WorldWideScience

Sample records for tree probabilistic risk

  1. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    Science.gov (United States)

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  2. Probabilistic risk analysis and fault trees: Initial discussion of application to identification of risk at a wellhead

    Science.gov (United States)

    Rodak, C.; Silliman, S.

    2012-02-01

    Wellhead protection is of critical importance for managing groundwater resources. While a number of previous authors have addressed questions related to uncertainties in advective capture zones, methods for addressing wellhead protection in the presence of uncertainty in the chemistry of groundwater contaminants, the relationship between land-use and contaminant sources, and the impact on health of the receiving population are limited. It is herein suggested that probabilistic risk analysis (PRA) combined with fault trees (FT) provides a structure whereby chemical transport can be combined with uncertainties in source, chemistry, and health impact to assess the probability of negative health outcomes in the population. As such, PRA-FT provides a new strategy for the identification of areas of probabilistically high human health risk. Application of this approach is demonstrated through a simplified case study involving flow to a well in an unconfined aquifer with heterogeneity in aquifer properties and contaminant sources.

  3. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    Science.gov (United States)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  4. Probabilistic risk assessment: Number 219

    International Nuclear Information System (INIS)

    Bari, R.A.

    1985-01-01

    This report describes a methodology for analyzing the safety of nuclear power plants. A historical overview of plants in the US is provided, and past, present, and future nuclear safety and risk assessment are discussed. A primer on nuclear power plants is provided with a discussion of pressurized water reactors (PWR) and boiling water reactors (BWR) and their operation and containment. Probabilistic Risk Assessment (PRA), utilizing both event-tree and fault-tree analysis, is discussed as a tool in reactor safety, decision making, and communications. (FI)

  5. Probabilistic Risk Analysis and Fault Trees as Tools in Improving the Delineation of Wellhead Protection Areas: An Initial Discussion

    Science.gov (United States)

    Rodak, C. M.; Silliman, S. E.

    2010-12-01

    Delineation of a wellhead protection area (WHPA) is a critical component of managing / protecting the aquifer(s) supplying potable water to a public water-supply well. While a number of previous authors have addressed questions related to uncertainties in advective capture zones, methods for assessing WHPAs in the presence of uncertainty in the chemistry of groundwater contaminants, the relationship between land-use and contaminant sources, and the impact on health risk within the receiving population are more limited. Probabilistic risk analysis (PRA) combined with fault trees (FT) addresses this latter challenge by providing a structure whereby four key WHPA issues may be addressed: (i) uncertainty in land-use practices and chemical release, (ii) uncertainty in groundwater flow, (iii) variability in natural attenuation properties (and/or remediation) of the contaminants, and (iv) estimated health risk from contaminant arrival at a well. The potential utility of PRA-FT in this application is considered through a simplified case study involving management decisions related both to regional land use planning and local land-use zoning regulation. An application-specific fault tree is constructed to visualize and identify the events required for health risk failure at the well and a Monte Carlo approach is used to create multiple realizations of groundwater flow and chemical transport to a well in a model of a simple, unconfined aquifer. Model parameters allowed to vary during this simplified case study include hydraulic conductivity, probability of a chemical spill (related to land use variation in space), and natural attenuation through variation in rate of decay of the contaminant. Numerical results are interpreted in association with multiple land-use management scenarios as well as multiple cancer risk assumptions regarding the contaminant arriving at the well. This case study shows significant variability of health risk at the well, however general trends were

  6. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications

    International Nuclear Information System (INIS)

    Nusbaumer, O. P. M.

    2007-01-01

    This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these deficiencies

  7. Calculating Adversarial Risk from Attack Trees: Control Strength and Probabilistic Attackers

    NARCIS (Netherlands)

    Pieters, Wolter; Davarynejad, Mohsen

    2015-01-01

    Attack trees are a well-known formalism for quantitative analysis of cyber attacks consisting of multiple steps and alternative paths. It is possible to derive properties of the overall attacks from properties of individual steps, such as cost for the attacker and probability of success. However, in

  8. Generic event trees and the treatment of dependencies and non-proceduralized actions in a low power and shutdown Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Forester, J.; Yakle, J.; Whitehead, D.; Darby, J.

    1993-01-01

    Sandia National Laboratories was tasked by the US Nuclear Regulatory Commission to perform a Probabilistic Risk Assessment (PRA) of a boiling water reactor (BWR) during low power and shutdown (LP ampersand S) conditions. The plant chosen for the study was Grand Gulf Nuclear Station (GGNS), a BWR 6. In performing the analysis, it was found that in comparison with full-power PRAs, the low decay heat levels present during LP ampersand S conditions result in a relatively large number of ways by which cooling can be provided to the core. In addition, because of the less stringent requirements imposed on system configurations possible is large and the availability of plant systems is more difficult to specify. These aspects of the LP ampersand S environment led to the development and use of ''generic'' event trees in performing the analysis. The use of ''generic'' event trees, in turn, had a significant impact on the nature of the human reliability analysis (HRA) that was performed. This paper describes the development of the event trees for the LP ampersand S PRA and important aspects of the resulting HRA

  9. Implications of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Cullingford, M.C.; Shah, S.M.; Gittus, J.H.

    1987-01-01

    Probabilistic risk assessment (PRA) is an analytical process that quantifies the likelihoods, consequences and associated uncertainties of the potential outcomes of postulated events. Starting with planned or normal operation, probabilistic risk assessment covers a wide range of potential accidents and considers the whole plant and the interactions of systems and human actions. Probabilistic risk assessment can be applied in safety decisions in design, licensing and operation of industrial facilities, particularly nuclear power plants. The proceedings include a review of PRA procedures, methods and technical issues in treating uncertainties, operating and licensing issues and future trends. Risk assessment for specific reactor types or components and specific risks (eg aircraft crashing onto a reactor) are used to illustrate the points raised. All 52 articles are indexed separately. (U.K.)

  10. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications[Dissertation 17286

    Energy Technology Data Exchange (ETDEWEB)

    Nusbaumer, O. P. M

    2007-07-01

    This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these

  11. Probabilistic risk assessment course documentation. Volume 4. System reliability and analysis techniques sessions B/C - event trees/fault trees

    International Nuclear Information System (INIS)

    Haasl, D.; Young, J.

    1985-08-01

    This course will employ a combination of lecture material and practical problem solving in order to develop competence and understanding of th principles and techniques of event tree and fault tree analysis. The role of these techniques in the overall context of PRA will be described. The emphasis of this course will be on the basic, traditional methods of event tree and fault tree analysis

  12. Application of probabilistic risk assessment to reprocessing

    International Nuclear Information System (INIS)

    Perkins, W.C.

    1984-01-01

    The Savannah River Laboratory uses probabilistic methods of risk assessment in safety analyses of reprocessing facilities at the Savannah River Plant. This method uses both the probability of an accident and its consequence to calculate the risks from radiological, chemical, and industrial hazards. The three principal steps in such an assesment are identification of accidents, calculation of frequencies, and consequence quantification. The tools used at SRL include several databanks, logic tree methods, and computer-assisted methods for calculating both frequencies and consequences. 5 figures

  13. Probabilistic risk assessment of HTGRs

    International Nuclear Information System (INIS)

    Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.

    1980-08-01

    Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the US Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed

  14. Probabilistic risk assessment of HTGRs

    International Nuclear Information System (INIS)

    Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.

    1981-01-01

    Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the U.S. Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed. (author)

  15. The characterisation and evaluation of uncertainty in probabilistic risk analysis

    International Nuclear Information System (INIS)

    Parry, G.W.; Winter, P.W.

    1980-10-01

    The sources of uncertainty in probabilistic risk analysis are discussed using the event/fault tree methodology as an example. The role of statistics in quantifying these uncertainties is investigated. A class of uncertainties is identified which is, at present, unquantifiable, using either classical or Bayesian statistics. It is argued that Bayesian statistics is the more appropriate vehicle for the probabilistic analysis of rare events and a short review is given with some discussion on the representation of ignorance. (author)

  16. Development of probabilistic risk analysis library

    International Nuclear Information System (INIS)

    Soga, Shota; Kirimoto, Yukihiro; Kanda, Kenichi

    2015-01-01

    We developed a library that is designed to perform level 1 Probabilistic Risk Analysis using Binary Decision Diagram (BDD). In particular, our goal is to develop a library that will allow Japanese electric utilities to take the advantages of BDD that can solve Event Tree (ET) and Fault Tree (FT) models analytically. Using BDD, the library supports negation in FT which allows more flexible modeling of ET/FT. The library is written by C++ within an object-oriented framework using open source software. The library itself is a header-only library so that Japanese electric utilities can take advantages of its transparency to speed up development and to build their own software for their specific needs. In this report, the basic capabilities of the library is briefly described. In addition, several applications of the library are demonstrated including validation of MCS evaluation of PRA model and evaluation of corrective and preventive maintenance considering common cause failure. (author)

  17. Software for Probabilistic Risk Reduction

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto

    2004-01-01

    A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.

  18. Method and system for dynamic probabilistic risk assessment

    Science.gov (United States)

    Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)

    2013-01-01

    The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.

  19. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  20. Performing Probabilistic Risk Assessment Through RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. Kinoshita

    2013-06-01

    The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data mining module

  1. Probabilistic Properties of Rectilinear Steiner Minimal Trees

    Directory of Open Access Journals (Sweden)

    V. N. Salnikov

    2015-01-01

    Full Text Available This work concerns the properties of Steiner minimal trees for the manhattan plane in the context of introducing a probability measure. This problem is important because exact algorithms to solve the Steiner problem are computationally expensive (NP-hard and the solution (especially in the case of big number of points to be connected has a diversity of practical applications. That is why the work considers a possibility to rank the possible topologies of the minimal trees with respect to a probability of their usage. For this, the known facts about the structural properties of minimal trees for selected metrics have been analyzed to see their usefulness for the problem in question. For the small amount of boundary (fixed vertices, the paper offers a way to introduce a probability measure as a corollary of proved theorem about some structural properties of the minimal trees.This work is considered to further the previous similar activity concerning a problem of searching for minimal fillings, and it is a door opener to the more general (complicated task. The stated method demonstrates the possibility to reach the final result analytically, which gives a chance of its applicability to the case of the bigger number of boundary vertices (probably, with the use of computer engineering.The introducing definition of an essential Steiner point allowed a considerable restriction of the ambiguity of initial problem solution and, at the same time, comparison of such an approach with more classical works in the field concerned. The paper also lists main barriers of classical approaches, preventing their use for the task of introducing a probability measure.In prospect, application areas of the described method are expected to be wider both in terms of system enlargement (the number of boundary vertices and in terms of other metric spaces (the Euclidean case is of especial interest. The main interest is to find the classes of topologies with significantly

  2. Systems analysis approach to probabilistic modeling of fault trees

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Qualls, C.R.

    1985-01-01

    A method of probabilistic modeling of fault tree logic combined with stochastic process theory (Markov modeling) has been developed. Systems are then quantitatively analyzed probabilistically in terms of their failure mechanisms including common cause/common mode effects and time dependent failure and/or repair rate effects that include synergistic and propagational mechanisms. The modeling procedure results in a state vector set of first order, linear, inhomogeneous, differential equations describing the time dependent probabilities of failure described by the fault tree. The solutions of this Failure Mode State Variable (FMSV) model are cumulative probability distribution functions of the system. A method of appropriate synthesis of subsystems to form larger systems is developed and applied to practical nuclear power safety systems

  3. Exploration Health Risks: Probabilistic Risk Assessment

    Science.gov (United States)

    Rhatigan, Jennifer; Charles, John; Hayes, Judith; Wren, Kiley

    2006-01-01

    Maintenance of human health on long-duration exploration missions is a primary challenge to mission designers. Indeed, human health risks are currently the largest risk contributors to the risks of evacuation or loss of the crew on long-duration International Space Station missions. We describe a quantitative assessment of the relative probabilities of occurrence of the individual risks to human safety and efficiency during space flight to augment qualitative assessments used in this field to date. Quantitative probabilistic risk assessments will allow program managers to focus resources on those human health risks most likely to occur with undesirable consequences. Truly quantitative assessments are common, even expected, in the engineering and actuarial spheres, but that capability is just emerging in some arenas of life sciences research, such as identifying and minimize the hazards to astronauts during future space exploration missions. Our expectation is that these results can be used to inform NASA mission design trade studies in the near future with the objective of preventing the higher among the human health risks. We identify and discuss statistical techniques to provide this risk quantification based on relevant sets of astronaut biomedical data from short and long duration space flights as well as relevant analog populations. We outline critical assumptions made in the calculations and discuss the rationale for these. Our efforts to date have focussed on quantifying the probabilities of medical risks that are qualitatively perceived as relatively high risks of radiation sickness, cardiac dysrhythmias, medically significant renal stone formation due to increased calcium mobilization, decompression sickness as a result of EVA (extravehicular activity), and bone fracture due to loss of bone mineral density. We present these quantitative probabilities in order-of-magnitude comparison format so that relative risk can be gauged. We address the effects of

  4. Simplified probabilistic risk assessment in fuel reprocessing

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000

  5. Documentation design for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Parkinson, W.J.; von Herrmann, J.L.

    1985-01-01

    This paper describes a framework for documentation design of probabilistic risk assessment (PRA) and is based on the EPRI document NP-3470 ''Documentation Design for Probabilistic Risk Assessment''. The goals for PRA documentation are stated. Four audiences are identified which PRA documentation must satisfy, and the documentation consistent with the needs of the various audiences are discussed, i.e., the Summary Report, the Executive Summary, the Main Report, and Appendices. The authors recommend the documentation specifications discussed herein as guides rather than rigid definitions

  6. Overview of the probabilistic risk assessment approach

    International Nuclear Information System (INIS)

    Reed, J.W.

    1985-01-01

    The techniques of probabilistic risk assessment (PRA) are applicable to Department of Energy facilities. The background and techniques of PRA are given with special attention to seismic, wind and flooding external events. A specific application to seismic events is provided to demonstrate the method. However, the PRA framework is applicable also to wind and external flooding. 3 references, 8 figures, 1 table

  7. Review of the Brunswick Steam Electric Plant Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Davis, P.R.; Satterwhite, D.G.; Gilmore, W.E.; Gregg, R.E.

    1989-11-01

    A review of the Brunswick Steam Electric Plant probabilistic risk Assessment was conducted with the objective of confirming the safety perspectives brought to light by the probabilistic risk assessment. The scope of the review included the entire Level I probabilistic risk assessment including external events. This is consistent with the scope of the probabilistic risk assessment. The review included an assessment of the assumptions, methods, models, and data used in the study. 47 refs., 14 figs., 15 tabs

  8. Comparison of event tree, fault tree and Markov methods for probabilistic safety assessment and application to accident mitigation

    International Nuclear Information System (INIS)

    James, H.; Harris, M.J.; Hall, S.F.

    1992-01-01

    Probabilistic safety assessment (PSA) is used extensively in the nuclear industry. The main stages of PSA and the traditional event tree method are described. Focussing on hydrogen explosions, an event tree model is compared to a novel Markov model and a fault tree, and unexpected implication for accident mitigation is revealed. (author)

  9. A methodology for reviewing probabilistic risk assessments

    International Nuclear Information System (INIS)

    Derby, S.L.

    1983-01-01

    The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase

  10. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  11. Fault tree technique: advances in probabilistic and logical analysis

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Amendola, A.; Contini, S.; Squellati, G.

    1982-01-01

    Fault tree reliability analysis is used for assessing the risk associated to systems of increasing complexity (phased mission systems, systems with multistate components, systems with non-monotonic structure functions). Much care must be taken to make sure that fault tree technique is not used beyond its correct validity range. To this end a critical review of mathematical foundations of reliability fault tree analysis is carried out. Limitations are enlightened and potential solutions to open problems are suggested. Moreover an overview is given on the most recent developments in the implementation of an integrated software (SALP-MP, SALP-NOT, SALP-CAFT Codes) for the analysis of a wide class of systems

  12. A methodology for reviewing Probabilistic Risk Assessments

    International Nuclear Information System (INIS)

    Derby, S.L.

    1983-01-01

    The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase. The value of this procedure comes from having a systematic framework for the PRA review. Practical constraints limit the time and qualified people needed for an adequate review. Having the established framework from this procedure as a starting point, reviewers can focus most of their attention on the accuracy and the completeness of the calculation. Time wasted at the start of the review is reduced by first using this procedure to sort through the technical details of the PRA and to reconstruct the risk estimate from dominant contributions

  13. PRA (Probabilistic Risk Assessments) Participation versus Validation

    Science.gov (United States)

    DeMott, Diana; Banke, Richard

    2013-01-01

    Probabilistic Risk Assessments (PRAs) are performed for projects or programs where the consequences of failure are highly undesirable. PRAs primarily address the level of risk those projects or programs posed during operations. PRAs are often developed after the design has been completed. Design and operational details used to develop models include approved and accepted design information regarding equipment, components, systems and failure data. This methodology basically validates the risk parameters of the project or system design. For high risk or high dollar projects, using PRA methodologies during the design process provides new opportunities to influence the design early in the project life cycle to identify, eliminate or mitigate potential risks. Identifying risk drivers before the design has been set allows the design engineers to understand the inherent risk of their current design and consider potential risk mitigation changes. This can become an iterative process where the PRA model can be used to determine if the mitigation technique is effective in reducing risk. This can result in more efficient and cost effective design changes. PRA methodology can be used to assess the risk of design alternatives and can demonstrate how major design changes or program modifications impact the overall program or project risk. PRA has been used for the last two decades to validate risk predictions and acceptability. Providing risk information which can positively influence final system and equipment design the PRA tool can also participate in design development, providing a safe and cost effective product.

  14. Probabilistic relationships in acceptable risk studies

    International Nuclear Information System (INIS)

    Benjamin, J.R.

    1977-01-01

    Acceptable risk studies involve uncertainties in future events: consequences and associated values, the acceptability levels, and the future decision environment. Probabilistic procedures afford the basic analytical tool to study the influence of each of these parameters on the acceptable risk decision, including their interrelationships, and combinations. A series of examples are presented in the paper in increasing complexity to illustrate the principles involved and to quantify the relationships to the acceptable risk decision. The basic objective of such studies is to broaden the scientific basis of acceptable risk decision making. It is shown that rationality and consistency in decision making is facilitated by such studies and that rather simple relationships exist in many situations of interest. The variation in criteria associated with an increase in the state of knowledge or change in the level of acceptability is also discussed

  15. A Probabilistic Typhoon Risk Model for Vietnam

    Science.gov (United States)

    Haseemkunju, A.; Smith, D. F.; Brolley, J. M.

    2017-12-01

    Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.

  16. HVAC fault tree analysis for WIPP integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.; Iacovino, J.

    1990-01-01

    In order to evaluate the public health risk from operation of the Waste Isolation Pilot Plant (WIPP) due to potential radioactive releases, a probabilistic risk assessment of waste handling operations was conducted. One major aspect of this risk assessment involved fault tree analysis of the plant heating, ventilation, and air conditioning (HVAC) systems, which comprise the final barrier between waste handling operations and the environment. 1 refs., 1 tab

  17. Probabilistic Risk Assessment (PRA): A Practical and Cost Effective Approach

    Science.gov (United States)

    Lee, Lydia L.; Ingegneri, Antonino J.; Djam, Melody

    2006-01-01

    The Lunar Reconnaissance Orbiter (LRO) is the first mission of the Robotic Lunar Exploration Program (RLEP), a space exploration venture to the Moon, Mars and beyond. The LRO mission includes spacecraft developed by NASA Goddard Space Flight Center (GSFC) and seven instruments built by GSFC, Russia, and contractors across the nation. LRO is defined as a measurement mission, not a science mission. It emphasizes the overall objectives of obtaining data to facilitate returning mankind safely to the Moon in preparation for an eventual manned mission to Mars. As the first mission in response to the President's commitment of the journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond, LRO has high-visibility to the public but limited resources and a tight schedule. This paper demonstrates how NASA's Lunar Reconnaissance Orbiter Mission project office incorporated reliability analyses in assessing risks and performing design tradeoffs to ensure mission success. Risk assessment is performed using NASA Procedural Requirements (NPR) 8705.5 - Probabilistic Risk Assessment (PRA) Procedures for NASA Programs and Projects to formulate probabilistic risk assessment (PRA). As required, a limited scope PRA is being performed for the LRO project. The PRA is used to optimize the mission design within mandated budget, manpower, and schedule constraints. The technique that LRO project office uses to perform PRA relies on the application of a component failure database to quantify the potential mission success risks. To ensure mission success in an efficient manner, low cost and tight schedule, the traditional reliability analyses, such as reliability predictions, Failure Modes and Effects Analysis (FMEA), and Fault Tree Analysis (FTA), are used to perform PRA for the large system of LRO with more than 14,000 piece parts and over 120 purchased or contractor

  18. Probabilistic Risk Assessment to Inform Decision Making: Frequently Asked Questions

    Science.gov (United States)

    General concepts and principles of Probabilistic Risk Assessment (PRA), describe how PRA can improve the bases of Agency decisions, and provide illustrations of how PRA has been used in risk estimation and in describing the uncertainty in decision making.

  19. A Probabilistic Asteroid Impact Risk Model

    Science.gov (United States)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  20. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and geographical information systems. The proposed framework comprises several modules: A module on the probabilistic description of potential future earthquake shaking intensity, a module on the probabilistic assessment of spatial variability of soil liquefaction, a module on damage assessment of buildings...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...

  1. Probabilistic methods in fire-risk analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.

    1989-01-01

    The first part of this work outlines a method for assessing the frequency of ignition of a consumer product in a building and shows how the method would be used in an example scenario utilizing upholstered furniture as the product and radiant auxiliary heating devices (electric heaters, wood stoves) as the ignition source. Deterministic thermal models of the heat-transport processes are coupled with parameter uncertainty analysis of the models and with a probabilistic analysis of the events involved in a typical scenario. This leads to a distribution for the frequency of ignition for the product. In second part, fire-risk analysis as currently used in nuclear plants is outlines along with a discussion of the relevant uncertainties. The use of the computer code COMPBRN is discussed for use in the fire-growth analysis along with the use of response-surface methodology to quantify uncertainties in the code's use. Generalized response surfaces are developed for temperature versus time for a cable tray, as well as a surface for the hot gas layer temperature and depth for a room of arbitrary geometry within a typical nuclear power plant compartment. These surfaces are then used to simulate the cable tray damage time in a compartment fire experiment

  2. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...

  3. Reliability and Probabilistic Risk Assessment - How They Play Together

    Science.gov (United States)

    Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang

    2015-01-01

    PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will

  4. Probabilistic economic frameworks for disaster risk management

    Science.gov (United States)

    Dulac, Guillaume; Forni, Marc

    2013-04-01

    range from simple elicitation of data from a subject matter expert to calibrate a probability distribution to more advanced stochastic modelling. This approach can be referred to more as a proficiency in the language of uncertainty rather than modelling per se in the sense that it allows for greater flexibility to adapt a given context. In a real decision making context, one seldom has neither time nor budget resources to investigate all of these variables thoroughly, hence the importance of being able to prioritize the level of effort among them. Under the proposed framework, this can be done in an optimised fashion. The point here consists in applying probabilistic sensitivity analysis together with the fundamentals of the economic value of information; the framework as built is well suited to such considerations, and variables can be ranked according to their contribution to risk understanding. Efforts to deal with second order uncertainties on variables prove to be valuable when dealing with the economic value of sample information.

  5. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  6. Limited probabilistic risk assessment applications in plant backfitting

    International Nuclear Information System (INIS)

    Desaedeleer, G.

    1987-01-01

    Plant backfitting programs are defined on the basis of deterministic (e.g. Systematic Evaluation Program) or probabilistic (e.g. Probabilistic Risk Assessment) approaches. Each approach provides valuable assets in defining the program and has its own advantages and disadvantages. Ideally one should combine the strong points of each approach. This chapter summarizes actual experience gained from combinations of deterministic and probabilistic approaches to define and implement PWR backfitting programs. Such combinations relate to limited applications of probabilistic techniques and are illustrated for upgrading fluid systems. These evaluations allow sound and rational optimization systems upgrade. However, the boundaries of the reliability analysis need to be clearly defined and system reliability may have to go beyond classical boundaries (e.g. identification of weak links in support systems). Also the implementation of upgrade on a system per system basis is not necessarily cost-effective. (author)

  7. Probabilistic Climate Scenario Information for Risk Assessment

    Science.gov (United States)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  8. Probabilistic risk analysis of Angra-1 reactor

    International Nuclear Information System (INIS)

    Spivak, R.C.; Collussi, I.; Silva, M.C. da; Onusic Junior, J.

    1986-01-01

    The first phase of probabilistic study for safety analysis and operational analysis of Angra-1 reactor is presented. The study objectives and uses are: to support decisions about safety problems; to identify operational and/or project failures; to amplify operator qualification tests to include accidents in addition to project base; to provide informations to be used in development and/or review of operation procedures in emergency, test and maintenance procedures; to obtain experience for data collection about abnormal accurences; utilization of study results for training operators; and training of evaluation and reliability techniques for the personnel of CNEN and FURNAS. (M.C.K.) [pt

  9. Probabilistic risk assessment (PRA) reference document. Final report

    International Nuclear Information System (INIS)

    Murphy, J.A.

    1984-09-01

    This document describes the current status of probabilistic risk assessment (PRA) as practiced in the nuclear reactor regulatory process. The PRA studies that have been completed or are under way are reviewed. The levels of maturity of the methodologies used in a PRA are discussed. Insights derived from PRAs are listed. The potential uses of PRA results for regulatory purposes are discussed. This document was issued for comment in February 1984 entitled Probabilistic Risk Assessment (PRA): Status Report and Guidance for Regulatory Application. The comments received on the draft have been considered for this final version of the report

  10. Review of the Diablo Canyon probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  11. Review of the Diablo Canyon probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program

  12. Risk-Informed Safety Assurance and Probabilistic Assessment of Mission-Critical Software-Intensive Systems

    Science.gov (United States)

    Guarro, Sergio B.

    2010-01-01

    This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.

  13. Development of reliability and probabilistic safety assessment program RiskA

    International Nuclear Information System (INIS)

    Wu, Yican

    2015-01-01

    Highlights: • There are four parts in the structure of RiskA. User input part lets users input the PSA model and some necessary data by GUI or model transformation tool. In calculation engine part, fault tree analysis, event tree analysis, uncertainty analysis, sensitivity analysis, importance analysis and failure mode and effects analysis are supplied. User output part outputs the analysis results, user customized reports and some other data. The last part includes reliability database, some other common tools and help documents. • RiskA has several advanced features. Extensible framework makes it easy to add any new functions, making RiskA to be a large platform of reliability and probabilistic safety assessment. It is very fast to analysis fault tree in RiskA because many advanced algorithm improvement were made. Many model formats can be imported and exported, which made the PSA model in the commercial software can be easily transformed to adapt RiskA platform. Web-based co-modeling let several users in different places work together whenever they are online. • The comparison between RiskA and other mature PSA codes (e.g. CAFTA, RiskSpectrum, XFTA) has demonstrated that the calculation and analysis of RiskA is correct and efficient. Based on the development of this code package, many applications of safety and reliability analysis of some research reactors and nuclear power plants were performed. The development of RiskA appears to be of realistic and potential value for academic research and practical operation safety management of nuclear power plants in China and abroad. - Abstract: PSA (probabilistic safety assessment) software, the indispensable tool in nuclear safety assessment, has been widely used. An integrated reliability and PSA program named RiskA has been developed by FDS Team. RiskA supplies several standard PSA modules including fault tree analysis, event tree analysis, uncertainty analysis, failure mode and effect analysis and reliability

  14. Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks

    Science.gov (United States)

    Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris

    2015-01-01

    Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.

  15. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis

    Science.gov (United States)

    Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...

  16. Probabilistic landslide hazards and risk mapping on Penang Island ...

    Indian Academy of Sciences (India)

    Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. 667. Figure 2. Landslide susceptibility map based on frequency ratio model. which is almost equal to 1. This result means that the landslide probability increases with the veg- etation index value. This could be due to more vegetation seen along ...

  17. Risk analysis of analytical validations by probabilistic modification of FMEA

    DEFF Research Database (Denmark)

    Barends, D.M.; Oldenhof, M.T.; Vredenbregt, M.J.

    2012-01-01

    Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection...... of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence...... of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure....

  18. Use of Probabilistic Risk Assessment in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri, L.

    2011-01-01

    This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.

  19. A review of probabilistic risk assessment of contaminated land

    International Nuclear Information System (INIS)

    Oeberg, T.; Bergbaeck, B.

    2005-01-01

    Background, Aims and Scope. The management and decisions concerning restoration of contaminated land often require indepth risk analyses. An environmental risk assessment is generally described as proceeding in four separate steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. The risk assessment should acknowledge and quantify the uncertainty in risk predictions. This can be achieved by applying probabilistic methods which, although they have been available for many years, are still not generally used. Risk assessment of contaminated land is an area where probabilistic methods have proved particularly useful. Many reports have appeared in the literature, mostly by North American researchers. The aim of this review is to summarize the experience gained so far, provide a number of useful examples, and suggest what may be done to promote probabilistic methods in Europe and the rest of the world. Methods. The available literature has been explored through searches in the major scientific and technical databases, WWW resources, textbooks and direct contacts with active researchers. A calculation example was created using standard simulation software. (orig.)

  20. A probabilistic quantitative risk assessment model for the long-term work zone crashes.

    Science.gov (United States)

    Meng, Qiang; Weng, Jinxian; Qu, Xiaobo

    2010-11-01

    Work zones especially long-term work zones increase traffic conflicts and cause safety problems. Proper casualty risk assessment for a work zone is of importance for both traffic safety engineers and travelers. This paper develops a novel probabilistic quantitative risk assessment (QRA) model to evaluate the casualty risk combining frequency and consequence of all accident scenarios triggered by long-term work zone crashes. The casualty risk is measured by the individual risk and societal risk. The individual risk can be interpreted as the frequency of a driver/passenger being killed or injured, and the societal risk describes the relation between frequency and the number of casualties. The proposed probabilistic QRA model consists of the estimation of work zone crash frequency, an event tree and consequence estimation models. There are seven intermediate events--age (A), crash unit (CU), vehicle type (VT), alcohol (AL), light condition (LC), crash type (CT) and severity (S)--in the event tree. Since the estimated value of probability for some intermediate event may have large uncertainty, the uncertainty can thus be characterized by a random variable. The consequence estimation model takes into account the combination effects of speed and emergency medical service response time (ERT) on the consequence of work zone crash. Finally, a numerical example based on the Southeast Michigan work zone crash data is carried out. The numerical results show that there will be a 62% decrease of individual fatality risk and 44% reduction of individual injury risk if the mean travel speed is slowed down by 20%. In addition, there will be a 5% reduction of individual fatality risk and 0.05% reduction of individual injury risk if ERT is reduced by 20%. In other words, slowing down speed is more effective than reducing ERT in the casualty risk mitigation. 2010 Elsevier Ltd. All rights reserved.

  1. Assessing risk: the role of probabilistic risk assessment (PRA) in patient safety improvement.

    Science.gov (United States)

    Wreathall, J; Nemeth, C

    2004-06-01

    Morbidity and mortality due to "medical errors" compel better understanding of health care as a system. Probabilistic risk assessment (PRA) has been used to assess the designs of high hazard, low risk systems such as commercial nuclear power plants and chemical manufacturing plants and is now being studied for its potential in the improvement of patient safety. PRA examines events that contribute to adverse outcomes through the use of event tree analysis and determines the likelihood of event occurrence through fault tree analysis. It complements tools already in use in patient safety such as failure modes and effects analyses (FMEAs) and root cause analyses (RCAs). PRA improves on RCA by taking account of the more complex causal interrelationships that are typical in health care. It also enables the analyst to examine potential solution effectiveness by direct graphical representations. However, PRA simplifies real world complexity by forcing binary conditions on events, and it lacks adequate probability data (although recent developments help to overcome these limitations). Its reliance on expert assessment calls for deep domain knowledge which has to come from research performed at the "sharp end" of acute care.

  2. Application of probabilistic risk based optimization approaches in environmental restoration

    International Nuclear Information System (INIS)

    Goldammer, W.

    1995-01-01

    The paper presents a general approach to site-specific risk assessments and optimization procedures. In order to account for uncertainties in the assessment of the current situation and future developments, optimization parameters are treated as probabilistic distributions. The assessments are performed within the framework of a cost-benefit analysis. Radiation hazards and conventional risks are treated within an integrated approach. Special consideration is given to consequences of low probability events such as, earthquakes or major floods. Risks and financial costs are combined to an overall figure of detriment allowing one to distinguish between benefits of available reclamation options. The probabilistic analysis uses a Monte Carlo simulation technique. The paper demonstrates the applicability of this approach in aiding the reclamation planning using an example from the German reclamation program for uranium mining and milling sites

  3. An integral approach to the use of probabilistic risk assessment methods

    International Nuclear Information System (INIS)

    Schwarzblat, M.; Arellano, J.

    1987-01-01

    In this chapter some of the work developed at the Instituto de Investigaciones Electricas in the area of probabilistic risk analysis are presented. In this area, work has been basically focused in the following directions: development and implementation of methods, and applications to real systems. The first part of this paper describes the area of methods development and implementation, presenting an integrated package of computer programs for fault tree analysis. In the second part some of the most important applications developed for real systems are presented. (author)

  4. Probabilistic risk assessment in the nuclear power industry

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Hall, R.E.

    1988-01-01

    This book describes the more important improvements in risk assessment methodology developed over the last decade. The book covers the following areas - a general view of risk pertaining to nuclear power, mathematics necessary to understand the text, a concise overview of the light water reactors and their features for protecting the public, probabilities and consequences calculated to form risk assessment to the plant, and 34 applications of probabilistic risk assessment (PRA) in the power generation industry. There is a glossary of acronyms and unusual words and a list of references. (author)

  5. A probabilistic analysis of fire-induced tree-grass coexistence in savannas.

    Science.gov (United States)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2006-03-01

    Fires play an important role in determining the composition and structure of vegetation in semiarid ecosystems. The study of the interactions between fire and vegetation requires a stochastic approach because of the random and unpredictable nature of fire occurrences. To this end, this article develops a minimalist probabilistic framework to investigate the impact of intermittent fire occurrences on the temporal dynamics of vegetation. This framework is used to analyze the emergence of statistically stable conditions favorable to tree-grass coexistence in savannas. It is found that these conditions can be induced and stabilized by the stochastic fire regime. A decrease in fire frequency leads to bush encroachment, while more frequent and intense fires favor savanna-to-grassland conversions. The positive feedback between fires and vegetation can convert states of tree-grass coexistence in semiarid savannas into bistable conditions, with both woodland and grassland as possible, though mutually exclusive, stable states of the system.

  6. A Study on Landslide Risk Management by Applying Fault Tree Logics

    Directory of Open Access Journals (Sweden)

    Kazmi Danish

    2017-01-01

    Full Text Available Slope stability is one of the focal areas of curiosity to geotechnical designers and also appears logical for the application of probabilistic approaches since the analysis lead to a “probability of failure”. Assessment of the existing slopes in relation with risks seems to be more meaningful when concerning with landslides. Probabilistic slope stability analysis (PSSA is the best option in covering the landslides events. The intent here is to bid a probabilistic framework for quantified risk analysis with human uncertainties. In this regard, Fault Tree Analysis is utilized and for prediction of risk levels, consequences of the failures of the reference landslides have been taken. It is concluded that logics of fault trees is best fit, to clinch additional categories of uncertainty; like human, organizational, and knowledge related. In actual, the approach has been used in bringing together engineering and management performances and personnel, to produce reliability in slope engineering practices.

  7. Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2009-01-01

    During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  8. The Constitutive Element of Probabilistic Agency in Risk

    DEFF Research Database (Denmark)

    Merkelsen, Henrik

    2011-01-01

    Defining central concepts with accuracy is crucial to any scientific discipline. A recent debate over risk definitions in this journal illustrates the far reaching consequences of divergent definitions. Aven and Renn define risk as a social construct while Rosa defines risk as an ontological fact....... Both claim that their definition reflects the common usage of the word risk. Through a semantic analysis this paper points to a constitutive element of what is termed probabilistic agency in the risk concept. In this respect, risk is distinct from danger, and because Rosa’s main argument is based...... to uphold if a risk definition is to be in accordance with the ordinary usage of the word. The paper concludes by arguing that risks are only real within a subjective ontology....

  9. Risk measures in living probabilistic safety assessment

    International Nuclear Information System (INIS)

    Holmberg, J.; Niemelae, I.

    1993-05-01

    The main objectives of the study are: to define risk measures and suggested uses of them in various living PSA applications for the operational safety management and to describe specific model features required for living PSA applications. The report is based on three case studies performed within the Nordic research project Safety Evaluation by Use of Living PSA and Safety Indicators. (48 refs., 11 figs., 17 tabs.)

  10. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  11. Dealing with uncertainty arising out of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Solomon, K.A.; Kastenberg, W.E.; Nelson, P.F.

    1984-03-01

    In addressing the area of safety goal implementation, the question of uncertainty arises. This report suggests that the Nuclear Regulatory Commission (NRC) should examine how other regulatory organizations have addressed the issue. Several examples are given from the chemical industry, and comparisons are made to nuclear power risks. Recommendations are made as to various considerations that the NRC should require in probabilistic risk assessments in order to properly treat uncertainties in the implementation of the safety goal policy. 40 references, 7 figures, 5 tables

  12. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  13. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Gupta, Abhinav

    2017-01-01

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  14. Probabilistic risk assessment course documentation. Volume 5. System reliability and analysis techniques Session D - quantification

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the probabilistic quantification of accident sequences and the link between accident sequences and consequences. Other sessions in this series focus on the quantification of system reliability and the development of event trees and fault trees. This course takes the viewpoint that event tree sequences or combinations of system failures and success are available and that Boolean equations for system fault trees have been developed and are available. 93 figs., 11 tabs

  15. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    Science.gov (United States)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was

  16. Uncertainty analysis in the applications of nuclear probabilistic risk assessment

    International Nuclear Information System (INIS)

    Le Duy, T.D.

    2011-01-01

    The aim of this thesis is to propose an approach to model parameter and model uncertainties affecting the results of risk indicators used in the applications of nuclear Probabilistic Risk assessment (PRA). After studying the limitations of the traditional probabilistic approach to represent uncertainty in PRA model, a new approach based on the Dempster-Shafer theory has been proposed. The uncertainty analysis process of the proposed approach consists in five main steps. The first step aims to model input parameter uncertainties by belief and plausibility functions according to the data PRA model. The second step involves the propagation of parameter uncertainties through the risk model to lay out the uncertainties associated with output risk indicators. The model uncertainty is then taken into account in the third step by considering possible alternative risk models. The fourth step is intended firstly to provide decision makers with information needed for decision making under uncertainty (parametric and model) and secondly to identify the input parameters that have significant uncertainty contributions on the result. The final step allows the process to be continued in loop by studying the updating of beliefs functions given new data. The proposed methodology was implemented on a real but simplified application of PRA model. (author)

  17. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    Science.gov (United States)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

  18. Analyzing State Sequences with Probabilistic Suffix Trees: The PST R Package

    Directory of Open Access Journals (Sweden)

    Alexis Gabadinho

    2016-08-01

    Full Text Available This article presents the PST R package for categorical sequence analysis with probabilistic suffix trees (PSTs, i.e., structures that store variable-length Markov chains (VLMCs. VLMCs allow to model high-order dependencies in categorical sequences with parsimonious models based on simple estimation procedures. The package is specifically adapted to the field of social sciences, as it allows for VLMC models to be learned from sets of individual sequences possibly containing missing values; in addition, the package is extended to account for case weights. This article describes how a VLMC model is learned from one or more categorical sequences and stored in a PST. The PST can then be used for sequence prediction, i.e., to assign a probability to whole observed or artificial sequences. This feature supports data mining applications such as the extraction of typical patterns and outliers. This article also introduces original visualization tools for both the model and the outcomes of sequence prediction. Other features such as functions for pattern mining and artificial sequence generation are described as well. The PST package also allows for the computation of probabilistic divergence between two models and the fitting of segmented VLMCs, where sub-models fitted to distinct strata of the learning sample are stored in a single PST.

  19. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  20. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  1. Trade Studies of Space Launch Architectures using Modular Probabilistic Risk Analysis

    Science.gov (United States)

    Mathias, Donovan L.; Go, Susie

    2006-01-01

    A top-down risk assessment in the early phases of space exploration architecture development can provide understanding and intuition of the potential risks associated with new designs and technologies. In this approach, risk analysts draw from their past experience and the heritage of similar existing systems as a source for reliability data. This top-down approach captures the complex interactions of the risk driving parts of the integrated system without requiring detailed knowledge of the parts themselves, which is often unavailable in the early design stages. Traditional probabilistic risk analysis (PRA) technologies, however, suffer several drawbacks that limit their timely application to complex technology development programs. The most restrictive of these is a dependence on static planning scenarios, expressed through fault and event trees. Fault trees incorporating comprehensive mission scenarios are routinely constructed for complex space systems, and several commercial software products are available for evaluating fault statistics. These static representations cannot capture the dynamic behavior of system failures without substantial modification of the initial tree. Consequently, the development of dynamic models using fault tree analysis has been an active area of research in recent years. This paper discusses the implementation and demonstration of dynamic, modular scenario modeling for integration of subsystem fault evaluation modules using the Space Architecture Failure Evaluation (SAFE) tool. SAFE is a C++ code that was originally developed to support NASA s Space Launch Initiative. It provides a flexible framework for system architecture definition and trade studies. SAFE supports extensible modeling of dynamic, time-dependent risk drivers of the system and functions at the level of fidelity for which design and failure data exists. The approach is scalable, allowing inclusion of additional information as detailed data becomes available. The tool

  2. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  3. Current status and future expectation concerning probabilistic risk assessment of NPPs. 1. Features and issues of probabilistic risk assessment methodology

    International Nuclear Information System (INIS)

    Yamashita, Masahiro

    2012-01-01

    Probabilistic risk assessment (PRA) of Nuclear Power Plants (NPPs) could play an important role in assuring safety of NPPs. However PRA had not always effectively used, which was indicated in Japanese government's report on Fukushima Daiichi NPP accident. At the Risk Technical Committee (RTC) of Standards Committee of Atomic Energy Society of Japan, preparation of standards (implementing criteria) focusing on PRA methodology and investigation on basic philosophy for use of PRA had been in progress. Based on activities of RTC, a serial in three articles including this described current status and future expectation concerning probabilistic risk assessment of NPPs. This article introduced features and issues of PRA methodology related to the use of PRA. Features of PRA methodology could be shown as (1) systematic and comprehensive understanding of risk, (2) support of grading approach, (3) identification of effective safety upgrade measures and (4) quantitative understanding of effects of uncertainty. Issues of PRA methodology were (1) extension of PRA application area, (2) upgrade of PRA methodology, (3) quality assurance of PRA, (4) treatment of uncertainty and (5) quantitative evaluation criteria. (T. Tanaka)

  4. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    Science.gov (United States)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  5. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  6. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  7. Application of probabilistic risk assessment methodology to fusion

    International Nuclear Information System (INIS)

    Piet, S.J.

