain differential access to water. But that exploration is inflected by a larger political ecological concern with questions of power and discourses about citizenship and claim making on the state. I find that ANT based focus on water technologies, while ontologically fertile, and epistemologically innovative, is nevertheless politically barren. Much richer political insights are to be gained from structural and post-structurally based investigations of the discursive and material drivers of the techno-social assemblages of water supply. The technologies don't just neutrally impact water access, but seem to almost intentionally favour the powerful over the powerless. Surely the political agency must not reside in inanimate technologies but in the social actors and structures that fashion those technologies, and configure them such to reinforce geographies of power. I call for a renewed focus on social power and how its impact on lived geographies is mediated by technology.

  4. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  5. Passage of nuclear powered ships in territorial waters and their stay in harbours

    International Nuclear Information System (INIS)

    Lucchini, L.; Voelckel, M.

    1975-01-01

    The specificity of rules governing entry of nuclear ships in the territorial waters of a State and their liability are reviewed. The concept of innocent passage prevailing for navigation in territorial waters is examined as are the protective measures taken by the Host State, in particular the prior authorisation characterizing thate State's discretionary powers of acceptance or refusal to admit the nuclear ship and the control over it. Liability rules and the nature of liability are analysed on the basis of agreements on the Savannah and the Otto Hahn. The importance of State intervention is demonstrated in its relationship with the operator particularly regarding control of operation and financial assistance. Also mentioned is liability for breach of the rules of procedure laid down in bilateral agreements, and in this context, a study is made of the rules of conduct for nuclear ships in territorial waters set out in the Savannah and Otto Hahn agreements. The liability of the coastal State is reviewed from the viewpoint of its grounds and possibilities of extension, given the development of nuclear navigation and the importance attached to protection against marine environmental pollution [fr

  6. Outbreak of legionnaires' disease from a cooling water system in a power station (Heysham)

    International Nuclear Information System (INIS)

    Morton, S.; Dyer, J.V.; Bartlett, C.L.R.; Bibby, L.F.; Hutchinson, D.N.; Dennis, P.J.

    1986-01-01

    In September and October 1981 six cases of pneumonia occurred among men working in a power station under construction. Three were identified as cases of legionella pneumonia and two others had serology suggestive of legionella infection. In a sample of 92 men from the site 10 had low levels of antibodies to legionella; a similar sample of men working on an adjacent site showed none with positive serology. In a case control study it was found that cases of pneumonia were more likely than controls to have worked on a part of the site where four small capacity cooling towers were located. Legionella pneumophila serogroup 1 was isolated from the water systems of these four towers but was not found in samples from any other cooling towers or hot or cold water outlets on the site. It would appear that there was airborne spread of the organism from these cooling water systems which had not received conventional treatment to inhibit corrosion and organic growth. This is the first outbreak of legionnaires' disease to be recorded in an industrial setting in the United Kingdom. No cases of legionella infection have occurred on the site since the introduction of control measures. (author)

  7. Response surface methodology and optimization of solar powered reverse osmosis plant for brackish water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Khayet, M.; Essalhi, M.; Cojocaru, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Applied Physics; Armenta-Deu, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Atomic Molecular and Nuclear Physics; Hilal, N. [Nottingham Univ., Nottingham (United Kingdom). Faculty of Engineering, Centre for Clear Water Technologies

    2010-07-01

    The costs and energy consumption associated with reverse osmosis (RO) desalination have decreased significantly in recent years due to the development of novel membranes and modules with high RO performance. In addition, adequate pretreatment processes are now used with along with energy recovery devices and renewable energy systems. Response surface methodology (RSM) was used in this study to develop a predictive model that characterized the general response of a brackish water reverse osmosis (BWRO) plant to determine the optimum operating conditions and the RO specific performance index. The RSM methodology allowed factors to be simultaneously varied between minimum and maximum values. The significance of the RSM polynomial model was determined by analysis of variance (ANOVA). The predicted and experimental responses of the BWRO plant were in good agreement. Optimization was carried out using canonical analysis and the step adjusting gradient method to ensure high quantity and quality potable water production with low energy consumption. The input variables were the feed temperature, the feed flow-rate and the feed pressure. The BWRO plant was powered with photovoltaic panels and a solar thermal collector. For a brackish water of 6 g/L salt concentration, the optimized BWRO plant guaranteed a production of 0.2 m{sup 3}/day with an energy consumption less than 1.3 kWh/m{sup 3}. 6 refs., 1 tab., 2 figs.

  8. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  9. Effect of Hartha and Najibia power plants on water quality indices of Shatt Al-Arab River, south of Iraq

    Science.gov (United States)

    Al-Aboodi, Ali H.; Abbas, Sarmad A.; Ibrahim, Husham T.

