WorldWideScience

Sample records for treatment plant pesticide

  1. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    Science.gov (United States)

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact

    International Nuclear Information System (INIS)

    Köck-Schulmeyer, Marianne; Villagrasa, Marta; López de Alda, Miren; Céspedes-Sánchez, Raquel; Ventura, Francesc; Barceló, Damià

    2013-01-01

    Reports on pesticides elimination during wastewater treatment are rare since these substances are typically considered of agricultural rather than of urban origin. In this context, the aim of this work was to evaluate the presence, removal and environmental relevance of 22 selected pesticides in three different wastewater treatment plants (WWTPs), paying attention not only to their occurrence and elimination but also to the toxicity of each pesticide against three aquatic micro organisms (algae, daphnia and fish) through the calculation of the so-named Environmental Relevance of Pesticides from Wastewater treatment plants Index (ERPWI). For this purpose, an analytical method based on isotope dilution on-line solid phase extraction–liquid chromatography–tandem mass spectrometry (SPE–LC–MS/MS) was optimized, allowing the determination of the 22 target pesticides in wastewater with satisfactory sensitivity (limits of detection below 30 ng/L), accuracy and precision. Concerning the results, total pesticide levels were in most instances below 1 μg/L but removal in the WWTPs was variable and often poor, with concentrations in the effluent sometimes higher than in the corresponding influent. Possible explanations for these poor or negative removal rates are, among many others considered (e.g. sampling, sample preservation, method biases, atmospheric deposition), deconjugation of metabolites and/or transformation products of the pesticides, hydrolysis, and desorption from particulate matter during wastewater treatment. The most significant pesticides in terms of concentration and frequency of detection were diazinon and diuron. These two pesticides, followed by atrazine, simazine and malathion, were also the most relevant from the environmental point of view, according to the calculated ERPWI. - Highlights: • Pesticides are poorly removed in WWTPs. • Urban wastewaters are important sources of pesticides to the aquatic environment. • Diazinon and diuron: the

  3. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Köck-Schulmeyer, Marianne [Water and Soil Quality Research Group, Dept. Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Villagrasa, Marta [Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona (Spain); López de Alda, Miren, E-mail: mlaqam@cid.csic.es [Water and Soil Quality Research Group, Dept. Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Céspedes-Sánchez, Raquel; Ventura, Francesc [AGBAR-Aigües de Barcelona, Av. Diagonal 211, E-08018 Barcelona (Spain); Barceló, Damià [Water and Soil Quality Research Group, Dept. Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona (Spain)

    2013-08-01

    Reports on pesticides elimination during wastewater treatment are rare since these substances are typically considered of agricultural rather than of urban origin. In this context, the aim of this work was to evaluate the presence, removal and environmental relevance of 22 selected pesticides in three different wastewater treatment plants (WWTPs), paying attention not only to their occurrence and elimination but also to the toxicity of each pesticide against three aquatic micro organisms (algae, daphnia and fish) through the calculation of the so-named Environmental Relevance of Pesticides from Wastewater treatment plants Index (ERPWI). For this purpose, an analytical method based on isotope dilution on-line solid phase extraction–liquid chromatography–tandem mass spectrometry (SPE–LC–MS/MS) was optimized, allowing the determination of the 22 target pesticides in wastewater with satisfactory sensitivity (limits of detection below 30 ng/L), accuracy and precision. Concerning the results, total pesticide levels were in most instances below 1 μg/L but removal in the WWTPs was variable and often poor, with concentrations in the effluent sometimes higher than in the corresponding influent. Possible explanations for these poor or negative removal rates are, among many others considered (e.g. sampling, sample preservation, method biases, atmospheric deposition), deconjugation of metabolites and/or transformation products of the pesticides, hydrolysis, and desorption from particulate matter during wastewater treatment. The most significant pesticides in terms of concentration and frequency of detection were diazinon and diuron. These two pesticides, followed by atrazine, simazine and malathion, were also the most relevant from the environmental point of view, according to the calculated ERPWI. - Highlights: • Pesticides are poorly removed in WWTPs. • Urban wastewaters are important sources of pesticides to the aquatic environment. • Diazinon and diuron: the

  4. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact.

    Science.gov (United States)

    Köck-Schulmeyer, Marianne; Villagrasa, Marta; López de Alda, Miren; Céspedes-Sánchez, Raquel; Ventura, Francesc; Barceló, Damià

    2013-08-01

    Reports on pesticides elimination during wastewater treatment are rare since these substances are typically considered of agricultural rather than of urban origin. In this context, the aim of this work was to evaluate the presence, removal and environmental relevance of 22 selected pesticides in three different wastewater treatment plants (WWTPs), paying attention not only to their occurrence and elimination but also to the toxicity of each pesticide against three aquatic micro organisms (algae, daphnia and fish) through the calculation of the so-named Environmental Relevance of Pesticides from Wastewater treatment plants Index (ERPWI). For this purpose, an analytical method based on isotope dilution on-line solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) was optimized, allowing the determination of the 22 target pesticides in wastewater with satisfactory sensitivity (limits of detection below 30 ng/L), accuracy and precision. Concerning the results, total pesticide levels were in most instances below 1 μg/L but removal in the WWTPs was variable and often poor, with concentrations in the effluent sometimes higher than in the corresponding influent. Possible explanations for these poor or negative removal rates are, among many others considered (e.g. sampling, sample preservation, method biases, atmospheric deposition), deconjugation of metabolites and/or transformation products of the pesticides, hydrolysis, and desorption from particulate matter during wastewater treatment. The most significant pesticides in terms of concentration and frequency of detection were diazinon and diuron. These two pesticides, followed by atrazine, simazine and malathion, were also the most relevant from the environmental point of view, according to the calculated ERPWI. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Environmental impact of pesticides after sewage treatment plants removal in four Spanish Mediterranean rivers

    Science.gov (United States)

    Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda; Andreu, Vicente

    2013-04-01

    The re-use of sewage treatment plant (STP) effluents is currently one of the most employed strategies in several countries to deal with the water shortage problem. Some pesticides are bio-accumulative and due to their toxicity they can affect non-target organisms, especially in the aquatic ecosystems, threating their ecological status. Despite these facts, and to our knowledge, there are few peer-reviewed articles that report concentrations of pesticides in Spanish STPs. This work presents the results of an extensive survey that was carried out in October of 2010 in 15 of the STPs of Ebro, Guadalquivir, Jucar and Llobregat rivers in Spain. Forty-three currently used pesticides, belonging to anilide, neonicotinoid, thiocarbamate, acaricide, juvenile hormone mimic, insect growth regulator, urea, azole, carbamate, chloroacetanilide, triazine and organophosphorus, have been monitored. Integrated samples of influent and effluent, and dehydrated, lyophilized sludge from 15 STPs located along the rivers were analyzed for pesticide residues. With these data, removal efficiencies are also calculated. Extraction of water samples was performed through Solid Phase Extraction (SPE) and sludge samples were extracted using the QuEchERS method. Pesticide determination was carried out using Liquid Chromatograph - tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 48% to 70%, in water samples, and from 40 to 105 %, in sludge samples. The limits of quantification were 0.01-5 ng L-1 for the former, and 0.1-5.0 ng g-1 for the latter. In terms of frequency of detection, 31 analytes were detected in influent, 29 in effluent and 11 in sludge samples. Organophosphorus pesticides were the most frequently detected in all wastewater samples, but azole, urea, triazine, neonicotinoid and the insect growth regulator were also commonly found. Imazalil revealed the maximum concentration in wastewater samples from all rivers except the Guadalquivir, in which diuron presented the maximum

  6. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins.