    1985-07-01

    Probabilistic Risk Assessment (PRA) tools are applied to general fusion issues in a systematic way, generally qualitatively. The potential value of PRA to general fusion safety and economic issues is discussed. Several important design insights result: possible fault interactions must be minimized (decouple fault conditions), inherently safe designs must include provision for passively handling loss of site power and loss of coolant conditions, the reliability of the vacuum boundary appears vital to maximizing facility availabilty and minimizing safety risk, and economic analyses appear to be incomplete without consideration of potential availability loss from forced outrages. A modification to PRA formalism is introduced, called the fault interaction matrix. The fault interaction matrix contains information concerning what initial fault condition could lead to other fault conditions and with what frequency. Thus, the fault interaction matrix represents a way to present and measure the degree to which a designer has decoupled possible fault conditions in his design

  8. Development of Simplified Probabilistic Risk Assessment Model for Seismic Initiating Event

    Energy Technology Data Exchange (ETDEWEB)

    S. Khericha; R. Buell; S. Sancaktar; M. Gonzalez; F. Ferrante

    2012-06-01

    ABSTRACT This paper discusses a simplified method to evaluate seismic risk using a methodology built on dividing the seismic intensity spectrum into multiple discrete bins. The seismic probabilistic risk assessment model uses Nuclear Regulatory Commission’s (NRC’s) full power Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The seismic PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from the full power SPAR model with seismic event tree logic. The peak ground acceleration is divided into five bins. The g-value for each bin is estimated using the geometric mean of lower and upper values of that particular bin and the associated frequency for each bin is estimated by taking the difference between upper and lower values of that bin. The component’s fragilities are calculated for each bin using the plant data, if available, or generic values of median peak ground acceleration and uncertainty values for the components. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheets that include the performance shaping factors (PSFs). The results are then used to estimate human error probabilities (HEPs) of interest. This work is expected to improve the NRC’s ability to include seismic hazards in risk assessments for operational events in support of the reactor oversight program (e.g., significance determination process).

  9. Advanced probabilistic risk analysis using RAVEN and RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-06-01

    RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program [1], is advancing its capability to perform statistical analyses of stochastic dynamic systems. This is aligned with its mission to provide the tools needed by the Risk Informed Safety Margin Characterization (RISMC) path-lead [2] under the Department Of Energy (DOE) Light Water Reactor Sustainability program [3]. In particular this task is focused on the synergetic development with the RELAP-7 [4] code to advance the state of the art on the safety analysis of nuclear power plants (NPP). The investigation of the probabilistic evolution of accident scenarios for a complex system such as a nuclear power plant is not a trivial challenge. The complexity of the system to be modeled leads to demanding computational requirements even to simulate one of the many possible evolutions of an accident scenario (tens of CPU/hour). At the same time, the probabilistic analysis requires thousands of runs to investigate outcomes characterized by low probability and severe consequence (tail problem). The milestone reported in June of 2013 [5] described the capability of RAVEN to implement complex control logic and provide an adequate support for the exploration of the probabilistic space using a Monte Carlo sampling strategy. Unfortunately the Monte Carlo approach is ineffective with a problem of this complexity. In the following year of development, the RAVEN code has been extended with more sophisticated sampling strategies (grids, Latin Hypercube, and adaptive sampling). This milestone report illustrates the effectiveness of those methodologies in performing the assessment of the probability of core damage following the onset of a Station Black Out (SBO) situation in a boiling water reactor (BWR). The first part of the report provides an overview of the available probabilistic analysis capabilities, ranging from the different types of distributions available, possible sampling

  10. Probabilistic Risk Assessment: Piping Fragility due to Earthquake Fault Mechanisms

    Directory of Open Access Journals (Sweden)

    Bu Seog Ju

    2015-01-01

    Full Text Available A lifeline system, serving as an energy-supply system, is an essential component of urban infrastructure. In a hospital, for example, the piping system supplies elements essential for hospital operations, such as water and fire-suppression foam. Such nonstructural components, especially piping systems and their subcomponents, must remain operational and functional during earthquake-induced fires. But the behavior of piping systems as subjected to seismic ground motions is very complex, owing particularly to the nonlinearity affected by the existence of many connections such as T-joints and elbows. The present study carried out a probabilistic risk assessment on a hospital fire-protection piping system’s acceleration-sensitive 2-inch T-joint sprinkler components under seismic ground motions. Specifically, the system’s seismic capacity, using an experimental-test-based nonlinear finite element (FE model, was evaluated for the probability of failure under different earthquake-fault mechanisms including normal fault, reverse fault, strike-slip fault, and near-source ground motions. It was observed that the probabilistic failure of the T-joint of the fire-protection piping system varied significantly according to the fault mechanisms. The normal-fault mechanism led to a higher probability of system failure at locations 1 and 2. The strike-slip fault mechanism, contrastingly, affected the lowest fragility of the piping system at a higher PGA.

  11. A perspective of PC-based probabilistic risk assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Rasmuson, D.M.; Robinson, R.C.; Russell, K.D.; Van Siclen, V.S.

    1987-01-01

    Probabilistic risk assessment (PRA) information has been under-utilized in the past due to the large effort required to input the PRA data and the large expense of the computers needed to run PRA codes. The microcomputer-based Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) System, under development at the Idaho National Engineering Laboratory, have greatly enhanced the ability of managers to use PRA techniques in their decision-making. IRRAS is a tool that allows an analyst to create, modify, update, and reanalyze a plant PRA to keep the risk assessment current with the plant's configuration and operation. The SARA system is used to perform sensitivity studies on the results of a PRA. This type of analysis can be used to evaluate proposed changes to a plant or its operation. The success of these two software projects demonstrate that risk information can be made readily available to those that need it. This is the first step in the development of a true risk management capability

  12. Constellation Probabilistic Risk Assessment (PRA): Design Consideration for the Crew Exploration Vehicle

    Science.gov (United States)

    Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis

    2010-01-01

    Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.

  13. Probabilistic risk assessment methodology for risk management and regulatory applications

    International Nuclear Information System (INIS)

    See Meng Wong; Kelly, D.L.; Riley, J.E.

    1997-01-01

    This paper discusses the development and potential applications of PRA methodology for risk management and regulatory applications in the U.S. nuclear industry. The new PRA methodology centers on the development of This paper discusses the time-dependent configuration risk profile for evaluating the effectiveness of operational risk management programs at U.S. nuclear power plants. Configuration-risk profiles have been used as risk-information tools for (1) a better understanding of the impact of daily operational activities on plant safety, and (2) proactive planning of operational activities to manage risk. Trial applications of the methodology were undertaken to demonstrate that configuration-risk profiles can be developed routinely, and can be useful for various industry and regulatory applications. Lessons learned include a better understanding of the issues and characteristics of PRA models available to industry, and identifying the attributes and pitfalls in the developement of risk profiles

  14. Risk Management Technologies With Logic and Probabilistic Models

    CERN Document Server

    Solozhentsev, E D

    2012-01-01

    This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology.  The volume describes the following components of risk management technologies: LP-calculus; classes of LP-models of risk and efficiency; procedures for different classes; special software for different classes; examples of applications; methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are: LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the  discussed  procedures of I3-technologies  are the construction of  LP-models,...

  15. Applications of the EBR-II Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Roglans, J.: Ragland, W.A.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor 11 (EBR-11), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL), and has been performed with close collaboration between PRA analysts and engineering and operations staff. A product of this Involvement of plant personnel has been a excellent acceptance of the PRA as a tool, which has already resulted In a variety of applications of the EBR-11 PRA. The EBR-11 has been used in support of plant hardware and procedure modifications and In new system design work. A new application in support of the refueling safety analysis will be completed in the near future

  16. Use of probabilistic risk assessment in fuel cycle facilities

    International Nuclear Information System (INIS)

    Gonzalez, Felix; Gonzalez, Michelle; Wagner, Brian

    2013-01-01

    As expressed in its Policy Statement on the Use of Probabilistic Risk Assessment (PRA) Methods in Nuclear Regulatory Activities, the U.S Nuclear Regulatory Commission has been working for decades to increase the use of PRA technology in its regulatory activities. Since the policy statement was issued in 1995, PRA has become a core component of the nuclear power plant (NPP) licensing and oversight processes. In the last several years, interest has increased in PRA technologies and their possible application to other areas including, but not limited to, spent fuel handling, fuel cycle facilities, reprocessing facilities, and advanced reactors. This paper describes the application of PRA technology currently used in NPPs and its application in other areas such as fuel cycle facilities and advanced reactors. It describes major challenges that are being faced in the application of PRA into new technical areas and possible ways to resolve them. (authors)

  17. OVERVIEW OF THE SAPHIRE PROBABILISTIC RISK ANALYSIS SOFTWARE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L.; Wood, Ted; Knudsen, James; Ma, Zhegang

    2016-10-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE Version 8 is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. In this paper, we provide an overview of the current technical capabilities found in SAPHIRE Version 8, including the user interface and enhanced solving algorithms.

  18. Exploring the uncertainties in cancer risk assessment using the integrated probabilistic risk assessment (IPRA) approach.

    Science.gov (United States)

    Slob, Wout; Bakker, Martine I; Biesebeek, Jan Dirk Te; Bokkers, Bas G H

    2014-08-01

    Current methods for cancer risk assessment result in single values, without any quantitative information on the uncertainties in these values. Therefore, single risk values could easily be overinterpreted. In this study, we discuss a full probabilistic cancer risk assessment approach in which all the generally recognized uncertainties in both exposure and hazard assessment are quantitatively characterized and probabilistically evaluated, resulting in a confidence interval for the final risk estimate. The methodology is applied to three example chemicals (aflatoxin, N-nitrosodimethylamine, and methyleugenol). These examples illustrate that the uncertainty in a cancer risk estimate may be huge, making single value estimates of cancer risk meaningless. Further, a risk based on linear extrapolation tends to be lower than the upper 95% confidence limit of a probabilistic risk estimate, and in that sense it is not conservative. Our conceptual analysis showed that there are two possible basic approaches for cancer risk assessment, depending on the interpretation of the dose-incidence data measured in animals. However, it remains unclear which of the two interpretations is the more adequate one, adding an additional uncertainty to the already huge confidence intervals for cancer risk estimates. © 2014 Society for Risk Analysis.

  19. Spatial interactions database development for effective probabilistic risk assessment

    International Nuclear Information System (INIS)

    Liming, J. K.; Dunn, R. F.

    2008-01-01

    In preparation for a subsequent probabilistic risk assessment (PRA) fire risk analysis update, the STP Nuclear Operating Company (STPNOC) is updating its spatial interactions database (SID). This work is being performed to support updating the spatial interactions analysis (SIA) initially performed for the original South Texas Project Electric Generating Station (STPEGS) probabilistic safely assessment (PSA) and updated in the STPEGS Level 2 PSA and IPE Report. S/A is a large-scope screening analysis performed for nuclear power plant PRA that serves as a prerequisite basis for more detailed location-dependent, hazard-spec analyses in the PRA, such as fire risk analysis, flooding risk analysis, etc. SIA is required to support the 'completeness' argument for the PRA scope. The objectives of the current SID development effort are to update the spatial interactions analysis data, to the greatest degree practical, to be consistent with the following: the as-built plant as of December 31, 2007 the in-effect STPNOC STPEGS Units 1 and 2 PRA the current technology and intent of NUREG/CR-6850 guidance for lire risk analysis database support the requirements for PRA SIA, including fire and flooding risk analysis, established by NRC Regulatory Guide 1.200 and the ASME PRA Standard (ASME RA-S-2002 updated through ASME RA-Sc-2007,) This paper presents the approach and methodology for state-of-the-art SID development and applications, including an overview of the SIA process for nuclear power plant PRA. The paper shows how current relational database technology and existing, conventional station information sources can be employed to collect, process, and analyze spatial interactions data for the plant in an effective and efficient manner to meet the often challenging requirements of industry guidelines and standards such as NUREG/CR-6850, NRC Regulatory Guide 1.200, and ASME RA-S-2002 (updated through ASME RA-Sc 2007). This paper includes tables and figures illustrating how SIA

  20. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  1. Potential for the adaptation of probabilistic risk assessments by end-users and decision-makers

    NARCIS (Netherlands)

    Frewer, L.J.; Fischer, A.R.H.; Brink, van den P.J.; Byrne, P.; Brock, T.C.M.; Brown, C.; Crocker, J.; Goerlitz, G.; Hart, A.; Scholderer, J.; Solomon, K.

    2008-01-01

    In the area of risk assessment associated with ecotoxicological and plant protection products, probabilistic risk assessment (PRA) methodologies have been developed that enable quantification of variability and uncertainty. Despite the potential advantages of these new methodologies, end-user and

  2. Probabilistic risk assessment of earthquakes at the Rocky Flats Plant and subsequent upgrade to reduce risk

    International Nuclear Information System (INIS)

    Day, S.A.

    1989-01-01

    An analysis to determine the risk associated with earthquakes at the Rocky Flats Plant was performed. Seismic analyses and structural evaluations were used to postulate building and equipment damage and radiological releases to the environment from various magnitudes of earthquakes. Dispersion modeling and dose assessment to the public were then calculated. The frequency of occurrence of various magnitudes of earthquakes were determined from the Department of Energy natural Phenomena Hazards Modeling Project. Risk to the public was probabilistically assessed for each magnitude of earthquake and for overall seismic risk. Based on the results of this Probabilistic Risk Assessment and a cost/benefit analysis, seismic upgrades are being implemented for several plutonium-handling facilities for the purpose of risk reduction

  3. Space shuttle main propulsion pressurization system probabilistic risk assessment

    International Nuclear Information System (INIS)

    Plastiras, J.K.

    1989-01-01

    This paper reports that, in post-Challenger discussions with Congressional Committees and the National Research Council Risk Management Oversight Panel, criticism was levied against NASA because of the inability to prioritize the 1300+ single point failures. In the absence of a ranking it was difficult to determine where special effort was needed in failure evaluation, in design improvement, in management review of problems, and in flight readiness reviews. The belief was that the management system was overwhelmed by the quantity of critical hardware items that were on the Critical Items List (CIL) and that insufficient attention was paid to the items that required it. Congressional staff members from Congressman Markey's committee who have oversight responsibilities in the nuclear industry, and specifically over the nuclear power supplies for NASA's Galileo and Ulysses missions, felt very strongly that the addition of Probabilistic Risk Assessment (PRA) to the existing Failure Mode Effects Analysis/Hazard Analysis (FMEA/HA) methods was exceedingly important. Specifically, the Markey committee recognized that the inductive, qualitative component-oriented FMEA could be supplemented by the deductive, quantitative systems-oriented PRA. Furthermore, they felt that the PRA approach had matured to the extent that it could be used to assess risk, even with limited shuttle-specific failure data. NASA responded with arguments that the FMEA/HA had illuminated all significant failure modes satisfactorily and that no failure rate data base was available to support the PRA approach

  4. 78 FR 15746 - Compendium of Analyses To Investigate Select Level 1 Probabilistic Risk Assessment End-State...

    Science.gov (United States)

    2013-03-12

    ... Probabilistic Risk Assessment End-State Definition and Success Criteria Modeling Issues AGENCY: Nuclear... 1 Probabilistic Risk Assessment End-State Definition and Success Criteria Modeling Issues--Draft... Analyses to Investigate Select Level 1 Probabilistic Risk Assessment End-State Definition and Success...

  5. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    Science.gov (United States)

    Polzer, Stanislav; Gasser, T Christian

    2015-12-06

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. © 2015 The Author(s).

  6. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  7. A review of NRC staff uses of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The NRC staff uses probabilistic risk assessment (PRA) and risk management as important elements its licensing and regulatory processes. In October 1991, the NRC's Executive Director for Operations established the PRA Working Group to address concerns identified by the Advisory Committee on Reactor Safeguards with respect to unevenness and inconsistency in the staff's current uses of PRA. After surveying current staff uses of PRA and identifying needed improvements, the Working Group defined a set of basic principles for staff PRA use and identified three areas for improvements: guidance development, training enhancements, and PRA methods development. For each area of improvement, the Working Group took certain actions and recommended additional work. The Working Group recommended integrating its work with other recent PRA-related activities the staff completed and improving staff interactions with PRA users in the nuclear industry. The Working Group took two key actions by developing general guidance for two uses of PRA within the NRC (that is, screening or prioritizing reactor safety issues and analyzing such issues in detail) and developing guidance on basic terms and methods important to the staff's uses of PRA

  8. PROBABILISTIC RISK ANALYSIS OF REMEDIATION EFFORTS IN NAPL SITES

    Science.gov (United States)

    Fernandez-Garcia, D.; de Vries, L.; Pool, M.; Sapriza, G.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2009-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk assessment of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors). Thus, the methodology allows combining the probability of failure of a remediation effort due to multiple causes, each one associated to several pathways and receptors.

  9. The EBR-II Probabilistic Risk Assessment: Results and insights

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1993-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1. 6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The probability of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquake) is 3.6 10 -6 yr -1 . overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double, vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  10. A review of NRC staff uses of probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The NRC staff uses probabilistic risk assessment (PRA) and risk management as important elements its licensing and regulatory processes. In October 1991, the NRC`s Executive Director for Operations established the PRA Working Group to address concerns identified by the Advisory Committee on Reactor Safeguards with respect to unevenness and inconsistency in the staff`s current uses of PRA. After surveying current staff uses of PRA and identifying needed improvements, the Working Group defined a set of basic principles for staff PRA use and identified three areas for improvements: guidance development, training enhancements, and PRA methods development. For each area of improvement, the Working Group took certain actions and recommended additional work. The Working Group recommended integrating its work with other recent PRA-related activities the staff completed and improving staff interactions with PRA users in the nuclear industry. The Working Group took two key actions by developing general guidance for two uses of PRA within the NRC (that is, screening or prioritizing reactor safety issues and analyzing such issues in detail) and developing guidance on basic terms and methods important to the staff`s uses of PRA.

  11. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  12. Estimating Coextinction Risks from Epidemic Tree Death: Affiliate Lichen Communities among Diseased Host Tree Populations of Fraxinus excelsior

    Science.gov (United States)

    Jönsson, Mari T.; Thor, Göran

    2012-01-01

    At least 10% of the world’s tree species are threatened with extinction and pathogens are increasingly implicated in tree threats. Coextinction and threats to affiliates as a consequence of the loss or decline of their host trees is a poorly understood phenomenon. Ash dieback is an emerging infectious disease causing severe dieback of common ash Fraxinus excelsior throughout Europe. We utilized available empirical data on affiliate epiphytic lichen diversity (174 species and 17,800 observations) among 20 ash dieback infected host tree populations of F. excelsior on the island Gotland in the Baltic Sea, Sweden. From this, we used structured scenario projections scaled with empirical data of ash dieback disease to generate probabilistic models for estimating local and regional lichen coextinction risks. Average coextinction probabilities (Ā) were 0.38 (95% CI ±0.09) for lichens occurring on F. excelsior and 0.14 (95% CI ±0.03) when considering lichen persistence on all tree species. Ā was strongly linked to local disease incidence levels and generally increasing with lichen host specificity to F. excelsior and decreasing population size. Coextinctions reduced affiliate community viability, with significant local reductions in species richness and shifts in lichen species composition. Affiliates were projected to become locally extirpated before their hosts, illuminating the need to also consider host tree declines. Traditionally managed open wooded meadows had the highest incidence of ash dieback disease and significantly higher proportions of affiliate species projected to go extinct, compared with unmanaged closed forests and semi-open grazed sites. Most cothreatened species were not previously red-listed, which suggest that tree epidemics cause many unforeseen threats to species. Our analysis shows that epidemic tree deaths represent an insidious, mostly overlooked, threat to sessile affiliate communities in forested environments. Current conservation and

  13. Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.

    Science.gov (United States)

    Avramenko, M; Bolyatko, V; Kosterev, V

    2005-01-01

    Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.

  14. Topological risk mapping of runway overruns: A probabilistic approach

    International Nuclear Information System (INIS)

    The paper presents a topological risk mapping for aircraft overruns. The proposed procedure is based on the study published in 2008 by Hall et al. (Analysis of aircraft overruns and undershoots for runway safety areas. Airport Cooperative Research Program. Washington, DC: Transportation Research Board; 2008). In that study the authors performed an analysis of aircraft overruns and undershoots for runway safety areas proposing the ACRP hazard probability model. In the present study the model was integrated into a two-step Monte Carlo simulation procedure to assess the risk of overrun accidents and to provide a topological risk map for a specific airport area. The model was modified to utilize traffic-related and weather-related factors described by statistical distributions of historical data of the airport under analysis. The probability distribution of overrun events was then combined with the Longitudinal and Lateral Location models Hall et al. (Analysis of aircraft overruns and undershoots for runway safety areas. Airport Cooperative Research Program. Washington, DC: Transportation Research Board; 2008) to obtain a two-dimensional grid assessing the probability of each area to be the end point of a runway overrun. The expected kinetic energy of the aircraft in a given point of the grid is used as severity index. The procedure is suitable for generalisation and it allows a more detailed planning of Airport Safety Areas (ASA), improving the correct implementation of ICAO recommendations. Results are also useful for land planning and structural analyses in airport areas. - Highlights: • Two-step probabilistic procedure for the topological characterisation of overrun risk in airports. • Monte Carlo simulation applied to existing overrun probability and location models. • Proposed topological severity index: Iso-Kinetic Energy Areas (KEA). • Expected kinetic energy almost constant for about 1000 m beyond the runway end

  15. International status of application of probabilistic risk analysis

    International Nuclear Information System (INIS)

    Cullingford, M.C.

    1984-01-01

    Probabilistic Risk Assessment (PRA) having been practised for about ten years and with more than twenty studies completed has reached a level of maturity such that the insights and other products derived from specific studies may be assessed. The first full-scale PRA studies were designed to develop the methodology and assess the overall risk from nuclear power. At present PRA is performed mostly for individual plants to identify core damage accident sequences and significant contributors to such sequences. More than 25 countries are utilizing insights from PRA, some from full-scale PRA studies and other countries by performing reliability analyses on safety systems identified as important contributors to one or more core melt sequences. Many Member States of the IAEA fall into one of three groups: those having (a) a large, (b) a medium number of reactor-years of operating experience and (c) those countries in the planning or feasibility study stages of a nuclear power programme. Of the many potential uses of PRA the decision areas of safety improvement by backfitting, development of operating procedures and as the basis of standards are felt to be important by countries of all three groups. The use of PRA in showing compliance with safety goals and for plant availability studies is held to be important only by those countries which have operating experience. The evolution of the PRA methodology has led to increased attention to quantification of uncertainties both in the probabilities and consequences. Although many products from performing a PRA do not rely upon overall risk numbers, increasing emphasis is being placed on the interpretation of uncertainties in risk numbers for use in decisions. International co-operation through exchange of information regarding experience with PRA methodology and its application to nuclear safety decisions will greatly enhance the widespread use of PRA. (author)

  16. Applications of probabilistic risk assessment to criticality safety at the Savannah River Site

    International Nuclear Information System (INIS)

    Lux, C.R.; Fisk, P.L.

    1989-01-01

    Since 1973 the Savannah River Laboratory (SRL) has used probabilistic risk assessment to determine the frequency for criticality accidents at the Savannah River Site. The Savannah River Site is unique in that it has a detailed, site specific, data bank based on 35 years of facility operation. Use of this data bank with probabilistic risk assessment precipitated facility actions which resulted in the reduction of the calculated criticality frequency by as much as two orders of magnitude. Probabilistic risk assessment has also been used to quantify the impact of non-process-related systems on criticality safety

  17. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  18. NRC Support for the Kalinin (VVER) probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bley, D.; Diamond, D.J.; Chu, T.L.; Azarm, A.; Pratt, W.T.; Johnson, D.; Szukiewicz, A.; Drouin, M.; El-Bassioni, A.; Su, T.M.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) and the Federal Nuclear and Radiation Safety Authority of the Russian Federation have been working together since 1994 to carry out a probabilistic risk assessment (PRA) of a VVER-1000 in the Russian Federation. This was a recognition by both parties that this technology has had a profound effect on the discipline of nuclear reactor safety in the West and that the technology should be transferred to others so that it can be applied to Soviet-designed plants. The NRC provided funds from the Agency for International Development and technical support primarily through Brookhaven National Laboratory and its subcontractors. The latter support was carried out through workshops, by documenting the methodology to be used in a set of guides, and through periodic review of the technical activity. The result of this effort to date includes a set of procedure guides, a draft final report on the Level 1 PRA for internal events (excluding internal fires and floods), and progress reports on the fire, flood, and seismic analysis. It is the authors belief that the type of assistance provided by the NRC has been instrumental in assuring a quality product and transferring important technology for use by regulators and operators of Soviet-designed reactors. After a thorough review, the report will be finalized, lessons learned will be applied in the regulatory and operational regimes in the Russian Federation, and consideration will be given to supporting a containment analysis in order to complete a simplified Level 2 PRA

  19. Probabilistic risk assessment for six vapour intrusion algorithms

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Bronders, J.; Van Keer, I.; Govaerts, S.

    2014-01-01

    A probabilistic assessment with sensitivity analysis using Monte Carlo simulation for six vapour intrusion algorithms, used in various regulatory frameworks for contaminated land management, is presented here. In addition a deterministic approach with default parameter sets is evaluated against

  20. Probabilistic assessment of seismic risk in urban areas

    OpenAIRE

    Aguilar, Armando; Pujades Beneit, Lluís; Barbat Barbat, Horia Alejandro; Ordaz Schroder, Mario Gustavo

    2008-01-01

    A probabilistic approach to estimate the expected seismic physical damage of existing buildings in urban areas is presented. The main steps of the procedure are seismic hazard, vulnerability and structural response. These three steps are undertaken with a fully probabilistic point of view. Seismic hazard is assessed by means of the annual rate of exceedance of a parameter quantifying the expected seismic action. Buildings may be characterized by a class in a building typology matrix and/or by...

  1. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    Science.gov (United States)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  2. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    Science.gov (United States)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  3. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    Science.gov (United States)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn

  4. Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization

    International Nuclear Information System (INIS)

    Mohaghegh, Zahra; Kazemi, Reza; Mosleh, Ali

    2009-01-01

    This paper is a result of a research with the primary purpose of extending Probabilistic Risk Assessment (PRA) modeling frameworks to include the effects of organizational factors as the deeper, more fundamental causes of accidents and incidents. There have been significant improvements in the sophistication of quantitative methods of safety and risk assessment, but the progress on techniques most suitable for organizational safety risk frameworks has been limited. The focus of this paper is on the choice of 'representational schemes' and 'techniques.' A methodology for selecting appropriate candidate techniques and their integration in the form of a 'hybrid' approach is proposed. Then an example is given through an integration of System Dynamics (SD), Bayesian Belief Network (BBN), Event Sequence Diagram (ESD), and Fault Tree (FT) in order to demonstrate the feasibility and value of hybrid techniques. The proposed hybrid approach integrates deterministic and probabilistic modeling perspectives, and provides a flexible risk management tool for complex socio-technical systems. An application of the hybrid technique is provided in the aviation safety domain, focusing on airline maintenance systems. The example demonstrates how the hybrid method can be used to analyze the dynamic effects of organizational factors on system risk

  5. Living PRAs [probabilistic risk analysis] made easier with IRRAS [Integrated Reliability and Risk Analysis System

    International Nuclear Information System (INIS)

    Russell, K.D.; Sattison, M.B.; Rasmuson, D.M.

    1989-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is an integrated PRA software tool that gives the user the ability to create and analyze fault trees and accident sequences using an IBM-compatible microcomputer. This program provides functions that range from graphical fault tree and event tree construction to cut set generation and quantification. IRRAS contains all the capabilities and functions required to create, modify, reduce, and analyze event tree and fault tree models used in the analysis of complex systems and processes. IRRAS uses advanced graphic and analytical techniques to achieve the greatest possible realization of the potential of the microcomputer. When the needs of the user exceed this potential, IRRAS can call upon the power of the mainframe computer. The role of the Idaho National Engineering Laboratory if the IRRAS program is that of software developer and interface to the user community. Version 1.0 of the IRRAS program was released in February 1987 to prove the concept of performing this kind of analysis on microcomputers. This version contained many of the basic features needed for fault tree analysis and was received very well by the PRA community. Since the release of Version 1.0, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version is designated ''IRRAS 2.0''. Version 3.0 will contain all of the features required for efficient event tree and fault tree construction and analysis. 5 refs., 26 figs

  6. Optimization (Alara) and probabilistic exposures: the application of optimization criteria to the control of risks due to exposures of a probabilistic nature

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1989-01-01

    The paper described the application of the principles of optimization recommended by the International Commission on Radiological Protection (ICRP) to the restrain of radiation risks due to exposures that may or may not be incurred and to which a probability of occurrence can be assigned. After describing the concept of probabilistic exposures, it proposes a basis for a converging policy of control for both certain and probabilistic exposures, namely the dose-risk relationship adopted for radiation protection purposes. On that basis some coherent approaches for dealing with probabilistic exposures, such as the limitation of individual risks, are discussed. The optimization of safety for reducing all risks from probabilistic exposures to as-low-as-reasonably-achievable (ALARA) levels is reviewed in full. The principles of optimization of protection are used as a basic framework and the relevant factors to be taken into account when moving to probabilistic exposures are presented. The paper also reviews the decision-aiding techniques suitable for performing optimization with particular emphasis to the multi-attribute utility-analysis technique. Finally, there is a discussion on some practical application of decision-aiding multi-attribute utility analysis to probabilistic exposures including the use of probabilistic utilities. In its final outlook, the paper emphasizes the need for standardization and solutions to generic problems, if optimization of safety is to be successful

  7. Probabilistic Risk Analysis of Groundwater Related Problems in Subterranean Excavation Sites

    Science.gov (United States)

    Sanchez-Vila, X.; Jurado, A.; de Gaspari, F.; Vilarrasa, V.; Bolster, D.; Fernandez-Garcia, D.; Tartakovsky, D. M.

    2009-12-01

    Construction of subterranean excavations in densely populated areas is inherently hazardous. The number of construction sites (e.g., subway lines, railways and highway tunnels) has increased in recent years. These sites can pose risks to workers at the site as well as cause damage to surrounding buildings. The presence of groundwater makes the excavation even more complicated. We develop a probabilistic risk assessment (PRA) model o estimate the likelihood of occurrence of certain risks during a subway station construction. While PRA is widely used in many engineering fields, its applications to the underground constructions in general and to an underground station construction in particular are scarce if not nonexistent. This method enables us not only to evaluate the probability of failure, but also to quantify the uncertainty of the different events considered. The risk analysis was carried out using a fault tree analysis that made it possible to study a complex system in a structured and straightforward manner. As an example we consider an underground station for the new subway line in the Barcelona metropolitan area (Línia 9) through the town of Prat de Llobregat in the Llobregat River Delta, which is currently under development. A typical station on the L9 line lies partially between the shallow and the main aquifer. Specifically, it is located in the middle layer which is made up of silts and clays. By presenting this example we aim to illustrate PRA as an effective methodology for estimating and minimising risks and to demonstrate its utility as a potential tool for decision making.

  8. Integration of Evidence Base into a Probabilistic Risk Assessment

    Science.gov (United States)

    Saile, Lyn; Lopez, Vilma; Bickham, Grandin; Kerstman, Eric; FreiredeCarvalho, Mary; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    INTRODUCTION: A probabilistic decision support model such as the Integrated Medical Model (IMM) utilizes an immense amount of input data that necessitates a systematic, integrated approach for data collection, and management. As a result of this approach, IMM is able to forecasts medical events, resource utilization and crew health during space flight. METHODS: Inflight data is the most desirable input for the Integrated Medical Model. Non-attributable inflight data is collected from the Lifetime Surveillance for Astronaut Health study as well as the engineers, flight surgeons, and astronauts themselves. When inflight data is unavailable cohort studies, other models and Bayesian analyses are used, in addition to subject matters experts input on occasion. To determine the quality of evidence of a medical condition, the data source is categorized and assigned a level of evidence from 1-5; the highest level is one. The collected data reside and are managed in a relational SQL database with a web-based interface for data entry and review. The database is also capable of interfacing with outside applications which expands capabilities within the database itself. Via the public interface, customers can access a formatted Clinical Findings Form (CLiFF) that outlines the model input and evidence base for each medical condition. Changes to the database are tracked using a documented Configuration Management process. DISSCUSSION: This strategic approach provides a comprehensive data management plan for IMM. The IMM Database s structure and architecture has proven to support additional usages. As seen by the resources utilization across medical conditions analysis. In addition, the IMM Database s web-based interface provides a user-friendly format for customers to browse and download the clinical information for medical conditions. It is this type of functionality that will provide Exploratory Medicine Capabilities the evidence base for their medical condition list

  9. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    Energy Technology Data Exchange (ETDEWEB)

    Kunsman, David Marvin; Aldemir, Tunc (Ohio State University); Rutt, Benjamin (Ohio State University); Metzroth, Kyle (Ohio State University); Catalyurek, Umit (Ohio State University); Denning, Richard (Ohio State University); Hakobyan, Aram (Ohio State University); Dunagan, Sean C.

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other

  10. Risk assessment for enterprise resource planning (ERP) system implementations: a fault tree analysis approach

    Science.gov (United States)

    Zeng, Yajun; Skibniewski, Miroslaw J.

    2013-08-01

    Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.

  11. Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments.

    Science.gov (United States)

    Shao, Kan; Allen, Bruce C; Wheeler, Matthew W

    2017-10-01

    Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations. © 2016 Society for Risk Analysis.

  12. Probabilistic disaggregation of a spatial portfolio of exposure for natural hazard risk assessment

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2018-01-01

    In natural hazard risk assessment situations are encountered where information on the portfolio of exposure is only available in a spatially aggregated form, hindering a precise risk assessment. Recourse might be found in the spatial disaggregation of the portfolio of exposure to the resolution...... of a portfolio of buildings in two communes in Switzerland and the results are compared to sample observations. The relevance of probabilistic disaggregation uncertainty in natural hazard risk assessment is illustrated with the example of a simple flood risk assessment....... of the hazard model. Given the uncertainty inherent to any disaggregation, it is argued that the disaggregation should be performed probabilistically. In this paper, a methodology for probabilistic disaggregation of spatially aggregated values is presented. The methodology is exemplified with the disaggregation...

  13. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    International Nuclear Information System (INIS)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.

    2015-01-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  14. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  15. The importance of probabilistic evaluations in connection with risk analyses according to technical safety laws

    International Nuclear Information System (INIS)

    Mathiak, E.

    1984-01-01

    The nuclear energy sector exemplifies the essential importance to be attached to the practical application of probabilistic evaluations (e.g. probabilistic reliability analyses) in connection with the legal risk assessment of technical systems and installations. The study is making use of a triad risk analysis and tries to reconcile the natural science and legal points of view. Without changing the definitions of 'risk' and 'hazard' in the legal sense of their meaning the publication discusses their reconcilation with the laws of natural science, their interpretation and application in view of the latter. (HSCH) [de

  16. Probabilistic cumulative risk assessment of anti-androgenic pesticides in food.

    NARCIS (Netherlands)

    Müller, A.K.; Bosgra, S.; Boon, P.E.; van der Voet, H.; Nielsen, E.; Ladefoged, O.

    2009-01-01

    In this paper, we present a cumulative risk assessment of three anti-androgenic pesticides (vinclozolin, procymidone and prochloraz) using the relative potency factor (RPF) approach and an integrated probabilistic risk assessment (IPRA) model. RPFs for each substance were estimated for three

  17. Probabilistic insurance

    OpenAIRE

    Wakker, P.P.; Thaler, R.H.; Tversky, A.

    1997-01-01

    textabstractProbabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in the premium to compensate for a 1% default risk. While these preferences are intuitively appealing they are difficult to reconcile with expected utility theory. Under highly plausible assumptions about the utility function, willingness to pay for probabilistic i...

  18. Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food

    OpenAIRE

    Jacobs, R.; Voet, van der, H.; Braak, ter, C.J.F.

    2015-01-01

    Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5?200?nm) in food into a fully integrated probabilistic risk assessment. We use the integrate...

  19. MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment (PRA) Techniques

    Science.gov (United States)

    2014-08-01

    AFRL-RH-FS-TR-2014-0035 MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment ( PRA ) Techniques Paul... PRA ) Techniques 2014 KENNEDY.PAUL.K.1231446318 Digitally signed by KENNEDY.PAUL.K.1231446318 DN: c=US, o=U.S. Government, ou=DoD, ou=PKI, ou=USAF...Based on Probabilistic Risk Assessment ( PRA ) Techniques 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  20. Risk Analysis of Multipurpose Reservoir Real-time Operation based on Probabilistic Hydrologic Forecasting

    Science.gov (United States)

    Liu, P.

    2011-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based probabilistic hydrologic forecasting, which outputs a lot of inflow scenarios or traces, does well in depicting the inflow not only the marginal distribution but also their corrections. This motivates us to analyze the reservoir operating risk by inputting probabilistic hydrologic forecasting into reservoir real-time operation. The proposed procedure involves: (1) based upon the Bayesian inference, two alternative techniques, the generalized likelihood uncertainty estimation (GLUE) and Markov chain Monte Carlo (MCMC), are implemented for producing probabilistic hydrologic forecasting, respectively, (2) the reservoir risk is defined as the ratio of the number of traces that excessive (or below) the critical value to the total number of traces, and (3) a multipurpose reservoir operation model is build to produce Pareto solutions for trade-offs between risks and profits with the inputted probabilistic hydrologic forecasting. With a case study of the China's Three Gorges Reservoir, it is found that the reservoir real-time operation risks can be estimated and minimized based on the proposed methods, and this is great potential benefit in decision and choosing the most realistic one.

  1. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.

  2. Probabilistic Insurance

    NARCIS (Netherlands)

    P.P. Wakker (Peter); R.H. Thaler (Richard); A. Tversky (Amos)

    1997-01-01

    textabstractProbabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in the premium to compensate for a 1% default risk. While these

  3. Probabilistic Insurance

    NARCIS (Netherlands)

    Wakker, P.P.; Thaler, R.H.; Tversky, A.

    1997-01-01

    Probabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in premium to compensate for a 1% default risk. These observations cannot be

  4. LEGO-MM: LEarning structured model by probabilistic loGic Ontology tree for MultiMedia.

    Science.gov (United States)

    Tang, Jinhui; Chang, Shiyu; Qi, Guo-Jun; Tian, Qi; Rui, Yong; Huang, Thomas S

    2016-09-22

    Recent advances in Multimedia ontology have resulted in a number of concept models, e.g., LSCOM and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few work explores the appropriate method to construct new concepts upon the existing models already in the warehouse. To address this issue, we propose a new framework in this paper, termed LEGO1-MM, which can seamlessly integrate both the new target training examples and the existing primitive concept models to infer the more complex concept models. LEGOMM treats the primitive concept models as the lego toy to potentially construct an unlimited vocabulary of new concepts. Specifically, we first formulate the logic operations to be the lego connectors to combine existing concept models hierarchically in probabilistic logic ontology trees. Then, we incorporate new target training information simultaneously to efficiently disambiguate the underlying logic tree and correct the error propagation. Extensive experiments are conducted on a large vehicle domain data set from ImageNet. The results demonstrate that LEGO-MM has significantly superior performance over existing state-of-the-art methods, which build new concept models from scratch.

  5. 77 FR 29391 - An Approach for Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific...

    Science.gov (United States)

    2012-05-17

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0110] An Approach for Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S. Nuclear Regulatory...

  6. Application of probabilistic quantitative ecological risk assessment to radiological dose

    International Nuclear Information System (INIS)

    Twining, J.; Ferris, J.; Copplestone, D.; Zinger, I.

    2004-01-01

    Probabilistic ERA is becoming more accepted and applied in evaluations of environmental impacts worldwide. In a previous paper we have shown that the process can be applied in practice to routine effluent releases from a nuclear facility. However, there are practical issues that need to be addressed prior to its regulatory application for criteria setting or for site-specific ERA. Among these issues are a) appropriate data selection for both exposure and dose-response input, because there is a need to carefully characterise and filter the available dose-response data for its ecological relevance, b) A coherent approach is required to the choice of exposure scenarios, and c) there are various questions associated with treatment of exposure to mixed nuclides. In this paper we will evaluate and discuss aspects of these issues, using an illustrative case study approach. (author)

  7. Risk quantification in deterministic procedures: outage key safety functions evaluation using probabilistic risk assessment

    International Nuclear Information System (INIS)

    Cid, M.M.; Dies, J.; Tapia, C.; Vinals, O.

    2010-01-01

    In 2007 a collaboration agreement between the Nuclear Industry and the Nuclear Engineering Research Group of the Technical University of Catalonia (NERG-UPC) began on the Risk-Informed Operation Decision Management field. A Manual has been created; it provides a guidance of the systematic of using Probabilistic Risk Assessment for the evaluation of guides or procedures which ensure the compliment of Outage Key Safety Functions (OKSF) in nuclear power plants. The evaluation base is probabilistic; the core damage frequencies (CDF) values determine the acceptance of the analyzed guides and encourage suggestions for improvements in the contained procedures. Acceptance criteria from Plants Supervision System are used throw out quantifications. The developed methodology pretends to evaluate the risk associated to the availability system configurations during the outage. The documents used in the development have been: PRA, OKSF procedure and Performance Technical Specifications (PTS) from a 3 loops Westinghouse PWR. As a pilot experience, the methodology has been applied to the 3. and 13. Operational Plant State (OPS), always within the operational mode 4. Some conclusions of the analysis: The analyzed procedure requires the operability of just one charge pump as boric acid supply source. PRA gives a CDF increase (ΔCDF) of 1,19.10 -6 year -1 for the pump in standby, consequently, an exposure time T= 53,6 hours. Given an average time for the OPS of 40 hours, it is concluded the correct treatment of the procedure. However, it could be improved with the inclusion of an additional inventory replacement function. This would limit the charge pump unavailability. On the other hand, the availability of the external electrical sources is ratified. The procedure requires the operability of both supplies during the OPS. The unavailability of one of them (transformer fail) involves a ΔCDF equal to 1,64.10 -5 year -1 and a T= 3,89 hours. Then, it is considered appropriate the

  8. Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food.