    2018-05-01

    The main object of this research is to assess the water quality of Shatt Al-Arab River and its suitability for various purposes near power plants (Hartha and Najibia) through physical and chemical analysis [temperature, pH, EC, Cl-, Na+, K+, Ca+2, Mg+2, HCO3 -, NO3 -, SO 4 -2 , Fe+, total alkalinity, total hardness, biological oxygen demand (BOD5), NH4 +, and NO2 -] using water quality index (WQI), organic pollution index (OPI), sodium adsorption ratio (SAR), and percentage of sodium ion (Na%) during the dry season (August, 2016) and the wet season (January, 2017). WQI of Shatt Al-Arab falls under very poor quality during summer season, while it ranges from very poor quality to unsuitable for drinking purposes during winter season. There is a clear effect of power plants on water quality. Hartha and Najibia power plants contribute to the deterioration of water quality by increasing the percentage ratio of WQI near these plants by 13.22 and 9.69%, respectively, compared to the north sites of these plants during summer season. The percentage ratios of increased WQI near Hartha and Najibia power plants compared to the north sites of these plants are 17.93 and 15.92%, respectively, during winter season. Water quality of Shatt Al-Arab falls under a high level of organic pollution during the summer and winter seasons. There is a slight effect by the power plants on the OPI. Hartha and Najibia power plants contributed to the change of the OPI by 10% compared to the north site of Hartha power plant. According to the comparison between the SAR values which represent the suitability of water for serve irrigation purposes and SAR values of Shatt Al-Arab, all sites lie in the first class (excellent). According to Na+%, the type of surface water in the studied area lies in good class during winter season and permissible class during summer season.

  10. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  11. Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Wylock, Christophe E.; Marciniak, Przemysław A.

    2017-01-01

    Highlights: • Insights into power requirements of biomethane production from biogas are provided. • Process model is constructed, validated and simulated. • High-pressure and low-pressure plant operation in different configurations is compared. - Abstract: Biogas upgrading by water scrubbing followed by biomethane compression is an environmentally benign process. It may be achieved using various plant configurations characterised by various power requirements with associated effects on biomethane sustainability. Therefore, the current study has been undertaken to systematically investigate the power requirements of a range of water scrubbing options. Two groups of water scrubbing are analysed: (1) high pressure water scrubbing (HPWS) and (2) near-atmospheric pressure water scrubbing (NAPWS). A water scrubbing plant model is constructed, experimentally validated and simulated for seven upgrading plant configurations. Simulation results show that the power requirement of biogas upgrading in HPWS plants is mainly associated with biogas compression. In contrast, in NAPWS plants the main power is required for water pumping. In both plants the compression of the biomethane from atmosphereic pressure to 20 MPa also contributes remarkably. It is observed that the lowest specific power requirement can be obtained for a NAPWS plant without water regeneration (0.24 kW h/Nm 3 raw biogas) but this plant requires cheap water supply, e.g. outlet water from a sewage treatment plant or river. The second is HPWS without flash (0.29 kW h/Nm 3 raw biogas). All other HPWS with flash and NAPWS with water regeneration plants have specific power requirements between 0.30 and 0.33 kW h/Nm 3 raw biogas. Biogas compression without upgrading requires about 0.29 kW h/Nm 3 raw biogas. The thermodynamic efficiency of biogas upgrading is between 2.2% and 9.8% depending on the plant configuration while biomethane compression efficiency is higher, about 55%. This result implies that the

  12. Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring.

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis

    2017-06-01

    Standard Biological Oxygen Demand (BOD) analysis requires 5 days to complete. To date, microbial fuel cell biosensors used as an alternative method for BOD assessment requires external apparatus, which limits their use for on-line monitoring in remote, off-grid locations. In this study, a self-powered, floating biosensor was developed for online water quality monitoring. This approach eliminated the need for external apparatus and maintenance that would otherwise be required by other techniques. The biosensor was able to detect urine in freshwater and turn ON a visual and sound cues (85 dB). The energy needed to operate the biosensor was produced by the system itself with the use of electroactive microorganisms, inside microbial fuel cells. The Chemical Oxygen Demand (COD) was used as a fast method of biosensor validation. When urine concentration exceeded the lower threshold, corresponding to a COD concentration of 57.7 ± 4.8 mgO 2  L -1 , the biosensor turned the alarm ON. The shortest observed actuation time, required to switch ON the alarm was 61 min, when the urine concentration was 149.7 ± 1.7 mgO 2  L -1 . Once the sensor was switched ON, the signal was emitted until the urine organic load decreased to 15.3 ± 1.9 mgO 2  L -1 . When ON, the microbial fuel cell sensor produced a maximum power of 4.3 mW. When switched OFF, the biosensor produced 25.4 μW. The frequency of the signal was proportional to the concentration of urine. The observed frequencies varied between 0.01 and 0.59 Hz. This approach allowed to correlate and quantitatively detect the presence of water contamination, based on signal frequency. The sensor was operating autonomously for 5 months. This is the first report of a self-powered, autonomous device, developed for online water quality monitoring.