    Science.gov (United States)

    Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda

    2013-12-15

    Removal of contaminants in the sewage treatment plants (STPs) can be incomplete causing their release to the environment. In this paper, the results of an extensive survey on more than 40 pesticides carried out in 2010 and 2011 in 16 STPs of Ebro, Guadalquivir, Jucar and Llobregat Rivers (Spain) are presented. In 2010, of 43 analytes screened, 29 were detected in influent and 28 in effluent samples, meanwhile in 2011, of 50 analytes, 33 and 34 were detected, respectively. Pesticides were in the range of 0.33 ng L(-1) (terbumeton, 2011)-2526.05 ng L(-1) (diuron, 2010) for influent and 0.25 ng L(-1) (terbumeton, 2011)-2821.12 ng L(-1) (carbendazim, 2011) for effluent. Regarding the sludge samples, 11 pesticides were detected in 2010 and 24 in 2011 at concentrations up to 25667.34 ng g(-1) dry weight (dw). Removal efficiencies showed that, in 2010, the elimination ranged from -810% (chlorfenvinphos) to 93% (dimethoate), and in 2011, from -4575% (diazinon) to 97% (chlorfenvinphos). All these data confirm that most of the pesticides are only partially eliminated during the secondary and even tertiary treatments, commonly used in STPs, suggesting that they can be a focal point of contamination to the rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Behavior of pesticides in plants.

    Science.gov (United States)

    Logan A. Norris

    1974-01-01

    A number of chemicals of diverse characteristics have arbitrarily been classed together on the basis of their use and given the descriptive name "pesticides." An unfortunate aura of mystery has developed about these chemicals. However, there is nothing unique or mysterious about the chemicals we refer to as "pesticides." Like other chemicals, they...

  8. TerrPlant Version 1.2.2 User's Guide for Pesticide Exposure to Terrestrial Plants

    Science.gov (United States)

    Tier 1 model for screening-level assessments of pesticides. TerrPlant provides screening-level estimates of exposure to terrestrial plants from single pesticide applications. It does not consider exposures to plants from multiple pesticide applications.

  9. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    Science.gov (United States)

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  10. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington; FINAL

    International Nuclear Information System (INIS)

    Cantrell, Kirk J; Liikala, Terry L; Strenge, Dennis L; Taira, Randal Y

    2001-01-01

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for ''No Further Action'' by previous investigators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site

  11. From pesticides to genetically modified plants : history, economics and politics

    NARCIS (Netherlands)

    Zadoks, J.C.; Waibel, H.

    2000-01-01

    Two technologies of crop protection are compared, crop protection by pesticides and by Genetically Modified Plants (GMPs). The history of pesticides provides lessons relevant to the future of GMPs; (1) high pesticide usage is counter-productive, (2) the technology requires intensive regulation and

  12. Pesticides residues in water treatment plant sludge: validation of analytical methodology using liquid chromatography coupled to Tandem mass spectrometry (LC-MS/MS)

    International Nuclear Information System (INIS)

    Moracci, Luiz Fernando Soares

    2008-01-01

    The evolving scenario of Brazilian agriculture brings benefits to the population and demands technological advances to this field. Constantly, new pesticides are introduced encouraging scientific studies with the aim of determine and evaluate impacts on the population and on environment. In this work, the evaluated sample was the sludge resulted from water treatment plant located in the Vale do Ribeira, Sao Paulo, Brazil. The technique used was the reversed phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Compounds were previously liquid extracted from the matrix. The development of the methodology demanded data processing in order to be transformed into reliable information. The processes involved concepts of validation of chemical analysis. The evaluated parameters were selectivity, linearity, range, sensitivity, accuracy, precision, limit of detection, limit of quantification and robustness. The obtained qualitative and quantitative results were statistically treated and presented. The developed and validated methodology is simple. As results, even exploring the sensitivity of the analytical technique, the work compounds were not detected in the sludge of the WTP. One can explain that these compounds can be present in a very low concentration, can be degraded under the conditions of the water treatment process or are not completely retained by the WTP. (author)

  13. Pesticidal Plants Used in Masaka District of Uganda | Mwine ...

    African Journals Online (AJOL)

    Pesticidal Plants Used in Masaka District of Uganda. ... Journal of Science and Sustainable Development ... Among these is the use of pesticidal plant extracts and this paper reports on the fi ndings of a study that undertook to compile an inventory of plants that are used in pest control in one part of the developing world, ...

  14. Pseudomonas silesiensis sp. nov. strain A3Tisolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence.

    Science.gov (United States)

    Kaminski, Michał A; Furmanczyk, Ewa M; Sobczak, Adam; Dziembowski, Andrzej; Lipinski, Leszek

    2018-01-01

    Microorganisms classified in to the Pseudomonas genus are a ubiquitous bacteria inhabiting variety of environmental niches and have been isolated from soil, sediment, water and different parts of higher organisms (plants and animals). Members of this genus are known for their metabolic versatility and are able to utilize different chemical compounds as a source of carbon, nitrogen or phosphorus, which makes them an interesting microorganism for bioremediation or bio-transformation. Moreover, Pseudomonas sp. has been described as a microorganism that can easily adapt to new environmental conditions due to its resistance to the presence of high concentrations of heavy metals or chemical pollution. Here we present the isolation and analysis of Pseudomonas silesiensis sp. nov. strain A3 T isolated from peaty soil used in a biological wastewater treatment plant exploited by a pesticide packaging company. Phylogenetic MLSA analysis of 4 housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), complete genome sequence comparison (ANIb, Tetranucleotide identity, digital DDH), FAME analysis, and other biochemical tests indicate the A3 T strain (type strain PCM 2856 T =DSM 103370 T ) differs significantly from the closest relative species and therefore represents a new species within the Pseudomonas genus. Moreover, bioinformatic analysis of the complete sequenced genome showed that it consists of 6,823,539bp with a 59.58mol% G+C content and does not contain any additional plasmids. Genome annotation predicted the presence of 6066 genes, of which 5875 are coding proteins and 96 are RNA genes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Variability of Pesticide Dissipation Half-Lives in Plants

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, Ronnie

    2013-01-01

    Information on dissipation kinetics of pesticides in food crops and other plants is a key aspect in current risk and impact assessment practice. This is because human exposure to pesticides is predominantly caused by residues in agricultural crops grown for human and animal consumption. However......, modeling dissipation of pesticides in plants is highly uncertain and therefore strongly relies on experimental data. Unfortunately, available information on pesticide dissipation in plants from experimental studies only covers a small fraction of possible combinations of substances authorized for use...... on food and fodder crops. Additionally, aspects and processes influencing dissipation kinetics are still not fully understood. Therefore, we systematically reviewed 811 scientific literature sources providing 4513 dissipation half-lives of 346 pesticides measured in 183 plant species. We focused...

  16. Oxidative stress and antioxidative mechanisms in tomato (solanum lycopersicum l.) plants sprayed with different pesticides

    International Nuclear Information System (INIS)

    Yildiztekin, M.; Kaya, C.

    2015-01-01

    A glasshouse experiment was conducted to appraise the influence of exogenously applied pesticides such as abamectin, thiamethoxam, pyriproxyfen and acetamiprid on oxidative defence system and some key physiological attributes in tomato (Solanum lycopersicum L.). Each of these pesticides was applied in three doses (recommended dose, twice and three times higher than the recommended dose). Higher doses of pesticides sprayed to the plants resulted in marked increase in leaf free proline content and electrolyte leakage, but in a decrease in shoot dry matter, chl a, chl b and chl a+b in tomato plants as compared to those plants not sprayed with pesticides. These reductions were greater in tomato plants sprayed with highest doses of thiamethoxam (144 mg L-1), whereas the reverse was true for proline content and electrolyte leakage. The foliar application of pesticides at the highest levels caused enhanced accumulation of malondialdehyde (MDA) in most cases, and these being greater in treatment of foliar application of thiamethoxam at the highest level. The highest doses of pesticides promoted the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in most cases. The results clearly indicate that application of pesticides at higher doses than recommended doses provoked both oxidative and antioxidative systems in tomato plants. (author)

  17. Volatilization of pesticides from soil and plants after spraying

    NARCIS (Netherlands)

    Jansma JW; Linders JBHJ; ACT

    1995-01-01

    This report discusses the volatilization of pesticides from the soil surface, from within the soil and from plants. Not only during, but mainly also after, application of pesticides part of the applied substance volatilizes. The rate of volatilization is different for each substance and is in the