    Science.gov (United States)

    Jacobs, Rianne; van der Voet, Hilko; Ter Braak, Cajo J F

    Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5-200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.

  9. Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food

    International Nuclear Information System (INIS)

    Jacobs, Rianne; Voet, Hilko van der; Braak, Cajo J. F. ter

    2015-01-01

    Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5–200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects

  10. The Terrestrial Investigation Model: A probabilistic risk assessment model for birds exposed to pesticides

    Science.gov (United States)

    One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....

  11. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  12. Probabilistic modeling of dietary intake of substances - The risk management question governs the method

    NARCIS (Netherlands)

    Pieters MN; Ossendorp BC; Bakker MI; Slob W; SIR

    2005-01-01

    In this report the discussion on the use of probabilistic modeling in relation to pesticide use in food crops is analyzed. Due to different policy questions the current discussion is complex and considers safety of an MRL as well as probability of a health risk. The question regarding the use of

  13. Optimal Portfolio Allocation under a Probabilistic Risk Constraint and the Incentives for Financial Innovation

    NARCIS (Netherlands)

    J. Daníelsson (Jón); B.N. Jorgensen (Bjørn); C.G. de Vries (Casper); X. Yang (Xiaoguang)

    2001-01-01

    textabstractWe derive, in a complete markets environment, an investor's optimal portfolio allocation subject to both a budget constraint and a probabilistic risk constraint. We demonstrate that the set of feasible portfolios need not be connected or convex, while the number of local optima increases

  14. Report on probabilistic safety assessment (PSA) quality assurance in utilization of risk information

    International Nuclear Information System (INIS)

    2006-12-01

    Recently in Japan, introduction of nuclear safety regulations using risk information such as probabilistic safety assessment (PSA) has been considered and utilization of risk information in the rational and practical measures on safety assurance has made a progress to start with the operation or inspection area. The report compiled results of investigation and studies of PSA quality assurance in risk-informed activities in the USA. Relevant regulatory guide and standard review plan as well as issues and recommendations were reviewed for technical adequacy and advancement of probabilistic risk assessment technology in risk-informed decision making. Useful and important information to be referred as issues in PSA quality assurance was identified. (T. Tanaka)

  15. Probabilistic risk assessment course documentation. Volume 1: PRA fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Breeding, R J; Leahy, T J; Young, J

    1985-08-01

    The full range of PRA topics is presented, with a special emphasis on systems analysis and PRA applications. Systems analysis topics include system modeling such as fault tree and event tree construction, failure rate data, and human Reliability. The discussion of PRA applications is centered on past and present PRA based programs, such as WASH-1400 and the Interim Reliability Evaluation Program, as well as on some of the potential future applications of PRA. The relationship of PRA to generic safety issues such as station blackout and Anticipated Transient Without Scram (ATWS) is also discussed. In addition to system modeling, the major PRA tasks of accident process analysis, and consequence analysis are presented. An explanation of the results of these activities, and the techniques by which these results are derived, forms the basis for a discussion of these topics. An additional topic which is presented in this course is the topic of PRA management, organization, and evaluation. 84 figs., 41 tabs.

  16. Probabilistic risk assessment course documentation. Volume 1: PRA fundamentals

    International Nuclear Information System (INIS)

    Breeding, R.J.; Leahy, T.J.; Young, J.

    1985-08-01

    The full range of PRA topics is presented, with a special emphasis on systems analysis and PRA applications. Systems analysis topics include system modeling such as fault tree and event tree construction, failure rate data, and human Reliability. The discussion of PRA applications is centered on past and present PRA based programs, such as WASH-1400 and the Interim Reliability Evaluation Program, as well as on some of the potential future applications of PRA. The relationship of PRA to generic safety issues such as station blackout and Anticipated Transient Without Scram (ATWS) is also discussed. In addition to system modeling, the major PRA tasks of accident process analysis, and consequence analysis are presented. An explanation of the results of these activities, and the techniques by which these results are derived, forms the basis for a discussion of these topics. An additional topic which is presented in this course is the topic of PRA management, organization, and evaluation. 84 figs., 41 tabs

  17. Survey of probabilistic methods in safety and risk assessment for nuclear power plant licensing

    International Nuclear Information System (INIS)

    1984-04-01

    After an overview about the goals and general methods of probabilistic approaches in nuclear safety the main features of probabilistic safety or risk assessment (PRA) methods are discussed. Mostly in practical applications not a full-fledged PRA is applied but rather various levels of analysis leading from unavailability assessment of systems over the more complex analysis of the probable core damage stages up to the assessment of the overall health effects on the total population from a certain practice. The various types of application are discussed in relation to their limitation and benefits for different stages of design or operation of nuclear power plants. This gives guidance for licensing staff to judge the usefulness of the various methods for their licensing decisions. Examples of the application of probabilistic methods in several countries are given. Two appendices on reliability analysis and on containment and consequence analysis provide some more details on these subjects. (author)

  18. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  19. Application of probabilistic risk assessment to advanced liquid metal reactor designs

    International Nuclear Information System (INIS)

    Carroll, W.P.; Temme, M.I.

    1987-01-01

    The United States Department of Energy (US DOE) has been active in the development and application of probabilistic risk assessment methods within its liquid metal breeder reactor development program for the past eleven years. These methods have been applied to comparative risk evaluations, the selection of design features for reactor concepts, the selection and emphasis of research and development programs, and regulatory discussions. The application of probabilistic methods to reactors which are in the conceptual design stage presents unique data base, modeling, and timing challenges, and excellent opportunities to improve the final design. We provide here the background and insights on the experience which the US DOE liquid metal breeder reactor program has had in its application of probabilistic methods to the Clinch River Breeder Reactor Plant project, the Conceptual Design State of the Large Development Plant, and updates on this design. Plans for future applications of probabilistic risk assessment methods are also discussed. The US DOE is embarking on an innovative design program for liquid metal reactors. (author)

  20. Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles.

    Science.gov (United States)

    Tsang, Michael P; Hristozov, Danail; Zabeo, Alex; Koivisto, Antti Joonas; Jensen, Alexander Christian Østerskov; Jensen, Keld Alstrup; Pang, Chengfang; Marcomini, Antonio; Sonnemann, Guido

    2017-05-01

    The development and use of emerging technologies such as nanomaterials can provide both benefits and risks to society. Emerging materials may promise to bring many technological advantages but may not be well characterized in terms of their production volumes, magnitude of emissions, behaviour in the environment and effects on living organisms. This uncertainty can present challenges to scientists developing these materials and persons responsible for defining and measuring their adverse impacts. Human health risk assessment is a method of identifying the intrinsic hazard of and quantifying the dose-response relationship and exposure to a chemical, to finally determine the estimation of risk. Commonly applied deterministic approaches may not sufficiently estimate and communicate the likelihood of risks from emerging technologies whose uncertainty is large. Probabilistic approaches allow for parameters in the risk assessment process to be defined by distributions instead of single deterministic values whose uncertainty could undermine the value of the assessment. A probabilistic approach was applied to the dose-response and exposure assessment of a case study involving the production of nanoparticles of titanium dioxide in seven different exposure scenarios. Only one exposure scenario showed a statistically significant level of risk. In the latter case, this involved dumping high volumes of nano-TiO 2 powders into an open vessel with no personal protection equipment. The probabilistic approach not only provided the likelihood of but also the major contributing factors to the estimated risk (e.g. emission potential).

  1. Key attributes of the SAPHIRE risk and reliability analysis software for risk-informed probabilistic applications

    International Nuclear Information System (INIS)

    Smith, Curtis; Knudsen, James; Kvarfordt, Kellie; Wood, Ted

    2008-01-01

    The Idaho National Laboratory is a primary developer of probabilistic risk and reliability analysis (PRRA) tools, dating back over 35 years. Evolving from mainframe-based software, the current state-of-the-practice has led to the creation of the SAPHIRE software. Currently, agencies such as the Nuclear Regulatory Commission, the National Aeronautics and Aerospace Agency, the Department of Energy, and the Department of Defense use version 7 of the SAPHIRE software for many of their risk-informed activities. In order to better understand and appreciate the power of software as part of risk-informed applications, we need to recall that our current analysis methods and solution methods have built upon pioneering work done 30-40 years ago. We contrast this work with the current capabilities in the SAPHIRE analysis package. As part of this discussion, we provide information for both the typical features and special analysis capabilities, which are available. We also present the application and results typically found with state-of-the-practice PRRA models. By providing both a high-level and detailed look at the SAPHIRE software, we give a snapshot in time for the current use of software tools in a risk-informed decision arena

  2. A probabilistic assessment of health risks associated with short-term exposure to tropospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, R.G; Biller, W.F.; Jusko, M.J.; Keisler, J.M.

    1996-06-01

    The work described in this report is part of a larger risk assessment sponsored by the U.S. Environmental Protection Agency. Earlier efforts developed exposure-response relationships for acute health effects among populations engaged in heavy exertion. Those efforts also developed a probabilistic national ambient air quality standards exposure model and a general methodology for integrating probabilistic exposure-response relation- ships and exposure estimates to calculate overall risk results. Recently published data make it possible to model additional health endpoints (for exposure at moderate exertion), including hospital admissions. New air quality and exposure estimates for alternative national ambient air quality standards for ozone are combined with exposure-response models to produce the risk results for hospital admissions and acute health effects. Sample results explain the methodology and introduce risk output formats.

  3. Scenario logic and probabilistic management of risk in business and engineering

    CERN Document Server

    Solojentsev, E D

    2005-01-01

    In this volume the methodological aspects of the scenario logic and probabilistic (LP) non-success risk management are considered. The theoretical bases of scenario non-success risk LP-management in business and engineering are also stated. Methods and algorithms for the scenario risk LP-management in problems of classification, investment and effectiveness are described. Risk LP- models and results of numerical investigations for credit risks, risk of frauds, security portfolio risk, risk of quality, accuracy, and risk in multi-stage systems reliability are given. In addition, a rather large number of new problems of estimation, analysis and management of risk are considered. Software for risk problems based on LP-methods, LP-theory, and GIE are described too. Audience This volume is intended for experts and scientists in the area of the risk in business and engineering, in problems of classification, investment and effectiveness, and post-graduates in those subject areas.

  4. Probabilistic risk assessment for new and existing chemicals: Example calculations

    NARCIS (Netherlands)

    Jager T; Hollander HA den; Janssen GB; Poel P van der; Rikken MGJ; Vermeire TG; ECO; CSR; LAE; CSR

    2000-01-01

    In the risk assessment methods for new and existing chemicals in the EU, "risk" is characterised by means of the deterministic quotient of exposure and effects (PEC/PNEC or Margin of Safety). From a scientific viewpoint, the uncertainty in the risk quotient should be accounted for explicitly in the

  5. Space Shuttle Probabilistic Risk Assessment (SPRA) Iteration 3.2

    Science.gov (United States)

    Boyer, Roger L.

    2010-01-01

    The Shuttle is a very reliable vehicle in comparison with other launch systems. Much of the risk posed by Shuttle operations is related to fundamental aspects of the spacecraft design and the environments in which it operates. It is unlikely that significant design improvements can be implemented to address these risks prior to the end of the Shuttle program. The model will continue to be used to identify possible emerging risk drivers and allow management to make risk-informed decisions on future missions. Potential uses of the SPRA in the future include: - Calculate risk impact of various mission contingencies (e.g. late inspection, crew rescue, etc.). - Assessing the risk impact of various trade studies (e.g. flow control valves). - Support risk analysis on mission specific events, such as in flight anomalies. - Serve as a guiding star and data source for future NASA programs.

  6. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges.

    Science.gov (United States)

    Christensen, Anne Munch; Markussen, Bo; Baun, Anders; Halling-Sørensen, Bent

    2009-10-01

    The occurrence of pharmaceuticals in different water bodies and the findings of effects on aquatic organisms in ecotoxicity tests have raised concerns about environmental risks of pharmaceuticals in receiving waters. Due to the fact that the amount of ecotoxicological studies has increased significantly during the last decade, probabilistic approaches for risk characterization of these compounds may be feasible. This approach was evaluated by applying it to 22 human-used pharmaceuticals covering both pharmaceuticals with a high volume and high ecotoxicity, using ecotoxicological effect data from laboratory studies and comparing these to monitoring data on the effluents from sewage treatment plants in Europe and pharmaceutical sales quantities. We found that for 19 of the 22 selected pharmaceuticals the existing data were sufficient for probabilistic risk characterizations. The subsequently modeled ratios between monitored concentrations and low-effect concentrations were mostly above a factor of 100. Compared to the current paradigm for EU environmental risk assessment where a safety factor of 10 or 100 might have been used it seems that for the modeled compounds there's a low environmental risk. However, similarly calculated ratios for five pharmaceuticals (propranolol, ibuprofen, furosemide, ofloxacin, and ciprofloxacin) were below 100, while ibuprofen and ciprofloxacin are considered to be of high concern due to lack of ecotoxicity studies. This paper shows that by applying probabilistic approaches, existing data can be used to execute a comprehensive study on probability of impacts, thereby contributing to a more comprehensive environmental risk assessment of pharmaceuticals.

  7. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    Science.gov (United States)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  8. Urban trees and the risk of poor birth outcomes

    Science.gov (United States)

    Geoffrey H. Donovan; Yvonne L. Michael; David T. Butry; Amy D. Sullivan; John M. Chase

    2011-01-01

    This paper investigated whether greater tree-canopy cover is associated with reduced risk of poor birth outcomes in Portland, Oregon. Residential addresses were geocoded and linked to classified-aerial imagery to calculate tree-canopy cover in 50, 100, and 200 m buffers around each home in our sample (n=5696). Detailed data on maternal characteristics and additional...

  9. The application of probabilistic risk assessment to inherently safe reactors

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.

    1987-01-01

    In the development of safety goals and design criteria for 'inherently safe' reactors a question which arises is 'To what extent is PRA relevant.' To answer this question it is necessary to consider both the risk to the public and the investment risk to the utility. In this paper the factors which are likely to determine safety objectives and their allocation are presented. (orig.)

  10. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael St J

    2010-05-01

    Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.

  11. Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria

    Science.gov (United States)

    Enzenhoefer, Rainer; Nowak, Wolfgang; Helmig, Rainer

    2012-02-01

    Time-related advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. According to current water safety plans advanced risk management schemes are needed to better control and monitor all possible hazards within catchments. The goal of this work is to cast the four advective-dispersive intrinsic well vulnerability criteria by Frind et al. [1] into a framework of probabilistic risk assessment framework. These criteria are: (i) arrival time, (ii) level of peak concentration, (iii) time until first arrival of critical concentrations and (iv) exposure time. Our probabilistic framework yields catchment-wide maps of probabilities to not comply with these criteria. This provides indispensable information for catchment managers to perform probabilistic exposure risk assessment and thus improves the basis for risk-informed well-head management. We resolve heterogeneity with high-resolution Monte Carlo simulations and use a new reverse formulation of temporal moment transport equations to keep computational costs low. Our method is independent of dimensionality and boundary conditions, and can account for arbitrary sources of uncertainty. It can be coupled with any method for conditioning on available data. For simplicity, we demonstrate the concept on a 2D example that includes conditioning on synthetic data.

  12. Development of a Quantitative Framework for Regulatory Risk Assessments: Probabilistic Approaches

    International Nuclear Information System (INIS)

    Wilmot, R.D.

    2003-11-01

    The Swedish regulators have been active in the field of performance assessment for many years and have developed sophisticated approaches to the development of scenarios and other aspects of assessments. These assessments have generally used dose as the assessment end-point and have been based on deterministic calculations. Recently introduced Swedish regulations have introduced a risk criterion for radioactive waste disposal: the annual risk of harmful effects after closure of a disposal facility should not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. A recent review of the overall structure of risk assessments in safety cases concluded that there are a number of decisions and assumptions in the development of a risk assessment methodology that could potentially affect the calculated results. Regulatory understanding of these issues, potentially supported by independent calculations, is important in preparing for review of a proponent's risk assessment. One approach to evaluating risk in performance assessments is to use the concept of probability to express uncertainties, and to propagate these probabilities through the analysis. This report describes the various approaches available for undertaking such probabilistic analyses, both as a means of accounting for uncertainty in the determination of risk and more generally as a means of sensitivity and uncertainty analysis. The report discusses the overall nature of probabilistic analyses and how they are applied to both the calculation of risk and sensitivity analyses. Several approaches are available, including differential analysis, response surface methods and simulation. Simulation is the approach most commonly used, both in assessments for radioactive waste disposal and in other subject areas, and the report describes the key stages of this approach in detail. Decisions relating to the development of input PDFs, sampling methods (including approaches to the treatment

  13. An application of the ESD framework to the probabilistic risk assessment of dynamic systems

    International Nuclear Information System (INIS)

    Swaminathan, S.; Smidts, Carol

    2000-01-01

    Dynamic reliability is the probabilistic study of man-machine-software systems affected by an underlying physical process. The theory of probabilistic dynamics established that dynamic reliability methodologies are essentially semi-Markovian frameworks and can be expressed by an extension of the Chapman-Kolmogorov equation. The mathematical complexity associated with the assessment of dynamic systems' behaviour can be rather overwhelming for real life size systems. This is due to the fact that dynamic methodologies emphasize a component based representation rather than the sequence based representation used in the traditional Event Tree/Fault Tree framework or in the original Event Sequence Diagram (ESD) Framework. An extension of the ESD framework was proposed that facilitates capture of dynamic situations. The modeling framework is composed of events, gates, conditions, competitions and constraints which express many of the dynamic situations encountered in the evolution of accidents. The following paper illustrates an application of this extended ESD framework on a complex dynamic application. The problem at hand is an extension of a problem extensively studied in the validation of dynamic reliability algorithms, a simplified model of the fast reactor Europa. A discussion on how ESDs can help in guiding dynamic reliability simulations as well as aggregating and binning the numerous scenarios generated by dynamic reliability algorithms is provided.(author)

  14. Analyzing Phylogenetic Trees with Timed and Probabilistic Model Checking: The Lactose Persistence Case Study

    Directory of Open Access Journals (Sweden)

    Requeno José Ignacio

    2014-12-01

    Full Text Available Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.

  15. Hazardous waste transportation risk assessment: Benefits of a combined deterministic and probabilistic Monte Carlo approach in expressing risk uncertainty

    International Nuclear Information System (INIS)

    Policastro, A.J.; Lazaro, M.A.; Cowen, M.A.; Hartmann, H.M.; Dunn, W.E.; Brown, D.F.

    1995-01-01

    This paper presents a combined deterministic and probabilistic methodology for modeling hazardous waste transportation risk and expressing the uncertainty in that risk. Both the deterministic and probabilistic methodologies are aimed at providing tools useful in the evaluation of alternative management scenarios for US Department of Energy (DOE) hazardous waste treatment, storage, and disposal (TSD). The probabilistic methodology can be used to provide perspective on and quantify uncertainties in deterministic predictions. The methodology developed has been applied to 63 DOE shipments made in fiscal year 1992, which contained poison by inhalation chemicals that represent an inhalation risk to the public. Models have been applied to simulate shipment routes, truck accident rates, chemical spill probabilities, spill/release rates, dispersion, population exposure, and health consequences. The simulation presented in this paper is specific to trucks traveling from DOE sites to their commercial TSD facilities, but the methodology is more general. Health consequences are presented as the number of people with potentially life-threatening health effects. Probabilistic distributions were developed (based on actual item data) for accident release amounts, time of day and season of the accident, and meteorological conditions

  16. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  17. Probabilistic methodology for estimating radiation-induced cancer risk

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario

  18. Derivation of Failure Rates and Probability of Failures for the International Space Station Probabilistic Risk Assessment Study

    Science.gov (United States)

    Vitali, Roberto; Lutomski, Michael G.

    2004-01-01

    National Aeronautics and Space Administration s (NASA) International Space Station (ISS) Program uses Probabilistic Risk Assessment (PRA) as part of its Continuous Risk Management Process. It is used as a decision and management support tool to not only quantify risk for specific conditions, but more importantly comparing different operational and management options to determine the lowest risk option and provide rationale for management decisions. This paper presents the derivation of the probability distributions used to quantify the failure rates and the probability of failures of the basic events employed in the PRA model of the ISS. The paper will show how a Bayesian approach was used with different sources of data including the actual ISS on orbit failures to enhance the confidence in results of the PRA. As time progresses and more meaningful data is gathered from on orbit failures, an increasingly accurate failure rate probability distribution for the basic events of the ISS PRA model can be obtained. The ISS PRA has been developed by mapping the ISS critical systems such as propulsion, thermal control, or power generation into event sequences diagrams and fault trees. The lowest level of indenture of the fault trees was the orbital replacement units (ORU). The ORU level was chosen consistently with the level of statistically meaningful data that could be obtained from the aerospace industry and from the experts in the field. For example, data was gathered for the solenoid valves present in the propulsion system of the ISS. However valves themselves are composed of parts and the individual failure of these parts was not accounted for in the PRA model. In other words the failure of a spring within a valve was considered a failure of the valve itself.

  19. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    International Nuclear Information System (INIS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-01-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning

  20. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  1. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature...... disaggregation model that considers the uncertainty in the disaggregation, taking basis in the scaled Dirichlet distribution. The proposed probabilistic disaggregation model is applied to a portfolio of residential buildings in the Canton Bern, Switzerland, subject to flood risk. Thereby, the model is verified...... are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is generally imperfect, uncertainty arises in disaggregation. This paper therefore proposes a probabilistic...

  2. Using probabilistic risk assessment to derive financial assurance coverage levels

    International Nuclear Information System (INIS)

    Laurenson, J.; Karam, J.; Bailey, P.

    1988-01-01

    The paper presents a risk assessment methodology to characterize the potential costs associated with transportation of low-level radioactive waste (LLRW). An application of this methodology is also provided for illustration. The risk assessment uses as inputs characterizations of (1) waste shipments by type of vehicle; and (2) environmental settings by generic route. The risk assessment analyzes potential events (e.g., small accident enroute) and their consequences (e.g., dispersion of released materials and subsequent human exposure) for each transport configuration (i.e., combination of vehicle type and generic route). Finally, the risk assessment estimates the probability and magnitude of corrective action costs (e.g., for cleanup of property and the environment) and third-party compensation costs (e.g., for bodily injury and property damage) attached to the consequences of each event. These estimates are then combined with the estimates of the probability of each event to construct a cost curve for corrective action costs and third-party compensation costs. Using these cost curves, financial assurance coverage levels can be derived by specifying a not-to-be-exceeded likelihood that potential costs would exceed the coverage amount

  3. Probabilistic landslide hazards and risk mapping on Penang Island ...

    Indian Academy of Sciences (India)

    This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geographic Information System (GIS) and remote sensing data. Landslide locations in the study area were identified from interpretations of aerial photographs and field surveys. Topographical/ geological data and satellite images ...

  4. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry

    2014-01-01

    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  5. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  6. An evaluation of the reliability and usefulness of external-initiator PRA [probabilistic risk analysis] methodologies

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally ''mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab

  7. Probabilistic risk assessment (PRA): status report and guidance for regulatory application. Draft report for comment

    International Nuclear Information System (INIS)

    1984-02-01

    This document describes the current status of the methodologies used in probabilistic risk assessment (PRA) and provides guidance for the application of the results of PRAs to the nuclear reactor regulatory process. The PRA studies that have been completed or are underway are reviewed. The levels of maturity of the methodologies used in a PRA are discussed. Insights derived from PRAs are listed. The potential uses of PRA results for regulatory purposes are discussed

  8. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  9. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  10. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  11. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  12. Assessment and presentation of uncertainties in probabilistic risk assessment: how should this be done

    International Nuclear Information System (INIS)

    Garlick, A.R.; Holloway, N.J.

    1987-01-01

    Despite continuing improvements in probabilistic risk assessment (PRA) techniques, PRA results, particularly those including degraded core analysis, will have maximum uncertainties of several orders of magnitude. This makes the expression of results, a matter no less important than their estimation. We put forward some ideas on the assessment and expression of highly uncertain quantities, such as probabilities of outcomes of a severe accident. These do not form a consistent set, but rather a number of alternative approaches aimed at stimulating discussion. These include non-probability expressions, such as fuzzy logic or Schafer's support and plausibility which abandon the purely probabilistic expression of risk for a more flexible type of expression, in which other types of measure are possible. The 'risk equivalent plant' concepts represent the opposite approach. Since uncertainty in a risk measure is in itself a form of risk, an attempt is made to define a 'risk equivalent' which is a risk with perfectly defined parameters, regarded (by means of suitable methods of judgement) as 'equally undesirable' with the actual plant. Some guidelines are given on the use of Bayesian methods in data-free or limited data situations. (author)

  13. Illstrative probabilistic biosphere model for Yucca Mountain individual risk calculations

    International Nuclear Information System (INIS)

    Wilems, R.E.

    1994-01-01

    The proposed EPA Standards for the disposal of spent fuel, high-level and transuranic radioactive waste prescribe future biosphere--one in which no sustained human activity occurs inside the controlled zone, yet sustained use of groundwater occurs just outside the controlled zone boundary. Performance assessments have generally assumed a person at this location extracts all his water needs directly from the projected contaminated plume for all of his life. Dose to this maximally-exposed individual is too conservative a measure of performance for a nuclear waste repository and does not reflect the isolation characteristics of a site. A better measure is individual risk in which uncertainties in biosphere characteristics for the longer periods of performance, for a site like Yucca Mountain only those characteristics associated with well water scenarios need be prescribed. Such a prescription of the biosphere is appropriate because the goal of the regulations is to provide indicators of future performance so the regulators can make a responsible decision regarding reasonable assurance of public health and safety

  14. Scenario logic and probabilistic management of risk in business and engineering

    CERN Document Server

    Solojentsev, Evgueni D

    2009-01-01

    The book proposes a uniform logic and probabilistic (LP) approach to risk estimation and analysis in engineering and economics. It covers the methodological and theoretical basis of risk management at the design, test, and operation stages of economic, banking, and engineering systems with groups of incompatible events (GIE). It considers the risk LP-models in classification, investment, management of companies, bribes and corruption, analysis of risk and efficiency of social and economical processes, and management of development. Key features of this Second Edition: -Five new chapters -Treatment of the basic principles of the modern risk LP theory (the LP-calculus, the LP-methods and the risk LP-theory with GIE) using uniform methodology and terminology with a practical orientation towards both engineering and economics, for the first time in book form -Clear definitions and notations, revised sections and chapters, an extended list of references, and a new subject index -More than a hundred illustrations a...

  15. Notes for a workshop on risk analysis and decision under uncertainty. The practical use of probabilistic and Bayesian methodology inreal life risk assessment and decision problems

    International Nuclear Information System (INIS)

    1979-01-01

    The use of probabilistic, and especially Bayesian, methods is explained. The concepts of risk and decision, and probability and frequency are elucidated. The mechanics of probability and probabilistic calculations is discussed. The use of the method for particular problems, such as the frequency of aircraft crashes at a specified nuclear reactor site, is illustrated. 64 figures, 20 tables

  16. Notes for a workshop on risk analysis and decision under uncertainty. The practical use of probabilistic and Bayesian methodology inreal life risk assessment and decision problems

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The use of probabilistic, and especially Bayesian, methods is explained. The concepts of risk and decision, and probability and frequency are elucidated. The mechanics of probability and probabilistic calculations is discussed. The use of the method for particular problems, such as the frequency of aircraft crashes at a specified nuclear reactor site, is illustrated. 64 figures, 20 tables. (RWR)

  17. Implementation of condition-dependent probabilistic risk assessment using surveillance data on passive components

    International Nuclear Information System (INIS)

    Lewandowski, Radoslaw; Denning, Richard; Aldemir, Tunc; Zhang, Jinsuo

    2016-01-01

    Highlights: • Condition-dependent probabilistic risk assessment (PRA). • Time-dependent characterization of plant-specific risk. • Containment bypass involving in secondary system piping and SCC in SG tubes. - Abstract: A great deal of surveillance data are collected for a nuclear power plant that reflect the changing condition of the plant as it ages. Although surveillance data are used to determine failure probabilities of active components for the plant’s probabilistic risk assessment (PRA) and to indicate the need for maintenance activities, they are not used in a structured manner to characterize the evolving risk of the plant. The present study explores the feasibility of using a condition-dependent PRA framework that takes a first principles approach to modeling the progression of degradation mechanisms to characterize evolving risk, periodically adapting the model to account for surveillance results. A case study is described involving a potential containment bypass accident sequence due to the progression of flow-accelerated corrosion in secondary system piping and stress corrosion cracking of steam generator tubes. In this sequence, a steam line break accompanied by failure to close of a main steam isolation valve results in depressurization of the steam generator and induces the rupture of one or more faulted steam generator tubes. The case study indicates that a condition-dependent PRA framework might be capable of providing early identification of degradation mechanisms important to plant risk.

  18. Application of probabilistic fracture mechanics to estimate the risk of rupture of PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pitner, P.; Riffard, T.; Granger, B.

    1992-01-01

    This paper describes the COMPROMIS code developed by Electricite de France (EDF) to optimize the tube bundle maintenance of steam generators. The model, based on probabilistic fracture mechanics, makes it possible to quantify the influence of in-service inspections and maintenance work on the risk of an SG tube rupture, taking all significant parameters into account as random variables (initial defect size distribution, reliability of non-destructive detection and sizing, crack initiation and propagation, critical sizes, leak before risk of break, etc.). (authors). 5 refs., 8 figs., 3 tabs

  19. Bayesian inference in probabilistic risk assessment-The current state of the art

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Smith, Curtis L.

    2009-01-01

    Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems

  20. Probabilistic cumulative risk assessment of anti-androgenic pesticides in food

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Bosgra, Sieto; Boon, Polly E.

    2009-01-01

    In this paper, we present a cumulative risk assessment of three anti-androgenic pesticides (vinclozolin, procymidone and prochloraz) using the relative potency factor (RPF) approach and an integrated probabilistic risk assessment (IPRA) model. RPFs for each substance were estimated for three...... reproductive endpoints (ano-genital distance, and weights of the seminal vesicles and the musculus levator ani/bulbocavernosus) in male rat foetuses exposed in utero. The cumulative dietary intake was estimated based on consumption data and residue data from the Netherlands. The IPRA model combines variability...

  1. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis.

    Science.gov (United States)

    Cheng, Feon W; Gao, Xiang; Bao, Le; Mitchell, Diane C; Wood, Craig; Sliwinski, Martin J; Smiciklas-Wright, Helen; Still, Christopher D; Rolston, David D K; Jensen, Gordon L

    2017-07-01

    To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. The conditional inference tree analysis, a data mining approach, was used to construct a risk stratification algorithm for developing functional limitation based on BMI and other potential risk factors for disability in 1,951 older adults without functional limitations at baseline (baseline age 73.1 ± 4.2 y). We also analyzed the data with multivariate stepwise logistic regression and compared the two approaches (e.g., cross-validation). Over a mean of 9.2 ± 1.7 years of follow-up, 221 individuals developed functional limitation. Higher BMI, age, and comorbidity were consistently identified as significant risk factors for functional decline using both methods. Based on these factors, individuals were stratified into four risk groups via the conditional inference tree analysis. Compared to the low-risk group, all other groups had a significantly higher risk of developing functional limitation. The odds ratio comparing two extreme categories was 9.09 (95% confidence interval: 4.68, 17.6). Higher BMI, age, and comorbid disease were consistently identified as significant risk factors for functional decline among older individuals across all approaches and analyses. © 2017 The Obesity Society.

  2. Probabilistic Modeling Of Ocular Biomechanics In VIIP: Risk Stratification

    Science.gov (United States)

    Feola, A.; Myers, J. G.; Raykin, J.; Nelson, E. S.; Mulugeta, L.; Samuels, B.; Ethier, C. R.

    2016-01-01

    the peak strains, we ranked and then normalized these coefficients, considering that normalized values 0.5 implied a substantial influence on the range of the peak strains in the optic nerve head (ONH). IOP and ICP were found to have a major influence on the peak strains in the ONH, as did optic nerve and LC stiffness. Interestingly, the stiffness of the sclera far from the scleral canal did not have a large influence on peak strains in ONH tissues; however, the collagen fiber stiffness in the peripapillary sclera and annular ring both influenced the peak strains within the ONH. We have created a physiologically relevant model that incorporated collagen fibers to study the effects of elevated ICP. Elevated ICP resulted in strains in the optic nerve that are not predicted to occur on earth: the upright or supine conditions. We found that IOP, ICP, lamina cribrosa stiffness and optic nerve stiffness had the highest association with these extreme strains in the ONH. These extreme strains may activate mechanosensitive cells that induce tissue remodeling and are a risk factor for the development of VIIP.

  3. Application of probabilistic hydrologic forecasting for risk analysis of multipurpose reservoir real-time operation

    Science.gov (United States)

    Liu, P.

    2012-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based probabilistic hydrologic forecasting depicts the inflow not only the marginal distributions but also their corrections by producing inflow scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasting inputs. The proposed procedure involves: (1) based upon the Bayesian inference, the Markov Chain Monte Carlo (MCMC) is implemented to produce ensemble-based probabilistic hydrologic forecasting, (2) the reservoir risk is defined as the ratio of the number of scenarios that excessive the critical value to the total number of scenarios, (3) a multipurpose reservoir operation model is built and solved using scenario optimization to produce Pareto solutions for trade-offs between risks and profits. With a case study of the China's Three Gorges Reservoir (TGR) for the 2010 and 2012 floods, it is found that the reservoir real-time operation risks can be estimated directly and minimized based on the proposed methods, and is easy of implementation by the reservoir operators.

  4. Probabilistic health risk assessment for arsenic intake through drinking groundwater in Taiwan's Pingtung Plain

    Science.gov (United States)

    Liang, C. P.; Chen, J. S.

    2017-12-01

    An abundant and inexpensive supply of groundwater is used to meet drinking, agriculture and aquaculture requirements of the residents in the Pingtung Plain. Long-term groundwater quality monitoring data indicate that the As content in groundwater in the Pingtung Plain exceeds the maximum level of 10 g/L recommended by the World Health Organization (WHO). The situation is further complicated by the fact that only 46.89% of population in the Pingtung Plain has been served with tap water, far below the national average of 92.93%. Considering there is a considerable variation in the measured concentrations, from below the detection limit (health risk assessment may be insufficient for health risk management. This study presents a probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater by local residents in the Pingtung Plain. The probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater is achieved using Monte Carlo simulation technique based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. This study demonstrates the importance of the individual variability of inorganic As intake through drinking groundwater consumption when evaluating a high exposure sub-group of the population who drink high As content groundwater.

  5. A framework to integrate software behavior into dynamic probabilistic risk assessment

    International Nuclear Information System (INIS)

    Zhu Dongfeng; Mosleh, Ali; Smidts, Carol

    2007-01-01

    Software plays an increasingly important role in modern safety-critical systems. Although, research has been done to integrate software into the classical probabilistic risk assessment (PRA) framework, current PRA practice overwhelmingly neglects the contribution of software to system risk. Dynamic probabilistic risk assessment (DPRA) is considered to be the next generation of PRA techniques. DPRA is a set of methods and techniques in which simulation models that represent the behavior of the elements of a system are exercised in order to identify risks and vulnerabilities of the system. The fact remains, however, that modeling software for use in the DPRA framework is also quite complex and very little has been done to address the question directly and comprehensively. This paper develops a methodology to integrate software contributions in the DPRA environment. The framework includes a software representation, and an approach to incorporate the software representation into the DPRA environment SimPRA. The software representation is based on multi-level objects and the paper also proposes a framework to simulate the multi-level objects in the simulation-based DPRA environment. This is a new methodology to address the state explosion problem in the DPRA environment. This study is the first systematic effort to integrate software risk contributions into DPRA environments

  6. Alternative measures of risk of extreme events in decision trees

    International Nuclear Information System (INIS)

    Frohwein, H.I.; Lambert, J.H.; Haimes, Y.Y.

    1999-01-01

    A need for a methodology to control the extreme events, defined as low-probability, high-consequence incidents, in sequential decisions is identified. A variety of alternative and complementary measures of the risk of extreme events are examined for their usability as objective functions in sequential decisions, represented as single- or multiple-objective decision trees. Earlier work had addressed difficulties, related to non-separability, with the minimization of some measures of the risk of extreme events in sequential decisions. In an extension of these results, it is shown how some non-separable measures of the risk of extreme events can be interpreted in terms of separable constituents of risk, thereby enabling a wider class of measures of the risk of extreme events to be handled in a straightforward manner in a decision tree. Also for extreme events, results are given to enable minimax- and Hurwicz-criterion analyses in decision trees. An example demonstrates the incorporation of different measures of the risk of extreme events in a multi-objective decision tree. Conceptual formulations for optimizing non-separable measures of the risk of extreme events are identified as an important area for future investigation

  7. Marked point process framework for living probabilistic safety assessment and risk follow-up

    International Nuclear Information System (INIS)

    Arjas, Elja; Holmberg, Jan

    1995-01-01

    We construct a model for living probabilistic safety assessment (PSA) by applying the general framework of marked point processes. The framework provides a theoretically rigorous approach for considering risk follow-up of posterior hazards. In risk follow-up, the hazard of core damage is evaluated synthetically at time points in the past, by using some observed events as logged history and combining it with re-evaluated potential hazards. There are several alternatives for doing this, of which we consider three here, calling them initiating event approach, hazard rate approach, and safety system approach. In addition, for a comparison, we consider a core damage hazard arising in risk monitoring. Each of these four definitions draws attention to a particular aspect in risk assessment, and this is reflected in the behaviour of the consequent risk importance measures. Several alternative measures are again considered. The concepts and definitions are illustrated by a numerical example

  8. Perception of Risk and Terrorism-Related Behavior Change: Dual Influences of Probabilistic Reasoning and Reality Testing

    Science.gov (United States)

    Denovan, Andrew; Dagnall, Neil; Drinkwater, Kenneth; Parker, Andrew; Clough, Peter

    2017-01-01

    The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy), the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT), the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT) best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual-processing frameworks. This

  9. Perception of Risk and Terrorism-Related Behavior Change: Dual Influences of Probabilistic Reasoning and Reality Testing

    Directory of Open Access Journals (Sweden)

    Andrew Denovan

    2017-10-01

    Full Text Available The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy, the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT, the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual

  10. Towards the development of a global probabilistic tsunami risk assessment methodology

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2017-04-01

    The assessment of tsunami risk is on many levels still ambiguous and under discussion. Over the last two decades, various methodologies and models have been developed to quantify tsunami risk, most of the time on a local or regional level, with either deterministic or probabilistic background. Probabilistic modelling has significant difficulties, as the underlying tsunami hazard modelling demands an immense amount of computational time and thus limits the assessment substantially, being often limited to either institutes with supercomputing access or the modellers are forced to reduce modelling resolution either quantitatively or qualitatively. Furthermore, data on the vulnerability of infrastructure and buildings is empirically limited to a few disasters in the recent years. Thus, a reliable quantification of socio-economic vulnerability is still questionable. Nonetheless, significant improvements have been developed recently on both the methodological site as well as computationally. This study, introduces a methodological framework for a globally uniform probabilistic tsunami risk assessment. Here, the power of recently developed hardware for desktop-based parallel computing plays a crucial role in the calculation of numerical tsunami wave propagation, while large-scale parametric models and paleo-seismological data enhances the return period assessment of tsunami-genic megathrust earthquake events. Adaptation of empirical tsunami vulnerability functions in conjunction with methodologies from flood modelling support a more reliable vulnerability quantification. In addition, methodologies for exposure modelling in coastal areas are introduced focusing on the diversity of coastal exposure landscapes and data availability. Overall, this study introduces a first overview of how a global tsunami risk modelling framework may be accomplished, while covering methodological, computational and data-driven aspects.

  11. Probabilistic modeling of the flows and environmental risks of nano-silica.

    Science.gov (United States)

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-03-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Evaluation of the seasonal and annual abortifacient risk of western juniper trees on Oregon rangelands: Abortion risk of western juniper trees

    Science.gov (United States)

    Western juniper trees can cause late term abortions in cattle, similar to ponderosa pine trees. Analyses of western juniper trees from 35 locations across the state of Oregon suggest that western juniper trees in all areas present an abortion risk in pregnant cattle. Results from this study demonstr...

  13. Probabilistic ecological risk assessment of selected PAH`s in sediments near a petroleum refinery

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W.R.; Biddinger, G.R.

    1995-12-31

    Sediment samples were collected and analyzed for a number of polynuclear aromatic hydrocarbons (PAHs) along a gradient from a petroleum refinery`s wastewater diffuser. These data were used to calculate the potential risk to aquatic organisms using probabilistic modeling and Monte Carlo sampling procedures. Sediment chemistry data were used in conjunction with estimates of Biota-Sediment Accumulation Factors and Non-Polar Narcosis Theory to predict potential risk to bivalves. Bivalves were the receptors of choice because of their lack of a well-developed enzymatic system for metabolizing PAHs. Thus, they represent a species of higher inherent risk of adverse impact. PAHs considered in this paper span a broad range of octanol-water partition coefficients. Results indicate negligible risk of narcotic effects from PAHs existing near the refinery wastewater discharge.

  14. Probabilistic risk benchmark of the Brazilian electrical system; Risco probabilistico de referencia do sistema eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Neyl Hamilton Martelotta

    2002-05-01

    The main goal of this dissertation is to proceed a first numerical evaluation of the probabilistic risks magnitudes associated with the Brazilian Electrical network, considering the subsystems North, Northeast, South, Southeast and Mid West. This result is relevant because it can be used as an initial comparative reference for future reliability studies of the Brazilian Basic Grid. As a by-product, the whole set of criteria and procedures used in the work are described in detail. They may also serve as a preliminary base for future similar evaluations. (author)

  15. An overview of the EBR-II PRA [Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Hill, D.J.; Chang, Y.W.; Deitrich, L.W.; Ragland, W.A.; Lehto, W.K.; Schaeffer, R.W.

    1990-01-01

    Experimental Breeder Reactor-II, EBR-II, is a 60 MW(t) liquid sodium cooled, pool type fast reactor which has operated successfully as a power reactor and irradiation facility for over 25 years. Argonne National Laboratory is currently performing a Probabilistic Risk Assessment of EBR-II. An overview of the PRA is presented with special attention to those issues which are important to EBR-II such as the passive decay heat removal capabilities and the passive shut down capability provided by the reactivity feedbacks. 7 refs., 3 figs., 1 tab

  16. Review process and quality assurance in the EBR-II probabilistic risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results

  17. Input to the PRAST computer code used in the SRS probabilistic risk assessment

    International Nuclear Information System (INIS)

    Kearnaghan, D.P.