  13. Light water cooled, high temperature and high performance nuclear power plants concept of once-through coolant cycle, supercritical-pressure, light water cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki; Koshizuka, Seiichi [Tokyo Univ.,Tokai Ibaraki (Japan). Nuclear Engineering Research Lab.

    2002-08-01

    Supercritical-pressure, light water cooled nuclear reactors corresponding to nuclear reactors of once-through boilers, are of theoretical development from LWR. Under supercritical pressure, a steam turbine can be driven directly with cooled water with high enthalpy, as not seen boiling and required for recycling. The reactor has no steam-water separation and recycling systems on comparison with the boiling water type LWR, and is the same once-through type as supercritical-pressure thermal power generation plants. Then, all of cooling water at reactor core are sent to turbine. The reactor has no steam generator, and pressurizer, on comparison with PWR. As it requires no steam-water separator, steam drier, and recycling system on comparison with BWR, it becomes of smaller size and has shape and size nearly equal to those of PWR. And, its control bars can be inserted from upper direction like PWR, and can use its driving system. Here was introduced some concepts on high-temperature and high-performance light water reactor, nuclear power generation using a technology on supercritical-pressure thermal power generation. (G.K.)

  14. Water chemistry in the Dounreay prototype fast reactor (PFR) power station

    International Nuclear Information System (INIS)

    Melhuish, K.R.; Bray, J.A.

    1978-01-01

    The water treatment plants comprise three stages: 1. A pre-treatment plant to deal with the high organic loading arising from the moorland catchment area. This uses a macroporous anion resin and also acts as a filter. 2. A make-up plant which was originally a twin stream demineralisation unit, each stream comprising cation bed, anion bed and mixed bed. This has now been extended to include a third stream. The plant is designed to deal with make-up requirements together with the losses if dumping from the compartmented sea-water cooled condenser is required. 3. A condensate polishing plant of the 'deep bed' type with pre-coat filters. There are two 50% flow candle filter units followed by three 50% flow cation topped mixed bed units. The use of austenitic steels in the superheater and reheater requires close control from the drum water content for sodium, chloride and oxygen to minimise the risks of chloride or caustic stress corrosion. The basic limits are sodium 0.1 ppm, chloride 0.16 ppm and oxygen 0.007 ppm. In addition the ratio of sodium to total anions is restricted so as not to allow molar excess of sodium hydroxide to exist. This calls for a stringent control of the feed water specification and the polishing plant operation. The commissioning and operating experience gained on PFR has revealed no particular problems arising from the LMFBR system. The specifications and procedures are generally in line with those for most modern high performance power stations either nuclear or fossil fuelled. (author)

  15. Unlocking the “Prisoner’s Dilemma” of Corporate Water Stewardship in South Africa—Exploring Corporate Power and Legitimacy of Engagement in Water Management and Governance

    Directory of Open Access Journals (Sweden)

    Suvi Sojamo

    2015-05-01

    Full Text Available Corporate water stewardship, i.e., proactive water-using corporate engagement in water management and governance, has been hailed as a solution to global water challenges. However, it has also aroused criticism and skepticism, as it has been feared to lead to private securitization of resources and institutional capture especially in locations with weak public institutions and regulation. This article tackles this “prisoner’s dilemma” of corporate water stewardship by exploring when and how it is legitimate considering the private nature of corporations and their power to change water management and governance processes and their outcomes. An analytical framework is constructed based on a literature review and applied into a case-study of corporations active in water stewardship initiatives in South Africa. The case-study findings suggest that the stewardship agenda would benefit from (1 a more open acknowledgement of power asymmetries between corporations and other parties; (2 more careful and systematic evaluation and enhancement of legitimacy of corporations to engage in public good and common pool water resources in the first place; and (3 stewardship actions should support stronger public institutions and especially civil society to equally participate. The research community is called in to scrutinize and facilitate the multi-actor water governance processes, which include corporations to assist in the effort.

  16. Production of synthetic methanol from air and water using controlled thermonuclear reactor power

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas. (author)

  17. The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power

    Directory of Open Access Journals (Sweden)

    Gary M. Gold

    2015-04-01

    Full Text Available This investigation studies desalination powered by wind and solar energy, including a study of a configuration using PVT solar panels. First, a water treatment was developed to estimate the power requirement for brackish groundwater reverse-osmosis (BWRO desalination. Next, an energy model was designed to (1 size a wind farm based on this power requirement and (2 size a solar farm to preheat water before reverse osmosis treatment. Finally, an integrated model was developed that combines results from the water treatment and energy models. The integrated model optimizes performances of the proposed facility to maximize daily operational profits. Results indicate that integrated facility can reduce grid-purchased electricity costs by 88% during summer months and 89% during winter when compared to a stand-alone desalination plant. Additionally, the model suggests that the integrated configuration can generate $574 during summer and $252 during winter from sales of wind- and solar-generated electricity to supplement revenue from water production. These results indicate that an integrated facility combining desalination, wind power, and solar power can potentially reduce reliance on grid-purchased electricity and advance the use of renewable power.