  18. Variability of pesticide dissipation half-lives in plants.

    Science.gov (United States)

    Fantke, Peter; Juraske, Ronnie

    2013-04-16

    Information on dissipation kinetics of pesticides in food crops and other plants is a key aspect in current risk and impact assessment practice. This is because human exposure to pesticides is predominantly caused by residues in agricultural crops grown for human and animal consumption. However, modeling dissipation of pesticides in plants is highly uncertain and therefore strongly relies on experimental data. Unfortunately, available information on pesticide dissipation in plants from experimental studies only covers a small fraction of possible combinations of substances authorized for use on food and fodder crops. Additionally, aspects and processes influencing dissipation kinetics are still not fully understood. Therefore, we systematically reviewed 811 scientific literature sources providing 4513 dissipation half-lives of 346 pesticides measured in 183 plant species. We focused on the variability across substances, plant species and harvested plant components and finally discuss different substance, plant and environmental aspects influencing pesticide dissipation. Measured half-lives in harvested plant materials range from around 1 hour for pyrethrins in leaves of tomato and pepper fruit to 918 days for pyriproxyfen in pepper fruits under cold storage conditions. Ninety-five percent of all half-lives fall within the range between 0.6 and 29 days. Our results emphasize that future experiments are required to analyze pesticide-plant species combinations that have so far not been covered and that are relevant for human exposure. In addition, prediction models would help to assess all possible pesticide-plant species combinations in the context of comparative studies. The combination of both would finally reduce uncertainty and improve assumptions in current risk and impact assessment practice.

  19. Role of higher aquatic plants in the disposal of pesticides

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2006-04-01

    Full Text Available  The considered role of higher water plants in utilization of pesticides (DDT, GHTSG, geptahlor. The practical use of this role VVR can be carried out in the special engineering building of bioplato.

  20. Analysing half-lives for pesticide dissipation in plants

    DEFF Research Database (Denmark)

    Jacobsen, R.E.; Fantke, Peter; Trapp, Stefan

    2015-01-01

    Overall dissipation of pesticides from plants is frequently measured, but the contribution of individual loss processes is largely unknown. We use a pesticide fate model for the quantification of dissipation by processes other than degradation. The model was parameterised using field studies....... Scenarios were established for Copenhagen/Denmark and Shanghai/PR China, and calibrated with measured results. The simulated dissipation rates of 42 pesticides were then compared with measured overall dissipation from field studies using tomato and wheat. The difference between measured overall dissipation...... and scenario. Accordingly, degradation is the most relevant dissipation process for these 42 pesticides, followed by growth dilution. Volatilisation was less relevant, which can be explained by the design of plant protection agents. Uptake of active compound from soil into plants leads to a negative...

  1. Pesticide productivity, host-plant resistance and productivity in China

    OpenAIRE

    Widawsky, David; Rozelle, Scott; Jin, Songqing; Huang, Jikun

    1998-01-01

    Pesticides are used as the primary method of pest control in Asian rice production. Conditions in China have led to demand for high and increasing rice yields, resulting in intensive cultivation and adoption of fertilizer responsive varieties. The consequence has been widespread pest infestations. Many studies have estimated pesticide productivity, but few have estimated the productivity of alternative methods of pest control, namely host-plant resistance. None have estimated the substitutabi...

  2. Estimating half-lives for pesticide dissipation from plants.

    Science.gov (United States)

    Fantke, Peter; Gillespie, Brenda W; Juraske, Ronnie; Jolliet, Olivier

    2014-01-01

    Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide-plant combinations, and currently no model predicting plant dissipation accounts for the influence of substance properties, plant characteristics, temperature, and study conditions. In this study, we propose models to estimate half-lives for pesticide dissipation from plants and provide recommendations for how to use our results. On the basis of fitting experimental dissipation data with reported average air temperatures, we estimated a reaction activation energy of 14.25 kJ/mol and a temperature coefficient Q10 of 1.22 to correct dissipation from plants for the influence of temperature. We calculated a set of dissipation half-lives for 333 substances applied at 20 °C under field conditions. Half-lives range from 0.2 days for pyrethrins to 31 days for dalapon. Parameter estimates are provided to correct for specific plant species, temperatures, and study conditions. Finally, we propose a predictive regression model for pesticides without available measured dissipation data to estimate half-lives based on substance properties at the level of chemical substance class. Estimated half-lives from our study are designed to be applied in risk and impact assessment models to either directly describe dissipation or as first proxy for describing degradation.

  3. Toxicity and removal of pesticides by selected aquatic plants.

    Science.gov (United States)

    Olette, Rachel; Couderchet, Michel; Biagianti, Sylvie; Eullaffroy, Philippe

    2008-02-01

    Pesticides are being detected in water bodies on an increasingly frequent basis. The present study focused on the phytoremediation potential of selected aquatic plants to remove phytosanitary products from contaminated water. We investigated the uptake capacity of Lemna minor (L. minor), Elodea canadensis (E. canadensis) and Cabomba aquatica (C. aquatica) on three pesticides: copper sulphate (fungicide), flazasulfuron (herbicide) and dimethomorph (fungicide). Pesticide toxicity was evaluated by exposing plants to five concentrations (0-1 mg L(-1)) in culture media for 7d using chlorophyll fluorescence as a biomarker. The toxicity of the contaminants was the same for all the aquatic plants studied and occurred in this descending order of toxicity: flazasulfuron>copper>dimethomorph. We found that L. minor had the most efficient uptake capacity, followed by E. canadensis and then C. aquatica. The maximum removal rate (microg g(-1)fresh weight d(-1)) of copper, flazasulfuron and dimethomorph was 30, 27 and 11, respectively.

  4. Estimating Half-Lives for Pesticide Dissipation from Plants

    DEFF Research Database (Denmark)

    Fantke, Peter; Gillespie, Brenda W.; Juraske, Ronnie

    2014-01-01

    Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide−plant combinations, and currently no model predicting plant dissipation...... accounts for the influence of substance properties, plant characteristics, temperature, and study conditions. In this study, we propose models to estimate half-lives for pesticide dissipation from plants and provide recommendations for how to use our results. On the basis of fitting experimental...... dissipation data with reported average air temperatures, we estimated a reaction activation energy of 14.25 kJ/mol and a temperature coefficient Q10 of 1.22 to correct dissipation from plants for the influence of temperature. We calculated a set of dissipation half-lives for 333 substances applied at 20 °C...

  5. Analysing half-lives for pesticide dissipation in plants.

    Science.gov (United States)

    Jacobsen, R E; Fantke, P; Trapp, S

    2015-01-01

    Overall dissipation of pesticides from plants is frequently measured, but the contribution of individual loss processes is largely unknown. We use a pesticide fate model for the quantification of dissipation by processes other than degradation. The model was parameterised using field studies. Scenarios were established for Copenhagen/Denmark and Shanghai/PR China, and calibrated with measured results. The simulated dissipation rates of 42 pesticides were then compared with measured overall dissipation from field studies using tomato and wheat. The difference between measured overall dissipation and calculated dissipation by non-degradative processes should ideally be contributable to degradation in plants. In 11% of the cases, calculated dissipation was above the measured dissipation. For the remaining cases, the non-explained dissipation ranged from 30% to 83%, depending on crop type, plant part and scenario. Accordingly, degradation is the most relevant dissipation process for these 42 pesticides, followed by growth dilution. Volatilisation was less relevant, which can be explained by the design of plant protection agents. Uptake of active compound from soil into plants leads to a negative dissipation process (i.e. a gain) that is difficult to quantify because it depends largely on interception, precipitation and plant stage. This process is particularly relevant for soluble compounds.

  6. Bioremediation of pesticides in surface soil treatment unit using ...

    African Journals Online (AJOL)

    The manufacturing and use of pesticides has been rising tremendously in India. The waste generated by the pesticide industry has become an environmental problem due to the present insufficient and ineffective waste treatment technology involving physico-chemical and biological treatment. The available data indicates ...

  7. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants.