    1992-01-01

    The PRAST (Production Reactor Algorithm for Source Terms) computer code was developed by Westinghouse Savannah River Company and Science Application International Corporation for the quantification of source terms for the SRS Savannah River Site (SRS) Reactor Probabilistic Risk Assessment. PRAST requires as input a set of release fractions, decontamination factors, transfer fractions and source term characteristics that accurately reflect the conditions that are evaluated by PRAST. This document links the analyses which form the basis for the PRAST input parameters. In addition, it gives the distribution of the input parameters that are uncertain and considered to be important to the evaluation of the source terms to the environment

  18. A probabilistic safety assessment of radioactive materials transport. Construction of risk curve in tunnel fire accidents

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Naohito; Kouno, Yutaka [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-07-01

    For the purpose of developing safety assessment of radioactive materials (RAM) transport, CRIEPI is trying to introduce the Probabilistic Safety Assessment (PSA) which is prevalent to nuclear power plants. This report introduces the concept of evaluating `Severity Measure` of the package in an accident and also introduces the result of verification review of the concept through a case study of tunnel fire accidents. It will be able to evaluate radioactive materials transport accidents with this concept from the viewpoint of PSA, including the safety assessment with conventional tests and analyses. Besides, the risk curve of heat input to package has been constructed as the important expression of PSA. (author)

  19. A probabilistic safety assessment of radioactive materials transport. Construction of risk curve in tunnel fire accidents

    International Nuclear Information System (INIS)

    Watabe, Naohito; Kouno, Yutaka

    1997-01-01

    For the purpose of developing safety assessment of radioactive materials (RAM) transport, CRIEPI is trying to introduce the Probabilistic Safety Assessment (PSA) which is prevalent to nuclear power plants. This report introduces the concept of evaluating 'Severity Measure' of the package in an accident and also introduces the result of verification review of the concept through a case study of tunnel fire accidents. It will be able to evaluate radioactive materials transport accidents with this concept from the viewpoint of PSA, including the safety assessment with conventional tests and analyses. Besides, the risk curve of heat input to package has been constructed as the important expression of PSA. (author)

  20. On the use of data and judgment in probabilistic risk and safety analysis

    International Nuclear Information System (INIS)

    Kaplan, S.

    1986-01-01

    This paper reviews the line of thought of a nuclear plant probabilistic risk analysis (PRA) identifying the points where data and judgement enter. At the ''bottom'' of the process, data and judgment are combined, using one and two stage Bayesian methods, to express what is known about the element of variables. Higher in the process, we see the use of judgment in identifying scenarios and developing almost models and specifying initiating event categories. Finally, we discuss the judgments involved in deciding to do a PRA and in applying the results. (orig.)

  1. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  2. Application of probabilistic risk assessment in the operation of Koeberg nuclear power station

    International Nuclear Information System (INIS)

    Nicholls, D.R.

    1991-01-01

    Probabilistic risk assessment (PRA) calculates the probability that a set of multiple failures could occur, the frequency with which the safety circuits will be required and the consequences of the failure of the safety systems. In this way the frequency with which major accident situations can be expected to happen, can be derived. The world history of PRA is presented, together with the South African history of PRA. The theory of PRA is explained and the application of PRA studies is described. In the last twenty years, PRA has gone from being a theoretical idea to a practical tool for assisting in plant management. 2 figs., 1 ill

  3. Probabilistic pattern of risks in company’s Quality management system

    Directory of Open Access Journals (Sweden)

    Mager Vladimir

    2017-01-01

    Full Text Available One possible approach for calculation of probabilistic rate of risks in Quality management system (QMS, which is prescribed by requirements of International Standard ISO 9001:2015, is proposed in this article. Aspects of the theory of dependability and Markov techniques are used, which are applied for evaluation of probability of failures in complicated technical systems. Representation of QMS processes as a graph with controlled discrete Markov chains is suggested, which allows to evaluate a probability of customer requirements non-fulfillment as a function of an intensity of mistakes that bring to non-conformities in QMS.

  4. Probabilistic risk assessment: A look at the role of artificial intelligence

    International Nuclear Information System (INIS)

    Wang, J.; Modarres, M.; Hunt, R.N.M.

    1988-01-01

    A review of traditional Probabilistic Risk Assessment (PRA) methods used in the nuclear power industry is presented. The shortcomings of the current PRA methods are pointed out. A method of performing a PRA is proposed and is computerized. The role of artificial intelligence in developing and performing the proposed PRA approach is discussed. The proposed PRA approach is verified by comparing the results to previously performed PRAs. The comparisons have supported the adequacy and completeness of the results of the proposed model. A discussion of how the proposed method can be used as an expert system to verify plant status following loss of plant hardware is also presented. (orig.)

  5. Review insights on the probabilistic risk assessment for the Limerick Generating Station

    International Nuclear Information System (INIS)

    1984-08-01

    In recognition of the high population density around the Limerick Generating Station site and the proposed power level, the Philadelphia Electric Company, in response to NRC staff requests, conducted and submitted between March 1981 and November 1983 a probabilistic risk assessment (PRA) on internal event contributors and a severe accident risk assessment on external event contributors to assess risks posed by operation of the plant. The applicant has developed perspectives using PRA models on the safety profile of the Limerick plant and has altered the plant design to reduce accident vulnerabilities identified in these PRAs. The staff's review of the Limerick PRA has particularly emphasized the dominant accident sequences and the resulting insights into demonstration of compliance with regulatory requirments, unique design features and major plant vulnerabilities to assess the need for any additional measures to further improve the safety of the LGS. The staff's review insights and PRA safety review conclusions are presented in this report

  6. Use of the Safety probabilistic analysis for the risk monitor before maintenance

    International Nuclear Information System (INIS)

    Gonzalez C, M.

    2004-01-01

    In this work the use of the Safety Probabilistic Analysis (APS) of the Laguna Verde Power plant to quantify the risk before maintenance is presented. Beginning to describe the nature of the Rule of Maintenance and their risk evaluations, it is planned about the paper of the APS for that purpose, and a systematic form to establish the reaches for this use open of the model is delineated. The work provides some technique details of the implantation methods of the APS like risk monitor, including the form of introducing the systems, trains and components to the user, as well as the fitness to the models and improvements to the used platform. There are covered some of the measures taken to achieve the objectives of preserving the base model approved, to facilitate the periodic realize, and to achieve acceptable times of execution for their efficient use. (Author)

  7. Regional probabilistic nuclear risk and vulnerability assessment by integration of mathematical modelling land GIS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rigina, O. [Univ. of Copenhagen, Inst. of Geography, Copenhagen (Denmark); Baklanov, A. [Danish Meteorological Inst., Copenhagen (Denmark)

    2002-04-01

    The Kola Peninsula, Russian Arctic exceeds all other regions in the world in the number of nuclear reactors. The study was aimed at estimating possible radiation risks to the population in the Nordic countries in case of a severe accident in the Kola Peninsula. A new approach based on probabilistic analysis of modelled possible pathways of radionuclide transport and precipitation was developed. For the general population, Finland is at most risk with respect to the Kola NPP, because of: high population density or proximity to the radiation-risk sites and relatively high probability of an airflow trajectory there, and precipitation. After considering the critical group, northern counties in Norway, Finland and Sweden appear to be most vulnerable. (au)

  8. Probabilistic cumulative risk assessment of anti-androgenic pesticides in food

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Nielsen, Elsa

    2008-01-01

    A cumulative risk assessment of three anti-androgenic pesticides vinclozolin, procymidone and prochloraz in combination has been carried out using an Integrated Probabilistic Risk Assessment (IPRA) model. In the model, variability in both exposure and sensitivity between individuals were combined...... into a distribution of Individual Margins of Exposure (IMoE). Additionally, uncertainties related to input parameters were evaluated. The cumulative risk assessment was performed using the Relative Potency Factor (RPF) approach. RPFs for each substance were estimated for three reproductive endpoints in male foetuses...... as observed following in utero exposure in rats (ano-genital distance, and weight of the seminal vesicles and the levator ani/bulbocavernosus (LABC) muscles). The estimations of the cumulative dietary intake were based on consumption data (1997–1998) and residue data (2002–2003) from the Netherlands. Inter...

  9. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  10. Risk-Based Predictive Maintenance for Safety-Critical Systems by Using Probabilistic Inference

    Directory of Open Access Journals (Sweden)

    Tianhua Xu

    2013-01-01

    Full Text Available Risk-based maintenance (RBM aims to improve maintenance planning and decision making by reducing the probability and consequences of failure of equipment. A new predictive maintenance strategy that integrates dynamic evolution model and risk assessment is proposed which can be used to calculate the optimal maintenance time with minimal cost and safety constraints. The dynamic evolution model provides qualified risks by using probabilistic inference with bucket elimination and gives the prospective degradation trend of a complex system. Based on the degradation trend, an optimal maintenance time can be determined by minimizing the expected maintenance cost per time unit. The effectiveness of the proposed method is validated and demonstrated by a collision accident of high-speed trains with obstacles in the presence of safety and cost constrains.

  11. Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant.

    Science.gov (United States)

    Lonati, Giovanni; Zanoni, Francesca

    2012-09-01

    Health risk assessment due to the atmospheric emissions of carcinogenic pollutants (PCDD/Fs and Cd) from a waste gasification plant is performed by means of a probabilistic approach based on probability density functions for the description of the input data of the model parameters involved in the assessment. These functions incorporate both the epistemic and stochastic uncertainty of the input data (namely, the emission rate of the pollutants) and of all the parameters used for individual exposure assessment through the pathways of inhalation, soil ingestion and dermal contact, and diet. The uncertainty is propagated throughout the evaluation by Monte Carlo technique, resulting in the probability distribution of the individual risk. The median risk levels nearby the plant are in the 10(-8)-10(-10) range, ten-fold lower than the deterministic estimate based on precautionary values for the input data; however, the very upper percentiles (>95th) of the risk distribution can exceed the conventional 10(-6) reference value. The estimated risk is almost entirely determined by the Cd exposure through the diet; the pathways arising from PCDD/Fs exposure are without any practical significance, suggesting that the emission control should focus on Cd in order to reduce the carcinogenic risk. Risk variance decomposition shows the prevailing influence on the estimated risk of the Cd concentration at the emission stack: thus, for a more accurate risk assessment the efforts should focus primarily on the definition of its probability density function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Placental Vascular Tree as Biomarker of Autism/ASD Risk

    Science.gov (United States)

    2011-09-01

    disk edge - differs significantly between autism /ASD cases and the University of North Carolina Pregnancy, Infection and Nutrition Study (UNC PIN... Autism /ASD Risk PRINCIPAL INVESTIGATOR: Carolyn M. Salafia, M.S., M.D. CONTRACTING...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Placental Vascular Tree as Biomarker of Autism /ASD Risk 5b. GRANT NUMBER W81XWH-10-1-0626 5c. PROGRAM

  13. Environmental contaminant concentrations in Canada goose (Branta canadensis) muscle: probabilistic risk assessment for human consumers.

    Science.gov (United States)

    Horak, Katherine; Chipman, Richard; Murphy, Lisa; Johnston, John

    2014-09-01

    The issue of food insecurity affects millions of people in the United States every year. Often these people rely on soup kitchens, food banks, and shelters for proper meals, and these organizations often depend on donations to meet needs. One of the most limited food resources is meat. To help alleviate this problem, the U.S. Department of Agriculture Wildlife Services donates more than 60 tons of wild game (deer, moose, feral hogs, goats, geese, and ducks) to a variety of charitable organizations each year. Although commercially produced meat routinely undergoes screening for contaminants, potential exposure to environmental contaminants from eating wild game is not well characterized. In this study, the concentration of 17 contaminants of concern in the breast meat of wild geese was examined. These concentrations were then used in a probabilistic model to estimate potential risk associated with consumption of this meat. Based on model predictions, more than 99 % of all adults were below exposure limits for all of the compounds tested. For all consumer age classes modeled, consumption of wild goose meat may expose a small fraction of these populations to levels of lead higher than the recommended exposure limits. Similarly, mercury exposure was predicted to be higher than the recommended limits when the meat was served as steaks. This information about concentrations of contaminants of concern in goose meat and potential exposures associated with meat consumption based on probabilistic models will enable others to make informed decisions about the risks associated with the consumption of wild meat.

  14. Review of methods for developing regional probabilistic risk assessments, part 2: modeling invasive plant, insect, and pathogen species

    Science.gov (United States)

    P. B. Woodbury; D. A. Weinstein

    2010-01-01

    We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...

  15. Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.

    1990-01-01

    A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs

  16. Nuclear Regulatory Commission probabilistic risk assessment implementation program: A status report

    International Nuclear Information System (INIS)

    Rubin, M.P.; Caruso, M.A.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) is undertaking a number of activities intended to increase the consideration of risk significance in its decision processes and the effective use of risk-based technologies in its regulatory activities. Although the NRC is moving toward risk-informed regulation throughout its areas of responsibilities, this paper focuses primarily on those issues associated with reactor regulation. As the NRC completed significant milestones in its development of probabilistic risk assessment (PRA) methodology and gained considerable experience in the limited application of risk assessment to selected regulatory activities, it became evident that a much broader use of risk informed approaches offered advantages to both the NRC and the US commercial nuclear industry. This desire to enhance the use of risk assessment is driven by the clear belief that application of PRA methods will result in direct improvements in nuclear power plant operational safety from the perspective of both the regulator and the plant operator. The NRC believed that an overall policy on the use of PRA methods in nuclear regulatory activities should be established so that the many potential applications of PRA could be implemented in a consistent and predictable manner that would promote regulatory stability and efficiency. This paper describes the key activities that the NRC has undertaken to implement the initial stages of an integrated risk-informed regulatory framework

  17. Nuclear power plant personnel errors in decision-making as an object of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reer, B.

    1993-09-01

    The integration of human error - also called man-machine system analysis (MMSA) - is an essential part of probabilistic risk assessment (PRA). A new method is presented which allows for a systematic and comprehensive PRA inclusions of decision-based errors due to conflicts or similarities. For the error identification procedure, new question techniques are developed. These errors are shown to be identified by looking at retroactions caused by subordinate goals as components of the overall safety relevant goal. New quantification methods for estimating situation-specific probabilities are developed. The factors conflict and similarity are operationalized in a way that allows their quantification based on informations which are usually available in PRA. The quantification procedure uses extrapolations and interpolations based on a poor set of data related to decision-based errors. Moreover, for passive errors in decision-making a completely new approach is presented where errors are quantified via a delay initiating the required action rather than via error probabilities. The practicability of this dynamic approach is demonstrated by a probabilistic analysis of the actions required during the total loss of feedwater event at the Davis-Besse plant 1985. The extensions of the ''classical'' PRA method developed in this work are applied to a MMSA of the decay heat removal (DHR) of the ''HTR-500''. Errors in decision-making - as potential roots of extraneous acts - are taken into account in a comprehensive and systematic manner. Five additional errors are identified. However, the probabilistic quantification results a nonsignificant increase of the DHR failure probability. (orig.) [de

  18. The Result and Risk Insight of Probabilistic Safety Assessment for Advanced Power Reactor Plus

    International Nuclear Information System (INIS)

    Moon, H. R.; Kang, S. H.; Kim, H. G.

    2013-01-01

    APR+ emergency power system has four EDGs and is designed with four-train that is electrically and mechanically completely independent. Another design feature is passive auxiliary feedwater system (PAFS), completely substitute active auxiliary feedwater system. This system can supply cooling water using natural forces such as gravity. The goal of this paper is to optimize the design for APR+ using analyzing the result of probabilistic safety assessment (PSA) for APR+. As the result of PSA, risk insight is analyzed through the sensitivity analysis of CDF. For reducing CDF and unavailability, item for design optimization is applied for APR+. Consequently, the CDF of APR+ was evaluated to be less than 1.0E-6/yr. Through the sensitivity analysis of CDF based on the result of PSA, the risk insight was analyzed and the design was applied and optimized for APR+

  19. Probabilistic commentary: the rise and fall, and rise again, of risk assessment

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1985-02-01

    Probabilistic risk assessment is mainly concerned with assessing the risks of nuclear power plants. Historically, the field of PRA began with a Senate request for a report on the safety of nuclear reactors in 1972. A quantitative report called WASH-1400 was eventually prepared and published in 1975, and in summary, it stated that nuclear reactors warranted only a low-grade concern in modern society. Criticism of this report and public perception of its results were highly visible subjects in the media, and the criticism led to the fact that PRA fell into disfavor. After Three Mile Island, it was recognized that PRA was a valuable tool for understanding such accidents, and PRA became a bit more popular again by the end of 1979. The usefulness of PRA was also supported by a German study in 1979. PRA played a significant role in the hearings on the Indian Point reactor. The present NRC regards PRA as an important tool in regulatory practice

  20. Dynamic modeling of physical phenomena for probabilistic risk assessments using artificial neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Paez, T.L.; Brown, N.N.

    1998-01-01

    In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system's responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second

  1. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  2. Advances in multi-unit nuclear power plant probabilistic risk assessment

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Zhou, Taotao; Massoud, Mahmoud

    2017-01-01

    The Fukushima Dai-ichi accident highlighted the importance of risks from multiple nuclear reactor unit accidents at a site. As a result, there has been considerable interest in Multi-Unit Probabilistic Risk Assessment (MUPRA) in the past few years. For considerations in nuclear safety, the MUPRA estimates measures of risk and identifies contributors to risk representing the entire site rather than the individual units in the site. In doing so, possible unit-to-unit interactions and dependencies should be modeled and accounted for in the MUPRA. In order to effectively account for these risks, six main commonality classifications—initiating events, shared connections, identical components, proximity dependencies, human dependencies, and organizational dependencies—may be used. This paper examines advances in MUPRA, offers formal definitions of multi-unit site risk measures and proposes quantitative approaches and data to account for unit-to-unit dependencies. Finally, a parametric approach for the multi-unit dependencies has been discussed and a simple example illustrates application of the proposed methodology. - Highlights: • This paper will discuss the technical aspects of an integrated MUPRA, including consideration of dependencies and assessment of the multi-unit dependency data and models for quantifying such dependencies. • The paper also provides discussions on formal definitions and metrics for multi-unit site risks. • The parametric methods are used to address multi-unit dependency situations. • A conceptual two-unit logic example is used to demonstrate the application of proposed methodology.

  3. Development and application of an operational Probabilistic Risk Assessment (PRA) at Ontario Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, S.; Mok, J.; Donnelly, K.; Dinnie, K. [Nuclear Safety Solutions Ltd., Toronto, Ontario (Canada); Ganguli, S.; Moisin, M. [Ontario Power Generation, Pickering, Ontario (Canada)

    2007-07-01

    Ontario Power Generation Inc. has embraced the use of Probabilistic Risk Assessment (PRA) in operational decision-making. Common examples include decisions related to continued operation while in an abnormal plant configuration based on incremental risk increase, and the use of risk monitors (i.e., Equipment Out-of-Service (EOOS)) for outage planning and managing risk during on-line maintenance. Unlike the baseline PRA where average risk is calculated, these operational decisions/tools are best made using a real-time, or instantaneous analysis reflecting actual plant configuration. The process of taking the baseline, time-averaged PRA, to an instantaneous model is part of broader process of 'operationalizing' the plant PRA. Additional items in the process include activities related to the development of the risk monitors themselves, and the development and establishment of procedures and governance related to the use of the PRA and risk monitors in applications. This paper looks into the processes and factors requiring consideration when 'operationalizing' a nuclear power plant PRA. As well, the paper includes a case study describing the use of an operational PRA to support the decision-making process at Pickering NGS B. (author)

  4. Environmental risk assessment of white phosphorus from the use of munitions - a probabilistic approach.

    Science.gov (United States)

    Voie, Øyvind Albert; Johnsen, Arnt; Strømseng, Arnljot; Longva, Kjetil Sager

    2010-03-15

    White phosphorus (P(4)) is a highly toxic compound used in various pyrotechnic products. Ammunitions containing P(4) are widely used in military training areas where the unburned products of P(4) contaminate soil and local ponds. Traditional risk assessment methods presuppose a homogeneous spatial distribution of pollutants. The distribution of P(4) in military training areas is heterogeneous, which reduces the probability of potential receptors being exposed to the P(4) by ingestion, for example. The current approach to assess the environmental risk from the use of P(4) suggests a Bayesian network (Bn) as a risk assessment tool. The probabilistic reasoning supported by a Bn allows us to take into account the heterogeneous distribution of P(4). Furthermore, one can combine empirical data and expert knowledge, which allows the inclusion of all kinds of data that are relevant to the problem. The current work includes an example of the use of the Bn as a risk assessment tool where the risk for P(4) poisoning in humans and grazing animals at a military shooting range in Northern Norway was calculated. P(4) was detected in several craters on the range at concentrations up to 5.7g/kg. The risk to human health was considered acceptable under the current land use. The risk for grazing animals such as sheep, however, was higher, suggesting that precautionary measures may be advisable.

  5. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.

    Science.gov (United States)

    Jacobs, Rianne; Meesters, Johannes A J; Ter Braak, Cajo J F; van de Meent, Dik; van der Voet, Hilko

    2016-12-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal with uncertainty in the risk assessment effectively, probabilistic methods are advantageous. In the present study, the authors developed a method to model both the variability and the uncertainty in environmental risk assessment of ENPs. This method is based on the concentration ratio and the ratio of the exposure concentration to the critical effect concentration, both considered to be random. In this method, variability and uncertainty are modeled separately so as to allow the user to see which part of the total variation in the concentration ratio is attributable to uncertainty and which part is attributable to variability. The authors illustrate the use of the method with a simplified aquatic risk assessment of nano-titanium dioxide. The authors' method allows a more transparent risk assessment and can also direct further environmental and toxicological research to the areas in which it is most needed. Environ Toxicol Chem 2016;35:2958-2967. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  6. Fuzzy-probabilistic multi agent system for breast cancer risk assessment and insurance premium assignment.

    Science.gov (United States)

    Tatari, Farzaneh; Akbarzadeh-T, Mohammad-R; Sabahi, Ahmad

    2012-12-01

    In this paper, we present an agent-based system for distributed risk assessment of breast cancer development employing fuzzy and probabilistic computing. The proposed fuzzy multi agent system consists of multiple fuzzy agents that benefit from fuzzy set theory to demonstrate their soft information (linguistic information). Fuzzy risk assessment is quantified by two linguistic variables of high and low. Through fuzzy computations, the multi agent system computes the fuzzy probabilities of breast cancer development based on various risk factors. By such ranking of high risk and low risk fuzzy probabilities, the multi agent system (MAS) decides whether the risk of breast cancer development is high or low. This information is then fed into an insurance premium adjuster in order to provide preventive decision making as well as to make appropriate adjustment of insurance premium and risk. This final step of insurance analysis also provides a numeric measure to demonstrate the utility of the approach. Furthermore, actual data are gathered from two hospitals in Mashhad during 1 year. The results are then compared with a fuzzy distributed approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A probabilistic method for computing quantitative risk indexes from medical injuries compensation claims.

    Science.gov (United States)

    Dalle Carbonare, S; Folli, F; Patrini, E; Giudici, P; Bellazzi, R

    2013-01-01

    The increasing demand of health care services and the complexity of health care delivery require Health Care Organizations (HCOs) to approach clinical risk management through proper methods and tools. An important aspect of risk management is to exploit the analysis of medical injuries compensation claims in order to reduce adverse events and, at the same time, to optimize the costs of health insurance policies. This work provides a probabilistic method to estimate the risk level of a HCO by computing quantitative risk indexes from medical injury compensation claims. Our method is based on the estimate of a loss probability distribution from compensation claims data through parametric and non-parametric modeling and Monte Carlo simulations. The loss distribution can be estimated both on the whole dataset and, thanks to the application of a Bayesian hierarchical model, on stratified data. The approach allows to quantitatively assessing the risk structure of the HCO by analyzing the loss distribution and deriving its expected value and percentiles. We applied the proposed method to 206 cases of injuries with compensation requests collected from 1999 to the first semester of 2007 by the HCO of Lodi, in the Northern part of Italy. We computed the risk indexes taking into account the different clinical departments and the different hospitals involved. The approach proved to be useful to understand the HCO risk structure in terms of frequency, severity, expected and unexpected loss related to adverse events.

  8. EVALUATION OF MILITARY ACTIVITY IMPACT ON HUMANS THROUGH A PROBABILISTIC ECOLOGICAL RISK ASSESSMENT. EXAMPLE OF A FORMER MISSILE BASE.

    Directory of Open Access Journals (Sweden)

    Sergiy ОREL

    2015-10-01

    Full Text Available The current article provides a methodology focused on the assessment of environmental factors after termination of military activity and uses a former missile base as an example. The assessment of environmental conditions is performed through an evaluation of the risks posed by the hazardous chemicals contained by underground and surface water sources and soil to human health . Moreover, by conducting deterministic and probabilistic risk assessments, the article determines that the probabilistic assessment provides more accurate and qualitative information for decision-making on the use of environmental protection measures, which often saves financial and material resources needed for their implementation.

  9. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  10. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  11. An integrated probabilistic risk analysis decision support methodology for systems with multiple state variables

    International Nuclear Information System (INIS)

    Sen, P.; Tan, John K.G.; Spencer, David

    1999-01-01

    Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored

  12. Use of probabilistic risk assessments to define areas of possible exemption from regulatory requirements

    International Nuclear Information System (INIS)

    Thompson, C.A.; Carlson, D.; Kolaczkowski, A.; LaChance, J.

    1988-01-01

    The Risk-Based Licensing Program (RBLP) was sponsored by the Department of Energy for the purpose of establishing and demonstrating an approach for identifying potential areas for exemption from current regulatory requirements in the licensing of nuclear power plants. Such an approach could assist in the improvement of the regulatory process for both current and future nuclear plant designs. Use of the methodology could result in streamlining the regulatory process by eliminating unnecessarily detailed reviews of portions of a plant design not important to risk. The RBLP methodology utilizes probabilistic risk assessments, (PRAs), which are required of all future applicants for nuclear power plant licenses. PRA results are used as a screening tool to determine the risk significance of various plant features which are correlated to the risk importance of regulations to identify potential areas for regulatory exemption. Additional consideration is then given to non-risk factors in the final determination of exemption candidates. The RBLP methodology was demonstrated using an existing PRA. The results of the demonstration are highlighted. 10 refs

  13. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    Science.gov (United States)

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  14. A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    S. Khericha

    2011-06-01

    This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of

  15. Probabilistic risk assessment from potential exposures to the public applied for innovative nuclear installations

    International Nuclear Information System (INIS)

    Dvorzhak, Alla; Mora, Juan C.; Robles, Beatriz

    2016-01-01

    Potential exposures are those that may occur as a result of unanticipated operational performance or accidents. Potential exposure situations are probabilistic in nature because they depend on uncertain events such as equipment failure, operator errors or external initiators beyond the control of the operator. Consequently, there may exist a range of possible radiological impacts that need to be considered. In this paper a Level 3 Probabilistic Safety Assessment (PSA) for a hypothetical scenario relevant to Innovative Nuclear Energy Systems (INS) was conducted using computer code MACCS (MELCOR Accident Consequence Code Systems). The acceptability of an INS was analyzed taking into account the general requirement that relocation or evacuation measures must not be necessary beyond the site boundary. In addition, deterministic modeling of the accident consequences for the critical meteorological conditions was carried out using the JRODOS decision support system (Real-time On-line Decision Support system for off-site emergency management in Europe). The approach used for dose and risk assessment from potential exposure of accidental releases and their comparison with acceptance criteria are presented. The methodology described can be used as input to the licensing procedure and engineering design considerations to help satisfy relevant health and environmental impact criteria for fission or fusion nuclear installations. - Highlights: • PSA Level-3 based on WinMACCS code is carried out for accidental release. • Family curves of percentiles for radiation exposure doses are constructed. • Risk indicators for potential exposure are defined. • Using of risk acceptance curve criteria is proposed for decision making process.

  16. Nuclear and isotopic techniques underpinning probabilistic ecological risk analysis in coastal marine systems

    International Nuclear Information System (INIS)

    Szymczak, R.; Twining, J.; Hollins, S.; Hughes, C.; Mazumder, D.; Alquezar, R.

    2006-01-01

    Full text: The historical operation of manufacturing, chemical and other industries in the Sydney Harbour catchment over many decades has left a legacy of high chemical contamination in the surrounding catchment, such that a recent report describes Port Jackson as one of the most contaminated harbours in the world (Birch and Taylor, 2005). The legacy in Homebush Bay is amongst the worst in the harbour and presents a considerable management problem. Elucidation of environmental processes is the key to effective ecosystem management, however few tools are available to determine their inter-relationships, rates and directions. This study has four components: (1) determination of linkages between high trophic order species and different habitats resources using stable isotopic analyses of carbon and nitrogen. These studies identify trophic cascades forming the basis for selection of biota for contaminant transfer experiments; (2) short-term (weeks - months) chronology and geochemistry of sediment cores and traps in Homebush Bay to determine rates of sedimentation and resuspension (using environmental/cosmogenic Be). Models derived from these studies provide the contaminants levels against which risk is assessed; (3) biokinetic studies using proxy radiotracer isotopes (eg. 75 Se and 109 Cd for analogous stable metals) of the uptake and trophic transfer of contaminants by specific estaurine biota. Here we identify the rates and extent to which contaminants accumulated and transferred to predators/seafoods; and (4) application of a probabilistic ecological risk assessment model (AQUARISK) set to criteria determined by stakeholder consensus. In this study we analysed the distribution of natural isotopes and redistribution of artificial isotopes injected into ecological compartments to determine the key trophic linkages and contaminant pathways in an estuarine system and contribute to improving the accuracy and specificity of a probabilistic ecological risk assessment

  17. A socio-technical, probabilistic risk assessment model for surgical site infections in ambulatory surgery centers.

    Science.gov (United States)

    Bish, Ebru K; El-Amine, Hadi; Steighner, Laura A; Slonim, Anthony D

    2014-10-01

    To understand how structural and process elements may affect the risk for surgical site infections (SSIs) in the ambulatory surgery center (ASC) environment, the researchers employed a tool known as socio-technical probabilistic risk assessment (ST-PRA). ST-PRA is particularly helpful for estimating risks in outcomes that are very rare, such as the risk of SSI in ASCs. Study objectives were to (1) identify the risk factors associated with SSIs resulting from procedures performed at ASCs and (2) design an intervention to mitigate the likelihood of SSIs for the most common risk factors that were identified by the ST-PRA for a particular surgical procedure. ST-PRA was used to study the SSI risk in the ASC setting. Both quantitative and qualitative data sources were utilized, and sensitivity analysis was performed to ensure the robustness of the results. The event entitled "fail to protect the patient effectively" accounted for 51.9% of SSIs in the ambulatory care setting. Critical components of this event included several failure risk points related to skin preparation, antibiotic administration, staff training, proper response to glove punctures during surgery, and adherence to surgical preparation rules related to the wearing of jewelry, watches, and artificial nails. Assuming a 75% reduction in noncompliance on any combination of 2 of these 5 components, the risk for an SSI decreased from 0.0044 to between 0.0027 and 0.0035. An intervention that targeted the 5 major components of the major risk point was proposed, and its implications were discussed.

  18. Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, T., E-mail: aldemir.1@osu.ed [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Guarro, S. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Mandelli, D. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Kirschenbaum, J. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Mangan, L.A. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Bucci, P. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Yau, M. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Ekici, E. [Ohio State University, Department of Electrical and Computer Engineering, Columbus, OH 43210 (United States); Miller, D.W.; Sun, X. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Arndt, S.A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2010-10-15

    The Markov/cell-to-cell mapping technique (CCMT) and the dynamic flowgraph methodology (DFM) are two system logic modeling methodologies that have been proposed to address the dynamic characteristics of digital instrumentation and control (I and C) systems and provide risk-analytical capabilities that supplement those provided by traditional probabilistic risk assessment (PRA) techniques for nuclear power plants. Both methodologies utilize a discrete state, multi-valued logic representation of the digital I and C system. For probabilistic quantification purposes, both techniques require the estimation of the probabilities of basic system failure modes, including digital I and C software failure modes, that appear in the prime implicants identified as contributors to a given system event of interest. As in any other system modeling process, the accuracy and predictive value of the models produced by the two techniques, depend not only on the intrinsic features of the modeling paradigm, but also and to a considerable extent on information and knowledge available to the analyst, concerning the system behavior and operation rules under normal and off-nominal conditions, and the associated controlled/monitored process dynamics. The application of the two methodologies is illustrated using a digital feedwater control system (DFWCS) similar to that of an operating pressurized water reactor. This application was carried out to demonstrate how the use of either technique, or both, can facilitate the updating of an existing nuclear power plant PRA model following an upgrade of the instrumentation and control system from analog to digital. Because of scope limitations, the focus of the demonstration of the methodologies was intentionally limited to aspects of digital I and C system behavior for which probabilistic data was on hand or could be generated within the existing project bounds of time and resources. The data used in the probabilistic quantification portion of the

  19. Interpretation of risk significance of passive component aging using probabilistic structural analysis

    International Nuclear Information System (INIS)

    Phillips, J.H.; Atwood, C.L.

    1993-01-01

    The probabilistic risk assessments (PRAs) being developed at most nuclear power plants to calculate the risk of core damage generally focus on the possible failure of active components. Except as initiating events, the possible failure of passive components is given little consideration. The NRC is sponsoring a project at INEL to investigate the risk significance of passive components as they age. For this project, we developed a technique to calculate the failure probability of passive components over time, and demonstrated the technique by applying it to a weld in the auxiliary feedwater (AFW) system. A decreasing yearly rupture rate for this weld was calculated instead of the increasing rupture rate trend one might expect. We attribute this result to infant mortality; that is, most of those initial flaws that will eventually lead to rupture will do so early in life. This means that although each weld in a population may be wearing out, the population as a whole can exhibit a decreasing rupture rate. This observation has implications for passive components in commercial nuclear plants and other facilities where aging is a concern. For the population of passive components that exhibit a decreasing failure rate, risk increase is not a concern. The next step of the work is to identify the attributes that contribute to this decreasing rate, and to determine any attributes that would contribute to an increasing failure rate and thus to an increased risk

  20. Risk follow-up by probabilistic safety assessment - experience from a Finnish pilot study

    International Nuclear Information System (INIS)

    Holmberg, Jan

    1996-01-01

    Risk follow-up by probabilistic safety assessment (PSA) provides a systematic method to analyze incidents. Events can be evaluated from the safety point of view to get feedback from operating experience, for the identification of risk contributors and for the verification of PSA models. This paper is concerned with the risk follow-up methodology, which is based on a marked point process framework. This framework provides a theoretically rigorous method for retrospective risk evaluations. Basic concepts for the modelling and an evaluation of the operating history by PSA are presented, and a Finnish pilot study on risk follow-up is summarized. We recommend the 'total memory approach' for the assessment of the unavailability of the standby safety systems. According to our experience, accurate evaluations with time-dependent component models are not necessarily needed but simplifying approximations can be used. The modelling of common cause failures remains a problem in practice, however, because there are not enough data to distinguish them properly

  1. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Diablo Canyon internal events PRA [Probabilistic Risk Assessment] review: Methodology and findings

    International Nuclear Information System (INIS)

    Fitzpatrick, R.G.; Bozoki, G.; Sabek, M.

    1990-01-01

    The review of the Diablo Canyon Probabilistic Risk Assessment (DCRPA) incorporated some new and innovative approaches. These were necessitated by the unprecedented size, scope and level of detail of the DCRPA, which was submitted to the NRC for licensing purposes. This paper outlines the elements of the internal events portion of the review citing selected findings to illustrate the various approaches employed. The paper also provides a description of the extensive and comprehensive importance analysis applied by BNL to the DCRPA model. Importance calculations included: top event/function level; individual split fractions; pair importances between frontline-support and support-support systems; system importance by initiator; and others. The paper concludes with a brief discussion of the effectiveness of the applied methodology. 3 refs., 5 tabs

  3. Seismic probabilistic risk assessment and seismic-margins studies for nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    Hwang, H.H.M.

    1987-01-01

    This report presents a review of the seismic probabilistic risk assessment and seismic margins studies for nuclear power plants in the United States. The techniques employed in these studies are briefly described. A few comments on the evaluation of the fragility of structures and equipment are discussed. Seismic PRA is a systematic process to evaluate the safety of nuclear power plants. In the process, it integrates all the elements such as seismic hazard, component fragility and plant system. Thus, it provides the overall view of the safety of an entire plant under a seismic event. The major tasks of a seismic PRA such as the evaluation of hazard curves, component fragilities. The concept and technique embodied in seismic PRA for nuclear power plants can be applied to other types of engineering facilities

  4. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  5. Review of the Oconee-3 probabilistic risk assessment: external events, core damage frequency. Volume 2

    International Nuclear Information System (INIS)

    Hanan, N.A.; Ilberg, D.; Xue, D.

    1986-03-01

    A review of the Oconee-3 Probabilistic Risk Assessment (OPRA) was conducted with the broad objective of evaluating qualitatively and quantitatively (as much as possible) the OPRA assessment of the important sequences that are ''externally'' generated and lead to core damage. The review included a technical assessment of the assumptions and methods used in the OPRA within its stated objective and with the limited information available. Within this scope, BNL performed a detailed reevaluation of the accident sequences generated by internal floods and earthquakes and a less detailed review (in some cases a scoping review) for the accident sequences generated by fires, tornadoes, external floods, and aircraft impact. 12 refs., 24 figs., 31 tabs

  6. The tsunami probabilistic risk assessment of nuclear power plant (3). Outline of tsunami fragility analysis

    International Nuclear Information System (INIS)

    Mihara, Yoshinori

    2012-01-01

    Tsunami Probabilistic Risk Assessment (PRA) standard was issued in February 2012 by Standard Committee of Atomic Energy Society of Japan (AESJ). This article detailed tsunami fragility analysis, which calculated building and structure damage probability contributing core damage and consisted of five evaluation steps: (1) selection of evaluated element and damage mode, (2) selection of evaluation procedure, (3) evaluation of actual stiffness, (4) evaluation of actual response and (5) evaluation of fragility (damage probability and others). As an application example of the standard, calculation results of tsunami fragility analysis investigation by tsunami PRA subcommittee of AESJ were shown reflecting latest knowledge of damage state caused by wave force and others acted by tsunami from the 'off the Pacific Coast of Tohoku Earthquake'. (T. Tanaka)

  7. Analytic Bayesian solution of the two-stage poisson-type problem in probabilistic risk analysis

    International Nuclear Information System (INIS)

    Frohner, F.H.

    1985-01-01

    The basic purpose of probabilistic risk analysis is to make inferences about the probabilities of various postulated events, with an account of all relevant information such as prior knowledge and operating experience with the specific system under study, as well as experience with other similar systems. Estimation of the failure rate of a Poisson-type system leads to an especially simple Bayesian solution in closed form if the prior probabilty implied by the invariance properties of the problem is properly taken into account. This basic simplicity persists if a more realistic prior, representing order of magnitude knowledge of the rate parameter, is employed instead. Moreover, the more realistic prior allows direct incorporation of experience gained from other similar systems, without need to postulate a statistical model for an underlying ensemble. The analytic formalism is applied to actual nuclear reactor data

  8. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico

    Science.gov (United States)

    Plant, Nathaniel G.; Wahl, Thomas; Long, Joseph W.

    2016-01-01

    We assess erosion and flooding risk in the northern Gulf of Mexico by identifying interdependencies among oceanographic drivers and probabilistically modeling the resulting potential for coastal change. Wave and water level observations are used to determine relationships between six hydrodynamic parameters that influence total water level and therefore erosion and flooding, through consideration of a wide range of univariate distribution functions and multivariate elliptical copulas. Using these relationships, we explore how different our interpretation of the present-day erosion/flooding risk could be if we had seen more or fewer extreme realizations of individual and combinations of parameters in the past by simulating 10,000 physically and statistically consistent sea-storm time series. We find that seasonal total water levels associated with the 100 year return period could be up to 3 m higher in summer and 0.6 m higher in winter relative to our best estimate based on the observational records. Impact hours of collision and overwash—where total water levels exceed the dune toe or dune crest elevations—could be on average 70% (collision) and 100% (overwash) larger than inferred from the observations. Our model accounts for non-stationarity in a straightforward, non-parametric way that can be applied (with little adjustments) to many other coastlines. The probabilistic model presented here, which accounts for observational uncertainty, can be applied to other coastlines where short record lengths limit the ability to identify the full range of possible wave and water level conditions that coastal mangers and planners must consider to develop sustainable management strategies.

  9. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds

    Science.gov (United States)

    Brian Kane; Paige S. Warren; Susannah B. Lerman

    2015-01-01

    Trees in towns and cities provide habitat for wildlife. In particular, cavity-nesting birds nest in the deadand decayed stems and branches of these trees. The same dead and decayed stems and branches alsohave a greater likelihood of failure, which, in some circumstances, increases risk. We examined 1760trees in Baltimore, MD, USA and western MA, USA, assessing tree...

  10. Development and Application of a Probabilistic Risk-Benefit Assessment Model for Infant Feeding Integrating Microbiological, Nutritional, and Chemical Components.

    Science.gov (United States)

    Boué, Géraldine; Cummins, Enda; Guillou, Sandrine; Antignac, Jean-Philippe; Le Bizec, Bruno; Membré, Jeanne-Marie

    2017-12-01

    A probabilistic and interdisciplinary risk-benefit assessment (RBA) model integrating microbiological, nutritional, and chemical components was developed for infant milk, with the objective of predicting the health impact of different scenarios of consumption. Infant feeding is a particular concern of interest in RBA as breast milk and powder infant formula have both been associated with risks and benefits related to chemicals, bacteria, and nutrients, hence the model considers these three facets. Cronobacter sakazakii, dioxin-like polychlorinated biphenyls (dl-PCB), and docosahexaenoic acid (DHA) were three risk/benefit factors selected as key issues in microbiology, chemistry, and nutrition, respectively. The present model was probabilistic with variability and uncertainty separated using a second-order Monte Carlo simulation process. In this study, advantages and limitations of undertaking probabilistic and interdisciplinary RBA are discussed. In particular, the probabilistic technique was found to be powerful in dealing with missing data and to translate assumptions into quantitative inputs while taking uncertainty into account. In addition, separation of variability and uncertainty strengthened the interpretation of the model outputs by enabling better consideration and distinction of natural heterogeneity from lack of knowledge. Interdisciplinary RBA is necessary to give more structured conclusions and avoid contradictory messages to policymakers and also to consumers, leading to more decisive food recommendations. This assessment provides a conceptual development of the RBA methodology and is a robust basis on which to build upon. © 2017 Society for Risk Analysis.