  18. Power ramp failures in water reactor fuel elements. Experience from power reactors, likely mechanisms and potential remedies

    International Nuclear Information System (INIS)

    Gittus, J.H.; Pickman, D.O.

    1980-01-01

    Power ramp failure experience in PWR, BWR, CANDU, and SGHWR fuel elements is reviewed. The mechanism of failure is described and the proven and potential remedies are listed and the actual or hoped-for benefits explained. Power ramp failures are produced, most probably, by stress corrosion cracking of the Zircaloy fuel sheaths. The stress is produced by thermal expansion of the UO 2 pellet, which stretches the clad and can produce yielding. The stress is highest in arcs of cladding that bridge cracks in the pellet. Iodine vapour, produced by transmutation is the likely corrodant in the stress corrosion failure process. It is probably released by the radiolytic dissociation of CsI and diffuses as interstitial atoms to the UO 2 grain boundaries from which it escapes to attack the clad. Power reactor experience shows that there is a threshold rating, below which failure is unlikely and that power can be safety ramped to above threshold levels providing this is done slowly. Prepressurisation with helium seems to have halved the power ramp failure rate in PWRs whilst the adoption of hollow pellets virtually eliminated power ramp failures in AGR. CANLUB, a pellet clad barrier layer, has reduced the failure rate in CANDU. Other remedies, such as copper barrier layers and fission product retentive pellets are under development

  19. Development of the accident simulation system 'IMPACT' for light water nuclear power plants

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Ando, Yasumasa; Ujita, Hiroshi

    1999-01-01

    The total plan, software contents and analysis results of IMPACT are reported. IMPACT is entrusted business from Ministry of International Trade and Industry to verify safety against severe accidents in light water nuclear power plants by computer simulation. The IMPACT codes for simulation are featured by adoption of mechanistic models and module structure, assuming use of parallel computers for a series of events from normal operation to severe accidents. The IMPACT business is a long term project for 10 years, and aims at completion of a boiling transition behavior analysis code and a fluid/structure interaction analysis code as short-term targets and a severe accident analysis code as a long-term target. So far the codes of the former two items and a prototype version of the latter have been completed, and their verification analysis is being carried out. (M.M.)

  20. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  1. Surveillance tests for light-water cooled nuclear power reactor vessels in IMEF

    International Nuclear Information System (INIS)

    Choo, Yong-Sun; Ahn, Sang-Bok; Park, Dae-Gyu; Jung, Yang-Hong; Yoo, Byung-Ok; Oh, Wan-Ho; Baik, Seung-Je; Koo, Dae-Seo; Lee, Key-Soon

    1999-01-01

    The surveillance tests for light-water cooled nuclear power reactor vessels were established to monitor the radiation-induced changes in the mechanical properties of ferritic materials in the beltline according to US NRC 10 CFR 50 App. G, US NRC RG1.99-rev.2, ASTM E185-82 and E185-94 in Irradiated Materials Examination Facility(IMEF). The surveillance capsule was transported from NPPs pool sites to KAERI IMEF by using a shipping cask. The capsule was cut and dismantled by capsule cutting machine and milling machine in M2 hot cell. Charpy tests and tension tests were performed in M5a and M5b hot cells respectively. Especially the EPMA located at hot lab was used to analyze the Ni and Cu wt% composition of base metal and weld for predicting the adjusted reference temperature(ART). The established process and test results were summarized in this paper. (author)

  2. LWR [Light Water Reactor] power plant simulations using the AD10 and AD100 systems

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab

  3. Qualification by analogy of the functional valving of French pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Grenet, M.