    Science.gov (United States)

    Zhou, Yanhong; Xia, Xiaojian; Yu, Gaobo; Wang, Jitao; Wu, Jingxue; Wang, Mengmeng; Yang, Youxin; Shi, Kai; Yu, Yunlong; Chen, Zhixiang; Gan, Jay; Yu, Jingquan

    2015-03-12

    Pesticide residues in agricultural produce pose a threat to human health worldwide. Although the detoxification mechanisms for xenobiotics have been extensively studied in mammalian cells, information about the regulation network in plants remains elusive. Here we show that brassinosteroids (BRs), a class of natural plant hormones, decreased residues of common organophosphorus, organochlorine and carbamate pesticides by 30-70% on tomato, rice, tea, broccoli, cucumber, strawberry, and other plants when treated externally. Genome-wide microarray analysis showed that fungicide chlorothalonil (CHT) and BR co-upregulated 301 genes, including a set of detoxifying genes encoding cytochrome P450, oxidoreductase, hydrolase and transferase in tomato plants. The level of BRs was closely related to the respiratory burst oxidase 1 (RBOH1)-encoded NADPH oxides-dependent H2O2 production, glutathione biosynthesis and the redox homeostasis, and the activity of glutathione S-transferase (GST). Gene silencing treatments showed that BRs decreased pesticide residues in plants likely by promoting their metabolism through a signaling pathway involving BRs-induced H2O2 production and cellular redox change. Our study provided a novel approach for minimizing pesticide residues in crops by exploiting plants' own detoxification mechanisms.

  8. Plant uptake of pesticides and human health: dynamic modeling of residues in wheat and ingestion intake.

    Science.gov (United States)

    Fantke, Peter; Charles, Raphaël; de Alencastro, Luiz Felippe; Friedrich, Rainer; Jolliet, Olivier

    2011-11-01

    Human intake of pesticide residues from consumption of processed food plays an important role for evaluating current agricultural practice. We take advantage of latest developments in crop-specific plant uptake modeling and propose an innovative dynamic model to estimate pesticide residues in the wheat-environment system, dynamiCROP. We used this model to analyze uptake and translocation of pesticides in wheat after foliar spray application and subsequent intake fractions by humans. Based on the evolution of residues in edible parts of harvested wheat we predict that between 22 mg and 2.1 g per kg applied pesticide are taken in by humans via consumption of processed wheat products. Model results were compared with experimentally derived concentrations in wheat ears and with estimated intake via inhalation and ingestion caused by indirect emissions, i.e. the amount lost to the environment during pesticide application. Modeled and measured concentrations in wheat fitted very well and deviate from less than a factor 1.5 for chlorothalonil to a maximum factor 3 for tebuconazole. Main aspects influencing pesticide fate behavior are degradation half-life in plant and time between pesticide application and crop harvest, leading to variations in harvest fraction of at least three orders of magnitude. Food processing may further reduce residues by approximately 63%. Intake fractions from residues in sprayed wheat were up to four orders of magnitude higher than intake fractions estimated from indirect emissions, thereby demonstrating the importance of exposure from consumption of food crops after direct pesticide treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Review on the Influences of Bagging Treatment on Pesticide Residue in Fruits

    OpenAIRE

    ZHAO Xiao-yun; XIE De-fang

    2018-01-01

    At present, bagging technology has been widely applicated in fruit cultivation. Impact of bagging treatment on the pesticide residues have different results. On the basis of existing achievements, this paper systematically analyzed the influence of different bagging treatments on pesticide residues:such as different ways of applying pesticide, pesticide concentration, number of applying pesticide; bagging materials, bagged layer; the type of pesticide(systemic pesticide, nonendoscopic pestici...

  10. Extraction of Pesticides from Plants using Solid Phase ...

    African Journals Online (AJOL)

    NICO

    Extraction of Pesticides from Plants using Solid Phase. Microextraction and QuEChERS. Veronica C. Obusenga*, Beauty M. Mookantsaa, Harriet Okatcha,. Ketlhatlogile Mosepeleb and NelsonTortoc. aDepartment of Chemistry. University of Botswana, Private Bag UB 00704, Gaborone, Botswana. bUniversity of Botswana ...

  11. Extraction of Pesticides from Plants using Solid Phase ...

    African Journals Online (AJOL)

    No pesticides were detected in the leaves and stems of all the plants studied. Aldrin and endosulfan were detected in the Nymphaea nouchali roots at concentrations of 3–21 μg kg–1 and 5–3 μg kg–1, respectively. Pentachlorobenzene (PCB) and hexachlorobenzene (HCB) were also detected but were not quantified.

  12. Photodegradation of pesticides on plant and soil surfaces.

    Science.gov (United States)

    Katagi, Toshiyuki

    2004-01-01

    Photodegradation is an abiotic process in the dissipation of pesticides where molecular excitation by absorption of light energy results in various organic reactions, or reactive oxygen species such as OH*, O3, and 1O2 specifically or nonspecifically oxidize the functional groups in a pesticide molecule. In the case of soil photolysis, the heterogeneity of soil together with soil properties varying with meteorological conditions makes photolytic processes difficult to understand. In contrast to solution photolysis, where light is attenuated by solid particles, both absorption and emission profiles of a pesticide are modified through interaction with soil components such as adsorption to clay minerals or solubilization to humic substances. Diffusion of a pesticide molecule results in heterogeneous concentration in soil, and either steric constraint or photoinduced generation of reactive species under the limited mobility sometimes modifies degradation mechanisms. Extensive investigations of meteorological effects on soil moisture and temperature as well as development of an elaborate testing chamber controlling these factors seems to provide better conditions for researchers to examine the photodegradation of pesticides on soil under conditions similar to the real environment. However, the mechanistic analysis of photodegradation has just begun, and there still remain many issues to be clarified. For example, how photoprocesses affect the electronic states of pesticide molecules on soil or how the reactive oxygen species are generated on soil via interaction with clay minerals and humic substances should be investigated in greater detail. From this standpoint, the application of diffuse reflectance spectroscopy and usage or development of various probes to trap intermediate species is highly desired. Furthermore, only limited information is yet available on the reactions of pesticides on soil with atmospheric chemical species. For photodegradation on plants, the

  13. Review on the Influences of Bagging Treatment on Pesticide Residue in Fruits

    Directory of Open Access Journals (Sweden)

    ZHAO Xiao-yun

    2018-02-01

    Full Text Available At present, bagging technology has been widely applicated in fruit cultivation. Impact of bagging treatment on the pesticide residues have different results. On the basis of existing achievements, this paper systematically analyzed the influence of different bagging treatments on pesticide residues:such as different ways of applying pesticide, pesticide concentration, number of applying pesticide; bagging materials, bagged layer; the type of pesticide(systemic pesticide, nonendoscopic pesticide; different portions of the fruit, crop varieties and so on. The way of applying pesticide had great impact on pesticide residue, pesticide application after bagging could largely reduce the pesticide residue, and pesticide application before bagging could increase pesticide residues; The four factors including pesticide appliacation dosage, the type of pesticides and fruit portion and fruit varieties on the effects of pesticide residues, had interaction each other. The pesticide applying several times, bagging could significantly reduce pesticide residues and control within the security level. Different bagging materials could reduce pesticide residues, but the impact on pesticide residues had no significant difference. More bagging layers caused less pesticide residues.