  11. Probabilistic risk assessment model for allergens in food: sensitivity analysis of the minimum eliciting dose and food consumption

    NARCIS (Netherlands)

    Kruizinga, A.G.; Briggs, D.; Crevel, R.W.R.; Knulst, A.C.; Bosch, L.M.C.v.d.; Houben, G.F.

    2008-01-01

    Previously, TNO developed a probabilistic model to predict the likelihood of an allergic reaction, resulting in a quantitative assessment of the risk associated with unintended exposure to food allergens. The likelihood is estimated by including in the model the proportion of the population who is

  12. Incorporating probabilistic seasonal climate forecasts into river management using a risk-based framework

    Science.gov (United States)

    Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji

    2013-01-01

    [1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.

  13. Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan.

    Science.gov (United States)

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Jui-Sheng; Wang, Sheng-Wei; Lee, Jin-Jing; Liu, Chen-Wuing

    2013-08-01

    Seafood farmed in arsenic (As)-contaminated areas is a major exposure pathway for the ingestion of inorganic As by individuals in the southwestern part of Taiwan. This study presents a probabilistic risk assessment using limited data for inorganic As intake through the consumption of the seafood by local residents in these areas. The As content and the consumption rate are both treated as probability distributions, taking into account the variability of the amount in the seafood and individual consumption habits. The Monte Carlo simulation technique is utilized to conduct an assessment of exposure due to the daily intake of inorganic As from As-contaminated seafood. Exposure is evaluated according to the provisional tolerable weekly intake (PTWI) established by the FAO/WHO and the target risk based on the US Environmental Protection Agency guidelines. The assessment results show that inorganic As intake from five types of fish (excluding mullet) and shellfish fall below the PTWI threshold values for the 95th percentiles, but exceed the target cancer risk of 10(-6). The predicted 95th percentile for inorganic As intake and lifetime cancer risks obtained in the study are both markedly higher than those obtained in previous studies in which the consumption rate of seafood considered is a deterministic value. This study demonstrates the importance of the individual variability of seafood consumption when evaluating a high exposure sub-group of the population who eat higher amounts of fish and shellfish than the average Taiwanese.

  14. Expert elicitation for deriving input data for probabilistic risk assessment of shipwrecks.

    Science.gov (United States)

    Landquist, H; Norrman, J; Lindhe, A; Norberg, T; Hassellöv, I-M; Lindgren, J F; Rosén, L

    2017-12-15

    The necessity of having a process in place for adequate risk assessment of shipwrecks that pose a threat to the marine environment is today internationally acknowledged. However, retrieving the desired data for such a risk assessment can prove challenging. One means of addressing this problem is to make use of experts' knowledge and experience. The purpose of this paper is therefore to present and analyse data for risk assessment of shipwrecks derived by expert elicitation. The main outcome is the experts' estimations of (i) the generic probability of an opening in a shipwreck due to the occurrence of a number of activities and (ii) estimations of the degree to which site-specific and wreck-specific indicators affect the probability of opening. Results show that the derived information is applicable in probabilistic shipwreck risk assessment and that the VRAKA framework now contains needed information for integrating generic and site-specific information using Bayesian updating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides.

    Science.gov (United States)

    van der Voet, Hilko; de Boer, Waldo J; Kruisselbrink, Johannes W; Goedhart, Paul W; van der Heijden, Gerie W A M; Kennedy, Marc C; Boon, Polly E; van Klaveren, Jacob D

    2015-05-01

    Pesticide risk assessment is hampered by worst-case assumptions leading to overly pessimistic assessments. On the other hand, cumulative health effects of similar pesticides are often not taken into account. This paper describes models and a web-based software system developed in the European research project ACROPOLIS. The models are appropriate for both acute and chronic exposure assessments of single compounds and of multiple compounds in cumulative assessment groups. The software system MCRA (Monte Carlo Risk Assessment) is available for stakeholders in pesticide risk assessment at mcra.rivm.nl. We describe the MCRA implementation of the methods as advised in the 2012 EFSA Guidance on probabilistic modelling, as well as more refined methods developed in the ACROPOLIS project. The emphasis is on cumulative assessments. Two approaches, sample-based and compound-based, are contrasted. It is shown that additional data on agricultural use of pesticides may give more realistic risk assessments. Examples are given of model and software validation of acute and chronic assessments, using both simulated data and comparisons against the previous release of MCRA and against the standard software DEEM-FCID used by the Environmental Protection Agency in the USA. It is shown that the EFSA Guidance pessimistic model may not always give an appropriate modelling of exposure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  17. Probabilistic risk analysis of mercury intake via food consumption in Spain.

    Science.gov (United States)

    Moreno-Ortega, Alicia; Moreno-Rojas, Rafael; Martínez-Álvarez, Jesús Román; González Estecha, Montserrat; Castro González, Numa Pompilio; Amaro López, Manuel Ángel

    2017-09-01

    In Spain, recently, the public institutions have given information to the population in relation to fish consumption and the risk that it poses to health from the ingestion of mercury supposedly contained in the fish. At the same time, several scientific societies have published various works in this direction. All this without there being, up to now, any study on the evaluation of a probabilistic risk from mercury due to fish and seafood intake in Spain, which is the objective of this present work. For that purpose, we took individual data from a survey of the total diet of 3000 people, whose consumption of the principal fish and seafood species (49) was estimated. We compiled individualized data (2000) on the total mercury content of those species, which were completed and validated with bibliographic statistical data. After estimating the distributions of each fish and seafood species, both of their consumption and their mercury content, a simulation was made of the distribution of mercury ingestion from fish and seafood offered by 2.6% of the Spanish population at risk of exceeding total mercury recommendations, and between 12.2% and 21.2% of those exceeding methylmercury ones. The main species responsible were tuna fish, swordfish and hake, and significant differences were identified in fish consumption between sexes and ages, although, in the risk percentage, what stands out is an increase in the latter with an increase in age. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Fault-tree analysis for probabilistic assessment of radioactive-waste segregation: an application to a plastic clay formation at a specific site

    International Nuclear Information System (INIS)

    D'Alessandro, M.; Bonne, A.

    1982-01-01

    This study concerns a probabilistic safety analysis of potential nuclear-waste repository which may be mined into a Tertiary clay formation underlying the Nuclear Research Centre at Mol (Belgium). The value of the geological barrier has been analyzed in probabilistic terms through the application of the Fault-Tree Analysis (FTA) which can answer two main questions: how can the barrier fail (query) and what is the failure probability (query). FTA has been applied to conceptual radioactive-waste disposal systems. In this paper this methodology has been applied to a specific clay formation, to test the applicability of the procedure to a potential site. With this aim, release probabilities to three different receptors (groundwater, land surface, and atmosphere) were estimated for four different time periods. Because of obvious uncertainties in geology predictive capabilities, a probability band has been obtained. Faulting phenomena are among the main mechanisms having the potential to cause release to groundwater, whereas direct releases to land surface may be linked to various glacial phenomena; on short term, different types of human actions may be important. The overall failure probabilities seem to be sufficiently low to offer a good safety margin. (author)

  19. Approximate dynamic fault tree calculations for modelling water supply risks

    International Nuclear Information System (INIS)

    Lindhe, Andreas; Norberg, Tommy; Rosén, Lars

    2012-01-01

    Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

  20. The probabilistic risk analysis of external hazards of an interim storage for spent nuclear fuel in Olkiluoto

    International Nuclear Information System (INIS)

    Puukka, Tiia

    2014-01-01

    Due to natural disasters occurred in the world and the experiences perceived of the Fukushima nuclear accident, the particular knowledge of the role and influence of external hazards in the safety of interim storage of spent nuclear fuel has been emphasized. For that reason it is substantial that they are included in the probabilistic risk assessment (PRA) of the interim storage facility. This is also required by the Regulatory Guides issued by The Finnish Radiation and Nuclear Safety Authority STUK. To enhance safety culture and nuclear safety in Olkiluoto, The Finnish utility Teollisuuden Voima Oyj has recently completed an analysis of external natural (seismic events are studied as a separate analysis) and unintentional human-induced risks associated with the spent fuel pool cooling and decay heat removal systems as part of the full-scope PRA study for the interim storage of spent fuel (KPA store). The analysis had four goals to achieve: (1) to determine the definition of an initiating event in the context of the KPA store, (2) to identify all potential external hazards and hazard combinations, (3) to perform a qualitative screening analysis based on frequency-strength analysis and detailed plant responses analysis and (4) to model the hazards passed the screening analysis so that model can be used as a risk analysis tool in the risk informed decision making and operating procedures. The assessment carried out included the analysis of operation procedures of decay heat removal, the study of external hazards related initiating events included in the PRA of the OL1 and OL2 nuclear power plants and their dependencies on the initiating events of the KPA store. All external hazards related initiating events were modeled using fault tree linking method. The main result and conclusion of this study was that using the screening analysis, initiating events caused by external hazards that could lead to leakage of the spent fuel pools or that could pose a threat to the

  1. Probabilistic Modeling of Seismic Risk Based Design for a Dual System Structure

    Directory of Open Access Journals (Sweden)

    Indra Djati Sidi

    2017-04-01

    Full Text Available The dual system structure concept has gained popularity in the construction of high-rise buildings over the last decades. Meanwhile, earthquake engineering design provisions for buildings have moved from the uniform hazard concept to the uniform risk concept upon recognizing the uncertainties involved in the earthquake resistance of concrete structures. In this study, a probabilistic model for the evaluation of such risk is proposed for a dual system structure consisting of shear walls or core walls and a moment frame structure as earthquake resistant structure. Uncertainties in the earthquake resistance of the dual system structure due to record-to-record variability, limited amount of data, material variability and structure modeling are included in the formulation by means of the first-order second-moment method. The statistics of resistance against earthquake forces are estimated by making use of incremental nonlinear time history analysis using 10 recorded earthquake histories. Then, adopting the total probability theorem, the reliability of the structure is evaluated through a risk integral scheme by combining the earthquake resistance of the structure with the annual probability of exceedance for a given location where the building is being constructed.

  2. Use of probabilistic risk assessment (PRA) in expert systems to advise nuclear plant operators and managers

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1988-01-01

    The use of expert systems in nuclear power plants to provide advice to managers, supervisors and/or operators is a concept that is rapidly gaining acceptance. Generally, expert systems rely on the expertise of human experts or knowledge that has been codified in publications, books, or regulations to provide advice under a wide variety of conditions. In this work, a probabilistic risk assessment (PRA) of a nuclear power plant performed previously is used to assess the safety status of nuclear power plants and to make recommendations to the plant personnel. Nuclear power plants have many redundant systems and can continue to operate when one or more of these systems is disabled or removed from service for maintenance or testing. PRAs provide a means of evaluating the risk to the public associated with the operation of nuclear power plants with components or systems out of service. While the choice of the source term and methodology in a PRA may influence the absolute probability and consequences of a core melt, the ratio of the PRA calculations for two configurations of the same plant, carried out on a consistent basis, can readily identify the increase in risk associated with going from one configuration to the other

  3. Human and management factors in probabilistic risk analysis: the SAM approach and observations from recent applications

    Energy Technology Data Exchange (ETDEWEB)

    Elisabeth Pate-Cornell, M.; Murphy, Dean M

    1996-08-01

    Most severe industrial accidents have been shown to involve one or more human errors and these are generally rooted in management problems. The objective of this paper is to draw some conclusions from the experience that we have acquired from three different studies of this phenomenon: (1) the Piper Alpha accident including problems of operations management and fire risks on-board offshore platforms, (2) the management of the heat shield of the NASA space shuttle orbiter, and (3) the roots of patient risks in anaesthesia. This paper describes and illustrates the SAM approach (System-Action-Management) that was developed and used in these studies to link the probabilities of system failures to human and management factors. This SAM model includes: first, a probabilistic risk analysis of the physical system, second, an analysis of the decisions and actions that affect the probabilities of its basic events, and third, a study of the management factors that influence those decisions and actions. In the three initial studies, the analytical links (conditional probabilities) among these three submodels were coarsely quantified based on statistical data whenever available, or most often, on expert opinions. This paper describes some observations that were made across these three studies, for example, the importance of the informal reward system, the difficulties in the communication of uncertainties, the problems of managing resource constraints, and the safety implications of the short cuts that they often imply.

  4. Probabilistic risk assessment for the Sandia National Laboratories Technical Area V Liquid Waste Disposal System surface impoundments

    International Nuclear Information System (INIS)

    Dawson, L.A.; Eidson, A.F.

    1996-01-01

    A probabilistic risk assessment was completed for a former radioactive waste disposal site. The site, two unlined surface impoundment, was designed as part of the Liquid Waste Disposal System (LWDS) to receive radioactive effluent from nuclear reactors in Technical Area-V (TA-V) at Sandia National Laboratories/New Mexico (SNL/NM). First, a statistical comparison of site sampling results to natural background, using EPA methods, and a spatial distribution analysis were performed. Risk assessment was conducted with SNL/NM's Probabilistic Risk Evaluation and Characterization Investigation System model. The risk assessment indicated that contamination from several constituents might have been high enough to require remediation. However, further analysis based on expected site closure activities and recent EPA guidance indicated that No Further Action was acceptable

  5. Urban Tree Risk Management:A Community Guide to Program Design and Implementation

    Science.gov (United States)

    Jill Pokorny; Joseph O' Brien; Richard Hauer; Gary Johnson; Jana Albers; Peter Bedker; Manfred Mielke

    2003-01-01

    Urban Tree Risk Management: A Community Guide to Program Design and Implementation is a fully illustrated, easy to read training manual written for community leaders, administrators, city foresters, parks and public works staff, and private tree care practitioners. The manual is designed to assist communities design, adopt and implement tree risk management programs,...

  6. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    OpenAIRE

    Lo , Chung-Kung; Pedroni , N.; Zio , Enrico

    2014-01-01

    International audience; The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk a...

  7. Probabilistic meta-analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia

    OpenAIRE

    Miguel García, Eduardo de; Ortega Romero, Marcelo; Gómez San Martín, Amaia; Clavijo, Diana

    2014-01-01

    Colombia is one of the largest per capita mercury polluters in the world as a consequence of its artisanal gold mining activities. The severity of this problem in terms of potential health effects was evaluated by means of a probabilistic risk assessment carried out in the twelve departments (or provinces) in Colombia with the largest gold production. The two exposure pathways included in the risk assessment were inhalation of elemental Hg vapors and ingestion of fish contaminated with methyl...

  8. Probabilistic Risk Assessment of Cancer from Exposure Inorganic Arsenic in Duplicate Food by Villagers in Ronphibun, Thailand

    OpenAIRE

    Piyawat Saipan

    2010-01-01

    Ronphibun district is a district in Nakorn Si Thammarat province, within southern Thailand. This district is the site of several former tin mines that were in operation 100 years ago. Arsenic contamination caused by past mining activities remains in the area. The specific purpose of this study was conducted to assess cancer risk in people living within Ronphibun district from exposure to inorganic arsenic via duplicate food using probabilistic risk assessment. A hundred and fifty duplicate fo...

  9. Shuttle Risk Progression: Use of the Shuttle Probabilistic Risk Assessment (PRA) to Show Reliability Growth

    Science.gov (United States)

    Hamlin, Teri L.

    2011-01-01

    It is important to the Space Shuttle Program (SSP), as well as future manned spaceflight programs, to understand the early mission risk and progression of risk as the program gains insights into the integrated vehicle through flight. The risk progression is important to the SSP as part of the documentation of lessons learned. The risk progression is important to future programs to understand reliability growth and the first flight risk. This analysis uses the knowledge gained from 30 years of operational flights and the current Shuttle PRA to calculate the risk of Loss of Crew and Vehicle (LOCV) at significant milestones beginning with the first flight. Key flights were evaluated based upon historical events and significant re-designs. The results indicated that the Shuttle risk tends to follow a step function as opposed to following a traditional reliability growth pattern where risk exponentially improves with each flight. In addition, it shows that risk can increase due to trading safety margin for increased performance or due to external events. Due to the risk drivers not being addressed, the risk did not improve appreciably during the first 25 flights. It was only after significant events occurred such as Challenger and Columbia, where the risk drivers were apparent, that risk was significantly improved. In addition, this paper will show that the SSP has reduced the risk of LOCV by almost an order of magnitude. It is easy to look back afte r 30 years and point to risks that are now obvious, however; the key is to use this knowledge to benefit other programs which are in their infancy stages. One lesson learned from the SSP is understanding risk drivers are essential in order to considerably reduce risk. This will enable the new program to focus time and resources on identifying and reducing the significant risks. A comprehensive PRA, similar to that of the Shuttle PRA, is an effective tool quantifying risk drivers if support from all of the stakeholders is

  10. Caffeine and paraxanthine in aquatic systems: Global exposure distributions and probabilistic risk assessment.

    Science.gov (United States)

    Rodríguez-Gil, J L; Cáceres, N; Dafouz, R; Valcárcel, Y

    2018-01-15

    This study presents one of the most complete applications of probabilistic methodologies to the risk assessment of emerging contaminants. Perhaps the most data-rich of these compounds, caffeine, as well as its main metabolite (paraxanthine), were selected for this study. Information for a total of 29,132 individual caffeine and 7442 paraxanthine samples was compiled, including samples where the compounds were not detected. The inclusion of non-detect samples (as censored data) in the estimation of environmental exposure distributions (EEDs) allowed for a realistic characterization of the global presence of these compounds in aquatic systems. EEDs were compared to species sensitivity distributions (SSDs), when possible, in order to calculate joint probability curves (JPCs) to describe the risk to aquatic organisms. This way, it was determined that unacceptable environmental risk (defined as 5% of the species being potentially exposed to concentrations able to cause effects in>5% of the cases) could be expected from chronic exposure to caffeine from effluent (28.4% of the cases), surface water (6.7% of the cases) and estuary water (5.4% of the cases). Probability of exceedance of acute predicted no-effect concentrations (PNECs) for paraxanthine were higher than 5% for all assessed matrices except for drinking water and ground water, however no experimental effects data was available for paraxanthine, resulting in a precautionary deterministic hazard assessment for this compound. Given the chemical similarities between both compounds, real effect thresholds, and thus risk, for paraxanthine, would be expected to be close to those observed for caffeine. Negligible Human health risk from exposure to caffeine via drinking or groundwater is expected from the compiled data. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Probabilistic ecological risk assessment of effluent toxicity of a wastewater reclamation plant based on process modeling.

    Science.gov (United States)

    Zeng, Siyu; Huang, Yunqing; Sun, Fu; Li, Dan; He, Miao

    2016-09-01

    The growing use of reclaimed wastewater for environmental purposes such as stream flow augmentation requires comprehensive ecological risk assessment and management. This study applied a system analysis approach, regarding a wastewater reclamation plant (WRP) and its recipient water body as a whole system, and assessed the ecological risk of the recipient water body caused by the WRP effluent. Instead of specific contaminants, two toxicity indicators, i.e. genotoxicity and estrogenicity, were selected to directly measure the biological effects of all bio-available contaminants in the reclaimed wastewater, as well as characterize the ecological risk of the recipient water. A series of physically based models were developed to simulate the toxicity indicators in a WRP through a typical reclamation process, including ultrafiltration, ozonation, and chlorination. After being validated against the field monitoring data from a full-scale WRP in Beijing, the models were applied to simulate the probability distribution of effluent toxicity of the WRP through Latin Hypercube Sampling to account for the variability of influent toxicity and operation conditions. The simulated effluent toxicity was then used to derive the predicted environmental concentration (PEC) in the recipient stream, considering the variations of the toxicity and flow of the upstream inflow as well. The ratio of the PEC of each toxicity indicator to its corresponding predicted no-effect concentration was finally used for the probabilistic ecological risk assessment. Regional sensitivity analysis was also performed with the developed models to identify the critical control variables and strategies for ecological risk management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using Probabilistic Seismic Hazard Analysis in Assessing Seismic Risk for Taipei City and New Taipei City

    Science.gov (United States)

    Hsu, Ming-Kai; Wang, Yu-Ju; Cheng, Chin-Tung; Ma, Kuo-Fong; Ke, Siao-Syun

    2016-04-01

    In this study, we evaluate the seismic hazard and risk for Taipei city and new Taipei city, which are important municipalities and the most populous cities in Taiwan. The evaluation of seismic risk involves the combination of three main components: probabilistic seismic hazard model, exposure model defining the spatial distribution of elements exposed to the hazard and vulnerability functions capable of describing the distribution of percentage of loss for a set of intensity measure levels. Seismic hazard at Taipei city and New Taipei city assumed as the hazard maps are presented in terms of ground motion values expected to be exceed at a 10% probability level in 50 years (return period 475 years) and a 2% probability level in 50 years (return period 2475 years) according to the Taiwan Earthquake Model (TEM), which assesses two seismic hazard models for Taiwan. The first model adopted the source parameters of 38 seismogenic structures identified by the TEM geologists. The other model considered 33 active faults and was published by the Central Geological Survey (CGS), Taiwan, in 2010. The 500m by 500m Grid-based building data were selected for the evaluation which capable of providing detail information about the location, value and vulnerability classification of the exposed elements. The results from this study were evaluated by the Openquake engine, the open-source software for seismic risk and hazard assessment developed within the global earthquake model (GEM) initiative. Our intention is to give the first attempt on the modeling the seismic risk from hazard in an open platform for Taiwan. An analysis through disaggregation of hazard components will be also made to prioritize the risk for further policy making.

  13. Microbial quality of reclaimed water for urban reuses: Probabilistic risk-based investigation and recommendations.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-01-15

    Although Canada has abundant freshwater resources, many cities still experience seasonal water shortage. Supply-side and demand-side management is a core strategy to address this water shortage. Under this strategy, reclaimed water, which the Canadian public is willing to use for non-potable purposes, is an option. However, no universal guidelines exist for reclaimed water use. Despite the federal government's long-term goal to develop guidelines for many water reuse applications, guidelines have only been prescribed for reclaimed water use in toilet and urinal flushing in Canada. At the provincial level, British Columbia (BC) has promulgated guidelines for wide applications of reclaimed water but only at broad class levels. This research has investigated and proposed probabilistic risk-based recommended values for microbial quality of reclaimed water in various non-potable urban reuses. The health risk was estimated by using quantitative microbial risk assessment. Two-dimensional Monte Carlo simulations were used in the analysis to include variability and uncertainty in input data. The proposed recommended values are based on the indicator organism E. coli. The required treatment levels for reuse were also estimated. In addition, the recommended values were successfully applied to three wastewater treatment effluents in the Okanagan Valley, BC, Canada. The health risks associated with other bacterial pathogens (Campylobacter jejuni and Salmonella spp.), virus (adenovirus, norovirus, and rotavirus), and protozoa (Cryptosporidium parvum and Giardia spp.), were also estimated. The estimated risks indicate the effectiveness of the E. coli-based water quality recommended values. Sensitivity analysis shows the pathogenic E. coli ratio and morbidity are the most sensitive input parameters for all water reuses. The proposed recommended values could be further improved by using national or regional data on water exposures, disease burden per case, and the susceptibility

  14. Implementation of a risk assessment tool based on a probabilistic safety assessment developed for radiotherapy practices

    Energy Technology Data Exchange (ETDEWEB)

    Paz, A.; Godinez, V.; Lopez, R., E-mail: abpaz@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-10-15

    The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)

  15. A Probabilistic Risk Analysis (PRA) of Human Space Missions for the Advanced Integration Matrix (AIM)

    Science.gov (United States)

    Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.

    2003-01-01

    The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.

  16. Integration of human reliability analysis into the probabilistic risk assessment process: phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1985-01-01

    The US Nuclear Regulatory Commission and Pacific Northwest Laboratory initiated a research program in 1984 to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  17. Overview of methods for uncertainty analysis and sensitivity analysis in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.; Helton, J.C.

    1985-01-01

    Probabilistic Risk Assessment (PRA) is playing an increasingly important role in the nuclear reactor regulatory process. The assessment of uncertainties associated with PRA results is widely recognized as an important part of the analysis process. One of the major criticisms of the Reactor Safety Study was that its representation of uncertainty was inadequate. The desire for the capability to treat uncertainties with the MELCOR risk code being developed at Sandia National Laboratories is indicative of the current interest in this topic. However, as yet, uncertainty analysis and sensitivity analysis in the context of PRA is a relatively immature field. In this paper, available methods for uncertainty analysis and sensitivity analysis in a PRA are reviewed. This review first treats methods for use with individual components of a PRA and then considers how these methods could be combined in the performance of a complete PRA. In the context of this paper, the goal of uncertainty analysis is to measure the imprecision in PRA outcomes of interest, and the goal of sensitivity analysis is to identify the major contributors to this imprecision. There are a number of areas that must be considered in uncertainty analysis and sensitivity analysis for a PRA: (1) information, (2) systems analysis, (3) thermal-hydraulic phenomena/fission product behavior, (4) health and economic consequences, and (5) display of results. Each of these areas and the synthesis of them into a complete PRA are discussed

  18. The development and use of parametric sampling techniques for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Dalrymple, G.J.; Broyd, T.W.

    1987-01-01

    In order to enable evaluation to be made of proposals for the underground disposal of low and intermediate level radioactive wastes in the United Kingdom, the Department of the Environment (DoE) research programme includes development of computer-based methods for use in a multistage assessment process. To test the adequacy of the various methods of data acquisitions and radiological assessment a mock assessment exercise is currently being conducted by the department. This paper outlines the proposed methodology which provides for the use of probabilistic modelling based upon the Atomic Energy of Canada Ltd SYVAC variability analysis approach using new models (SYVAC 'A') and data appropriate to UK conditions for a deep horizontal tunnel repository concept. This chapter describes the choice of a suitable technique for the sampling of data input to the SYVAC 'A' model and techniques for analysing the predictions of dose and risk made by the model. The sensitivity of the model predictions (risk and dose to man) to the input parameters was compared for four different methods. All four methods identified the same geological parameters as the most important. (author)

  19. Designing, operating and maintaining artificial recharge pond under uncertainty: a probabilistic risk analysis

    Science.gov (United States)

    Pedretti, D.; Sanchez-Vila, X.; Fernandez-Garcia, D.; Bolster, D.; Tartakovsky, D. M.; Barahona-Palomo, M.

    2011-12-01

    Decision makers require long term effective hydraulic criteria to optimize the design of artificial recharge ponds. However, uncontrolled multiscale pore clogging effects on heterogeneous soils determines uncertainties which must be quantified. One of the most remarkable effect is the reduction of infiltration capacity over time, which affect the quantity and quality of aquifer recharging water. We developed a probabilistic (engineering) risk analysis where pore clogging is modeled as an exponential decay with time and where clogging mechanisms are differently sensitive to some properties of the soils, which are heterogeneously organized in space. We studied both a real case and some synthetic infiltration ponds. The risk is defined for the infiltration capacity to drop below a target value at a specific time after the facility is working. We can account for a variety of maintenance strategies that target different clogging mechanisms. In our analysis, physical clogging mechanisms induce the greatest uncertainty and that maintenance targeted at these can yield optimal results. However, considering the fundamental role of the spatial variability in the initial properties, we conclude that an adequate initial characterization of the surface infiltration ponds is strategically critical to determine the degree of uncertainty of different maintenance solutions and thus to make cost-effective and reliable decisions.

  20. The EBR-II probabilistic risk assessment lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1994-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  1. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  2. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

    Science.gov (United States)

    Lowe, Rachel; Coelho, Caio AS; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-01-01

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. DOI: http://dx.doi.org/10.7554/eLife.11285.001 PMID:26910315

  3. Probabilistic Human Health Risk Assessment of Chemical Mixtures: Hydro-Toxicological Interactions and Controlling Factors

    Science.gov (United States)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2014-12-01

    Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect

  4. A probabilistic transmission and population dynamic model to assess tuberculosis infection risk.

    Science.gov (United States)

    Liao, Chung-Min; Cheng, Yi-Hsien; Lin, Yi-Jun; Hsieh, Nan-Hung; Huang, Tang-Luen; Chio, Chia-Pin; Chen, Szu-Chieh; Ling, Min-Pei

    2012-08-01

    The purpose of this study was to examine tuberculosis (TB) population dynamics and to assess potential infection risk in Taiwan. A well-established mathematical model of TB transmission built on previous models was adopted to study the potential impact of TB transmission. A probabilistic risk model was also developed to estimate site-specific risks of developing disease soon after recent primary infection, exogenous reinfection, or through endogenous reactivation (latently infected TB) among Taiwan regions. Here, we showed that the proportion of endogenous reactivation (53-67%) was larger than that of exogenous reinfection (32-47%). Our simulations showed that as epidemic reaches a steady state, age distribution of cases would finally shift toward older age groups dominated by latently infected TB cases as a result of endogenous reactivation. A comparison of age-weighted TB incidence data with our model simulation output with 95% credible intervals revealed that the predictions were in an apparent agreement with observed data. The median value of overall basic reproduction number (R₀) in eastern Taiwan ranged from 1.65 to 1.72, whereas northern Taiwan had the lowest R₀ estimate of 1.50. We found that total TB incidences in eastern Taiwan had 25-27% probabilities of total proportion of infected population exceeding 90%, whereas there were 36-66% probabilities having exceeded 20% of total proportion of infected population attributed to latently infected TB. We suggested that our Taiwan-based analysis can be extended to the context of developing countries, where TB remains a substantial cause of elderly morbidity and mortality. © 2012 Society for Risk Analysis.

  5. Probabilistic safety assessment. A systematic and comprehensive method to evaluate risk

    International Nuclear Information System (INIS)

    Berg, H.P.

    2009-01-01

    Probabilistic safety assessment (PSA) is a systematic and comprehensive methodology to evaluate risks with every life-cycle aspect of a complex engineered technological entity such as a chemical facility, a spacecraft or a nuclear power plant. PSA can help to identify possible weaknesses of the plant design but also to provide insights into the existing safety margins for event sequences exceeding the design limits. A further benefit of PSA in this context is to show the existing safety margins correlating the original design criteria and boundary conditions and the real operating experience (e.g. by comparing the expected loads on structures, systems and components with the actual situation since a lot of years of operation). In that sense PSA is a very useful tool to complement deterministic insights in safety evaluation, as far its quality, scope and documentation is sufficient, and a strong co-ordination between both areas exist. At present, probabilistic tools to support the safety assessment of operating nuclear power plants built to earlier standards and/or the judgement of the safety relevance of certain back fitting measures are applied by the utilities, experts and regulators. Therefore, most operating nuclear power plants worldwide have been studied using PSA methods. Usually, a level 1 internal events PSA has been performed on all plants. In the last years, in some countries this has been extended to a level 1, also investigating some external hazards, or a level 2 PSA. However, in several cases the level 2 PSA is limited to the determination of the large early release frequency and is not a complete Level 2 analysis of plant damage states. The importance to use PSA already in the design phase of a nuclear power plant is growing because the model combines front-line safety systems and support systems in a manner that allows designers to determine the risk importance of structures, systems and components, to classify the respective requirements and to

  6. Uses of human reliability analysis probabilistic risk assessment results to resolve personnel performance issues that could affect safety

    International Nuclear Information System (INIS)

    O'Brien, J.N.; Spettell, C.M.

    1985-10-01

    This report is the first in a series which documents research aimed at improving the usefulness of Probabilistic Risk Assessment (PRA) results in addressing human risk issues. This first report describes the results of an assessment of how well currently available PRA data addresses human risk issues of current concern to NRC. Findings indicate that PRA data could be far more useful in addressing human risk issues with modification of the development process and documentation structure of PRAs. In addition, information from non-PRA sources could be integrated with PRA data to address many other issues. 12 tabs

  7. Xplicit, a novel approach in probabilistic spatiotemporally explicit exposure and risk assessment for plant protection products.

    Science.gov (United States)

    Schad, Thorsten; Schulz, Ralf

    2011-10-01

    The quantification of risk (the likelihood and extent of adverse effects) is a prerequisite in regulatory decision making for plant protection products and is the goal of the Xplicit project. In its present development stage, realism is increased in the exposure assessment (EA), first by using real-world data on, e.g., landscape factors affecting exposure, and second, by taking the variability of key factors into account. Spatial and temporal variability is explicitly addressed. Scale dependencies are taken into account, which allows for risk quantification at different scales, for example, at landscape scale, an overall picture of the potential exposure of nontarget organisms can be derived (e.g., for all off-crop habitats in a given landscape); at local scale, exposure might be relevant to assess recovery and recolonization potential; intermediate scales might best refer to population level and hence might be relevant for risk management decisions (e.g., individual off-crop habitats). The Xplicit approach is designed to comply with a central paradigm of probabilistic approaches, namely, that each individual case that is derived from the variability functions employed should represent a potential real-world case. This is mainly achieved by operating in a spatiotemporally explicit fashion. Landscape factors affecting the local exposure of habitats of nontarget species (i.e., receptors) are derived from geodatabases. Variability in time is resolved by operating at discrete time steps, with the probability of events (e.g., application) or conditions (e.g., wind conditions) defined in probability density functions (PDFs). The propagation of variability of parameters into variability of exposure and risk is done using a Monte Carlo approach. Among the outcomes are expectancy values on the realistic worst-case exposure (predicted environmental concentration [PEC]), the probability p that the PEC exceeds the ecologically acceptable concentration (EAC) for a given

  8. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  9. Novel Threat-risk Index Using Probabilistic Risk Assessment and Human Reliability Analysis - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George A. Beitel

    2004-02-01

    In support of a national need to improve the current state-of-the-art in alerting decision makers to the risk of terrorist attack, a quantitative approach employing scientific and engineering concepts to develop a threat-risk index was undertaken at the Idaho National Engineering and Environmental Laboratory (INEEL). As a result of this effort, a set of models has been successfully integrated into a single comprehensive model known as Quantitative Threat-Risk Index Model (QTRIM), with the capability of computing a quantitative threat-risk index on a system level, as well as for the major components of the system. Such a threat-risk index could provide a quantitative variant or basis for either prioritizing security upgrades or updating the current qualitative national color-coded terrorist threat alert.

  10. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Bley, Dennis C. (Buttonwood Consulting Inc., Oakton, VA); Lois, Erasmia (U.S. Nuclear Regulatory Commission, Washington, DC); Kolaczkowski, Alan M. (Science Applications International Corporation, Eugene, OR); Forester, John Alan; Wreathall, John (John Wreathall and Co., Dublin, OH); Cooper, Susan E. (U.S. Nuclear Regulatory Commission, Washington, DC)

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

  11. Probabilistic risk assessment for back-end facilities: Improving the treatment of fire and explosion scenarios

    International Nuclear Information System (INIS)

    Sunman, C.R.J.; Campbell, R.J.; Wakem, M.J.

    1996-01-01

    The nuclear reprocessing facilities at Sellafield are a key component of the International business of BNFL. The operations carried out at the site extend from the receipt and storage of irradiated fuel, chemical reprocessing, plutonium and uranium finishing, through mixed oxide fuel production. Additionally there are a wide range of supporting processes including solid waste encapsulation, vitrification, liquid waste evaporation and treatment. Decommissioning of the site's older facilities is also proceeding. The comprehensive range of these activities requires that the safety assessment team keeps up to date with developments in the field, as well as conducting and sponsoring appropriate research into methodologies and modelling in order to deliver a cost effective, timely service. This paper will review the role of Probabilistic Risk Assessment (PRA) in safety cases for operations at Sellafield and go on to describe some areas of PRA methodology development in the UK and in which BNFL is a contributor. Finally the paper will summarise some specific areas of methodology development associated with improving the modelling of fire and explosion hazards which are specific to BNFL. (author)

  12. Application of sensitivity analysis in nuclear power plant probabilistic risk assessment studies

    International Nuclear Information System (INIS)

    Hirschberg, S.; Knochenhauer, M.

    1986-01-01

    Nuclear power plant probabilistic risk assessment (PRA) studies utilise many models, simplifications and assumptions. Also subjective judgement is widely applied due to lack of actual data. This results in significant uncertainties. Three general types of uncertainties have been identified: (1) parameter uncertainties, (2) modelling uncertainties, and (3) completeness uncertainties. The significance of some of the modelling assumptions and simplifications cannot be investigated by assignment and propagation of parameter uncertainties. In such cases the impact of different options may (and should) be studied by performing sensitivity analyses, which concentrate on the most critical elements. This paper describes several items suitable for close examination by means of application of sensitivity analysis, when performing a level 1 PRA. Sensitivity analyses are performed with respect to: (1) boundary conditions (success criteria, credit for non-safety systems, degree of detail in modelling of support functions), (2) operator actions, (3) treatment of common cause failures (CCFs). The items of main interest are continuously identified in the course of performing a PRA study, as well as by scrutinising the final results. The practical aspects of sensitivity analysis are illustrated by several applications from a recent PRA study. The critical importance of modelling assumptions is also demonstrated by implementation of some modelling features from another level 1 PRA into the reference model. It is concluded that sensitivity analysis leads to insights important for analysts, reviewers and decision makers. (author)

  13. Probabilistic safety assessment based expert systems in support of dynamic risk assessment

    International Nuclear Information System (INIS)

    Varde, P.V.; Sharma, U.L.; Marik, S.K.; Raina, V.K.; Tikku, A.C.

    2006-01-01

    Probabilistic Safety Assessment (PSA) studies are being performed, world over as part of integrated risk assessment for Nuclear Power Plants and in many cases PSA insight is utilized in support of decision making. Though the modern plants are built with inherent safety provisions, particularly to reduce the supervisory requirements during initial period into the accident, it is always desired to develop an efficient user friendly real-time operator advisory system for handling of plant transients/emergencies which would be of immense benefit for the enhancement of operational safety of the plant. This paper discusses an integrated approach for the development of operator support system. In this approach, PSA methodology and the insight obtained from PSA has been utilized for development of knowledge based or rule based experts system. While Artificial Neural Network (ANN) approach has been employed for transient identification, rule-base expert system shell environment was used for the development of diagnostic module in this system. Attempt has been made to demonstrate that this approach offers an efficient framework for addressing requirements related to handling of real-time/dynamic scenario. (author)

  14. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  15. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  16. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  17. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A Methodology for the Development of a Reliability Database for an Advanced Reactor Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew

    2016-06-26

    GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of a reliability database (RDB) methodology to determine applicable reliability data for inclusion in the quantification of the PRA. The RDB method developed during this project seeks to satisfy the requirements of the Data Analysis element of the ASME/ANS Non-LWR PRA standard. The RDB methodology utilizes a relevancy test to examine reliability data and determine whether it is appropriate to include as part of the reliability database for the PRA. The relevancy test compares three component properties to establish the level of similarity to components examined as part of the PRA. These properties include the component function, the component failure modes, and the environment/boundary conditions of the component. The relevancy test is used to gauge the quality of data found in a variety of sources, such as advanced reactor-specific databases, non-advanced reactor nuclear databases, and non-nuclear databases. The RDB also establishes the integration of expert judgment or separate reliability analysis with past reliability data. This paper provides details on the RDB methodology, and includes an example application of the RDB methodology for determining the reliability of the intermediate heat exchanger of a sodium fast reactor. The example explores a variety of reliability data sources, and assesses their applicability for the PRA of interest through the use of the relevancy test.

  19. Probabilistic Risk Assessment for Bone Fracture - Bone Fracture Risk Module (BFxRM)

    Science.gov (United States)

    Licata, Angelo; Myers, Jerry G.; Lewandowski, Beth

    2013-01-01

    This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM). The overview includes an assessmnet of strenghts and limitations of the BFxRM and proposes a numebr of discussion questions to the panel regarding future development avenues for this simulation system.

  20. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.

    Science.gov (United States)

    Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J

    2015-12-15

    An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A probabilistic modeling approach to assess human inhalation exposure risks to airborne aflatoxin B 1 (AFB 1)

    Science.gov (United States)

    Liao, Chung-Min; Chen, Szu-Chieh

    To assess how the human lung exposure to airborne aflatoxin B 1 (AFB 1) during on-farm activities including swine feeding, storage bin cleaning, corn harvest, and grain elevator loading/unloading, we present a probabilistic risk model, appraised with empirical data. The model integrates probabilistic exposure profiles from a compartmental lung model with the reconstructed dose-response relationships based on an empirical three-parameter Hill equation model, describing AFB 1 cytotoxicity for inhibition response in human bronchial epithelial cells, to quantitatively estimate the inhalation exposure risks. The risk assessment results implicate that exposure to airborne AFB 1 may pose no significance to corn harvest and grain elevator loading/unloading activities, yet a relatively high risk for swine feeding and storage bin cleaning. Applying a joint probability function method based on exceedence profiles, we estimate that a potential high risk for the bronchial region (inhibition=56.69% with 95% confidence interval (CI): 35.05-72.87%) and bronchiolar region (inhibition=44.93% with 95% CI: 21.61 - 66.78%) is alarming during swine feeding activity. We parameterized the proposed predictive model that should encourage a risk-management framework for discussion of carcinogenic risk in occupational settings where inhalation of AFB 1-contaminated dust occurs.

  2. Probabilistic approaches to accounting for data variability in the practical application of bioavailability in predicting aquatic risks from metals.

    Science.gov (United States)

    Ciffroy, Philippe; Charlatchka, Rayna; Ferreira, Daniel; Marang, Laura

    2013-07-01

    The biotic ligand model (BLM) theoretically enables the derivation of environmental quality standards that are based on true bioavailable fractions of metals. Several physicochemical variables (especially pH, major cations, dissolved organic carbon, and dissolved metal concentrations) must, however, be assigned to run the BLM, but they are highly variable in time and space in natural systems. This article describes probabilistic approaches for integrating such variability during the derivation of risk indexes. To describe each variable using a probability density function (PDF), several methods were combined to 1) treat censored data (i.e., data below the limit of detection), 2) incorporate the uncertainty of the solid-to-liquid partitioning of metals, and 3) detect outliers. From a probabilistic perspective, 2 alternative approaches that are based on log-normal and Γ distributions were tested to estimate the probability of the predicted environmental concentration (PEC) exceeding the predicted non-effect concentration (PNEC), i.e., p(PEC/PNEC>1). The probabilistic approach was tested on 4 real-case studies based on Cu-related data collected from stations on the Loire and Moselle rivers. The approach described in this article is based on BLM tools that are freely available for end-users (i.e., the Bio-Met software) and on accessible statistical data treatments. This approach could be used by stakeholders who are involved in risk assessments of metals for improving site-specific studies. Copyright © 2013 SETAC.