    1991-01-01

    In certain postulated accidental conditions (loss of coolant accident or secondary pipe rupture, earthquake, high energy pipe rupture) plant valving is called on the important functions to bring the reactor to and maintain it at a safe shutdown condition. ELWCTRICITE DE FRANCE has completed qualification tests of about forty valves to assure their operability. However, taking into account the costs and time required to obtain this qualification and the number of valves to be qualified, this method alone is not sufficient. For this reason, Electricite de France has developed the alternative qualification methodology by analogy for each postulated accidental situation. Feedback experience of these methods today is such that it can be they have achieved their objective; namely, to improve the safety of French pressurized water nuclear power stations, while at the same time avoiding the two dangers represented by excessive complexity resulting in unsatisfactory operation, and insufficient thoroughness not providing any real increase in safety. (author)

  4. Plan for research to improve the safety of light-water nuclear power plants

    International Nuclear Information System (INIS)

    1978-03-01

    This is the U.S. Nuclear Regulatory Commission's first annual report to Congress on recommendations for research on improving the safety of light-water nuclear power plants. Suggestions for reactor safety research were identified in, or received from, various sources, including the Advisory Committee on Reactor Safeguards, the NRC regulatory staff, and the consultants to the Research Review Group. After an initial screening to eliminate those not related to improved reactor safety, all the suggestions were consolidated into research topics. It is recommended that the following research projects be carried out: alternate containment concepts, especially vented containments; alternate decay heat removal concepts, especially add-on bunkered systems; alternate emergency core cooling concepts; improved in-plant accident response; and advanced seismic designs

  5. Technology, safety and costs of decommissioning a reference pressurized water reactor power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Polentz, L.M.

    1979-08-01

    Additional analyses of decommissioning of the reference pressurized water reactor (PWR) power station are made that examine some parameters not covered in the initial study report (NUREG/CR-0130). The parameters examined are: (1) the effect of plant size on costs and radiation exposure for dismantlement, (2) the costs and radiaton exposures associated with entombment of the reference PWR, (3) the impact on costs and radiation exposure of higher radiation dose rates throughout the facility than were assumed in the initial study, (4) the effect on costs of using individual contractors to accomplish dismantlement rather than using the utility staff as postulated in the initial study, and (5) the effect on costs of increasing disposal charges at waste disposal facilities.

  6. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    International Nuclear Information System (INIS)

    Woo, H.H.; Lu, S.C.

    1981-01-01

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design

  7. Electronic stopping power calculation for water under the Lindhard formalism for application in proton computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A. F., E-mail: afguerreror@uqvirtual.edu.co [Departamento de Física, Universidad Del Quindío Cra 15 # 12N Armenia, Quindío (Colombia); Mesa, J., E-mail: jmesa@ibb.unesp.br [Instituto de Biociências de Botucatu da UNESP Distrito de Rubião Jr. s/n°, 18618-000, Botucatu, SP (Brazil)

    2016-07-07

    Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping power (SP) for a proton beam interacting with a liquid water target in the range of proton energies 10{sup 1} eV - 10{sup 10} eV taking into account all the charge states is calculated.

  8. Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Wagar, W.R.; Zamfirescu, C.; Dincer, I. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON (Canada)

    2010-12-15

    In this paper, an ammonia-water based Rankine cycle is thermodynamically analyzed for renewable-based power production, e.g. solar, geothermal, biomass, oceanic-thermal, and nuclear as well as industrial waste heat. Due to the nature of the ammonia-water mixture, changes in its concentration allow thermodynamic cycles to adapt to fluctuations in renewable energy sources, which is an important advantage with respect to other working fluids. The non-linearity of the working fluid's behaviour imposes that each cycle must be optimized based upon several parameters. A model has been developed to optimize the thermodynamic cycle for maximum power output and carry out a parametric study. The lowest temperature state of the system is fixed, and three other parameters are variables of study, namely, maximum system temperature, ammonia concentration and energy ratio, which is a newly introduced parameter. Energy ratio indicates the relative position of the expansion state and is defined in terms of enthalpies. The study is conducted over a concentration range of 0-0.5, the maximum temperature studied varies between 75 C and 350 C for extreme cases, and the energy ratio from saturated liquid to superheated vapour. As a result, the optimal expansion energy ratio is predicted. The cycle efficiencies are drastically affected by the concentrations and temperatures. Depending on the source temperature, the cycle energy efficiency varies between 5% and 35% representing up to 65% of the Carnot limit. The optimal energy ratio has been determined for several concentrations and reported graphically. (author)

  9. Accident sequences evaluation using SFATs for low power and shutdown operation of pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Kim, Chansoo; Chung, Chang-Hyun; Yang, Huichang