  14. Are pesticide residues in honey related to oilseed rape treatments?

    Science.gov (United States)

    Karise, Reet; Raimets, Risto; Bartkevics, Vadims; Pugajeva, Iveta; Pihlik, Priit; Keres, Indrek; Williams, Ingrid H; Viinalass, Haldja; Mänd, Marika

    2017-12-01

    Pesticide treatments before and during the flowering of honey bee forage crops may lead to residues in honey. In northern regions oilseed rape belongs to the main forage crops that is mostly cultivated by means of intensive agriculture, including several pesticide treatments. However, in addition to the focal forage crops, pesticides from non-forage crops can spread to wild flowers around fields, and thus the residues in honey would reflect the whole range of pesticides used in the agricultural landscape. The aim of our study was to clarify which currently used pesticides are present in honey gathered from heterogeneous agricultural landscapes after the end of flowering of oilseed crops. Honey samples (N = 33) were collected from beehives of Estonia during 2013 and 2014, and analysed for residues of 47 currently used agricultural pesticides using the multiresidue method with HPLC-MS/MS and GC-MS and a single residue method for glyphosate, aminopyralid and clopyralid. Residues of eight different active ingredients with representatives from all three basic pesticide classes were determined. Although no correlation was detected between the cumulative amount of pesticide residues and percent of oilseed crops in the foraging territory, most of the residues are those allowed for oilseed rape treatments. Among all pesticides, herbicide residues prevailed in 2013 but not in 2014. Despite the relatively small agricultural impact of Estonia, the detected levels of pesticide residues sometimes exceeded maximum residue level; however, these concentrations do not pose a health risk to consumers, also acute toxicity to honey bees would be very unlikely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants.

    Science.gov (United States)

    Kupper, Thomas; Bucheli, Thomas D; Brändli, Rahel C; Ortelli, Didier; Edder, Patrick

    2008-11-01

    In the present study, concentration levels and dissipation of modern pesticides during composting and digestion at full-scale plants were followed. Of the 271 pesticides analyzed, 28 were detected. Within the three windrows studied, total concentrations were between 36 and 101microg per kg of dry matter (d.m.) in input materials and between 8 and 20microg kg d.m.(-1) in composts after 112 days of treatment. Fungicides and among them triazoles clearly dominated over other pesticides. More than two-thirds of all pesticides detected in the input materials showed dissipation rates higher than 50% during composting, whilst levels of most triazoles decreased slightly or remained unchanged. The investigation on semi-dry thermophilic anaerobic digestion suggests that pesticides preferentially end up in presswater after solid-liquid separation.

  16. Selective Effect of Pesticides on Plant--A Review.

    Science.gov (United States)

    Parween, Talat; Jan, Sumira; Mahmooduzzafar, Sumira; Fatma, Tasneem; Siddiqui, Zahid Hameed

    2016-01-01

    This review represents systematic and integrated picture of pesticide exposure to plant and its effect on growth and metabolism. Decades ago, agrochemicals were introduced aiming at enhancing crop yields and protecting crops from pests. Due to adaptation and resistance developed by pests to chemicals, every year higher amounts and new chemical compounds are used to protect crops, causing undesired side effects and raising the costs of food production. Biological chemical free agriculture is gaining also more and more support but it is still not able to respond to the need for producing massive amounts of food. The use of agrochemicals, including pesticides, remains a common practice especially in tropical regions and South countries. Cheap compounds, such as DDT, HCH, and Lindane, that are environmentally persistent, are today banned from agriculture use in developed countries, but remain popular in developing countries. As a consequence, persistent residues of these chemicals contaminate food and disperse in the environment. Therefore, the thrust of this paper was to review the application of pesticides effect early from germination to growth of the plant, leading to alteration in biochemical, physiological and different enzymatic and non-enzymatic antioxidants which ultimately affect the yield and resulted in residues in plant, vegetables, and fruits.

  17. Seedling growth of maize (Zea mays L.) inbred lines affected by seed treatment with pesticides

    OpenAIRE

    Tamindžić, Gordana D.; Nikolić, Zorica T.; Savić, Jasna Ž.; Milošević, Dragana N.; Petrović, Gordana R.; Ivanović, Dragana D.; Ignjatov, Maja V.

    2016-01-01

    Seed treatment is a common way of fungicide and insecticide use nowadays, since this way of pesticide application can provide the best protection in the vicinity of the future plant. The aim of research was to evaluate the effects of different seed treatments on germination and seedling growth in three maize inbred lines. The research included the seed treatment with several combinations of a fungicide Maxim XL 035-FS (a.i. metalaxil-M + fludioxonil) and ne...

  18. Effect of microalgal treatments on pesticides in water.

    Science.gov (United States)

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.

  19. 76 FR 14358 - Pesticides; Data Requirements for Plant-Incorporated Protectants (PIPs) and Certain Exemptions...

    Science.gov (United States)

    2011-03-16

    ... AGENCY 40 CFR Parts 152, 158, and 174 RIN 2070-AJ27 Pesticides; Data Requirements for Plant-Incorporated... and procedure, Agricultural commodities, Pesticides and pests, Plant-incorporated protectants... registration data needs of plant-incorporated protectants (PIPs). These data requirements are intended to...

  20. Pesticides

    Science.gov (United States)

    ... few. Top of Page How do pesticides work? Pesticides are designed to interfere with some biological or chemical pathway critical to the survival of the pest to which it is targeted. When the pesticide interrupts these pathways, the target organism dies. Top ...

  1. Searching for the universal reactivator for treatment of pesticide poisoning

    International Nuclear Information System (INIS)

    Kuca, K.; Musilek, K.; Pohanka, M.; Jun, D.; Karasova, J.; Novotny, L.

    2009-01-01

    According to the present knowledge, none of the currently available oximes (pralidoxime, obidoxime, trimedoxime, MMB-4 or HI-6) originally developed for the treatment of the nerve agent poisonings is able to treat organophosphorus pesticide poisoning. Among them, obidoxime seems to be the best candidate, however, its high toxicity disfavors its application in the high quantities. As byproduct of our searching for the new nerve agent reactivators, we found that oxime K027 seems to be very promising in the case of the treatment of organophosphorus pesticide poisonings. Its reactivation potency is similar or better than that of obidoxime, and moreover, its acute toxicity is lower. Thanks to these results, this oxime seems to be the best candidate for future use as universal reactivator for the treatment of poisonings caused by organophosphorus pesticides. This work was supported by the Czech Grant Agency - project No. 305/07/P162.(author)

  2. Volatilisation des pesticides depuis les plantes : approche expérimentale et modélisation

    OpenAIRE

    Lichiheb, Nebila

    2014-01-01

    The agricultural activity presents the main source of the atmospheric contamination by pesticides. The occurrence of pesticides in the atmosphere concerns the research community due to their potential impacts on population and ecosystems. The volatilization from plants is higher and faster than the volatilization from soil. However, this transfer pathway is difficult to assess with few available models. The lack of knowledge on pesticide volatilization from plants is essentially linked to the...

  3. The Assessment of Pesticides Residues in Some Organic Cultivated and Wild-Collected Medicinal Plants in Albania

    OpenAIRE

    FERDI BRAHUSHI; ENDRIT KULLAJ

    2014-01-01

    Pesticide residues in environment are found in soil, water and plants due to the extensive use of pesticides for agricultural purposes. The residues of pesticides in medicinal plants are of high concern as they are toxic for human life since these plants are used for medicinal purposes. The objective of current study was to estimate the presence of pesticide residues in some organic cultivated and wild-collected medicinal plants in Albania during the years 2010–2013. The determination of pest...

  4. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    Science.gov (United States)

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  5. Apply Pesticides Correctly, A Guide for Commercial Applicators: Seed Treatment.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the types of seeds that require chemical protection against pests. Methods of treatment and labeling requirements for such seeds as rye, wheat, soybeans, peas, and grass hybrids are discussed. Safety and environmental precautions…

  6. Effects of Systemic Pesticides Imidacloprid and Metalaxyl on the Phyllosphere of Pepper Plants

    OpenAIRE

    Moulas, Constantinos; Petsoulas, Christos; Rousidou, Konstantina; Perruchon, Chiara; Karas, Panagiotis; Karpouzas, Dimitrios G.

    2013-01-01

    Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid), applied either on foliage or through soil, on the epiphytic fungal and bacterial communiti...

  7. Pesticide stress on plants negatively affects parasitoid fitness through a bypass of their phytophage hosts

    NARCIS (Netherlands)

    Kampfraath, Andries A.; Giesen, Daniel; van Gestel, Cornelis A.M.; Le Lann, C.

    2017-01-01

    Pesticides taken up by plants from the soil or interstitial (pore) water can cascade to higher trophic levels, which are expected to be more affected due to cumulative bottom-up effects. Knowledge about the impact of indirect exposure to pesticides on non-target terrestrial trophic chains, however,

  8. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides.