  3. Public transport risk assessment through fault tree analysis

    Directory of Open Access Journals (Sweden)

    Z. Yaghoubpour

    2016-04-01

    Full Text Available This study focused on the public transport risk assessment in District one of ​​Tehran through Fault Tree Analysis involving the three criteria of human, vehicle and road in Haddon matrix. In fact, it examined the factors contributing to the occurrence of road accidents at several urban black spots within District 1. Relying on road safety checklists and survey of experts, this study made an effort to help urban managers to assess the risks in the public transport and prevent road accidents. Finally, the risk identification and assessment of public transport in District one yielded several results to answer the research questions. The hypotheses analysis suggested that safety issues involved in public transport are concerned by urban managers. The key reactive measures are investigation of accidents, identification of causes and correction of black spots. In addition to high costs, however, the reactive measures give rise to multiple operational problems such as traffic navigation and guaranteeing user safety in every operation. The case study highlighted the same fact. The macro-level management in the metropolis of Tehran is critical. The urban road casualties and losses can be curtailed by preventive measures such as continuous assessment of road safety.

  4. Development of transient initiating event frequencies for use in probabilistic risk assessments

    International Nuclear Information System (INIS)

    Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.

    1985-05-01

    Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors

  5. Need to use probabilistic risk approach in performance assessment of waste disposal facilities

    International Nuclear Information System (INIS)

    Bonano, E.J.; Gallegos, D.P.

    1991-01-01

    Regulations governing the disposal of radioactive, hazardous, and/or mixed wastes will likely require, either directly or indirectly, that the performance of disposal facilities be assessed quantitatively. Such analyses, commonly called ''performance assessments,'' rely on the use of predictive models to arrive at a quantitative estimate of the potential impact of disposal on the environment and the safety and health of the public. It has been recognized that a suite of uncertainties affect the results of a performance assessment. These uncertainties are conventionally categorized as (1) uncertainty in the future state of the disposal system (facility and surrounding medium), (2) uncertainty in models (including conceptual models, mathematical models, and computer codes), and (3) uncertainty in data and parameters. Decisions regarding the suitability of a waste disposal facility must be made in light of these uncertainties. Hence, an approach is needed that would allow the explicit consideration of these uncertainties so that their impact on the estimated consequences of disposal can be evaluated. While most regulations for waste disposal do not prescribe the consideration of uncertainties, it is proposed that, even in such cases, a meaningful decision regarding the suitability of a waste disposal facility cannot be made without considering the impact of the attendant uncertainties. A probabilistic risk assessment (PRA) approach provides the formalism for considering the uncertainties and the technical basis that the decision makers can use in discharging their duties. A PRA methodology developed and demonstrated for the disposal of high-level radioactive waste provides a general framework for assessing the disposal of all types of wastes (radioactive, hazardous, and mixed). 15 refs., 1 fig., 1 tab

  6. Development of transient initiating event frequencies for use in probabilistic risk assessments

    Energy Technology Data Exchange (ETDEWEB)

    Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.

    1985-05-01

    Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors.

  7. Application of Probabilistic Modeling to Quantify the Reduction Levels of Hepatocellular Carcinoma Risk Attributable to Chronic Aflatoxins Exposure

    DEFF Research Database (Denmark)

    Wambui, Joseph M.; Karuri, Edward G.; Ojiambo, Julia A.

    2017-01-01

    the rural populations to HCC. A quantitative cancer risk assessment therefore quantified the levels at which potential pre- and postharvest interventions reduce the HCC risk attributable to consumption of contaminated maize and groundnuts. The assessment applied a probabilistic model to derive probability...... distributions of HCC cases and percentage reductions levels of the risk from secondary data. Contaminated maize and groundnuts contributed to 1,847 +/- 514 and 158 +/- 52 HCC cases per annum, respectively. The total contribution of both foods to the risk was additive as it resulted in 2,000 +/- 518 cases per......Epidemiological studies show a definite connection between areas of high aflatoxin content and a high occurrence of human hepatocellular carcinoma (HCC). Hepatitis B virus in individuals further increases the risk of HCC. The two risk factors are prevalent in rural Kenya and continuously predispose...

  8. A Statistical-Probabilistic Pattern for Determination of Tunnel Advance Step by Quantitative Risk Analysis

    Directory of Open Access Journals (Sweden)

    sasan ghorbani

    2017-12-01

    Full Text Available One of the main challenges faced in design and construction phases of tunneling projects is the determination of maximum allowable advance step to maximize excavation rate and reduce project delivery time. Considering the complexity of determining this factor and unexpected risks associated with inappropriate determination of that, it is necessary to employ a method which is capable of accounting for interactions among uncertain geotechnical parameters and advance step. The main objective in the present research is to undertake optimization and risk management of advance step length in water diversion tunnel at Shahriar Dam based on uncertainty of geotechnical parameters following a statistic-probabilistic approach. In the present research, in order to determine optimum advance step for excavation operation, two hybrid methods were used: strength reduction method-discrete element method- Monte Carlo simulation (SRM/DEM/MCS and strength reduction method- discrete element method- point estimate method (SRM/DEM/PEM. Moreover, Taguchi analysis was used to investigate the sensitivity of advance step to changes in statistical distribution function of input parameters under three tunneling scenarios at sections of poor to good qualities (as per RMR classification system. Final results implied the optimality of the advance step defined in scenario 2 where 2 m advance per excavation round was proposed, according to shear strain criterion and SRM/DEM/MCS, with minimum failure probability and risk of 8.05% and 75281.56 $, respectively, at 95% confidence level. Moreover, in either of normal, lognormal, and gamma distributions, as the advance step increased from Scenario 1 to 2, failure probability was observed to increase at lower rate than that observed when advance step in scenario 2 was increased to that In Scenario 3. In addition, Taguchi tests were subjected to signal-to-noise analysis and the results indicated that, considering the three statistical

  9. Probabilistic Risk Assessment of Cancer from Exposure Inorganic Arsenic in Duplicate Food by Villagers in Ronphibun, Thailand

    Directory of Open Access Journals (Sweden)

    Piyawat Saipan

    2010-07-01

    Full Text Available Ronphibun district is a district in Nakorn Si Thammarat province, within southern Thailand. This district is the site of several former tin mines that were in operation 100 years ago. Arsenic contamination caused by past mining activities remains in the area. The specific purpose of this study was conducted to assess cancer risk in people living within Ronphibun district from exposure to inorganic arsenic via duplicate food using probabilistic risk assessment. A hundred and fifty duplicate food samples were collected from participants. Inorganic arsenic concentrations are determined by hydride generation atomic absorption spectrometry. Inorganic arsenic concentrations in duplicate food ranged from 0.16 to 0.42 μg/g dry weight. The probabilistic carcinogenic risk levels were 6.76 x 10-4 and 1.74 x 10-3 based on the 50th and 95th percentile, respectively. Risk values for people in Ronphibun from exposure to inorganic arsenic remained higher than the acceptable target risk. Sensitivity analysis indicted that exposure duration and concentrations of arsenic in food were the two most influential of cancer risk estimates.

  10. Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment.

    Science.gov (United States)

    Brandsch, Rainer

    2017-10-01

    Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.

  11. Combination of the deterministic and probabilistic approaches for risk-informed decision-making in US NRC regulatory guides

    International Nuclear Information System (INIS)

    Patrik, M.; Babic, P.

    2001-06-01

    The report responds to the trend where probabilistic safety analyses are attached, on a voluntary basis (as yet), to the mandatory deterministic assessment of modifications of NPP systems or operating procedures, resulting in risk-informed type documents. It contains a nearly complete Czech translation of US NRC Regulatory Guide 1.177 and presents some suggestions for improving a) PSA study applications; b) the development of NPP documents for the regulatory body; and c) the interconnection between PSA and traditional deterministic analyses as contained in the risk-informed approach. (P.A.)

  12. The importance of Probabilistic Safety Assessment in the careful study of risks involved to new nuclear power plant projects

    International Nuclear Information System (INIS)

    Mata, Jônatas F.C. da; Mesquita, Amir Z.

    2017-01-01

    The Fukushima Daiichi nuclear accident in Japan in 2011 has raised public fears about the actual safety of nuclear power plants in several countries. The response to this concern by government agencies and private companies has been objective and pragmatic in order to guarantee best practices in the design, construction, operation and decommissioning phases of nuclear reactors. In countries where the nucleo-electric matrix is consolidated, such as the United States, France and the United Kingdom, the safety assessment is carried out considering deterministic and probabilistic criteria. In the licensing stages of new projects, it is necessary to analyze and simulate the behavior of the nuclear power plant, when subjected to conditions that can lead to sequences of accidents. Each initiator event is studied and simulated through computational models, which allow the description and estimation of possible physical phenomena occurring in nuclear reactors. Probabilistic Safety Assessment (PSA) is fundamental in this process, as it studies in depth the sequences of events that can lead to the fusion of the nucleus of the nuclear reactor. Such sequences should be quantified in terms of probability of occurrence and your possible consequences, and organized through techniques such as Fault Tree Analysis and Event Tree Analysis. For these simulations, specialized computer codes for each type of phenomenon should be used, as well as databases based on experience gained in the operation of similar nuclear reactors. The present work will describe, in an objective way, the procedures for the realization of PSA and its applicability to the assurance of the operational reliability of the nuclear reactors, as well as a brief comparative between the approaches used in some countries traditionally users of thermonuclear energy and Brazil. By means of this analysis, it can be concluded that nuclear power is increasingly reliable and safe, being able to provide the necessary

  13. The importance of Probabilistic Safety Assessment in the careful study of risks involved to new nuclear power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jônatas F.C. da, E-mail: jonatasfmata@yahoo.com.br [Universidade do Estado de Minas Gerais (UEMG), João Monlevade, MG (Brazil); Mesquita, Amir Z., E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The Fukushima Daiichi nuclear accident in Japan in 2011 has raised public fears about the actual safety of nuclear power plants in several countries. The response to this concern by government agencies and private companies has been objective and pragmatic in order to guarantee best practices in the design, construction, operation and decommissioning phases of nuclear reactors. In countries where the nucleo-electric matrix is consolidated, such as the United States, France and the United Kingdom, the safety assessment is carried out considering deterministic and probabilistic criteria. In the licensing stages of new projects, it is necessary to analyze and simulate the behavior of the nuclear power plant, when subjected to conditions that can lead to sequences of accidents. Each initiator event is studied and simulated through computational models, which allow the description and estimation of possible physical phenomena occurring in nuclear reactors. Probabilistic Safety Assessment (PSA) is fundamental in this process, as it studies in depth the sequences of events that can lead to the fusion of the nucleus of the nuclear reactor. Such sequences should be quantified in terms of probability of occurrence and your possible consequences, and organized through techniques such as Fault Tree Analysis and Event Tree Analysis. For these simulations, specialized computer codes for each type of phenomenon should be used, as well as databases based on experience gained in the operation of similar nuclear reactors. The present work will describe, in an objective way, the procedures for the realization of PSA and its applicability to the assurance of the operational reliability of the nuclear reactors, as well as a brief comparative between the approaches used in some countries traditionally users of thermonuclear energy and Brazil. By means of this analysis, it can be concluded that nuclear power is increasingly reliable and safe, being able to provide the necessary

  14. Probabilistic risk assessment course documentation. Volume 2. Probability and statistics for PRA applications

    International Nuclear Information System (INIS)

    Iman, R.L.; Prairie, R.R.; Cramond, W.R.

    1985-08-01

    This course is intended to provide the necessary probabilistic and statistical skills to perform a PRA. Fundamental background information is reviewed, but the principal purpose is to address specific techniques used in PRAs and to illustrate them with applications. Specific examples and problems are presented for most of the topics

  15. A Practical Probabilistic Graphical Modeling Tool for Weighing Ecological Risk-Based Evidence

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for e...

  16. Potential for accidents in a nuclear power plant: probabilistic risk assessment, applied statistical decision theory, and implications of such considerations to mathematics education

    International Nuclear Information System (INIS)

    Dios, R.A.

    1984-01-01

    This dissertation focuses upon the field of probabilistic risk assessment and its development. It investigates the development of probabilistic risk assessment in nuclear engineering. To provide background for its development, the related areas of population dynamics (demography), epidemiology and actuarial science are studied by presenting information upon how risk has been viewed in these areas over the years. A second major problem involves presenting an overview of the mathematical models related to risk analysis to mathematics educators and making recommendations for presenting this theory in classes of probability and statistics for mathematics and engineering majors at the undergraduate and graduate levels

  17. Study of Hip Fracture Risk using Tree Structured Survival Analysis

    Directory of Open Access Journals (Sweden)

    Lu Y

    2003-01-01

    Full Text Available In dieser Studie wird das Hüftfraktur-Risiko bei postmenopausalen Frauen untersucht, indem die Frauen in verschiedene Subgruppen hinsichtlich dieses Risikos klassifiziert werden. Frauen in einer gemeinsamen Subgruppe haben ein ähnliches Risiko, hingegen in verschiedenen Subgruppen ein unterschiedliches Hüftfraktur-Risiko. Die Subgruppen wurden mittels der Tree Structured Survival Analysis (TSSA aus den Daten von 7.665 Frauen der SOF (Study of Osteoporosis Fracture ermittelt. Bei allen Studienteilnehmerinnen wurde die Knochenmineraldichte (BMD von Unterarm, Oberschenkelhals, Hüfte und Wirbelsäule gemessen. Die Zeit von der BMD-Messung bis zur Hüftfraktur wurde als Endpunkt notiert. Eine Stichprobe von 75% der Teilnehmerinnen wurde verwendet, um die prognostischen Subgruppen zu bilden (Trainings-Datensatz, während die anderen 25% als Bestätigung der Ergebnisse diente (Validierungs-Datensatz. Aufgrund des Trainings-Datensatzes konnten mittels TSSA 4 Subgruppen identifiziert werden, deren Hüftfraktur-Risiko bei einem Follow-up von im Mittel 6,5 Jahren bei 19%, 9%, 4% und 1% lag. Die Einteilung in die Subgruppen erfolgte aufgrund der Bewertung der BMD des Ward'schen Dreiecks sowie des Oberschenkelhalses und nach dem Alter. Diese Ergebnisse konnten mittels des Validierungs-Datensatzes reproduziert werden, was die Sinnhaftigkeit der Klassifizierungregeln in einem klinischen Setting bestätigte. Mittels TSSA war eine sinnvolle, aussagekräftige und reproduzierbare Identifikation von prognostischen Subgruppen, die auf dem Alter und den BMD-Werten beruhen, möglich. In this paper we studied the risk of hip fracture for post-menopausal women by classifying women into different subgroups based on their risk of hip fracture. The subgroups were generated such that all the women in a particular subgroup had relatively similar risk while women belonging to two different subgroups had rather different risks of hip fracture. We used the Tree Structured

  18. A probabilistic safety assessment of radioactive materials transport. A risk analysis of LLW package handling at harbor

    International Nuclear Information System (INIS)

    Watabe, Naohito; Suzuki, Hiroshi; Kouno, Yutaka

    1997-01-01

    The Probabilistic Safety Assessment (PSA) method for radioactive materials (RAM) transport has been developed by CRIEPI. A case study was executed for the purpose of studying the adaptability of the PSA method to LLW package handling, which is one of the processes of the actual transport. The main results of the case study were as follows; 1) Accident scenarios for falling of package were extracted from the 25 ton-crane system chart and package handling manual. 2) Protection methods for each drop accident scenario were confirmed. 3) Important points of the crane system were extracted. 4) Fault trees, which describe accident scenarios, were developed. 5) Probabilities for each basic event and the top event on fault trees were calculated. Consequently, 'falling of a package' on the package handling process by the 25 ton-crane was revealed to be extremely low. Among the four major stages of handling process, i.e. 'Rolling-up', 'Horizontal travelling' 'Rolling-down' and 'Contact with loading platform', the 'Rolling-down' process was found to be a major process with occupies more than 50% of the probability of the falling accidents. According to those results, it was concluded that PSA method is adaptable to package handling from the view points of extraction of weak points and review of the effect of vestment for facility. (author)

  19. A probabilistic safety assessment of radioactive materials transport. A risk analysis of LLW package handling at harbor

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Naohito; Suzuki, Hiroshi; Kouno, Yutaka [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-10-01

    The Probabilistic Safety Assessment (PSA) method for radioactive materials (RAM) transport has been developed by CRIEPI. A case study was executed for the purpose of studying the adaptability of the PSA method to LLW package handling, which is one of the processes of the actual transport. The main results of the case study were as follows; (1) Accident scenarios for falling of package were extracted from the 25 ton-crane system chart and package handling manual. (2) Protection methods for each drop accident scenario were confirmed. (3) Important points of the crane system were extracted. (4) Fault trees, which describe accident scenarios, were developed. (5) Probabilities for each basic event and the top event on fault trees were calculated. Consequently, `falling of a package` on the package handling process by the 25 ton-crane was revealed to be extremely low. Among the four major stages of handling process, i.e. `Rolling-up`, `Horizontal travelling` `Rolling-down` and `Contact with loading platform`, the `Rolling-down` process was found to be a major process with occupies more than 50% of the probability of the falling accidents. According to those results, it was concluded that PSA method is adaptable to package handling from the view points of extraction of weak points and review of the effect of vestment for facility. (author)

  20. Procedures for the elicitation of expert judgements in the probabilistic risk analysis of radioactive waste repositories: an overview

    International Nuclear Information System (INIS)

    Watson, S.R.

    1992-01-01

    In modelling the consequences of a radioactive waste repository using Probabilistic Risk Analysis, it is necessary to use the judgement of experts both in assessing probabilities subjectively, and in choosing suitable analytic frameworks. This report presents the literature on these topics, first discussing the meaning of probability in PRA, and then giving an extensive review of what is known about how to elicit probabilities from experts. The report then provides an overview of the less well developed field of how best to use expertise in the construction of models for PRA. (author)

  1. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.

    Science.gov (United States)

    Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente

    2009-12-20

    This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.

  2. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Koupaie, E., E-mail: ehssan.hosseini.k@gmail.com; Eskicioglu, C., E-mail: cigdem.eskicioglu@ubc.ca

    2015-12-30

    Highlights: • No potential health risk of land application of the regional biosolids. • More realistic risk assessment via probabilistic approach than that of deterministic. • Increasing the total hazard index with increasing fertilizer land application rate. • Significant effect of long-term biosolids land application of hazard index. • Greater contribution of rice ingestion than vegetable ingestion on hazard index. - Abstract: The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005–2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5–100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate.

  3. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Eskicioglu, C.

    2015-01-01

    Highlights: • No potential health risk of land application of the regional biosolids. • More realistic risk assessment via probabilistic approach than that of deterministic. • Increasing the total hazard index with increasing fertilizer land application rate. • Significant effect of long-term biosolids land application of hazard index. • Greater contribution of rice ingestion than vegetable ingestion on hazard index. - Abstract: The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005–2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5–100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate.

  4. Application of Probabilistic Modeling to Quantify the Reduction Levels of Hepatocellular Carcinoma Risk Attributable to Chronic Aflatoxins Exposure.

    Science.gov (United States)

    Wambui, Joseph M; Karuri, Edward G; Ojiambo, Julia A; Njage, Patrick M K

    2017-01-01

    Epidemiological studies show a definite connection between areas of high aflatoxin content and a high occurrence of human hepatocellular carcinoma (HCC). Hepatitis B virus in individuals further increases the risk of HCC. The two risk factors are prevalent in rural Kenya and continuously predispose the rural populations to HCC. A quantitative cancer risk assessment therefore quantified the levels at which potential pre- and postharvest interventions reduce the HCC risk attributable to consumption of contaminated maize and groundnuts. The assessment applied a probabilistic model to derive probability distributions of HCC cases and percentage reductions levels of the risk from secondary data. Contaminated maize and groundnuts contributed to 1,847 ± 514 and 158 ± 52 HCC cases per annum, respectively. The total contribution of both foods to the risk was additive as it resulted in 2,000 ± 518 cases per annum. Consumption and contamination levels contributed significantly to the risk whereby lower age groups were most affected. Nonetheless, pre- and postharvest interventions might reduce the risk by 23.0-83.4% and 4.8-95.1%, respectively. Therefore, chronic exposure to aflatoxins increases the HCC risk in rural Kenya, but a significant reduction of the risk can be achieved by applying specific pre- and postharvest interventions.

  5. A mediation model to explain decision making under conditions of risk among adolescents: the role of fluid intelligence and probabilistic reasoning.

    Science.gov (United States)

    Donati, Maria Anna; Panno, Angelo; Chiesi, Francesca; Primi, Caterina

    2014-01-01

    This study tested the mediating role of probabilistic reasoning ability in the relationship between fluid intelligence and advantageous decision making among adolescents in explicit situations of risk--that is, in contexts in which information on the choice options (gains, losses, and probabilities) were explicitly presented at the beginning of the task. Participants were 282 adolescents attending high school (77% males, mean age = 17.3 years). We first measured fluid intelligence and probabilistic reasoning ability. Then, to measure decision making under explicit conditions of risk, participants performed the Game of Dice Task, in which they have to decide among different alternatives that are explicitly linked to a specific amount of gain or loss and have obvious winning probabilities that are stable over time. Analyses showed a significant positive indirect effect of fluid intelligence on advantageous decision making through probabilistic reasoning ability that acted as a mediator. Specifically, fluid intelligence may enhance ability to reason in probabilistic terms, which in turn increases the likelihood of advantageous choices when adolescents are confronted with an explicit decisional context. Findings show that in experimental paradigm settings, adolescents are able to make advantageous decisions using cognitive abilities when faced with decisions under explicit risky conditions. This study suggests that interventions designed to promote probabilistic reasoning, for example by incrementing the mathematical prerequisites necessary to reason in probabilistic terms, may have a positive effect on adolescents' decision-making abilities.

  6. Using Probabilistic Methods in Water Scarcity Assessments: A First Step Towards a Water Scarcity Risk Assessment Framework

    Science.gov (United States)

    Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip

    2016-01-01

    Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.

  7. Probabilistic Risk Assessment in Medium Scale for Rainfall-Induced Earthflows: Catakli Catchment Area (Cayeli, Rize, Turkey

    Directory of Open Access Journals (Sweden)

    H. A. Nefeslioglu

    2011-01-01

    Full Text Available The aim of the present study is to introduce a probabilistic approach to determine the components of the risk evaluation for rainfall-induced earthflows in medium scale. The Catakli catchment area (Cayeli, Rize, Turkey was selected as the application site of this study. The investigations were performed in four different stages: (i evaluation of the conditioning factors, (ii calculation of the probability of spatial occurrence, (iii calculation of the probability of the temporal occurrence, and (iv evaluation of the consequent risk. For the purpose, some basic concepts such as “Risk Cube”, “Risk Plane”, and “Risk Vector” were defined. Additionally, in order to assign the vulnerability to the terrain units being studied in medium scale, a new more robust and more objective equation was proposed. As a result, considering the concrete type of roads in the catchment area, the economic risks were estimated as 3.6×106€—in case the failures occur on the terrain units including element at risk, and 12.3×106€—in case the risks arise from surrounding terrain units. The risk assessments performed in medium scale considering the technique proposed in the present study will supply substantial economic contributions to the mitigation planning studies in the region.

  8. Mixture Of Probabilistic Factor Analyzers For Market Risk Measurement: Empirical Evidence From The Tunisian Foreign Exchange Market

    Directory of Open Access Journals (Sweden)

    Mohamed Nidhal Mosbahi

    2017-05-01

    Full Text Available In this paper, we propose a new approach for Basel-Compliant Value-at-Risk (VaR estimation in financial portfolio risk management, which combines Gaussian Mixture Models with probabilistic factor analysis models. This new mixed specification provides an alternative, compact, model to handle co-movements, heterogeneity and intra-frame correlations in financial data. This results in a model which concurrently performs clustering and dimensionality reduction, and can be considered as a reduced dimension mixture of probabilistic factor analyzers. For maximum likelihood estimation we have used an iterative approach based on the Alternating Expectation Conditional Maximization (AECM algorithm. Using a set of historical data in a rolling time window, from the Tunisian foreign exchange market, the model structure as well as its parameters are determined and estimated. Then, the fitted model combined with a modified Monte-Carlo simulation algorithm was used to predict the VaR. Through a Backtesting analysis, we found that this new specification exhibits a good fit to the data compared to other competing approaches, improves the accuracy of VaR prediction, possesses more flexibility, and can avoid serious violations when a financial crisis occurs.

  9. Risk assessment methods in radiotherapy: Probabilistic safety assessment (PSA); Los metodos de analisis de riesgo en radioterapia: Analisis Probabilistico de seguridad (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Vera, M. L.; Perez Mulas, A.; Delgado, J. M.; Barrientos Ontero, M.; Somoano, F.; Alvarez Garcia, C.; Rodriguez Marti, M.

    2011-07-01

    The understanding of accidents that have occurred in radiotherapy and the lessons learned from them are very useful to prevent repetition, but there are other risks that have not been detected to date. With a view to identifying and preventing such risks, proactive methods successfully applied in other fields, such as probabilistic safety assessment (PSA), have been developed. (Author)

  10. Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework

    Science.gov (United States)

    Sankarasubramanian, A.; Lall, Upmanu; Souza Filho, Francisco Assis; Sharma, Ashish

    2009-11-01

    Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly available as the ability to model climate teleconnections is improving. However, water managers and practitioners have been slow to adopt such products, citing concerns with forecast skill. Essentially, a management risk is perceived in "gambling" with operations using a probabilistic forecast, while a system failure upon following existing operating policies is "protected" by the official rules or guidebook. In the presence of a prescribed system of prior allocation of releases under different storage or water availability conditions, the manager has little incentive to change. Innovation in allocation and operation is hence key to improved risk management using such forecasts. A participatory water allocation process that can effectively use probabilistic forecasts as part of an adaptive management strategy is introduced here. Users can express their demand for water through statements that cover the quantity needed at a particular reliability, the temporal distribution of the "allocation," the associated willingness to pay, and compensation in the event of contract nonperformance. The water manager then assesses feasible allocations using the probabilistic forecast that try to meet these criteria across all users. An iterative process between users and water manager could be used to formalize a set of short-term contracts that represent the resulting prioritized water allocation strategy over the operating period for which the forecast was issued. These contracts can be used to allocate water each year/season beyond long-term contracts that may have precedence. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser optimization model that can support such an allocation process is presented. The application of this conceptual model is explored using data for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance

  11. Probabilistic approach for assessing infants' health risks due to ingestion of nanoscale silver released from consumer products.

    Science.gov (United States)

    Pang, Chengfang; Hristozov, Danail; Zabeo, Alex; Pizzol, Lisa; Tsang, Michael P; Sayre, Phil; Marcomini, Antonio

    2017-02-01

    Silver nanoparticles (n-Ag) are widely used in consumer products and many medical applications because of their unique antibacterial properties. Their use is raising concern about potential human exposures and health effects. Therefore, it is informative to assess the potential human health risks of n-Ag in order to ensure that nanotechnology-based consumer products are deployed in a safe and sustainable way. Even though toxicity studies clearly show the potential hazard of n-Ag, there have been few attempts to integrate hazard and exposure assessments to evaluate risks. The underlying reason for this is the difficulty in characterizing exposure and the lack of toxicity studies essential for human health risk assessment (HHRA). Such data gaps introduce significant uncertainty into the risk assessment process. This study uses probabilistic methods to assess the relative uncertainty and potential risks of n-Ag exposure to infants. In this paper, we estimate the risks for infants potentially exposed to n-Ag through drinking juice or milk from sippy cups or licking baby blankets containing n-Ag. We explicitly evaluate uncertainty and variability contained in available dose-response and exposure data in order to make the risk characterization process transparent. Our results showed that individual margin of exposures for oral exposure to sippy cups and baby blankets containing n-Ag exhibited minimal risk. Copyright © 2016. Published by Elsevier Ltd.

  12. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.

    Science.gov (United States)

    Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman

    2016-04-01

    Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR

  13. Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2004-01-01

    decision graph for a given distribution is at most as large as the smallest junction tree for the same distribution, and that in some cases it can in fact be much smaller. Behind these very promising features of probabilistic decision graphs lies the fact that they integrate into a single coherent......We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic...

  14. Development of a Risk-Based Probabilistic Performance-Assessment Method for Long-Term Cover Systems - 2nd Edition

    International Nuclear Information System (INIS)

    HO, CLIFFORD K.; ARNOLD, BILL W.; COCHRAN, JOHN R.; TAIRA, RANDAL Y.

    2002-01-01

    A probabilistic, risk-based performance-assessment methodology has been developed to assist designers, regulators, and stakeholders in the selection, design, and monitoring of long-term covers for contaminated subsurface sites. This report describes the method, the software tools that were developed, and an example that illustrates the probabilistic performance-assessment method using a repository site in Monticello, Utah. At the Monticello site, a long-term cover system is being used to isolate long-lived uranium mill tailings from the biosphere. Computer models were developed to simulate relevant features, events, and processes that include water flux through the cover, source-term release, vadose-zone transport, saturated-zone transport, gas transport, and exposure pathways. The component models were then integrated into a total-system performance-assessment model, and uncertainty distributions of important input parameters were constructed and sampled in a stochastic Monte Carlo analysis. Multiple realizations were simulated using the integrated model to produce cumulative distribution functions of the performance metrics, which were used to assess cover performance for both present- and long-term future conditions. Performance metrics for this study included the water percolation reaching the uranium mill tailings, radon gas flux at the surface, groundwater concentrations, and dose. Results from uncertainty analyses, sensitivity analyses, and alternative design comparisons are presented for each of the performance metrics. The benefits from this methodology include a quantification of uncertainty, the identification of parameters most important to performance (to prioritize site characterization and monitoring activities), and the ability to compare alternative designs using probabilistic evaluations of performance (for cost savings)

  15. Parametric estimation of P(X > Y) for normal distributions in the context of probabilistic environmental risk assessment.

    Science.gov (United States)

    Jacobs, Rianne; Bekker, Andriëtte A; van der Voet, Hilko; Ter Braak, Cajo J F

    2015-01-01

    Estimating the risk, P(X > Y), in probabilistic environmental risk assessment of nanoparticles is a problem when confronted by potentially small risks and small sample sizes of the exposure concentration X and/or the effect concentration Y. This is illustrated in the motivating case study of aquatic risk assessment of nano-Ag. A non-parametric estimator based on data alone is not sufficient as it is limited by sample size. In this paper, we investigate the maximum gain possible when making strong parametric assumptions as opposed to making no parametric assumptions at all. We compare maximum likelihood and Bayesian estimators with the non-parametric estimator and study the influence of sample size and risk on the (interval) estimators via simulation. We found that the parametric estimators enable us to estimate and bound the risk for smaller sample sizes and small risks. Also, the Bayesian estimator outperforms the maximum likelihood estimators in terms of coverage and interval lengths and is, therefore, preferred in our motivating case study.

  16. Parametric estimation of P(X > Y) for normal distributions in the context of probabilistic environmental risk assessment

    Science.gov (United States)

    Bekker, Andriëtte A.; van der Voet, Hilko; ter Braak, Cajo J.F.

    2015-01-01

    Estimating the risk, P(X > Y), in probabilistic environmental risk assessment of nanoparticles is a problem when confronted by potentially small risks and small sample sizes of the exposure concentration X and/or the effect concentration Y. This is illustrated in the motivating case study of aquatic risk assessment of nano-Ag. A non-parametric estimator based on data alone is not sufficient as it is limited by sample size. In this paper, we investigate the maximum gain possible when making strong parametric assumptions as opposed to making no parametric assumptions at all. We compare maximum likelihood and Bayesian estimators with the non-parametric estimator and study the influence of sample size and risk on the (interval) estimators via simulation. We found that the parametric estimators enable us to estimate and bound the risk for smaller sample sizes and small risks. Also, the Bayesian estimator outperforms the maximum likelihood estimators in terms of coverage and interval lengths and is, therefore, preferred in our motivating case study. PMID:26312175

  17. Parametric estimation of P(X > Y for normal distributions in the context of probabilistic environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Rianne Jacobs

    2015-08-01

    Full Text Available Estimating the risk, P(X > Y, in probabilistic environmental risk assessment of nanoparticles is a problem when confronted by potentially small risks and small sample sizes of the exposure concentration X and/or the effect concentration Y. This is illustrated in the motivating case study of aquatic risk assessment of nano-Ag. A non-parametric estimator based on data alone is not sufficient as it is limited by sample size. In this paper, we investigate the maximum gain possible when making strong parametric assumptions as opposed to making no parametric assumptions at all. We compare maximum likelihood and Bayesian estimators with the non-parametric estimator and study the influence of sample size and risk on the (interval estimators via simulation. We found that the parametric estimators enable us to estimate and bound the risk for smaller sample sizes and small risks. Also, the Bayesian estimator outperforms the maximum likelihood estimators in terms of coverage and interval lengths and is, therefore, preferred in our motivating case study.

  18. Response to Yellman and Murray's comment on 'The meaning of probability in probabilistic risk analysis'

    International Nuclear Information System (INIS)

    Watson, Stephen R.

    1995-01-01

    In their comment on a recent contribution of mine, [Watson, S., The meaning of probability in probabilistic safety analysis. Reliab. Engng and System Safety, 45 (1994) 261-269.] Yellman and Murray assert that (1) I argue in favour of a realistic interpretation of probability for PSAs; (2) that the only satisfactory philosophical theory of probability is the relative frequency theory; (3) that I mean the same thing by the words 'uncertainty' and 'probability'; (4) that my argument can easily lead to the belief that the output of PSAs are meaningless. I take issue with all these points, and in this response I set out my arguments

  19. Probabilistic safety assessment of WWER440 reactors prediction, quantification and management of the risk

    CERN Document Server

    Kovacs, Zoltan

    2014-01-01

    The aim of this book is to summarize probabilistic safety assessment (PSA) of nuclear power plants with WWER440 reactors and  demonstrate that the plants are safe enough for producing energy even in light of the Fukushima accident. The book examines level 1 and 2 full power, low power and shutdown PSA, and summarizes the author's experience gained during the last 35 years in this area. It provides useful examples taken from PSA training courses the author has lectured and organized by the International Atomic Energy Agency. Such training courses were organised in Argonne National Laboratory (

  20. A probabilistic analysis reveals fundamental limitations with the environmental impact quotient and similar systems for rating pesticide risks

    Directory of Open Access Journals (Sweden)

    Robert K.D. Peterson

    2014-04-01

    Full Text Available Comparing risks among pesticides has substantial utility for decision makers. However, if rating schemes to compare risks are to be used, they must be conceptually and mathematically sound. We address limitations with pesticide risk rating schemes by examining in particular the Environmental Impact Quotient (EIQ using, for the first time, a probabilistic analytic technique. To demonstrate the consequences of mapping discrete risk ratings to probabilities, adjusted EIQs were calculated for a group of 20 insecticides in four chemical classes. Using Monte Carlo simulation, adjusted EIQs were determined under different hypothetical scenarios by incorporating probability ranges. The analysis revealed that pesticides that have different EIQs, and therefore different putative environmental effects, actually may be no different when incorporating uncertainty. The EIQ equation cannot take into account uncertainty the way that it is structured and provide reliable quotients of pesticide impact. The EIQ also is inconsistent with the accepted notion of risk as a joint probability of toxicity and exposure. Therefore, our results suggest that the EIQ and other similar schemes be discontinued in favor of conceptually sound schemes to estimate risk that rely on proper integration of toxicity and exposure information.

  1. 78 FR 61365 - Assessment of the Risk of Human Salmonellosis Associated With the Consumption of Tree Nuts...

    Science.gov (United States)

    2013-10-03

    ... With the Consumption of Tree Nuts; Request for Comments, Scientific Data and Information; Extension of... entitled ``Assessment of the Risk of Human Salmonellosis Associated With the Consumption of Tree Nuts... of the risk of human salmonellosis associated with the consumption of tree nuts. We are taking this...

  2. Application of probabilistic methods to accident analysis at waste management facilities

    International Nuclear Information System (INIS)

    Banz, I.

    1986-01-01

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  3. Endosulfan and its metabolite, endosulfan sulfate, in freshwater ecosystems of South Florida: a probabilistic aquatic ecological risk assessment.

    Science.gov (United States)

    Rand, Gary M; Carriger, John F; Gardinali, Piero R; Castro, Joffre

    2010-06-01

    Endosulfan is an insecticide-acaricide used in South Florida and is one of the remaining organochlorine insecticides registered under the Federal Insecticide Fungicide and Rodenticide Act by the U.S.EPA. The technical grade material consists of two isomers (alpha-, beta-) and the main environmental metabolite in water, sediment and tissue is endosulfan sulfate through oxidation. A comprehensive probabilistic aquatic ecological risk assessment was conducted to determine the potential risks of existing exposures to endosulfan and endosulfan sulfate in freshwaters of South Florida based on historical data (1992-2007). The assessment included hazard assessment (Tier 1) followed by probabilistic risk assessment (Tier 2). Tier 1 compared actual measured concentrations in surface freshwaters of 47 sites in South Florida from historical data to U.S.EPA numerical water quality criteria. Based on results of Tier 1, Tier 2 focused on the acute and chronic risks of endosulfan at nine sites by comparing distributions of surface water exposure concentrations of endosulfan [i.e., for total endosulfan (summation of concentrations of alpha- and beta-isomers plus the sulfate), alpha- plus beta-endosulfan, and endosulfan sulfate (alone)] with distributions of species effects from laboratory toxicity data. In Tier 2 the distribution of total endosulfan in fish tissue (whole body) from South Florida freshwaters was also used to determine the probability of exceeding a distribution of whole body residues of endosulfan producing mortality (critical lethal residues). Tier 1 showed the majority of endosulfan water quality violations in South Florida were at locations S-178 followed by S-177 in the C-111 system (southeastern boundary of Everglades National Park (ENP)). Nine surface water sampling sites were chosen for Tier 2. Tier 2 showed the highest potentially affected fraction of toxicity values (>10%) by the estimated 90th centile exposure concentration (total endosulfan) was at S-178

  4. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  5. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  6. Probabilistic Networks

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Lauritzen, Steffen Lilholt

    2001-01-01

    This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs.......This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs....

  7. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-12-30

    The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005-2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5-100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  9. Probabilistic risk assessment and service life performance management of load bearing biomedical implants

    International Nuclear Information System (INIS)

    Stewart, Mark G.; O’Connor, Alan

    2012-01-01

    It is important to consider the performance of load bearing biomedical implants as a stochastic problem. This provides scope to optimise their whole life performance in terms of design and lifetime performance management measures with the aim of minimisation of the need for replacement, or the number of replacements, during the expected life of the patient. An important parallel is developed with the field of structural reliability analysis (i.e., probabilistic assessment) which has developed in recent years with great success in optimisation of whole life performance of load bearing infrastructure systems. This paper demonstrates how this same methodology can be employed in the field of biomedical engineering to optimise the design and whole life performance of implants considering factors such as (i) deterioration with age, and (ii) stochastic variation in load. The paper also demonstrates the importance of Bayesian updating and correlation modelling in considering the design and whole life performance optimisation of biomedical implants.

  10. PRA Procedures Guide: a guide to the performance of probabilistic risk assessments for nuclear power plants. Final report, Volume 1 - Chapters 1-8

    International Nuclear Information System (INIS)

    1983-01-01

    This document, the Probabilistic Risk Assessment (PRA) Procedures Guide, is intended to provide an overview of the risk-assessment field as it exists today and to identify acceptable techniques for the systematic assessment of the risk from nuclear power plants. Topics discussed include: organization of PRA; accident-sequence definition and system modeling; human-reliability analysis; data-base development; accident-sequence quantification; physical processes of core-melt accidents; and radionuclide release and transport

  11. Risk assessments of regional climate change over Europe: generation of probabilistic ensemble and uncertainty assessment for EURO-CODEX

    Science.gov (United States)

    Yuan, J.; Kopp, R. E.

    2017-12-01

    Quantitative risk analysis of regional climate change is crucial for risk management and impact assessment of climate change. Two major challenges to assessing the risks of climate change are: CMIP5 model runs, which drive EURO-CODEX downscaling runs, do not cover the full range of uncertainty of future projections; Climate models may underestimate the probability of tail risks (i.e. extreme events). To overcome the difficulties, this study offers a viable avenue, where a set of probabilistic climate ensemble is generated using the Surrogate/Model Mixed Ensemble (SMME) method. The probabilistic ensembles for temperature and precipitation are used to assess the range of uncertainty covered by five bias-corrected simulations from the high-resolution (0.11º) EURO-CODEX database, which are selected by the PESETA (The Projection of Economic impacts of climate change in Sectors of the European Union based on bottom-up Analysis) III project. Results show that the distribution of SMME ensemble is notably wider than both distribution of raw ensemble of GCMs and the spread of the five EURO-CORDEX in RCP8.5. Tail risks are well presented by the SMME ensemble. Both SMME ensemble and EURO-CORDEX projections are aggregated to administrative level, and are integrated into impact functions of PESETA III to assess climate risks in Europe. To further evaluate the uncertainties introduced by the downscaling process, we compare the 5 runs from EURO-CORDEX with runs from the corresponding GCMs. Time series of regional mean, spatial patterns, and climate indices are examined for the future climate (2080-2099) deviating from the present climate (1981-2010). The downscaling processes do not appear to be trend-preserving, e.g. the increase in regional mean temperature from EURO-CORDEX is slower than that from the corresponding GCM. The spatial pattern comparison reveals that the differences between each pair of GCM and EURO-CORDEX are small in winter. In summer, the temperatures of EURO

  12. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).

    Science.gov (United States)

    Chen, Wei-Yu; Lin, Hsing-Chieh

    2018-02-24

    Growing evidence indicates that ocean acidification has a significant impact on calcifying marine organisms. However, there is a lack of exposure risk assessments for aquatic organisms under future environmentally relevant ocean acidification scenarios. The objective of this study was to investigate the probabilistic effects of acidified seawater on the life-stage response dynamics of fertilization, larvae growth, and larvae mortality of the green sea urchin (Strongylocentrotus droebachiensis). We incorporated the regulation of primary body cavity (PBC) pH in response to seawater pH into the assessment by constructing an explicit model to assess effective life-stage response dynamics to seawater or PBC pH levels. The likelihood of exposure to ocean acidification was also evaluated by addressing the uncertainties of the risk characterization. For unsuccessful fertilization, the estimated 50% effect level of seawater acidification (EC50 SW ) was 0.55 ± 0.014 (mean ± SE) pH units. This life stage was more sensitive than growth inhibition and mortality, for which the EC50 values were 1.13 and 1.03 pH units, respectively. The estimated 50% effect levels of PBC pH (EC50 PBC ) were 0.99 ± 0.05 and 0.88 ± 0.006 pH units for growth inhibition and mortality, respectively. We also predicted the probability distributions for seawater and PBC pH levels in 2100. The level of unsuccessful fertilization had 50 and 90% probability risks of 5.07-24.51 (95% CI) and 0-6.95%, respectively. We conclude that this probabilistic risk analysis model is parsimonious enough to quantify the multiple vulnerabilities of the green sea urchin while addressing the systemic effects of ocean acidification. This study found a high potential risk of acidification affecting the fertilization of the green sea urchin, whereas there was no evidence for adverse effects on growth and mortality resulting from exposure to the predicted acidified environment.