    2004-01-01

    To maintain the level of defense-in-depth safety of Pressurized Heavy Water Reactor (PHWR) during LP/SD operation, the qualitative risk evaluation methods such as Safety Function Assessment Trees (SFATs) are required. Therefore SFATs are suggested to assess and manage the PHWR safety in LP/SD. Before this study, safety functions of PHWR were classified into 7 groups; Reactivity Control, Core Cooling, Secondary Heat Removal, Primary Heat Transport Inventory, Essential Electrical Power, Cooling Water, and Containment Integrity. The SFATs for PHWR LP/SD operations were developed along with the Plant Outage Status (POS) variation, and totally 38 SFATs were developed for Wolsung Unit 2. For the verification of SFATs logics developed, top 5 accident sequences those contribute the CDF of PHWR were selected, and plant safety status were evaluated for those accident sequences. Accident sequences such as DCC-4 (Dual Control Computer Failure), CL4-16 (Total Loss of Class IV Power), and FWPV-11 (Loss of Feedwater Supply to SG due to Failure of Pumps/Values) were included. In this research the evaluation of plant safety status by accident sequences using SFATs and the verification of the SFATs were performed. Through the verification of SFAT logics, the enhancements to the internal logics of the SFATs were made, and the dependencies between safety systems and support systems were considered. It is expected the defense-in-depth evaluation model of PHW just as SFATs can be utilized in the configuration risk management program (CRMP) development and improve technical specifications development for Korean PHWRs. (author)

  10. Design of PIλDμ controller for global power control of Pressurized Heavy Water Reactor.

    Science.gov (United States)

    Bongulwar, M R; Patre, B M

    2017-07-01

    In this paper, a robust stabilizing controller design method is presented for global power control of a Pressurized Heavy Water Reactor (PHWR) under step-back condition scheme using a Fractional Order Proportional Integral Derivative (PI λ D μ ) controller resulting into robust performance. The method is applicable to design a controller for One Non Integer Order Plus Time Delay (NIOPTD-I) plant which satisfies design specifications such as phase margin and gain crossover frequency. Stability boundary locus method is used in (K p , K i , K d ) parameter space for NIOPTD-I plants to obtain stability region. The robust performance is obtained by satisfying flat phase condition at gain crossover frequency where phase is almost constant for large span of frequencies. The simulation result of the proposed PI λ D μ controller shows active step-back control to the insertion of the rod with no undershoot and with the robust performance, hence safe to the plant for gain variations from 500% lower side to 1000% upper side. The PI λ D μ controller with a plant shows that 30% and 50% global power drop from initial 100% is achieved in a reasonable time without undershoot. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  12. Study of a criticality accident involving fuel rods and water outside a power reactor

    International Nuclear Information System (INIS)

    Beloeil, L.

    2000-01-01

    It is possible to imagine highly unlikely but numerous accidental situations where fuel rods come into contact with water under conditions close to atmospheric values. This work is devoted to modelling and simulation of first instants of the power excursion that may result from such configurations. We show that void effect is a preponderant feedback for most severe accidents. The formation of a vapour film around the rods is put forward and confirmed with the help of experimental transients using electrical heating. We propose then a vapour/liquid flow model able to reproduce void fraction evolution. The vapour film is treated as a compressible medium. Conservation balance equations are solved on a moving mesh with a two-dimensional scheme and boundary conditions taking notice of interfacial phenomena and axial escape possibility. Movements of the liquid phase are modelled through a non-stationary integral equation and a dissipative term suited to the particular geometry of this flow. The penetration of energy into the liquid is also calculated. Thus, the coupling of aerodynamic and hydrodynamic modules gives results in excellent agreement with experiments. Next, neutronic phenomena into the fuel pellet, their feedback effects and the distribution of power through the rod are numerically translated. For each developed module, validation tests are provided. Then, it is possible to simulate the first seconds of the whole criticality accident. Even if this calculation tool is only a way of study as a first approach, performed simulations are proving coherent with reported data on recorded accidents. (author)

  13. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  14. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.

    1990-01-01

    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  15. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  16. The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply

    International Nuclear Information System (INIS)

    Liang, K.S.; Chiang, S.C.; Hsu, Y.F.; Young, H.J.; Pei, B.S.; Wang, L.C.

    2012-01-01

    Highlights: ► An ultimate measure to secure core was developed, if power or water supply cannot be restored in time. ► This ultimate measure was simulated by RELAP5-3D to verify the concept of this emergency plan. ► Quantification of the required raw water injection rate was performed for NPPS in Taiwan ► Reactor controlled depressurization within the 1st hour is essential to reduce the required raw water injection rate. ► For PWR, even heat sink can be developed, RCP seal leak might eventually cause core uncover 10 h after seal leak occurs. - Abstract: In the recent nuclear catastrophe which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and a following Tsunami beyond design basis. In Fukushima accident it was observed that sea water was injected into reactors only after hydrogen explosion took place and it was considered a little too late to prevent core from damage. With regard to this fact, the Taiwan power company develops an ultimate measure to prevent reactor from encountering core damage, if either designed AC power or reactor water supply cannot be restored in time. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. Once any designed AC power or reactor water supply is made available, this DIVing plan will be activated to (1) depressurize reactor first, (2) inject any available water into reactor by any available power supply if this critical status cannot be restored in time, and (3) vent the containment if necessary to maintain containment integrity. In this paper the DIVing plan was simulated by RELAP5-3D to verify the concept of it and also to quantify the required raw water injection rate to prevent core from damage for both PWR and BWR plants in Taiwan, after the loss of passive cooling mechanism. Provided the passive cooling mechanism is lost