    Science.gov (United States)

    Jokanović, Milan

    2009-10-28

    Organophosphorus compounds (OPs) are used as pesticides and developed as warfare nerve agents such as tabun, soman, sarin, VX and others. Exposure to even small amounts of an OP can be fatal and death is usually caused by respiratory failure. The mechanism of OP poisoning involves inhibition of acetylcholinesterase (AChE) leading to inactivation of the enzyme which has an important role in neurotransmission. AChE inhibition results in the accumulation of acetylcholine at cholinergic receptor sites, producing continuous stimulation of cholinergic fibers throughout the nervous systems. During more than five decades, pyridinium oximes have been developed as therapeutic agents used in the medical treatment of poisoning with OP. They act by reactivation of AChE inhibited by OP. However, they differ in their activity in poisoning with pesticides and warfare nerve agents and there is still no universal broad-spectrum oxime capable of protecting against all known OP. In spite of enormous efforts devoted to development of new pyridinium oximes as potential antidotes against poisoning with OP only four compounds so far have found its application in human medicine. Presently, a combination of an antimuscarinic agent, e.g. atropine, AChE reactivator such as one of the recommended pyridinium oximes (pralidoxime, trimedoxime, obidoxime and HI-6) and diazepam are used for the treatment of OP poisoning in humans. In this article the available data related to medical treatment of poisoning with OP pesticides are reviewed and the current recommendations are presented.

  9. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  10. [Assessment of pesticide residues in food of plant origin in Milan (Italy), 2008-2011].

    Science.gov (United States)

    Tesauro, Marina; Cesaria, Maria Concetta; Fracchia, Simonetta; Benzoni, Massimo; Bollani, Massimiliano; Consonni, Michela; Bianchi, Annalisa

    2013-01-01

    To monitor the presence of pesticide residues in food of plant origin in Milan from 1 July 2008 to 31 December 2011. Food of plant origin found in fruit and vegetable markets and in supermarkets was analysed, to evaluate whether it was contaminated by any seventy active principles of pesticides. Two hundred seventy-seven samples of fruits and vegetables were analysed. No pesticide residues were found in 61.7% of the samples, 37.9% had residues below the maximum threshold and 0.4% had residues above the threshold. Results are satisfactory and in agreement with national and international data.

  11. [Renal dysfunction in chemical plant workers producing dust pesticides].

    Science.gov (United States)

    Kossmann, S; Tustanowski, J; Kołodziej, B

    2001-01-01

    The study covered workers of a chemical plant producing dust pesticides. A study group included 24 men, aged 29-54 years, employed directly in the production, and 22 women, aged 31-52 years, performing auxiliary jobs and handling only closed packages. In order to assess the renal function in the workers, the concentrations of serum creatinine and uric acid, protein, albumin and alpha 1-microglobulin, as well as the activity of alkaline phosphatase (AP) and N-acetyl-beta-glucosaminidase (NAG) in urine were determined. The average air dust concentration at the workplaces was 0.42-16.66 mg/m3. The active substances with concentrations ranging from 10 to 75% in the final product were as follows: triazines, dithiocarbamates, carbendazim and thiophanate-methyl, captan, phenylureas, cupric oxychloride and occasionally also carbamates, dodine and 2,4-D. As compared to the results in the control groups of 31 healthy men and 22 women, free from occupational exposure to chemical noxas, a significantly higher serum creatinine concentration (in none of the subjects creatinine concentration exceeded the upper normal limit) and higher urinary protein, albumin and alpha 1-microglobulin concentrations, and higher enzyme activity were found in men, while in women only urine enzyme activity was significantly increased. The results speak in support of a discreet subclinical kidney impairment.

  12. Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides

    Directory of Open Access Journals (Sweden)

    M.V. Kurashvili

    2016-09-01

    Full Text Available The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of specially selected plants and microorganisms. Initial degradation of pesticides carry out by microorganisms; the forming dehalogenated products easily uptake by the plants and undergo oxidative degradation via plant detoxification enzymes. This approach can complete degradation of toxicants and their mineralization into nontoxic compounds. In the presented work the results of using selected strains from genera Pseudomonas and plants phytoremediators in the model experiments are given. It has been shown that the using developed technological approach effectively decreased degree of pollution in artificially polluted soil samples.

  13. Levels of organophosphorus pesticides in medicinal plants commonly consumed in Iran

    Directory of Open Access Journals (Sweden)

    Sarkhail Parisa

    2012-08-01

    Full Text Available Abstract The frequent occurrence of pesticide residues in herbal materials was indicated by previous studies. In this study, the concentration of some of the organophosphorus pesticides including parathion, malathion, diazinon and pirimiphos methyl in different kinds of medicinal plants were determined. The samples were collected randomly from ten local markets of different areas of Iran. At the detection limit of 0.5 ng g-1, parathion and pirimiphos methyl were not detected in any of the samples. Some amounts of malathion and diazinon were found in Zataria, Matricaria chamomile, Spearmint and Cumin Seed samples while, the concentrations of target organophosphorus pesticides in Borage samples were below the detection limits of the methods which could be a result of intensive transformation of organophosphorus pesticides by Borage. In addition the organophosphorus pesticides were detected in all of the samples below the maximum residue levels (MRLs proposed by the international organizations.

  14. Microbial degradation of pesticides in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    – up to 43% of the initial glyphosate was found as CO2 after 6 days. At Sjælsø waterworks Plant II the contact time in the primary rapid sand filter was 43 minutes. It was found that less than 20 minutes was needed to biologically remove more than 50% of the initial bentazone (concentration 0.1 μg......In Denmark drinking water supply is based on groundwater which is treated by aeration followed by filtration in rapid sand filters. Unfortunately pesticide contamination of the groundwater poses a threat to the water supply, since the simple treatment process at the waterworks is not considered...

  15. Effects of systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper plants.

    Science.gov (United States)

    Moulas, Constantinos; Petsoulas, Christos; Rousidou, Konstantina; Perruchon, Chiara; Karas, Panagiotis; Karpouzas, Dimitrios G

    2013-01-01

    Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid), applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning. Both pesticides induced mild effects on the fungal and the bacterial communities. The only exception was the foliage application of imidacloprid which showed a more prominent effect on the fungal community. Cloning showed that the fungal community was dominated by putative plant pathogenic ascomycetes (Erysiphaceae and Cladosporium), while a few basidiomycetes were also present. The former ribotypes were not affected by pesticides application, while selected yeasts (Cryptococcus) were stimulated by the application of imidacloprid suggesting a potential role in its degradation. A less diverse bacterial community was identified in pepper plants. Metalaxyl stimulated an Enterobacteriaceae clone which is an indication of the involvement of members of this family in fungicide degradation. Further studies will focus on the isolation of epiphytic microbes which appear to be stimulated by pesticides application.

  16. Effects of Systemic Pesticides Imidacloprid and Metalaxyl on the Phyllosphere of Pepper Plants

    Directory of Open Access Journals (Sweden)

    Constantinos Moulas

    2013-01-01

    Full Text Available Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid, applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning. Both pesticides induced mild effects on the fungal and the bacterial communities. The only exception was the foliage application of imidacloprid which showed a more prominent effect on the fungal community. Cloning showed that the fungal community was dominated by putative plant pathogenic ascomycetes (Erysiphaceae and Cladosporium, while a few basidiomycetes were also present. The former ribotypes were not affected by pesticides application, while selected yeasts (Cryptococcus were stimulated by the application of imidacloprid suggesting a potential role in its degradation. A less diverse bacterial community was identified in pepper plants. Metalaxyl stimulated an Enterobacteriaceae clone which is an indication of the involvement of members of this family in fungicide degradation. Further studies will focus on the isolation of epiphytic microbes which appear to be stimulated by pesticides application.