  13. Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization

    NARCIS (Netherlands)

    Voet, van der H.; Slob, W.

    2007-01-01

    A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a

  14. Probabilistic reasoning with graphical security models

    NARCIS (Netherlands)

    Kordy, Barbara; Pouly, Marc; Schweitzer, Patrick

    This work provides a computational framework for meaningful probabilistic evaluation of attack–defense scenarios involving dependent actions. We combine the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. In order

  15. Bisimulations meet PCTL equivalences for probabilistic automata

    DEFF Research Database (Denmark)

    Song, Lei; Zhang, Lijun; Godskesen, Jens Chr.

    2013-01-01

    Probabilistic automata (PAs) have been successfully applied in formal verification of concurrent and stochastic systems. Efficient model checking algorithms have been studied, where the most often used logics for expressing properties are based on probabilistic computation tree logic (PCTL) and its...

  16. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    Science.gov (United States)

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  17. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).

    Science.gov (United States)

    Coll, Claudia; Notter, Dominic; Gottschalk, Fadri; Sun, Tianyin; Som, Claudia; Nowack, Bernd

    2016-01-01

    The environmental risks of five engineered nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) were quantified in water, soils, and sediments using probabilistic Species Sensitivity Distributions (pSSDs) and probabilistic predicted environmental concentrations (PECs). For water and soil, enough ecotoxicological endpoints were found for a full risk characterization (between 17 and 73 data points per nanomaterial for water and between 4 and 20 for soil) whereas for sediments, the data availability was not sufficient. Predicted No Effect Concentrations (PNECs) were obtained from the pSSD and used to calculate risk characterization ratios (PEC/PNEC). For most materials and environmental compartments, exposure and effect concentrations were separated by several orders of magnitude. Nano-ZnO in freshwaters and nano-TiO2 in soils were the combinations where the risk characterization ratio was closest to one, meaning that these are compartment/ENM combinations to be studied in more depth with the highest priority. The probabilistic risk quantification allows us to consider the large variability of observed effects in different ecotoxicological studies and the uncertainty in modeled exposure concentrations. The risk characterization results presented in this work allows for a more focused investigation of environmental risks of nanomaterials by consideration of material/compartment combinations where the highest probability for effects with predicted environmental concentrations is likely.

  18. Cost-Risk Trade-off of Solar Radiation Management and Mitigation under Probabilistic Information on Climate Sensitivity

    Science.gov (United States)

    Khabbazan, Mohammad Mohammadi; Roshan, Elnaz; Held, Hermann

    2017-04-01

    In principle solar radiation management (SRM) offers an option to ameliorate anthropogenic temperature rise. However we cannot expect it to simultaneously compensate for anthropogenic changes in further climate variables in a perfect manner. Here, we ask to what extent a proponent of the 2°C-temperature target would apply SRM in conjunction with mitigation in view of global or regional disparities in precipitation changes. We apply cost-risk analysis (CRA), which is a decision analytic framework that makes a trade-off between the expected welfare-loss from climate policy costs and the climate risks from transgressing a climate target. Here, in both global-scale and 'Giorgi'-regional-scale analyses, we evaluate the optimal mixture of SRM and mitigation under probabilistic information about climate sensitivity. To do so, we generalize CRA for the sake of including not only temperature risk, but also globally aggregated and regionally disaggregated precipitation risks. Social welfare is maximized for the following three valuation scenarios: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. For now, the Giorgi regions are treated by equal weight. We find that for regionally differentiated precipitation targets, the usage of SRM will be comparably more restricted. In the course of time, a cooling of up to 1.3°C can be attributed to SRM for the latter scenario and for a median climate sensitivity of 3°C (for a global target only, this number reduces by 0.5°C). Our results indicate that although SRM would almost completely substitute for mitigation in the globally aggregated analysis, it only saves 70% to 75% of the welfare-loss compared to a purely mitigation-based analysis (from economic costs and climate risks, approximately 4% in terms of BGE) when considering regional precipitation risks in precipitation-risk-only and both-risks scenarios. It remains to be shown how the inclusion of further risks or different regional weights would

  19. Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water

    OpenAIRE

    Khadam, I.; Kaluarachchi, J. J.

    2003-01-01

    Traditionally, environmental decision analysis in subsurface contamination scenarios is performed using cost–benefit analysis. In this paper, we discuss some of the limitations associated with cost–benefit analysis, especially its definition of risk, its definition of cost of risk, and its poor ability to communicate risk-related information. This paper presents an integrated approach for management of contaminated ground water resources using health risk assessment and economic analysis thro...

  20. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas.

    Science.gov (United States)

    Zhang, Li E; Huang, Daizheng; Yang, Jie; Wei, Xiao; Qin, Jian; Ou, Songfeng; Zhang, Zhiyong; Zou, Yunfeng

    2017-03-01

    Studies have yet to evaluate the effects of water improvement on fluoride concentrations in drinking water and the corresponding health risks to Chinese residents in endemic fluorosis areas (EFAs) at a national level. This paper summarized available data in the published literature (2008-2016) on water fluoride from the EFAs in China before and after water quality was improved. Based on these obtained data, health risk assessment of Chinese residents' exposure to fluoride in improved drinking water was performed by means of a probabilistic approach. The uncertainties in the risk estimates were quantified using Monte Carlo simulation and sensitivity analysis. Our results showed that in general, the average fluoride levels (0.10-2.24 mg/L) in the improved drinking water in the EFAs of China were lower than the pre-intervention levels (0.30-15.24 mg/L). The highest fluoride levels were detected in North and Southwest China. The mean non-carcinogenic risks associated with consumption of the improved drinking water for Chinese residents were mostly accepted (hazard quotient risk of children in most of the EFAs at the 95th percentile exceeded the safe level of 1, indicating the potential non-cancer-causing health effects on this fluoride-exposed population. Sensitivity analyses indicated that fluoride concentration in drinking water, ingestion rate of water, and the exposure time in the shower were the most relevant variables in the model, therefore, efforts should focus mainly on the definition of their probability distributions for a more accurate risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food

    NARCIS (Netherlands)

    Jacobs, R.; Voet, van der H.; Braak, ter C.J.F.

    2015-01-01

    Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We

  2. Probabilistic defect-based risk assessment approach for rail failures in railway infrastructure

    NARCIS (Netherlands)

    Jamshidi, A.; Faghih Roohi, S.; Nunez Vicencio, Alfredo; Babuska, R.; De Schutter, B.H.K.; Dollevoet, R.P.B.J.; Li, Z.; Acarman, Tankut

    2016-01-01

    This paper develops a defect-based risk analysis methodology for estimating rail failure risk. The methodology relies on an evolution model addressing the severity level of rail surface defect, called squat. The risk of rail failure is assessed by analyzing squat failure probability using a

  3. Lessons from the conviction of the L'Aquila seven: The standard probabilistic earthquake hazard and risk assessment is ineffective

    Science.gov (United States)

    Wyss, Max

    2013-04-01

    An earthquake of M6.3 killed 309 people in L'Aquila, Italy, on 6 April 2011. Subsequently, a judge in L'Aquila convicted seven who had participated in an emergency meeting on March 30, assessing the probability of a major event to follow the ongoing earthquake swarm. The sentence was six years in prison, a combine fine of 2 million Euros, loss of job, loss of retirement rent, and lawyer's costs. The judge followed the prosecution's accusation that the review by the Commission of Great Risks had conveyed a false sense of security to the population, which consequently did not take their usual precautionary measures before the deadly earthquake. He did not consider the facts that (1) one of the convicted was not a member of the commission and had merrily obeyed orders to bring the latest seismological facts to the discussion, (2) another was an engineer who was not required to have any expertise regarding the probability of earthquakes, (3) and two others were seismologists not invited to speak to the public at a TV interview and a press conference. This exaggerated judgment was the consequence of an uproar in the population, who felt misinformed and even mislead. Faced with a population worried by an earthquake swarm, the head of the Italian Civil Defense is on record ordering that the population be calmed, and the vice head executed this order in a TV interview one hour before the meeting of the Commission by stating "the scientific community continues to tell me that the situation is favorable and that there is a discharge of energy." The first lesson to be learned is that communications to the public about earthquake hazard and risk must not be left in the hands of someone who has gross misunderstandings about seismology. They must be carefully prepared by experts. The more significant lesson is that the approach to calm the population and the standard probabilistic hazard and risk assessment, as practiced by GSHAP, are misleading. The later has been criticized as

  4. Probabilistic ecological risk assessment of polycyclic aromatic hydrocarbons in southwestern catchments of the Bohai Sea, China.

    Science.gov (United States)

    Zeng, Lin; Zeng, Siyu; Dong, Xin; Zhang, Tianzhu; Chen, Jining

    2013-10-01

    A probability risk assessment was undertaken to study the individual and combined ecological risks induced by six polycyclic aromatic hydrocarbons (PAHs) both in surface water and sediment from southwestern catchments of the Bohai Sea, China. The actual measured PAH concentrations in water and sediment were compared with toxicity effect data (the 10th percentile of predicted no effect concentration) to calculate the risk quotients (RQs) for an individual PAH. The equilibrium partitioning method was applied to estimate toxicity data in sediment. A method based on the equivalent concentration concept was proposed and applied to assess the combined ecological risk of multiple PAHs. Monte Carlo simulation and bootstrap technique were utilized to calculate the distribution of RQs and associated uncertainties. The ecological safety level was defined by RQ ≤ 1. Results indicated that both in water and sediment, fluoranthene and pyrene posed the highest risks, whereas acenaphthene and fluorene posed negligible risks. Naphthalene and phenanthrene did not pose risks to the ecological community in surface water but had relatively higher risks in sediment. The median RQs of combined risk in surface water and sediment were 0.934 and 2.42, and the probabilities of RQ > 1 were up to 0.473 and 0.599, respectively, which were much higher than the individual compound acting alone. The risk level in sediment was quite higher than in surface water probably owing to the non-equilibrium distribution between two phases, which suggested that local authorities should focus more on sediment quality management.

  5. Risk-based probabilistic approach to assess the impact of false mussel invasions on farmed hard clams.

    Science.gov (United States)

    Liao, Chung-Min; Ju, Yun-Ru; Chio, Chia-Pin; Chen, Wei-Yu

    2010-02-01

    The purpose of this article is to provide a risk-based predictive model to assess the impact of false mussel Mytilopsis sallei invasions on hard clam Meretrix lusoria farms in the southwestern region of Taiwan. The actual spread of invasive false mussel was predicted by using analytical models based on advection-diffusion and gravity models. The proportion of hard clam colonized and infestation by false mussel were used to characterize risk estimates. A mortality model was parameterized to assess hard clam mortality risk characterized by false mussel density and infestation intensity. The published data were reanalyzed to parameterize a predictive threshold model described by a cumulative Weibull distribution function that can be used to estimate the exceeding thresholds of proportion of hard clam colonized and infestation. Results indicated that the infestation thresholds were 2-17 ind clam(-1) for adult hard clams, whereas 4 ind clam(-1) for nursery hard clams. The average colonization thresholds were estimated to be 81-89% for cultivated and nursery hard clam farms, respectively. Our results indicated that false mussel density and infestation, which caused 50% hard clam mortality, were estimated to be 2,812 ind m(-2) and 31 ind clam(-1), respectively. This study further indicated that hard clam farms that are close to the coastal area have at least 50% probability for 43% mortality caused by infestation. This study highlighted that a probabilistic risk-based framework characterized by probability distributions and risk curves is an effective representation of scientific assessments for farmed hard clam in response to the nonnative false mussel invasion.

  6. Probabilistic meta-analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia.

    Science.gov (United States)

    De Miguel, Eduardo; Clavijo, Diana; Ortega, Marcelo F; Gómez, Amaia

    2014-08-01

    Colombia is one of the largest per capita mercury polluters in the world as a consequence of its artisanal gold mining activities. The severity of this problem in terms of potential health effects was evaluated by means of a probabilistic risk assessment carried out in the twelve departments (or provinces) in Colombia with the largest gold production. The two exposure pathways included in the risk assessment were inhalation of elemental Hg vapors and ingestion of fish contaminated with methyl mercury. Exposure parameters for the adult population (especially rates of fish consumption) were obtained from nation-wide surveys and concentrations of Hg in air and of methyl-mercury in fish were gathered from previous scientific studies. Fish consumption varied between departments and ranged from 0 to 0.3 kg d(-1). Average concentrations of total mercury in fish (70 data) ranged from 0.026 to 3.3 μg g(-1). A total of 550 individual measurements of Hg in workshop air (ranging from risk. All but two of the distributions of Hazard Quotients (HQ) associated with ingestion of Hg-contaminated fish for the twelve regions evaluated presented median values higher than the threshold value of 1 and the 95th percentiles ranged from 4 to 90. In the case of exposure to Hg vapors, minimum values of HQ for the general population exceeded 1 in all the towns included in this study, and the HQs for miner-smelters burning the amalgam is two orders of magnitude higher, reaching values of 200 for the 95th percentile. Even acknowledging the conservative assumptions included in the risk assessment and the uncertainties associated with it, its results clearly reveal the exorbitant levels of risk endured not only by miner-smelters but also by the general population of artisanal gold mining communities in Colombia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    International Nuclear Information System (INIS)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.

    2017-01-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  8. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  9. Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A

    2018-01-01

    A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision

  10. Probabilistic tools for assessment of pest resistance risk associated to insecticidal transgenic crops

    Directory of Open Access Journals (Sweden)

    Maia Aline de Holanda Nunes

    2004-01-01

    Full Text Available One of the main risks associated to transgenic crops expressing Bacillus thuringiensis (Bt toxins is the evolution of pest resistance. The adoption of Bt crops requires environmental risk assessment that includes resistance risk estimation, useful for definition of resistance management strategies aiming to delay resistance evolution. In this context, resistance risk is defined as the probability of the Bt toxin resistance allele frequency (RFreq exceeding a critical value (CriticalFreq. Mathematical simulation models have been used to estimate (RFreq over pest generations. In 1998, Caprio developed a deterministic simulation model with few parameters that can be used to obtain RFreq point estimates from point information about model parameters and decision variables involved in that process. In this work, the resistance risk was estimated using Caprio´s model, by incorporating uncertainty to the resistance allele initial frequency (InitialFreq. The main objective was to evaluate the influence of different probability distribution functions on the risk estimates. The simulation results showed that the influence of InitialFreq input distributions on the risk estimates changes along pest generations. The risk estimates considering input Normal distribution for InitialFreq are similar to those ones obtained considering Triangular distribution if their variances are equal. The use of Uniform distribution instead the Normal or Triangular due to the lack of information about InitialFreq leads to an overestimation of risk estimates for the initial generations and sub estimation for the generations after the one for which the critical frequency is achieved.

  11. Treating Uncertainties in A Nuclear Seismic Probabilistic Risk Assessment by Means of the Distemper-Safer Theory of Evidence

    International Nuclear Information System (INIS)

    Lo, Chungkung; Pedroni, N.; Zio, E.

    2014-01-01

    The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i. e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest

  12. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    Directory of Open Access Journals (Sweden)

    CHUNG-KUNG LO

    2014-02-01

    Full Text Available The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs of Nuclear Power Plants (NPPs are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii providing ‘conservative’ bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF that reflect the (limited state of knowledge of the experts about the system of interest.

  13. Probabilistic risk assessment of diuron and prometryn in the Gwydir River catchment, Australia, with the input of a novel bioassay based on algal growth.

    Science.gov (United States)

    Shi, Yajuan; Burns, Mitchell; Ritchie, Raymond J; Crossan, Angus; Kennedy, Ivan R

    2014-08-01

    A probabilistic risk assessment of the selected herbicides (diuron and prometryn) in the Gwydir River catchment was conducted, with the input of the EC₅₀ values derived from both literature and a novel bioassay. Laboratory test based on growth of algae exposed to herbicides assayed with a microplate reader was used to examine the toxicity of diuron and prometryn on the growth of Chlorella vulgaris. Both herbicides showed concentration dependent toxicity in inhibiting the growth of Chlorella during the exposure period of 18-72 h. Diuron caused more toxicity as judged by growth rates than prometryn. Thalaba Creek at Merrywinebone was identified as the 'hotspot' for diuron and prometryn risk in the Gwydir catchment. The use of microplate assays coupled with probabilistic risk assessment is recommended for rapid assessment of ecotoxicity of indigenous species, allowing identification of locations in river catchments requiring environmental management. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  15. Post-Probabilistic Uncertainty Quantification: Discussion of Potential Use in Product Development Risk Management

    DEFF Research Database (Denmark)

    Tegeltija, Miroslava; Oehmen, Josef; Kozin, Igor

    2016-01-01

    Uncertainty represents one of the key challenges in product development (PD) projects and can significantly impact a PD project's performance. Risks in PD lead to schedule and cost over-runs and poor product quality [Olechowski et al. 2012]. Risk management is one response for the identification...

  16. The use of modelling and probabilistic methods in cumulative risk assessment

    NARCIS (Netherlands)

    Bosgra, S.

    2008-01-01

    This thesis was realized as part of the EU integrated project SAFE FOODS, the overall objective of which was to change the scope of decision-making on food safety from single risks to considering foods as sources of risks, benefits and costs associated with their production and consumption, and

  17. Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires

    Science.gov (United States)

    P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner

    2011-01-01

    The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...

  18. Limitations of the entomological operational risk assessment using probabilistic and deterministic analyses.

    Science.gov (United States)

    Schleier, Jerome J; Peterson, Robert K D

    2010-08-01

    The Entomological Operational Risk Assessment (EORA) is used by the U.S. military to estimate risks posed by arthropod-vectored pathogens that produce human diseases. Our analysis demonstrated that the EORA matrix is formatted so that a small change in probability results in a discontinuous jump in risk. In addition, we show the overlap of different risk categories with respect to their probability of occurrence. Our results reveal that the fundamental mathematical problems associated with the EORA process may not provide estimates that are better than random chance. To ameliorate many of the problems associated with the EORA, we suggest more robust methods for performing qualitative and semiquantitative risk assessments when it is difficult to obtain the probability that an adverse event will occur and when the knowledge of experts can aid the process.

  19. Site Specific Probabilistic Seismic Hazard and Risk Analysis for Surrounding Communities of The Geysers Geothermal Development Area

    Science.gov (United States)

    Miah, M.; Hutchings, L. J.; Savy, J. B.

    2014-12-01

    We conduct a probabilistic seismic hazard and risk analysis from induced and tectonic earthquakes for a 50 km radius area centered on The Geysers, California and for the next ten years. We calculate hazard with both a conventional and physics-based approach. We estimate site specific hazard. We convert hazard to risk of nuisance and damage to structures per year and map the risk. For the conventional PSHA we assume the past ten years is indicative of hazard for the next ten years from Mnoise. Then, we interpolate within each geologic unit in finely gridded points. All grid points within a unit are weighted by distance from each data collection point. The entire process is repeated for all of the other types of geologic units until the entire area is gridded and assigned a hazard value for every grid points. We found that nuisance and damage risks calculated by both conventional and physics-based approaches provided almost identical results. This is very surprising since they were calculated by completely independent means. The conventional approach used the actual catalog of the past ten years of earthquakes to estimate the hazard for the next ten year. While the physics-based approach used geotechnical modeling to calculate the catalog for the next ten years. Similarly, for the conventional PSHA, we utilized attenuation relations from past earthquakes recorded at the Geysers to translate the ground motion from the source to the site. While for the physics-based approach we calculated ground motion from simulation of actual earthquake rupture. Finally, the source of the earthquakes was the actual source for the conventional PSHA. While, we assumed random fractures for the physics-based approach. From all this, we consider the calculation of the conventional approach, based on actual data, to validate the physics-based approach used.

  20. A probabilistic risk assessment for the Kirtland's warbler potentially exposed to chlorpyrifos and malathion during the breeding season and migration.

    Science.gov (United States)

    Moore, Dwayne Rj; Priest, Colleen D; Olson, Adric D; Teed, R Scott

    2018-03-01

    Two organophosphate pesticides, chlorpyrifos and malathion, are currently undergoing reregistration in the United States and were recently used by the US Environmental Protection Agency (USEPA) as case studies to develop a national procedure for evaluating risks to endangered species. One of the endangered bird species considered by the USEPA was the Kirtland's warbler (Setophaga kirtlandii). The Kirtland's warbler is an endangered migratory species that nests exclusively in young jack pine stands in Michigan and Wisconsin, and winters in the Bahamas. We developed probabilistic models to assess the risks of chlorpyrifos and malathion to Kirtland's warblers during the breeding season and the spring and fall migrations. The breeding area model simulates acute and chronic exposure and risk to each of 10 000 birds over a 60-d period following initial pesticide application. The model is highly species specific with regard to the foraging behavior of Kirtland's warblers during the breeding season. We simulated the maximum application rate and number of applications allowed on the labels for representative use patterns that could be found within 3 km of the breeding areas of Kirtland's warbler. The migration model simulates 10 000 birds during the course of their 12- to 23-d migration between their breeding area and the Bahamas. The model takes advantage of more than a century of observations of when, where, and for how long Kirtland's warblers forage in different habitats during the course of their migration. The data indicate that warblers only infrequently stop over in habitats that could be treated with chlorpyrifos and malathion. The breeding area and migration models resulted in predictions of very low acute and chronic risk for both pesticides to Kirtland's warblers. These results were expected, given that field observations indicate that the Kirtland's warbler has dramatically increased in abundance in recent decades. Integr Environ Assess Manag 2018

  1. Risk Modelling of Late Spring Frost Damage on Fruit Trees, Case Study; Apple Tree, Mashhad Plain

    Directory of Open Access Journals (Sweden)

    M Rahimi

    2012-02-01

    Full Text Available Mashhad plain is one of the most important regions of Apple cultivated areas. Occurring spring late frost creates a lot of damages on bud and decreasing the yield of Apple in this region. Assessment and risk modeling of frost damage would be useful to manage and decrease the damage. The study area is a part of Khorasan Razavi province which is located in Mashhad plain. This region is located in Northeast Iran (36º to 37 º N, 58 º 30' to 60 º E. The area of this region is about 13000 square km which is about one tenth of Khorasan province area. In order to modeling frost damage risk 12 affective parameters including climatological(Minimum temperature, temperature decreasing rate, temperature Increasing rate, Julian days of frost, cumulative degree days, Area under zero line, and frost duration and geographical parameters (Elevation, Longitude, Latitude, Aspect, and slope were selected. 3 damage full radiative frosts were selected in the period of Apple flowering time which was dated 20 April 2003, 8 April 2005, and 28 March 2005. Required meteorological data were collected from 9 meteorological standard stations inside and outside of study area. Linear multiple regression were used to modeling the relationship. The map for each parameter was plotted by using suitable interpolation method including IDW; Spline; Kriging. A grid map was defined with 5 by 5 kilometers to extract enough data for entering to the model. The regression equation was significant at the level of 99% significance. By using this equation the predicted amounts of frost risk damage were calculated for each point of grid and also the map was plotted. The regression equation of observed and predicted frost damage risk was provided by correlation of 0.93 and the error map also was prepared. According to this study in frost of 31 Farvardin 1388 South West parts of the plain estimated as the most frost risk areas by %53.19 and the southeast parts were estimated as the least

  2. Organochlorines in urban soils from Central India: probabilistic health hazard and risk implications to human population.

    Science.gov (United States)

    Kumar, Bhupander; Mishra, Meenu; Verma, V K; Rai, Premanjali; Kumar, Sanjay

    2018-04-21

    This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between < 0.01-2.54, 1.30-27.41 and < 0.01-62.8 µg kg -1 , respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ < 1.0) and the acceptable distribution range of ILCR (10 -6 -10 -4 ). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.

  3. Appraisal of individual radiation risk in the context of probabilistic exposures

    International Nuclear Information System (INIS)

    Bohnenblust, H.; Pretre, S.

    1990-01-01

    There exists a growing desire to base safety criteria in different fields on the same principles. The current approach by the international Commission on Radiological Protection (ICRP) to control radiation exposure touches many aspects such as social, psychological, or economic factors that are important for such principles. This paper attempts to further explore possible ways of defining a common basis for dealing with radiation risks and other safety problems. Specifically, it introduces the following issues: different types of risk are judged differently. To account for this, the concept of risk categories is introduced. The dimension of time may play an important role. There is a difference between an immediate death and a death occurring 20 years after exposure to radiation. Effects such as reduced quality of life after exposure and reduction of lifetime expectancy are discussed. The paper suggests to introduce an individual risk equivalent which allows to compare risks as defined in various fields. Furthermore, it suggests the use of risk acceptance criteria which depend on the different categories of risk

  4. Risk from exposure to trihalomethanes during shower: probabilistic assessment and control.

    Science.gov (United States)

    Chowdhury, Shakhawat; Champagne, Pascale

    2009-02-15

    Exposure to trihalomethanes (THMs) through inhalation and dermal contact during showering and bathing may pose risks to human health. During showering and bathing, warm water (35 degrees C-45 degrees C) is generally used. Warming of chlorinated supply water may increase THMs formation through enhanced reactions between organics and residual chlorine. Exposure assessment using THMs concentrations in cold water may under-predict the possible risks to human health. In this study, THMs concentrations in warm water were estimated by developing a THMs formation rate model. Using THMs in warm water, cancer and non-cancer risks to human health were predicted for three major cities in Ontario (Canada). The parameters for risk assessments were characterized by statistical distributions. The total cancer risks from exposure to THMs during showering were predicted to be 7.6x10(-6), 6.3x10(-6) and 4.3x10(-6) for Ottawa, Hamilton and Toronto respectively. The cancer risks exceedance probabilities were estimated to be highest in Ottawa at different risk levels. The risks through inhalation exposure were found to be comparable (2.1x10(-6)-3.7x10(-6)) to those of the dermal contact (2.2x10(-6)-3.9x10(-6)) for the cities. This study predicted 36 cancer incidents from exposure to THMs during showering for these three cities, while Toronto contributed the highest number of possible cancer incidents (22), followed by Ottawa (10) and Hamilton (4). The sensitivity analyses showed that health risks could be controlled by varying shower stall volume and/or shower duration following the power law relationship.

  5. Probabilistic Ecological Risk Assessment of OCPs, PCBs, and DLCs in the Haihe River, China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-01-01

    Full Text Available The Haihe River is the most seriously polluted river among the seven largest rivers in China. Dichloro-diphenyl-trichloroethanes (DDTs, hexachlorocyclohexanes (HCHs, and PCBs (noncoplanar polychlorinated biphenyls in the Haihe River, Tianjin were determined using a gas chromatograph – electron capture detector (GC-ECD. Dioxin-like compounds (DLCs were determined using Chemically Activated LUciferase gene eXpression (CALUX bioassay. HCH and DDT levels were, respectively, 0.06–6.07 μg/L and ND (not detected to 1.21 μg/L; PCB levels ranged from 0.12 to 5.29 μg/L; and the total DLCs in sediment were 4.78–343 pg TEQ (toxic equivalency/g. Aquatic ecological risk assessment was performed using the joint probability curve method and the Monte Carlo-based HQ (hazard quotient distribution method. The combined risks of similar chemicals and the total risk of dissimilar categories of chemicals were assessed based on the principles of joint toxicity. Due to the adjacent industrial activities, the risk levels of PCBs, DDTs, and HCHs were relatively high. The risk order was as follows: PCBs > DDTs ≈ HCHs > DLCs. The risk of HCHs approximated that of DDTs, which is different from the fact that risk of HCHs is usually much lower in the other Chinese rivers. The total risk caused by these pollutants was very high. Due to their high persistence and potential source from land, the high risks of such pollutants are likely to last for a long period of time.

  6. A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment.

    Science.gov (United States)

    Waddingham, Ed; Mt-Isa, Shahrul; Nixon, Richard; Ashby, Deborah

    2016-01-01

    Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit-risk assessment to formalize trade-offs between benefits and risks, providing transparency to the assessment process. There is however no well-established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit-risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo-controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit-risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing-remitting multiple sclerosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Probabilistic networks of blood metabolites in healthy subjects as indicators of latent cardiovascular risk

    NARCIS (Netherlands)

    Saccenti, E.; Suarez Diez, M.; Luchinat, C.; Santucci, C.; Tenori, L.

    2015-01-01

    The complex nature of the mechanisms behind cardiovascular diseases prevents the detection of latent early risk conditions. Network representations are ideally suited to investigate the complex interconnections between the individual components of a biological system underlying complex diseases.

  8. A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.

  9. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    National Research Council Canada - National Science Library

    Van Liew, H. D; Flynn, E. T

    2004-01-01

    .... Here we present a simple model, based on premises different from those used previously, to test whether long decompression times are necessary and to enable risk of decompression sickness (UCS...

  10. Post-Probabilistic Uncertainty Quantification: Discussion of Potential Use in Product Development Risk Management

    DEFF Research Database (Denmark)

    Tegeltija, Miroslava; Oehmen, Josef; Kozin, Igor

    2016-01-01

    and management of risks. Acknowledging the increasing societal and business criticality of product development projects, there is a need to more thoroughly explore the various fundamental approaches to describe and quantify various types of uncertainty as part of the overall decision making process. Decisions...... if uncertainty is carefully addressed (e.g. [Prelec and Loewenstein 1991], [Riabacke 2006]). In the risk management community there is a strong argument that at least two distinct types of uncertainty have to be taken into account: aleatory and epistemic. Epistemic uncertainty arises due to lack of knowledge......Uncertainty represents one of the key challenges in product development (PD) projects and can significantly impact a PD project's performance. Risks in PD lead to schedule and cost over-runs and poor product quality [Olechowski et al. 2012]. Risk management is one response for the identification...

  11. VRAKA – a probabilistic risk assessment method for potentially polluting shipwrecks

    Directory of Open Access Journals (Sweden)

    Hanna Landquist

    2016-07-01

    Full Text Available Shipwrecks around the world contain unknown volumes of hazardous substances which, if discharged, could harm the marine environment. Shipwrecks can deteriorate for a number of reasons, including corrosion and physical impact from trawling and other activities, and the probability of a leakage increases with time. Before deciding on possible mitigation measures, there are currently few comprehensive methods for assessing shipwrecks with respect to pollution risks. A holistic method for estimating environmental risks from shipwrecks should be based on well-established risk assessment methods and should take into account both the probability of discharge and the potential consequences. The purpose of this study was therefore to present a holistic risk assessment method for potentially polluting shipwrecks. The focus is set to developing a method for estimating the environmental consequences of potential discharges of hazardous substances from shipwrecks and to combine this with earlier research on a tool for estimating the probability of discharge of hazardous substances. Risk evaluation should also be included in a full risk assessment and is the subject of further research. The consequence assessment was developed for application in three tiers. In Tier 1, the probability of discharge and possible amount of discharge are compared to other shipwrecks. In Tier 2, a risk matrix, including a classification of potential consequences, is suggested as a basis for assessment and comparison. The most detailed level, Tier 3, is based on advanced tools for oil spill trajectory modelling and sensitivity mapping of the Swedish coast.To illustrate the method an example application on two wrecks is presented. Wreck number 1 present a lower probability of discharge and a lower consequence in a Tier 1 and Tier 3 assessment. For the Tier 2 consequence assessment, the two example wrecks present equal consequence. The tool for estimating the probability of discharge

  12. Analyzing Dynamic Probabilistic Risk Assessment Data through Topology-Based Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Dan Maljovec; BeiWang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    We investigate the use of a topology-based clustering technique on the data generated by dynamic event tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm based on topological structures known as the Morse-Smale complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We perform both end state analysis and transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the temperature of the reactor as well as the time for a recovery team to fix the passive cooling system. Combined with clustering results obtained previously through mean shift methodology, we present the user with complementary views of the data that help illuminate key features that may be otherwise hidden using a single methodology. By clustering the data, the number of relevant test cases to be selected for further analysis can be drastically reduced by selecting a representative from each cluster. Identifying the similarities of simulations within a cluster can also aid in the drawing of important conclusions with respect to safety analysis.

  13. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment.

    Science.gov (United States)

    Liao, Chung-Min; Chio, Chia-Pin; Chen, Wei-Yu; Ju, Yun-Ru; Li, Wen-Hsuan; Cheng, Yi-Hsien; Liao, Vivian Hsiu-Chuan; Chen, Szu-Chieh; Ling, Min-Pei

    2011-06-15

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo(a)pyrene (B[a]P) and PM concentrations. A dose-response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10(-5) to 10(-4) for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics.

    Science.gov (United States)

    Campbell, Ian M; Stewart, Jonathan R; James, Regis A; Lupski, James R; Stankiewicz, Paweł; Olofsson, Peter; Shaw, Chad A

    2014-10-02

    Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Binary Tree Pricing to Convertible Bonds with Credit Risk under Stochastic Interest Rates

    Directory of Open Access Journals (Sweden)

    Jianbo Huang

    2013-01-01

    Full Text Available The convertible bonds usually have multiple additional provisions that make their pricing problem more difficult than straight bonds and options. This paper uses the binary tree method to model the finance market. As the underlying stock prices and the interest rates are important to the convertible bonds, we describe their dynamic processes by different binary tree. Moreover, we consider the influence of the credit risks on the convertible bonds that is described by the default rate and the recovery rate; then the two-factor binary tree model involving the credit risk is established. On the basis of the theoretical analysis, we make numerical simulation and get the pricing results when the stock prices are CRR model and the interest rates follow the constant volatility and the time-varying volatility, respectively. This model can be extended to other financial derivative instruments.

  16. Probabilistic acute risk assessment of cumulative exposure to organophosphorus and carbamate pesticides from dietary vegetables and fruits in Shanghai populations.

    Science.gov (United States)

    Li, Fan; Yuan, Yaqun; Meng, Pai; Wu, Min; Li, Shuguang; Chen, Bo

    2017-05-01

    Organophosphorus pesticides (OPs) and carbamate pesticides (CPs) are among the most widely used pesticides in China, playing a major role in protecting agricultural commodities. In this study, we determined the cumulative acute exposure to OPs and CPs of Shanghai residents from vegetables and fruits (VFs). The food consumption data were obtained from the Shanghai Food Consumption Survey (SHFCS) of 2012-14 including a total of 1973 participants aged 2-90 years. The pesticide residue data were obtained from the Shanghai monitoring programme during 2008-11 with 34 organophosphates and 11 carbamates analysed in a total of 5335 samples of VFs. A probabilistic approach was performed as recommended by the EFSA, using the optimistic model with non-detects set as zero and with processing factors (PFs) being used and the pessimistic model with non-detects replaced by limit of detection (LOD) and without PFs. We used the relative potency factor (RPF) method to normalise the various pesticides to the index compound (IC) of methamidophos and chlorpyrifos separately. Only in the pessimistic model using methamidophos as the IC was there was small risk of exposure exceeding the ARfD (3 µg kg - 1 bw day - 1 ) in the populations of preschool children (0.029%), school-age children (0.022%) and adults (0.002%). There were no risk of exposure exceeding the ARfD of methamidophos in the optimistic model and of chlorpyrifos (100 µg kg - 1 bw day - 1 ) in both optimistic and pessimistic models in all three populations. Considering the Chinese habits of overwhelmingly eating processed food (vegetables being cooked, and fruits being washed or peeled), we conclude that little acute risk was found for the exposure to VF-sourced OPs and CPs in Shanghai.

  17. Probabilistic and deterministic risk assessment for extreme objects and ecologically hazardous systems

    Directory of Open Access Journals (Sweden)

    Yu. V. Veryuzhsky

    2003-06-01

    Full Text Available The paper include mostly the results of works of the Research Institute for Mechanics of Quickproceeding Processes united in a general research direction - creation of the methodology for risk assessment and risk management for ecologically hazardous systems, consisting of the set of different technological analyzed objects. The elements of system can be characterized by high level of radiation, toxic, explosion, fire and other hazards. The probalistic and deterministic approach for risk assessment, based on mathematical methods of system analysis, non-liner dynamics and computer simulation, has been developed. Branching in problem definition, as well as diversity of factor and criteria for determination of system status, is also taken into account. The risks caused by both objective and subjective factors (including human factor are examined. In many performed studies, the leading structural element, dominating in determination of the system safety, is the structural part of an object. The methodology is implemented for the safety analysis (risk assessment for Chernobyl NPP Shelton Object and other industrial buildings

  18. Use of probabilistic risk assessment in expert system usage for nuclear power plant safety

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1987-01-01

    The introduction of probability risk assessments (PRA's) to nuclear power plants in the Rasmussen Report (WASH-1400) gave us a means of evaluating the risk to the public associated with the operation of nuclear power plants, at least on a relative basis. While the choice of the ''source term'' and methodology in a PRA significantly influence the absolute probability and the consequences of core melt, comparison of two PRA calculations for two configurations of the same plant, carried out on a consistent basis, can be readily identify the increase in risk associated with going from one configuration of a plant to another by removing components or systems from service. This ratio of core melt probabilities (assuming no recovery of failed systems) obtained from two PRA calculations for different configurations was the criterion (called ''risk factor'') chosen as a basis for making a decision in an expert system as to what mitigating action, if any, would be taken to avoid a trip situation from developing. PRISIM was developed by JBF Associates of Knoxville under the sponsorship of the NRC as a system for Resident Inspectors at nuclear power plants to provide them with a relative safety status of the plant under all configurations. PRISIM calculated the risk factor---the ration of core melt probabilities of the plant under the current configuration relative to the normal configuration with all systems functioning---using an algorithm that emulates the results of the original PRA. It also presents time and core melt (assuming no recovery of systems or components)

  19. The use of probabilistic risk assessment to satisfy the Nuclear Regulatory Commission's maintenance rule

    International Nuclear Information System (INIS)

    Dubord, R.M.

    1993-05-01

    Maintenance and inspection at nuclear power plants consumes a large portion of a utility's resources, making resource allocation for such procedures vital. The NRC Maintenance Rule, due to be implemented in July of 1996, requires utilities to select systems, structures, and components (SSCS) important to safety and to develop a monitoring program to ensure that these SSCs are capable of fulfilling their intended functions. In light of these concerns, two ratios were developed to compare the risk significance of individual components with the amount of plant staff time, or burden, associated with inspecting the component. These risk/burden ratios point out existing disparities between current inspection practices and safety concerns. These ratios can be used to develop new inspection schedules constituting a more equitable risk to burden distribution

  20. Dam overtopping risk using probabilistic concepts – Case study: The Meijaran Dam, Iran

    Directory of Open Access Journals (Sweden)

    Ehsan Goodarzi

    2013-06-01

    Full Text Available Hydrologic risk assessment and uncertainty analysis by mathematical and statistical methods provide useful information for decision makers. This study presents the application of risk and uncertainty analysis to dam overtopping due to various inflows and wind speeds for the Meijaran Dam in the north of Iran. The procedure includes univariate flood and wind speed frequency analyses, reservoir routing, and integration of wind set-up and run-up to calculate the reservoir water elevation. Afterwards, the probability of overtopping was assessed by applying two uncertainty analysis methods (Monte Carlo simulation and Latin hypercube sampling, and considering the quantile of flood peak discharge, initial depth of water in the reservoir, and spillway discharge coefficient as uncertain variables. The results revealed that rising water level in the reservoir is the most important factor in overtopping risk analysis and that wind speed also has a considerable impact on reservoirs that are placed in windy areas.

  1. A probabilistic risk assessment for dengue fever by a threshold based-quantile regression

    Science.gov (United States)

    Chiu, Chuan-Hung; Tan, Yih-Chi; Wen, Tzai-Hung; Chien, Lung-Chang; Yu, Hwa-Lung

    2014-05-01

    This article introduces an important concept "return period" to analyze potential incident rate of dengue fever by bringing together two models: the quantile regression model and the threshold-based method. The return period provided the frequency of incidence of dengue fever, and established the risk maps for potential incidence of dengue fever to point out highest risk in certain areas. A threshold-based linear quantile regression model was constructed to find significantly main effects and interactions based on collinearity test and stepwise selection, and also showed the performance of our model via pseudo R2. Finally, the spatial risk maps of the specified return periods and average incident rates were given, and indicated that high population density place (e.g., residential area), water conservancy facilities, and corresponding interactions could lead to a positive influence on dengue fever. These factors would be the key point to disease protection in a given study area.

  2. Probabilistic simulation applications to reliability assessments

    International Nuclear Information System (INIS)

    Miller, Ian; Nutt, Mark W.; Hill, Ralph S. III

    2003-01-01

    Probabilistic risk/reliability (PRA) analyses for engineered systems are conventionally based on fault-tree methods. These methods are mature and efficient, and are well suited to systems consisting of interacting components with known, low probabilities of failure. Even complex systems, such as nuclear power plants or aircraft, are modeled by the careful application of these approaches. However, for systems that may evolve in complex and nonlinear ways, and where the performance of components may be a sensitive function of the history of their working environments, fault-tree methods can be very demanding. This paper proposes an alternative method of evaluating such systems, based on probabilistic simulation using intelligent software objects to represent the components of such systems. Using a Monte Carlo approach, simulation models can be constructed from relatively simple interacting objects that capture the essential behavior of the components that they represent. Such models are capable of reflecting the complex behaviors of the systems that they represent in a natural and realistic way. (author)

  3. Exploring probabilistic tools for the development of a platform for Quantitative Risk Assessment (QRA) of hydro-meteorological hazards in Europe

    Science.gov (United States)

    Zumpano, V.; Hussin, H. Y.; Breinl, K.