  17. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  18. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  19. Optimal number of circulating water pumps in a nuclear power plant

    International Nuclear Information System (INIS)

    Xia, Lin; Liu, Deyou; Zhou, Ling; Wang, Feng; Wang, Pei

    2015-01-01

    Highlights: • We present a novel method to optimize the number of variable speed pumps. • The economic effect of variable speed pumps number optimization is presented. • We present a novel method to optimize the number of constant speed pumps. • The proposed pumps number optimization method is more accurate than the widely used method. - Abstract: A circulating cooling system that uses variable speed pumps (VSPs) or constant-speed pumps (CSPs) as circulating water pumps (CWPs) is optimized to improve the cycle efficiency of nuclear power plants. This study focused on the optimal number of VSPs and CSPs. A novel method is proposed to optimize the number of VSPs with varying dry-bulb temperature and relative humidity, which could help decrease operation costs by $243,310 per year. This method is also used to optimize the number of CSPs and is compared with another widely used method that optimizes the number of CSPs according to the varying condenser inlet water temperature. A comparison shows that the proposed method is more accurate than the widely used method

  20. Improving activity transport models for water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Burrill, K.A.

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH T constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  1. New design solutions for low-power energy production in water pipe systems

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2009-12-01

    Full Text Available This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions can be identified and a search for alternative rotary volumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.

  2. Corrosion of circulating water pipings in thermal and nuclear power stations and corrosion prevention measures

    International Nuclear Information System (INIS)

    Hachiya, Minoru

    1982-01-01

    In the age of energy conservation at present, the power generation facilities have been examined from the viewpoint of performance, endurance and economy, and in particular, the prevention of the loss due to the corrosion of various facilities is one of most important problems. Since circulating water pipings are in contact with sea water and soil, the peculiar corrosion phenomena are brought about on their external and internal surfaces. Namely, the pitting corrosion due to the environment of soil quality difference, the defects of coating and the contact with reinforcing bars in concrete occurs on the external surface, and the overall corrosion due to the increase of flow velocity and the pitting corrosion due to the defects of coating, the contact with different kinds of metals and the gap in corrosion-resistant steel occur on the internal surface. As the measures for corrosion prevention, corrosion-preventive coating and electric corrosion prevention are applied. The principle, the potential and current density, the system, the design procedure and the examples of application of electric corrosion prevention are described. (Kako, I.)

  3. Analysis of data from water lift powered by solar energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Gnoatto, Estor; Kavanagh; Brenneisen, Paulo Job [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, kavanagh@utfpr.edu.br, brenneisen@utfpr.edu.br

    2008-07-01

    Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)

  4. Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow

    Directory of Open Access Journals (Sweden)

    Anulekha Saha

    2017-12-01

    Full Text Available A relatively new technique to solve the optimal power flow (OPF problem inspired by the evaporation (vaporization of small quantity water particles from dense surfaces is presented in this paper. IEEE 30 bus and IEEE 118 bus test systems are assessed for various objectives to determine water evaporation algorithm’s (WEA efficiency in handling the OPF problem after satisfying constraints. Comparative study with other established techniques demonstrate competitiveness of WEA in treating varied objectives. It achieved superior results for all the objectives considered. The algorithm is found to minimize its objective values by great margins even in case of large test system. Statistical analysis of all the cases using Wilcoxon’s signed rank test resulted in p-values much lower than the required value of 0.05, thereby establishing the robustness of the applied technique. Best performance of the algorithm are obtained for voltage deviation minimization and voltage stability index minimization objectives in case of IEEE 30 and IEEE 118 bus test systems respectively.

  5. Ecological effects of cooling water of a power plant at Kiel Fjord

    Energy Technology Data Exchange (ETDEWEB)

    Moller, H.

    1978-01-01

    The ecological changes caused by cooling water intake and heated water discharge of a power plant at Kiel Fjord, W. Germany, were evaluated. In addition, the bottom area affected by the intake and discharge was determined, and the relative importance of temperature and other parameters, such as artificial currents, to changes in benthic and fish fauna was studied. Increased transport of planktonic food caused elevated production of zoobenthos. Cod and eel were attracted to the warm discharge area because of high food concentrations. Few fish were damaged by intake screens. The presence of blue mussel and barnacles in the bottom region indicated a good oxygen supply. Zoobenthic population changes were limited to a bottom area of about 0.01 sq km near the intake and the discharge. Following a plant shut down in summer, shore crabs and eels invaded the discharge area; 10 days after the shut down, the benthic population was sharply reduced. The effects of artificial currents were more significant to zoobenthos than the effects of temperature increases were. (4 graphs, 3 maps, 49 references, 6 tables)

  6. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  7. The significance of ground water and soil water conditions on inflow and power situation; Betydning av grunnvann- og markvannsforhold for tilsig og kraftsituasjon

    Energy Technology Data Exchange (ETDEWEB)

    Colleuille, Herve; Holmqvist, V.; Beldring, S.; Haugen, L.E.