  17. Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2012-01-01

    Full Text Available The objective of this study was to assess the effect of selected pesticides [herbicides (metribuzin and glyphosate, insecticides (imidacloprid and thiamethoxam and fungicides (hexaconazole, metalaxyl and kitazin] at recommended and higher dose rates on plant growth promoting activities of the Mesorhizobium sp. isolated from chickpea-nodules. A total of 50 rhizobial strains recovered from the nodules of chickpea root systems were identified following morphological, biochemical and host-specificity tests and tested for pesticide-tolerance. Among these strains, the Mesorhizobium sp. strain MRC4 was specifically selected due to the highest tolerance levels for all selected pesticides and the maximum production of plant growth promoting substances. Strain MRC4 produced indole acetic acid (44 μg ml−1, siderophores [salicylic acid (35 μg ml−1 and 2,3-dihydroxy benzoic acid (19 μg ml−1], exo-polysaccharides (21 μg ml−1, HCN and ammonia. Under pesticide-stress, pesticide-concentration dependent progressive-decline in all plant growth promoting traits of the Mesorhizobium sp. strain MRC4 exposed was observed except for exo-polysaccharides which consistently increased with exceeding the concentration of each pesticide from recommended dose. For instance, hexaconazole at three times the recommended dose elicited the maximum stress on siderophore-biosynthesis by the Mesorhizobium sp. strain MRC4 and decreased salicylic acid and DHBA by 40% and 47%, respectively and the greatest stimulatory effect on exo-polysaccharides secretion was shown by imidacloprid which stimulated the Mesorhizobium sp. strain MRC4 to secrete EPS by 38%, compared to control. Generally, the maximum toxicity to plant growth promoting traits of Mesorhizobium was shown by glyphosate, thiamethoxam and hexaconazole, at three times the recommended rate among herbicides, insecticides and fungicides, respectively. This study revealed an additional aspect of the toxicological

  18. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique.

    Science.gov (United States)

    Wei, Jin-Chao; Wei, Bin; Yang, Wu; He, Cheng-Wei; Su, Huan-Xing; Wan, Jian-Bo; Li, Peng; Wang, Yi-Tao

    2017-12-18

    The safety issue of using carbamate pesticides in medicinal plants (MPs) has been a global concern and hence attracted attention of many researchers to develop analytical tools for trace pesticides detection. Derived from the fluorescence-based techniques, a rapid, convenient and efficient method for the detection of three carbamate pesticides, including carbofuran, aldicarb and methomyl has been developed by using core-shell QDs. By optimizing experimental parameters, the system demonstrated high detection sensitivities for the investigated carbamates, with the lowest detectable concentrations less than 0.05 μM. The molecular docking study indicated that the selected carbamate pesticides bound to the catalytic active site of acetylcholinesterase via π-π or H-π interactions, which also revealed the potential mechanism of the differences in inhibition strength among the three pesticides on AChE. Moreover, in order to investigate the applicability and reliability of the proposed method for the pesticide analysis in real sample with complex matrix, the matrix effects of eight common MPs have been systematically explored. These findings suggested that this technique was a simple, sensitive and reliable method for rapid determination of carbamate pesticides in real samples, especially those with complex matrices like MPs, vegetables, fruits, and other agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. EFFECTS OF PESTICIDES AND PLANT HORMONES ON CARBONIC ANHYDRASE ACTIVITY IN SPINACH (Spinacia oleraceae L. cv. Gladiatör)

    OpenAIRE

    ODABAŞOĞLU, Fehmi; KÜFREVİOĞLU Ö., İrfan

    2001-01-01

    In this study, the 6-7 weeks old spinach (Spinacia oleraceae L. cv. Gladiatör) seedlings were grown up for 15-days after pesticide, hormone and pesticide+hormone had sprayed, and carbonic anhydrase activities were established in the extracted leaves. The established carbonic anhydrase (CA) activities, were compared with treated plants and control plants. We determined that CA activity was inhibited by all pesticides. All hormones which were applied in three different concentrations except 10&...

  20. Oral acute toxicity study of selected botanical pesticide plants used ...

    African Journals Online (AJOL)

    aghomotsegin

    Problem statement. The steadily increasing problems emanating from the use of synthetic pesticides including pest resistance, pollution of the environment and .... thick residues. The obtained extracts were labeled and kept in a fridge at 4°C till when needed. Water was used as a solvent due to its good solvent properties.

  1. 40 CFR 174.508 - Pesticidal substance from sexually compatible plant; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... compatible plant; exemption from the requirement of a tolerance. 174.508 Section 174.508 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.508 Pesticidal substance from...

  2. Processes of microbial pesticide degradation in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    Aerobic rapid sand filters for treatment of groundwater at waterworks were investigated for the ability to remove pesticides. The potential, kinetics and mechanisms of microbial pesticide removal was investigated in microcosms consisting of filter sand, treated water and pesticides in initial...... concentrations of 0.04-2.4 μg/L. The pesticides were removed from the water in microcosms with filter sand from all three investigated sand filters. Within the experimental periode of six to 13 days, 65-85% of the bentazone, 86-93% of the glyphosate, 97-99% of the p-nitrophenol was removed from the water phase...

  3. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  4. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    Science.gov (United States)

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  5. Pesticide stress on plants negatively affects parasitoid fitness through a bypass of their phytophage hosts.

    Science.gov (United States)

    Kampfraath, Andries A; Giesen, Daniel; van Gestel, Cornelis A M; Le Lann, Cécile

    2017-04-01

    Pesticides taken up by plants from the soil or interstitial (pore) water can cascade to higher trophic levels, which are expected to be more affected due to cumulative bottom-up effects. Knowledge about the impact of indirect exposure to pesticides on non-target terrestrial trophic chains, however, is still lacking. Therefore, we examined the direct and indirect effects of three concentrations of the herbicide 2,6-dichlorobenzonitrile (DCBN) and an insecticide with a similar molecular structure (1,4-dichlorobenzene, DCB) on the fitness traits of a tritrophic system: the wheat plant Triticum aestivum, the aphid Sitobion avenae and its specialist parasitoid Aphidius rhopalosiphi. To mimic exposure via interstitial water the toxicants were added to the growth medium of the plant. Passive dosing between the medium and a silicon layer was used to achieve constant exposure of the poorly soluble pesticides. Wheat plants exposed to both pesticides grew smaller and had reduced biomasses. Negative effects on the reproductive rate, biomass and the number of aphids were only observable at the highest concentration of DCBN. Overall parasitism rate decreased when exposed to both pesticides and parasitoid attack rates decreased at lower concentrations of DCBN and at the highest DCB concentration. The parasitoid sex ratio was extremely male-biased in the presence of DCBN. Our results demonstrate that pesticides can alter the performance of higher trophic levels by sublethal effects, through a bypass of the second trophic level. In addition, the novel test system used was suitable for detecting such carryover effects on non-target organisms.

  6. Impact of pesticides on plant growth promotion of Vigna radiata and non-target microbes: comparison between chemical- and bio-pesticides.

    Science.gov (United States)

    Gupta, Sukriti; Gupta, Rashi; Sharma, Shilpi

    2014-08-01

    To compare the target and non-target effects of two chemical-pesticides (chlorpyrifos and endosulfan) with that of a bio-pesticide (azadirachtin), Vigna radiata (mung bean) was grown in a randomized pot experiment with recommended and higher application rates of pesticides. Colony counts enumerating specific microbial populations, viz. fungi, Pseudomonas, nitrogen-fixing bacteria, and phosphate-solubilizing microorganisms, were performed. In addition, several plant growth parameters such as root and shoot lengths were also monitored. It was observed that the pesticides exerted a suppressive effect on different microbial communities under study in the initial 30 days period. The bacterial and fungal populations in chlorpyrifos treated plants increased thereafter. Endosulfan resulted in enhancement of fungi and nitrogen-fixing bacteria, although phosphate-solubilizing microorganisms were suppressed at higher application rates. Azadirachtin, which is gaining popularity owing to its biological origin, did not result in enhancement of any microbial populations; on the other hand, it had a deleterious effect on phosphate-solubilizing bacteria. This study is the first to evaluate the non-target effects of pesticides with a comparison between chemical- and bio-pesticides, and also stresses the importance of critical investigation of bio-pesticides before their wide spread application in agriculture.