    2012-04-01

    Mass-movements and floods are hydro-meteorological hazards that can have catastrophic effects on communities living in mountainous areas prone to these disastrous events. Environmental, climate and socio-economic changes are expected to affect the tempo-spatial patterns of hydro-meteorological hazards and associated risks in Europe. These changes and their effects on the occurrence of future hazards need to be analyzed and modeled using probabilistic hazard and risk assessment methods in order to assist stakeholders in disaster management strategies and policy making. Quantitative Risk Assessment (QRA) using probabilistic methods can further calculate damage and losses to multi-hazards and determine the uncertainties related to all the probabilistic components of the hazard and the vulnerability of the elements at risk. Therefore, in order to develop an effective platform that can quantitatively calculate the risk of mass-movements and floods in several European test sites, an extensive inventory and analysis has been carried out of the available tools and software related to the probabilistic risk assessment of single and multi-hazards. The tools have been reviewed based on whether they are open source and freely available, their required input data, the availability and type of hazard and vulnerability modules, transparency of methods used, their validation and calibration techniques, the inclusion of uncertainties and their state of the art. The analysis also specially focused on the applicability of the tools to European study areas. The findings showed that assumptions and simplifications are made when assessing and quantifying the hazards. The interaction between multiple hazards, like cascading effects are not assessed in most tools and some consider the hazard and vulnerability as qualitative components, rather than quantitative ones. This analysis of hazard and risk assessment tools and software will give future developers and experts a better overview of

  4. Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium.

    Science.gov (United States)

    Nam, Sun-Hwa; Lee, Woo-Mi; An, Youn-Joo

    2012-06-01

    Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation methodAcute to chronic ratio (SEMACR), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 μg/l and 0.034 μg/l, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

  5. Genetically engineered trees for plantation forests: key considerations for environmental risk assessment.

    Science.gov (United States)

    Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven

    2013-09-01

    Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment. © 2013 ILSI Research Foundation. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Ensemble of trees approaches to risk adjustment for evaluating a hospital's performance.

    Science.gov (United States)

    Liu, Yang; Traskin, Mikhail; Lorch, Scott A; George, Edward I; Small, Dylan

    2015-03-01

    A commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients. The key to risk adjustment is accurately estimating the probability of an Outcome given patient characteristics. For cases with binary outcomes, the method that is commonly used in risk adjustment is logistic regression. In this paper, we consider ensemble of trees methods as alternatives for risk adjustment, including random forests and Bayesian additive regression trees (BART). Both random forests and BART are modern machine learning methods that have been shown recently to have excellent performance for prediction of outcomes in many settings. We apply these methods to carry out risk adjustment for the performance of neonatal intensive care units (NICU). We show that these ensemble of trees methods outperform logistic regression in predicting mortality among babies treated in NICU, and provide a superior method of risk adjustment compared to logistic regression.

  7. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    Science.gov (United States)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a

  8. PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water

    OpenAIRE

    Breckenridge, Charles B.; Campbell, Jerry L.; Clewell, Harvey J.; Andersen, Melvin E.; Valdez-Flores, Ciriaco; Sielken, Robert L.

    2016-01-01

    The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening ...

  9. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in ASIA

    NARCIS (Netherlands)

    Rico, A.; Brink, van den P.J.

    2014-01-01

    Aquaculture production constitutes one of the main sources of pollution with veterinary medicines into the environment. About 90% of the global aquaculture production is produced in Asia and the potential environmental risks associated with the use of veterinary medicines in Asian aquaculture have

  10. A simulation of probabilistic wildfire risk components for the continental United States

    Science.gov (United States)

    Mark A. Finney; Charles W. McHugh; Isaac C. Grenfell; Karin L. Riley; Karen C. Short

    2011-01-01

    This simulation research was conducted in order to develop a large-fire risk assessment system for the contiguous land area of the United States. The modeling system was applied to each of 134 Fire Planning Units (FPUs) to estimate burn probabilities and fire size distributions. To obtain stable estimates of these quantities, fire ignition and growth was simulated for...

  11. Probabilistic runoff volume forecasting in risk-based optimization for RTC of urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Vezzaro, Luca; Mikkelsen, Peter Steen

    2016-01-01

    overflow risk. The stochastic control framework and the performance of the runoff forecasting models are tested in a case study in Copenhagen (76 km2 with 6 sub-catchments and 7 control points) using 2-h radar rainfall forecasts and inlet flows to control points computed from a variety of noisy...

  12. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  13. Probabilistic risk assessment course documentation. Volume 7. Environmental transport and consequence analysis

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Ostmeyer, R.M.; Kaiser, G.D.; Runkle, G.E.; Woodard, K.

    1985-08-01

    Consequence models have been designed to assess health and economic risks from potential accidents at nuclear power plants. These models have been applied to an ever increasing variety of problems with ever increasing demands to improve modeling capabilities and provide greater realism. This course discusses the environmental transport of postulated radiological releases and the elements and purpose of accident consequence evaluation

  14. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels

    Science.gov (United States)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2015-06-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high-resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model, and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be nontrivial for multispecies transport. This nontriviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks.

  15. Health risk characterization of chlorpyrifos using epidemiological dose-response data and probabilistic techniques: a case study with rice farmers in Vietnam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Yu, Qiming; Chu, Cordia

    2013-09-01

    Various methods for risk characterization have been developed using probabilistic approaches. Data on Vietnamese farmers are available for the comparison of outcomes for risk characterization using different probabilistic methods. This article addresses the health risk characterization of chlorpyrifos using epidemiological dose-response data and probabilistic techniques obtained from a case study with rice farmers in Vietnam. Urine samples were collected from farmers and analyzed for trichloropyridinol (TCP), which was converted into absorbed daily dose of chlorpyrifos. Adverse health response doses due to chlorpyrifos exposure were collected from epidemiological studies to develop dose-adverse health response relationships. The health risk of chlorpyrifos was quantified using hazard quotient (HQ), Monte Carlo simulation (MCS), and overall risk probability (ORP) methods. With baseline (prior to pesticide spraying) and lifetime exposure levels (over a lifetime of pesticide spraying events), the HQ ranged from 0.06 to 7.1. The MCS method indicated less than 0.05% of the population would be affected while the ORP method indicated that less than 1.5% of the population would be adversely affected. With postapplication exposure levels, the HQ ranged from 1 to 32.5. The risk calculated by the MCS method was that 29% of the population would be affected, and the risk calculated by ORP method was 33%. The MCS and ORP methods have advantages in risk characterization due to use of the full distribution of data exposure as well as dose response, whereas HQ methods only used the exposure data distribution. These evaluations indicated that single-event spraying is likely to have adverse effects on Vietnamese rice farmers. © 2013 Society for Risk Analysis.

  16. Malignancy Risk Assessment in Patients with Thyroid Nodules Using Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Shokouh Taghipour Zahir

    2013-01-01

    Full Text Available Purpose. We sought to investigate the utility of classification and regression trees (CART classifier to differentiate benign from malignant nodules in patients referred for thyroid surgery. Methods. Clinical and demographic data of 271 patients referred to the Sadoughi Hospital during 2006–2011 were collected. In a two-step approach, a CART classifier was employed to differentiate patients with a high versus low risk of thyroid malignancy. The first step served as the screening procedure and was tailored to produce as few false negatives as possible. The second step identified those with the lowest risk of malignancy, chosen from a high risk population. Sensitivity, specificity, positive and negative predictive values (PPV and NPV of the optimal tree were calculated. Results. In the first step, age, sex, and nodule size contributed to the optimal tree. Ultrasonographic features were employed in the second step with hypoechogenicity and/or microcalcifications yielding the highest discriminatory ability. The combined tree produced a sensitivity and specificity of 80.0% (95% CI: 29.9–98.9 and 94.1% (95% CI: 78.9–99.0, respectively. NPV and PPV were 66.7% (41.1–85.6 and 97.0% (82.5–99.8, respectively. Conclusion. CART classifier reliably identifies patients with a low risk of malignancy who can avoid unnecessary surgery.

  17. Vegetation optical depth measured by microwave radiometry as an indicator of tree mortality risk

    Science.gov (United States)

    Rao, K.; Anderegg, W.; Sala, A.; Martínez-Vilalta, J.; Konings, A. G.

    2017-12-01

    Increased drought-related tree mortality has been observed across several regions in recent years. Vast spatial extent and high temporal variability makes field monitoring of tree mortality cumbersome and expensive. With global coverage and high temporal revisit, satellite remote sensing offers an unprecedented tool to monitor terrestrial ecosystems and identify areas at risk of large drought-driven tree mortality events. To date, studies that use remote sensing data to monitor tree mortality have focused on external climatic thresholds such as temperature and evapotranspiration. However, this approach fails to consider internal water stress in vegetation - which can vary across trees even for similar climatic conditions due to differences in hydraulic behavior, soil type, etc - and may therefore be a poor basis for measuring mortality events. There is a consensus that xylem hydraulic failure often precedes drought-induced mortality, suggesting depleted canopy water content shortly before onset of mortality. Observations of vegetation optical depth (VOD) derived from passive microwave are proportional to canopy water content. In this study, we propose to use variations in VOD as an indicator of potential tree mortality. Since VOD accounts for intrinsic water stress undergone by vegetation, it is expected to be more accurate than external climatic stress indicators. Analysis of tree mortality events in California, USA observed by airborne detection shows a consistent relationship between mortality and the proposed VOD metric. Although this approach is limited by the kilometer-scale resolution of passive microwave radiometry, our results nevertheless demonstrate that microwave-derived estimates of vegetation water content can be used to study drought-driven tree mortality, and may be a valuable tool for mortality predictions if they can be combined with higher-resolution variables.

  18. A Probabilistic Risk Analysis for Taipei Seismic Hazards: An Application of HAZ-Taiwan with its Pre-processor and Post-processor

    OpenAIRE

    Daigee Shaw; Chin-Hsiung Loh; Chin-Hsun Yeh; Wen-Yu Jean; Yen-lien Kuo

    2004-01-01

    This paper employs probabilistic risk analysis to estimate exceedance probability curves, average annual loss (AAL) and probable maximum loss (PML) for seismic hazards. It utilizes and event-driven loss estimation model, HAZ-Taiwan, and develops its pre-processing and post-processing software modules. First, the pre-processingmodule establishes a set of hazard-consistent scenarios. Then, the HAZ-Taiwan modelextimates hazards, vulnerabilities and economic losses for each scenario. Finally, the...

  19. Undecidability of model-checking branching-time properties of stateless probabilistic pushdown process

    OpenAIRE

    Lin, T.

    2014-01-01

    In this paper, we settle a problem in probabilistic verification of infinite--state process (specifically, {\\it probabilistic pushdown process}). We show that model checking {\\it stateless probabilistic pushdown process} (pBPA) against {\\it probabilistic computational tree logic} (PCTL) is undecidable.

  20. A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

    2012-09-01

    During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

  1. Use of the event tree to assess the risk reduction obtained from rockfall protection devices

    Directory of Open Access Journals (Sweden)

    D. Peila

    2008-12-01

    Full Text Available The paper presents and discusses a procedure for the evaluation of the collective risk that can affect a road subjected to rockfalls, with and without protection measures, by means of the event tree analysis. This tool is useful to show designers whether the rockfall protection structures are located in the correct positions, whether they are the correct technological choice and what level of reduction of risk can be obtained. Different design options can therefore be compared on the same bases.

  2. A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident

    Energy Technology Data Exchange (ETDEWEB)

    Brumburgh, G.

    1994-08-31

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

  3. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    Brumburgh, G.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  4. Probabilistic runoff volume forecasting in risk-based optimization for RTC of urban drainage systems

    OpenAIRE

    Löwe, Roland; Vezzaro, Luca; Mikkelsen, Peter Steen; Grum, Morten; Madsen, Henrik

    2016-01-01

    This article demonstrates the incorporation of stochastic grey-box models for urban runoff forecasting into a full-scale, system-wide control setup where setpoints are dynamically optimized considering forecast uncertainty and sensitivity of overflow locations in order to reduce combined sewer overflow risk. The stochastic control framework and the performance of the runoff forecasting models are tested in a case study in Copenhagen (76 km2 with 6 sub-catchments and 7 control points) using 2-...

  5. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    OpenAIRE

    Custer, Rocco; Nishijima, Kazuyoshi

    2012-01-01

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is ...

  6. Probabilistic mercury multimedia exposure assessment in small children and risk assessment.

    Science.gov (United States)

    Morisset, Typhaine; Ramirez-Martinez, Alejandra; Wesolek, Nathalie; Roudot, Alain-Claude

    2013-09-01

    Emissions of mercury in the environment have been decreasing for several years. However, mercury species are still found in different media (food, water, air and breast-milk). Due to mercury toxicity and typical behaviour in children, we have conducted a mercury exposure assessment in French babies, and small children aged 0 to 36months. Consumption and mercury concentration data were chosen for the exposure assessment. The Monte Carlo technique has been used to calculate the weekly exposure dose in order to integrate inter-individual variability and parameter uncertainty. Exposure values have been compared to toxicological reference values for health risk assessment. Inorganic mercury median exposure levels ranged from 0.160 to 1.649μg/kg of body weight per week (95th percentile (P95): 0.298-2.027µg/kg bw/week); elemental mercury median exposure level in children was 0.11ng/kg bw/week (P95: 28ng/kg bw/week); and methylmercury median exposure level ranged from 0.247 to 0.273µg/kg bw/week (P95: 0.425-0.463µg/kg bw/week). Only elemental mercury by inhalation route (indoor air) and methylmercury by ingestion (fish and breast-milk) seem to lead to a health risk in small children. These results confirm the importance of assessing total mercury concentration in media like breast-milk, indoor air and dust and methylmercury level in food, other than fish and seafood. In this way, informed monitoring plan and risk assessment in an at-risk sub-population can be set. © 2013 Elsevier Ltd. All rights reserved.

  7. From data to decision - learning by probabilistic risk analysis of biological invasions

    OpenAIRE

    Sahlin, Ullrika

    2010-01-01

    Predicting an uncertain future with uncertain knowledge is a challenge. The success of efforts to preserve biodiversity, to maintain biosecurity and to reduce a negative impact from climate change, depend on scientifically based predictions of future events. The ongoing introduction of non-indigenous species threatens ecological systems for which empirical data is sparse and scientific knowledge is uncertain. Since biological invasions constitute a type of risk characterized by small probabil...

  8. Application of Multivariate Probabilistic (Bayesian) Networks to Substance Use Disorder Risk Stratification and Cost Estimation

    OpenAIRE

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-01-01

    Introduction: This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalitie...

  9. Probabilistic cost-benefit analysis of disaster risk management in a development context.

    Science.gov (United States)

    Kull, Daniel; Mechler, Reinhard; Hochrainer-Stigler, Stefan

    2013-07-01

    Limited studies have shown that disaster risk management (DRM) can be cost-efficient in a development context. Cost-benefit analysis (CBA) is an evaluation tool to analyse economic efficiency. This research introduces quantitative, stochastic CBA frameworks and applies them in case studies of flood and drought risk reduction in India and Pakistan, while also incorporating projected climate change impacts. DRM interventions are shown to be economically efficient, with integrated approaches more cost-effective and robust than singular interventions. The paper highlights that CBA can be a useful tool if certain issues are considered properly, including: complexities in estimating risk; data dependency of results; negative effects of interventions; and distributional aspects. The design and process of CBA must take into account specific objectives, available information, resources, and the perceptions and needs of stakeholders as transparently as possible. Intervention design and uncertainties should be qualified through dialogue, indicating that process is as important as numerical results. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  10. The use of check valve performance data to support new concepts (probabilistic risk assessment, condition monitoring) for check valve program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.; Gower, D.

    1996-12-01

    The concept of developing an integrated check valve database based on the Nuclear Power Reliability Data System (NPRDS) data was presented at the last Symposium. The Nuclear Industry Check Valve Group (NIC), working in cooperation with the Oak Ridge National Laboratory (ORNL), has completed an operational database of check valve performance from 1984 to the present. NIC has committed to the nuclear industry to periodically update the data and maintain this information accessible. As the new concepts of probabilistic risk analysis and condition monitoring are integrated into the American Society of Mechanical Engineers (ASME) Code, a critical element will be performance data. From check valve performance data, feasible failure modes and rates can be established. When a failure rate or frequency of failures can be established based on a significant enough population (sampling), a more solid foundation for focusing resources and determining appropriate frequencies and testing can be determined. The presentation will give the updated status of the NIC Check Valve Performance Database covering (1) methodology used to combine the original ORNL data; (2) process/controls established for continuing update and refinement of the data; (3) discussion of how this data is being utilized by (a) OM-22 for condition monitoring, and (b) risk-based inservice testing work of Westinghouse Owners` Group; and (4) results/trends of data evaluations. At the 1994 Symposium, ORNL provided an update as of 1991 to their original work of 1984 -1990 which they had performed to characterize check valve degradations and failures in the nuclear industry. These characterizations will be updated to 1995 and additional reviews provided to give insight into the current condition and trends of check valve performance.

  11. Implementation of a cognitive human reliability model in dynamic probabilistic risk assessment of a nuclear power plant (ADS-IDA)

    Science.gov (United States)

    Shukri, Tariq Mohamad

    This research has resulted in the development of ADS-IDA which is an integrated software for performing dynamic probabilistic risk assessment (PRA). Unique features of ADS-IDA include (1) modular structure allowing the code to be used for generic applications, although current implementation includes modules designed for nuclear power plant risk assessment, and (2) implementation of the IDA human reliability model which is a cognitive model of operator actions during accident scenarios. ADS-IDA can be used to: (1) Perform a full scale dynamic PRA of a nuclear power plant (or other systems by replacing the NPP module with the appropriate model and provide the KBs associated with the operator model). (2) Identify and analyze human errors and their causes including commission and omission errors, as well as the effect of timing of operator response. (3) Run cases not covered by the current PRAs, such as scenarios involving instrument failure or miscalibration. (4) Test the relevance of the emergency operating procedures (or abnormal operating procedures if available). (5) Investigate the effect of different system failure modes, and particularly the time of system mode transition (e.g. failure, termination of operation, repair) on the progression of the accident. (6) Analyze the impact of items 2, 3, and 5 above on the evolution of accident scenarios and the final state of the plant. ADS-IDA as used to perform a dynamic PRA of an accident initiator at an actual nuclear power plant, demonstrating the capabilities of the methodology both in modeling plant behavior and in simulating operator errors of commission and omission.

  12. Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China.

    Science.gov (United States)

    Wang, Ying; Wang, Juying; Mu, Jingli; Wang, Zhen; Yao, Ziwei; Lin, Zhongsheng

    2014-01-01

    Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, native marine species were selected for toxicity testing. The PNECs for three polycyclic aromatic hydrocarbons (PAHs), specifically phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP), were derived from chronic and acute toxicity data with log-normal statistical methods. The achieved PNECs for Phe, Pyr, and BaP were 2.33, 1.09, and 0.011 μg/L, respectively. In Jinzhou Bay and the Shuangtaizi River Estuary of Liaodong Bay in the Bohai Sea, China, the surface water concentrations of the three PAHs were analyzed by gas chromatography-mass spectrometry. Based on two probabilistic ecological risk assessment (PERA) methods, namely probabilistic risk quotient and joint probability curve, the potential risk of Phe, Pyr, and BaP in Jinzhou Bay and Shuangtaizi River Estuary was assessed. The same order of ecological risk (BaP > Phe > Pyr) was found by both models. Our study considered regional characteristics of marine biota during the calculation of PNECs, and the PERA methods provided probabilities of potential ecological risks of chemicals. Within the study area, further research on BaP is required due to its high potential ecological risk.

  13. The Studies of Decision Tree in Estimation of Breast Cancer Risk by Using Polymorphism Nucleotide

    Directory of Open Access Journals (Sweden)

    Frida Seyedmir

    2017-07-01

    Full Text Available Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousands genetic markers were identified as factors associated with breast cancer. The objective of this study is to evaluate the training data on decision tree predictor error of the risk of breast cancer by using single nucleotide polymorphism genotype. Methods: The risk of breast cancer were calculated associated with the use of SNP formula:xj = fo * In human,  The decision tree can be used To predict the probability of disease using single nucleotide polymorphisms .Seven SNP with different odds ratio associated with breast cancer considered and coding and design of decision tree model, C4.5, by  Csharp2013 programming language were done. In the decision tree created with the coding, the four important associated SNP was considered. The decision tree error in two case of coding and using WEKA were assessment and percentage of decision tree accuracy in prediction of breast cancer were calculated. The number of trained samples was obtained with systematic sampling. With coding, two scenarios as well as software WEKA, three scenarios with different sets of data and the number of different learning and testing, were evaluated. Results: In both scenarios of coding, by increasing the training percentage from 66/66 to 86/42, the error reduced from 55/56 to 9/09. Also by running of WEKA on three scenarios with different sets of data, the number of different education, and different tests by increasing records number from 81 to 2187, the error rate decreased from 48/15 to 13

  14. Probabilistic linguistics

    NARCIS (Netherlands)

    Bod, R.; Heine, B.; Narrog, H.

    2010-01-01

    Probabilistic linguistics takes all linguistic evidence as positive evidence and lets statistics decide. It allows for accurate modelling of gradient phenomena in production and perception, and suggests that rule-like behaviour is no more than a side effect of maximizing probability. This chapter

  15. Probabilistic Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.

    This chapter describes how partial safety factors can be used in design of vertical wall breakwaters and an example of a code format is presented. The partial safety factors are calibrated on a probabilistic basis. The code calibration process used to calibrate some of the partial safety factors...

  16. PROBABILIST ANTIREALISM

    NARCIS (Netherlands)

    Douven, Igor; Horsten, Leon; Romeijn, Jan-Willem

    Until now, antirealists have offered sketches of a theory of truth, at best. In this paper, we present a probabilist account of antirealist truth in some formal detail, and we assess its ability to deal with the problems that are standardly taken to beset antirealism.

  17. Risk management of PPP project in the preparation stage based on Fault Tree Analysis

    Science.gov (United States)

    Xing, Yuanzhi; Guan, Qiuling

    2017-03-01

    The risk management of PPP(Public Private Partnership) project can improve the level of risk control between government departments and private investors, so as to make more beneficial decisions, reduce investment losses and achieve mutual benefit as well. Therefore, this paper takes the PPP project preparation stage venture as the research object to identify and confirm four types of risks. At the same time, fault tree analysis(FTA) is used to evaluate the risk factors that belong to different parts, and quantify the influencing degree of risk impact on the basis of risk identification. In addition, it determines the importance order of risk factors by calculating unit structure importance on PPP project preparation stage. The result shows that accuracy of government decision-making, rationality of private investors funds allocation and instability of market returns are the main factors to generate the shared risk on the project.

  18. Integrated fault tree development environment

    International Nuclear Information System (INIS)

    Dixon, B.W.

    1986-01-01

    Probabilistic Risk Assessment (PRA) techniques are utilized in the nuclear industry to perform safety analyses of complex defense-in-depth systems. A major effort in PRA development is fault tree construction. The Integrated Fault Tree Environment (IFTREE) is an interactive, graphics-based tool for fault tree design. IFTREE provides integrated building, editing, and analysis features on a personal workstation. The design philosophy of IFTREE is presented, and the interface is described. IFTREE utilizes a unique rule-based solution algorithm founded in artificial intelligence (AI) techniques. The impact of the AI approach on the program design is stressed. IFTREE has been developed to handle the design and maintenance of full-size living PRAs and is currently in use

  19. Application of FIVE methodology in probabilistic risk assessment (PRA) of fire events

    International Nuclear Information System (INIS)

    Lopez Garcia, F.J.; Suarez Alonso, J.; Fiolamengual, M.J.

    1993-01-01

    This paper reflects the experience acquired during the process of evaluation and updating of the fire analysis within the Cofrentes NPP PRA. It determines which points are the least precise, either because of their greater uncertainty or because of their excessive conservatism, as well as the subtasks which have involved a larger work load and could be simplified. These aspects are compared with the steps followed in methodology FIVE (Fire Vulnerability Evaluation Methodology) to assess whether application of this methodology would optimize the task, by making it more systematic and realistic and reducing uncertainties. On the one hand, the FIVE methodology does not have the scope sufficient to carry out a quantitative risk evaluation, but it can easily be complemented -without detriment to its systematic nature- by quantifying core damage in significant areas. On the other hand, certain issues such as definition of the fire growth software program which has to be used, are still not fully closed. Nevertheless, the conclusions derived from this assessment are satisfactory, since it is considered that this methodology would serve to unify the criteria and data of the analysis of fire-induced risks, providing a progressive screening method which would considerably simplify the task. (author)

  20. Volcanic risk metrics at Mt Ruapehu, New Zealand: some background to a probabilistic eruption forecasting scheme and a cost/benefit analysis at an open conduit volcano

    Science.gov (United States)

    Jolly, Gill; Sandri, Laura; Lindsay, Jan; Scott, Brad; Sherburn, Steve; Jolly, Art; Fournier, Nico; Keys, Harry; Marzocchi, Warner

    2010-05-01

    The Bayesian Event Tree for Eruption Forecasting software (BET_EF) is a probabilistic model based on an event tree scheme that was created specifically to compute long- and short-term probabilities of different outcomes (volcanic unrest, magmatic unrest, eruption, vent location and eruption size) at long-time dormant and routinely monitored volcanoes. It is based on the assumption that upward movements of magma in a closed conduit volcano will produce detectable changes in the monitored parameters at the surface. In this perspective, the goal of BET_EF is to compute probabilities by merging information from geology, models, past data and present monitoring measurements, through a Bayesian inferential method. In the present study, we attempt to apply BET_EF to Mt Ruapehu, a very active and well-monitored volcano exhibiting the typical features of open conduit volcanoes. In such conditions, current monitoring at the surface is not necessarily able to detect short term changes at depth that may occur only seconds to minutes before an eruption. This results in so-called "blue sky eruptions" of Mt Ruapehu (for example in September 2007), that are volcanic eruptions apparently not preceded by any presently detectable signal in the current monitoring. A further complication at Mt Ruapehu arises from the well-developed hydrothermal system and the permanent crater lake sitting on top of the magmatic conduit. Both the hydrothermal system and crater lake may act to mask or change monitoring signals (if present) that magma produces deeper in the edifice. Notwithstanding these potential drawbacks, we think that an attempt to apply BET_EF at Ruapehu is worthwhile, for several reasons. First, with the exception of a few "blue sky" events, monitoring data at Mt Ruapehu can be helpful in forecasting major events, especially if a large amount of magma is intruded into the edifice and becomes available for phreatomagmatic or magmatic eruptions, as for example in 1995-96. Secondly, in

  1. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment.

    Science.gov (United States)

    Peng, Qian; Nunes, Luís M; Greenfield, Ben K; Dang, Fei; Zhong, Huan

    2016-03-01

    Freshwater crayfish, the world's third largest crustacean species, has been reported to accumulate high levels of metals, while the current knowledge of potential risk associated with crayfish consumption lags behind that of finfish. We provide the first estimate of human health risk associated with crayfish (Procambarus clarkii) consumption in China, the world's largest producer and consumer of crayfish. We performed Monte Carlo Simulation on a standard risk model parameterized with local data on metal concentrations, bioaccessibility (φ), crayfish consumption rate, and consumer body mass. Bioaccessibility of metals in crayfish was found to be variable (68-95%) and metal-specific, suggesting a potential influence of metal bioaccessibility on effective metal intake. However, sensitivity analysis suggested risk of metals via crayfish consumption was predominantly explained by consumption rate (explaining >92% of total risk estimate variability), rather than metals concentration, bioaccessibility, or body mass. Mean metal concentrations (As, Cd, Cu, Ni, Pb, Se and Zn) in surveyed crayfish samples from 12 provinces in China conformed to national safety standards. However, risk calculation of φ-modified hazard quotient (HQ) and hazard index (HI) suggested that crayfish metals may pose a health risk for very high rate consumers, with a HI of over 24 for the highest rate consumers. Additionally, the φ-modified increased lifetime risk (ILTR) for carcinogenic effects due to the presence of As was above the acceptable level (10(-5)) for both the median (ILTR=2.5×10(-5)) and 90th percentile (ILTR=1.8×10(-4)), highlighting the relatively high risk of As in crayfish. Our results suggest a need to consider crayfish when assessing human dietary exposure to metals and associated health risks, especially for high crayfish-consuming populations, such as in China, USA and Sweden. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Application of multivariate probabilistic (Bayesian) networks to substance use disorder risk stratification and cost estimation.

    Science.gov (United States)

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-09-16

    This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalities in improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which can be used to develop new methods for targeting disease management services to maximize benefits to both enrollees and payers. For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian network models of a representative sample of data licensed from Thomson-Reuters' MarketScan consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated using a 10 percent holdout set. The networks were highly predictive, with the risk-stratification BBNs producing area under the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944-0.951) and 0.736 (95 percent CI, 0.721-0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947-0.954) and 0.738 (95 percent CI, 0.727-0.750), respectively. The cost estimation models produced area under the curve ranging from 0.72 (95 percent CI, 0.708-0.731) to 0.961 (95 percent CI, 0.95-0.971). We were able to successfully model a large, heterogeneous population of commercial enrollees, applying state-of-the-art machine learning technology to develop complex and accurate multivariate models that support near-real-time scoring of novel payer

  3. PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water.

    Science.gov (United States)

    Breckenridge, Charles B; Campbell, Jerry L; Clewell, Harvey J; Andersen, Melvin E; Valdez-Flores, Ciriaco; Sielken, Robert L

    2016-04-01

    The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9(th)percentile. The 99.9(th)percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer's age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors). © The Author 2016. Published by Oxford University Press on behalf of the Society of

  4. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  5. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk.

    Science.gov (United States)

    Gottschalk, Fadri; Nowack, Bernd

    2013-01-01

    This article presents a method of probabilistically computing species sensitivity distributions (SSD) that is well-suited to cope with distinct data scarcity and variability. First, a probability distribution that reflects the uncertainty and variability of sensitivity is modeled for each species considered. These single species sensitivity distributions are then combined to create an SSD for a particular ecosystem. A probabilistic estimation of the risk is carried out by combining the probability of critical environmental concentrations with the probability of organisms being impacted negatively by these concentrations. To evaluate the performance of the method, we developed SSD and risk calculations for the aquatic environment exposed to triclosan. The case studies showed that the probabilistic results reflect the empirical information well, and the method provides a valuable alternative or supplement to more traditional methods for calculating SSDs based on averaging raw data and/or on using theoretical distributional forms. A comparison and evaluation with single SSD values (5th-percentile [HC5]) revealed the robustness of the proposed method. Copyright © 2012 SETAC.

  6. Probabilistic Logic and Probabilistic Networks

    NARCIS (Netherlands)

    Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J.

    2009-01-01

    While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches

  7. Probabilistic flood damage modelling at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  8. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?

    Science.gov (United States)

    Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea

    2015-02-01

    Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Probabilistic risk assessment of dietary cadmium in the South Korean population.

    Science.gov (United States)

    Kim, M; Wolt, J D

    2011-01-01

    Global interest in the adverse health effects of cadmium (Cd) has focused on dietary exposure as the principal source of Cd exposure to the general population. Common assumptions used in deterministic Cd assessment in global or regional diets have limitations when applied to specific national cases where local variation in food composition and consumption patterns are different than for global or regional norms. Stochastic dietary Cd exposure assessment was conducted for the general South Korean population to understand better Cd dietary intake. Because rice (Oryza sativa) is commonly and highly consumed by Koreans, it was the dominant contributor to Cd in the diet, representing on average 25% of the total dietary exposure for the general population. Hazard index (HI) values were below the level of concern for the 95th percentile of the general population. Sensitivity analyses demonstrated that variation in rice intake and Cd concentration had the greatest influence on the Cd risk estimate for the general population. Changes in food sources, such as the use of imported rice with higher Cd levels, would lead to increased Cd exposure in the diet, thus necessitating continued vigilance as to the status of Cd within the food supply.

  10. Probabilistic risk model to assess the potential for resistance selection following the use of antimicrobial medicated feed in pigs.

    Science.gov (United States)

    Filippitzi, Maria Eleni; Chantziaras, Ilias; Devreese, Mathias; Dewulf, Jeroen

    2018-04-05

    The cross-contamination of non-medicated feed with residues of antimicrobials (AM) causes a public and animal health concern associated with the potential for selection and dissemination of resistance. To analyze the associated risks, a probabilistic model was built using @Risk® (Palisade Corporation®) to show the potential extent of the effect of cross-contaminated pig feed on resistance selection. The results of the model include estimations of the proportion of pigs per production stage with residues of doxycycline, chlortetracycline, sulfadiazine and trimethoprim in their intestinal contents, as a result of exposure to cross-contaminated feed with different carry-over levels, in Belgium. By using a semi-quantitative approach, these estimations were combined with experimental data on AM concentrations associated with potential for resistance selection pressure. Based on this model it is estimated that 7.76% (min=1.67; max=36.94) of sows, 4.23% (min=1.01%; max=18.78%) of piglets and 2.8% (min=0.51%; max=14.9%) of fatteners in Belgium have residues of doxycycline in their intestinal tract due to consumption of feed with at least 1% carry-over. These values were estimated to be almost triple for sulfadiazine, but substantially lower for chlortetracycline and trimethoprim. Doxycycline concentrations as low as 1 mg/L (corresponding to consumed feed with at least 1% carry-over) can select for resistant porcine commensal E. coli in vitro and in vivo. Conclusions on this risk could not be drawn for other AM at this stage, due to lack of literature data on concentrations associated with resistance development. However, since the possibility of resistance mechanisms (e.g. co-selection) occurring cannot be excluded, the results of this model highlight that the use of AM medicated feed should be minimized where possible. In case of medicated feed production, good practice should be followed thoroughly at all levels of production, distribution, storage and administration

  11. The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk

    Science.gov (United States)

    Kobayashi, Yuta; Mori, Akira S.

    2017-05-01

    Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.

  12. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    Science.gov (United States)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  13. Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: Comparison of hazard quotient and probabilistic risk assessment approaches.

    Science.gov (United States)

    Woodburn, Kent B; Seston, Rita M; Kim, Jaeshin; Powell, David E

    2018-02-01

    This study utilized probabilistic risk assessment techniques to compare field sediment concentrations of the cyclic volatile methylsiloxane (cVMS) materials octamethylcyclotetrasiloxane (D4, CAS # 556-67-2), decamethylcyclopentasiloxane (D5, CAS # 541-02-6), and dodecamethylcyclohexasiloxane (D6, CAS # 540-97-6) to effect levels for these compounds determined in laboratory chronic toxicity tests with benthic organisms. The concentration data for D4/D5/D6 in sediment were individually sorted and the 95th centile concentrations determined in sediment on an organic carbon (OC) fugacity basis. These concentrations were then compared to interpolated 5th centile benthic sediment no-observed effect concentration (NOEC) fugacity levels, calculated from a distribution of chronic D4/D5/D6 toxicologic assays per OECD guidelines using a variety of standard benthic species. The benthic invertebrate fugacity biota NOEC values were then compared to field-measured invertebrate biota fugacity levels to see if risk assessment evaluations were similar on a field sediment and field biota basis. No overlap was noted for D4 and D5 95th centile sediment and biota fugacity levels and their respective 5th centile benthic organism NOEC values. For D6, there was a small level of overlap at the exposure 95th centile sediment fugacity and the 5th centile benthic organism NOEC fugacity value; the sediment fugacities indicate that a negligible risk (1%) exists for benthic species exposed to D6. In contrast, there was no indication of risk when the field invertebrate exposure 95th centile biota fugacity and the 5th centile benthic organism NOEC fugacity values were compared. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    Science.gov (United States)

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  15. Procedures for conducting independent peer reviews of probabilistic safety assessment

    International Nuclear Information System (INIS)

    1990-01-01

    Independent peer review should be an integral part of any Probabilistic Safety Assessment (PSA). The value of the benefits of a valid PSA may be many times the cost of the study, as demonstrated by a recent report in the United States (EPRI NP-5664) based on utility experience and USNRC perspectives in the practical application of probabilistic risk assesssment (PRA). Independent peer review and revisions, as necessary, give a degree of assurance of validity. The basic disciplines typically covered in a review include event tree analyses, systems analyses, human reliability analyses, data analyses, quantification and uncertainty propagation and external event analyses (if these are included in the PSA). This document is intended to serve as guidelines both for the conduct of an independent peer review of a PSA and for the IPERS programme. The document gives guidance on how an IPER service is conducted, the procedure and steps needed for preparation of an IPER and the technical areas normally covered. 4 tabs

  16. A Bayesian Approach to Integrate Real-Time Data into Probabilistic Risk Analysis of Remediation Efforts in NAPL Sites

    Science.gov (United States)

    Fernandez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2010-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk analysis (PRA) of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors) without doing extensive modeling. Importantly, the method is further capable to incorporate the inherent uncertainty that often exist in the exact location where the dissolved NAPL plume leaves the source zone. This is achieved by describing the failure of the system as a function of this source zone exit location, parameterized in terms of a vector of parameters. Using a Bayesian interpretation of the system and by means of the posterior multivariate distribution, the failure of the

  17. An algorithm for sequential tail value at risk for path-independent payoffs in a binomial tree

    NARCIS (Netherlands)

    Roorda, Berend

    2010-01-01

    We present an algorithm that determines Sequential Tail Value at Risk (STVaR) for path-independent payoffs in a binomial tree. STVaR is a dynamic version of Tail-Value-at-Risk (TVaR) characterized by the property that risk levels at any moment must be in the range of risk levels later on. The

  18. The Studies of Decision Tree in Estimation of Breast Cancer Risk by Using Polymorphism Nucleotide

    OpenAIRE

    Frida Seyedmir; Kamal Mirzaie; Morteza Bitaraf Sani

    2017-01-01

    Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousan...

  19. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  20. Exploring the predictive power of interaction terms in a sophisticated risk equalization model using regression trees.

    Science.gov (United States)

    van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A

    2018-02-01

    This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.

  1. The risk factors of laryngeal pathology in Korean adults using a decision tree model.

    Science.gov (United States)

    Byeon, Haewon

    2015-01-01

    The purpose of this study was to identify risk factors affecting laryngeal pathology in the Korean population and to evaluate the derived prediction model. Cross-sectional study. Data were drawn from the 2008 Korea National Health and Nutritional Examination Survey. The subjects were 3135 persons (1508 male and 2114 female) aged 19 years and older living in the community. The independent variables were age, sex, occupation, smoking, alcohol drinking, and self-reported voice problems. A decision tree analysis was done to identify risk factors for predicting a model of laryngeal pathology. The significant risk factors of laryngeal pathology were age, gender, occupation, smoking, and self-reported voice problem in decision tree model. Four significant paths were identified in the decision tree model for the prediction of laryngeal pathology. Those identified as high risk groups for laryngeal pathology included those who self-reported a voice problem, those who were males in their 50s who did not recognize a voice problem, those who were not economically active males in their 40s, and male workers aged 19 and over and under 50 or 60 and over who currently smoked. The results of this study suggest that individual risk factors, such as age, sex, occupation, health behavior, and self-reported voice problem, affect the onset of laryngeal pathology in a complex manner. Based on the results of this study, early management of the high-risk groups is needed for the prevention of laryngeal pathology. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Using decision trees to manage hospital readmission risk for acute myocardial infarction, heart failure, and pneumonia.

    Science.gov (United States)

    Hilbert, John P; Zasadil, Scott; Keyser, Donna J; Peele, Pamela B

    2014-12-01

    To improve healthcare quality and reduce costs, the Affordable Care Act places hospitals at financial risk for excessive readmissions associated with acute myocardial infarction (AMI), heart failure (HF), and pneumonia (PN). Although predictive analytics is increasingly looked to as a means for measuring, comparing, and managing this risk, many modeling tools require data inputs that are not readily available and/or additional resources to yield actionable information. This article demonstrates how hospitals and clinicians can use their own structured discharge data to create decision trees that produce highly transparent, clinically relevant decision rules for better managing readmission risk associated with AMI, HF, and PN. For illustrative purposes, basic decision trees are trained and tested using publically available data from the California State Inpatient Databases and an open-source statistical package. As expected, these simple models perform less well than other more sophisticated tools, with areas under the receiver operating characteristic (ROC) curve (or AUC) of 0.612, 0.583, and 0.650, respectively, but achieve a lift of at least 1.5 or greater for higher-risk patients with any of the three conditions. More importantly, they are shown to offer substantial advantages in terms of transparency and interpretability, comprehensiveness, and adaptability. By enabling hospitals and clinicians to identify important factors associated with readmissions, target subgroups of patients at both high and low risk, and design and implement interventions that are appropriate to the risk levels observed, decision trees serve as an ideal application for addressing the challenge of reducing hospital readmissions.

  3. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach

    Directory of Open Access Journals (Sweden)

    Christensen Helen

    2009-11-01

    Full Text Available Abstract Background Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. Methods The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. Results The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. Conclusion The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  4. Procedures for the elicitation of expert judgements in the probabilistic risk analysis of the long-term effects of radioactive waste repositories: an annotated bibliography

    International Nuclear Information System (INIS)

    Watson, S.R.

    1993-01-01

    This annotated bibliography describes the key literature relevant to the elicitation of expert judgements in radioactive waste management. The bibliography is divided into seven sections; section 2 lists the literature exploring the proper interpretation of probabilities used in Probabilistic Risk Analysis (PRA). Section 3 lists literature describing other calculi for handling uncertainty in a numerical fashion. In section 4 comments are given on how to elicit probabilities from individuals as a measure of subjective degrees of belief and section 5 lists the literature concerning how expert judgements can be combined. Sections 6 and 7 list literature giving an overview of the issues involved in PRA for radioactive waste repositories. (author)

  5. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Cheng, Yi-Hsien; Riviere, Jim E; Monteiro-Riviere, Nancy A; Lin, Zhoumeng

    2018-04-14

    This study aimed to conduct an integrated and probabilistic risk assessment of gold nanoparticles (AuNPs) based on recently published in vitro and in vivo toxicity studies coupled to a physiologically based pharmacokinetic (PBPK) model. Dose-response relationships were characterized based on cell viability assays in various human cell types. A previously well-validated human PBPK model for AuNPs was applied to quantify internal concentrations in liver, kidney, skin, and venous plasma. By applying a Bayesian-based probabilistic risk assessment approach incorporating Monte Carlo simulation, probable human cell death fractions were characterized. Additionally, we implemented in vitro to in vivo and animal-to-human extrapolation approaches to independently estimate external exposure levels of AuNPs that cause minimal toxicity. Our results suggest that under the highest dosing level employed in existing animal studies (worst-case scenario), AuNPs coated with branched polyethylenimine (BPEI) would likely induce ∼90-100% cellular death, implying high cytotoxicity compared to risk prediction, and point of departure estimation of AuNP exposure for humans and illustrate an approach that could be applied to other NPs when sufficient data are available.

  6. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    International Nuclear Information System (INIS)

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric

    2006-01-01

    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  7. An application of probabilistic safety assessment methods to model