    2008-05-15

    The inflow to water reservoirs in the spring can be much smaller than anticipated based on the measured amounts of snow, and in the summer the inflow may be smaller than the rainfall would normally indicate. The goal of this report is to evaluate the significance of ground water and subsoil water for the inflow and the power situation. The first part of the report gives a short description of the methods that are used in this task. The data acquired through the national monitoring network for ground water and soil water is the basis for all analysis and for the method development. Two different tools for making models were utilized in this project: the conceptual and distributed HBV model and the physically based water- and energy balance COUP-model. The Hydrologic department is developing an analyzing and forecasting tool to follow up, analyze and forecast ground water and soil water conditions. This analysis tool is described in this report. The method for converting water balance parameters for soil water deficit to energy content is also presented. The fourth part of the report illustrates the significance of ground water and soil water on afflux and power situation in the dry years of 1995/96, 2002/2003 and 2006. The utilitarian value of combining results from observations through HBV and COUP-simulations to analyze the extreme hydrological conditions is presented in this report. COUP-simulations can be used to improve the estimated inflow at the snow melt or based on the estimated precipitation. (TM) 35 refs., 1 tab., 56 figs

  8. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    Science.gov (United States)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  9. The ultimate emergency measures to secure NPPs under an accidental condition with no designed power or water supply

    International Nuclear Information System (INIS)

    Wang, A.L.C.; Chiang, B.S.C.; Liang, C.K.S.; Hsu, D.Y.F.; Young, E.H.J.

    2014-01-01

    In the recent nuclear catastrophe occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and a following Tsunami beyond design basis. In Fukushima accident it was observed that sea water was injected into reactors only after hydrogen explosion took place and it was considered a little too late to prevent core from damage. Regarding this fact, the Taiwan power company develops an ultimate measure to prevent reactor from encountering core damage, if either designed AC power or reactor water supply cannot be restored in time. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. Once no any designed AC power or reactor water supply can be available, this DIVing plan will be activated to (1) depressurize reactor first, (2) inject any available water into reactor by any available power supply if this critical status cannot be restored in time, and (3) vent the containment if necessary to maintain containment integrity. Once entering the DIVing plan, a) for BWR, the reactor will be depressurized first, and if the electrical power cannot recover before passive RCIC of BWR becomes inoperable, any water available will be injected into either BWR reactor vessel; b) for PWR, the steam generator will be depressurized first, and if the electrical power cannot recover before the AFWP of PWR steam generator becomes inoperable, any water available will be injected into PWR steam generator. In this paper, the DIVing plan was simulated by RELAP5-3D to verify the concept of DIVing plan and also to quantify the required raw water injection rate to prevent core from damage for BWR/PWR plants in Taiwan, after the loss of passive cooling mechanism. Provided the passive cooling mechanism is lost within the first hour, for Chinshan BWR/4 370 GPM, Kuosheng BWR/6 645 GPM and Maanshan 3-loop PWR 600 GPM raw

  10. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  11. Hydroelectric power development and the ice regime of inland waters: A northern community perspective

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-03-01

    Inland waters play a vital role in the life of the many small northern communities which depend in large measure on the provisions of the natural environment for their sustenance. These communities are therefore particularly vulnerable to changes in the ice regime of these waters, especially changes that are irregular. However, the north is also the site of much of Canada's hydroelectric power development and potential, developments that have a major influence on the ice regime of effected waters. As a contribution to the background information required for the necessary discussions and negotiations associated with such developments, the various aspects of the natural ice regime, the possible effects of hydroelectric development and operation on this regime, and its consequences, are briefly reviewed. The emphasis has been placed on changes that will likely be of most significance to northern communities in the bedrock-controlled country of the western Canadian Shield. The major direct, and in some circumstances life-threatening, impact of changes to the ice regime is on trafficability of the iceways that play such a vital role in the life of the communities. Hence particular emphasis has been placed on this aspect and on the formation of the slush and thin ice conditions that are the bane of over-ice travel and that are subject to unexpected changes by hydroelectric development and operation. To place these changes and their effects in some perspective, the nature of a hydroelectric development is also briefly described and an effort made to indicate the large costs incurred if these developments are restrained in their operation to avoid or mitigate some of the effects on the ice regime. 31 refs., 57 figs., 1 tab

  12. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  13. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  14. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei; Xu, Yuming

    2015-01-01

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is al