  7. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    Science.gov (United States)

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  8. ORGANOPHOSPHATE PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    Science.gov (United States)

    Free chlorine has been found to react with organophosphate (OP) pesticides resulting in the more toxic oxon products. We will discuss OP pesticide degradation pathways and modeling in the presence of chlorine and chloramines, as well as present a relationship between structure a...

  9. A review of photochemical approaches for the treatment of a wide range of pesticides.

    Science.gov (United States)

    Reddy, P Venkata Laxma; Kim, Ki-Hyun

    2015-03-21

    Pesticides are renowned as some of the most pernicious chemicals known to humankind. Nine out of twelve most hazardous and persistent organic chemicals on planet have been identified as pesticides and their derivatives. Because of their strong recalcitrant nature, it often becomes a difficult task to treat them by conventional approaches. It is well perceived that many factors can interfere with the degradation of pesticides under ambient conditions, e.g., media, light intensity, humic content, and other biological components. However, for the effective treatment of pesticides, photochemical methods are viewed as having clear and perceivable advantages. In this article, we provide a review of the fundamental characteristics of photochemical approaches for pesticide treatment and the factors governing their capacity and potential in such a process. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Microbial degradation of pesticides in rapid sand filters used for drinking water treatment

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen

    associated risks, it is necessary to understand the extent of pesticide degradation and the governing microbial processes in the water treatment. The objective of this PhD thesis was to investigate the potential for microbial pesticide degradation at waterworks treating groundwater and to investigate, which......, this PhD demonstrated a substantial potential for biological pesticide degradation in drinking water treatment systems. While the omnipresent phenoxy acid degradation potential was probably due to specific degraders, bentazone degradation was connected with the methane oxidation. Based on the present......Groundwater is used as drinking water source all over the world. However, large parts are contaminated by pesticides at low concentrations (sub µg/L), due to anthropogenic activities. These pesticides can adversely impact human health, and have legal implications. Thus, it is important to identify...

  11. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    Science.gov (United States)

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  12. Pesticides

    Science.gov (United States)

    ... pets and their bedding regularly and see your veterinarian for treatment options. People who handle or are ... Gausche-Hill M, et al, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice. 9th ed. Philadelphia, PA: ...

  13. Role of Some Medicinal Herbs Plants (Anise and Chamomile) in Male Rats Intoxicated with Metacide Pesticide

    International Nuclear Information System (INIS)

    Afifi, E.A.A.; Ali, S.E.; Hafez, S.E.

    2011-01-01

    This present study was undertaken to evaluate the effect of some medicinal herbs plants such as anise and chamomile (300 mg/kg b.wl) for five weeks on some biochemical changes induced in rats administrated daily oral dose of organophosphorus pesticide metacide at level of 1.4 mg/kg b.wt for live weeks. The data showed that the metacide pesticides caused disturbance in liver and kidney function revealed as significant increased in serum total lipids, triglycerides, total free amino, biliburine, total cholesterol, creatinine, urea and uric acid. Moreover, a significant decreased in total proteins. Also thyroxine hormone (T4) was increased while triiodothyronine (T 3) was decreased. The results also revealed that both anise and chamomile exhibited an improvement and highly affective in attenuation of metacide pesticide caused oxidative damage, disturbance and injury induced in liver, kidney and thyroid hormone function

  14. Pesticide Pollution in Ecosystems

    OpenAIRE

    İlter, Hüseyin; Kurt, Burak; Ötegen, Volkan Recai; Akbaba, Muhsin

    2018-01-01

    Pesticidepollution affects both aquatic and soil ecosystems. Factors that promotepesticide pollution include drainage patterns, properties of the pesticide,rainfall, microbial activity, treatment surface and rate of application.Pesticides are able to move from one ecosystem to another through processessuch as transfer (mobility) and transformation (degradation). Transfer mayoccur through surface runoff, vapourization to atmosphere, sorption (adsorp‐tion/desorp-tion), plant uptakeor soil water...

  15. Influence of pesticide treatments on the dynamics of whiteflies and associated parasitoids in snap bean fields

    NARCIS (Netherlands)

    Manzano, M.R.; Lenteren, van J.C.; Cardona, C.

    2003-01-01

    To determine the influence of pesticide treatments on the population dynamics of the whiteflies Trialeurodes vaporariorum (Westwood) and Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and their naturally occurring parasitoids, we performed field experiments on insecticide sprayed and unsprayed

  16. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  17. Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB

    Directory of Open Access Journals (Sweden)

    Kathleen Lewis

    2017-08-01

    Full Text Available Data relating to the rate at which pesticide active substances dissipate on or within various plant matrices are important for a range of different risk assessments; however, despite the importance of this data, dissipation rates are not included in the most common online data resources. Databases have been collated in the past, but these tend not to be maintained or regularly updated. The purpose of the exercise described herein was to collate a new database in a format compatible with the main online pesticide database resource (the Pesticide Properties Database, PPDB, to validate this database in line with the Pesticide Properties Database protocols and thus ensure that the data is maintained and updated in future. Data was collated using a systematic review approach using several scientific databases. Collated literature was subjected to a quality assessment, and then data was extracted into an MS Excel spreadsheet. The outcome of the study is a database based on data collated from 1390 published articles covering over 400 pesticides and over 200 crops across a wide variety of different matrices (leaves, fruits, seeds etc. for pesticide residues on the crop surface, as well as residues absorbed within the plant material. This data is now fully incorporated into the PPDB.

  18. Employing Solid Phase Microextraction as Extraction Tool for Pesticide Residues in Traditional Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Thamani T. Gondo

    2016-01-01

    Full Text Available HS-SPME was optimised using blank plant sample for analysis of organochlorine pesticides (OCPs of varying polarities in selected medicinal plants obtained from northern part of Botswana, where OCPs such as DDT and endosulfan have been historically applied to control disease carrying vectors (mosquitos and tsetse fly. The optimised SPME parameters were used to isolate analytes from root samples of five medicinal plants obtained from Maun and Kasane, Botswana. The final analytes determination was done with a gas chromatograph equipped with GC-ECD and analyte was confirmed using electron ionisation mass spectrometer (GC-MS. Dieldrin was the only pesticide detected and confirmed with MS in the Terminalia sericea sample obtained from Kasane. The method was validated and the analyte recoveries ranged from 69.58±7.20 to 113±15.44%, with RSDs ranging from 1.19 to 17.97%. The method indicated good linearity (R2>0.9900 in the range of 2 to 100 ng g−1. The method also proved to be sensitive with low limits of detection (LODs ranging from 0.48±0.16 to 1.50±0.50 ng g−1. It can be concluded that SPME was successfully utilized as a sampling and extraction tool for pesticides of diverse polarities in root samples of medicinal plants.

  19. Remediation of soil contaminated with pesticides by treatment with gamma radiation

    International Nuclear Information System (INIS)

    Santos, Janilson Silva

    2009-01-01

    The discharge of empty plastic packaging of pesticides can be an environmental concern mainly by soil contamination. Nowadays, Brazil figures in third place among the leading world pesticide markets. An understanding of the processes that affect the transport and fate of pesticides is crucial to assess their potential for contamination of soil and groundwater, and to develop efficient and cost-effective site management and soil remediation strategies. Due to its impact on soil remediation has made sorption a major topic of research on soil-pesticide interactions. The main objective of this study is the evaluation of the pesticides transferring from contaminated mixture of commercial polymeric packing of high-density polyethylene, HDPE, used in agriculture to soil and their removal by gamma irradiation. Two soil samples of argyles compositions and media composition were exposed to a mixture of commercial polymeric packing contaminated with the pesticides methomyl, dimethoate, carbofuran, methidathion, triazine, thiophos, atrazine, ametryne, endosulfan, chloropyrifos, thriazophos and trifluralin. The pesticides leaching from packaging to soil was homogeneous considering a experimental research. The radiation treatment presented high efficiency on removal pesticides from both soil, but it depends on the physical-chemical characteristics of the contaminated soil. The higher efficiency was obtained in soils with higher organic material and humidity. The higher efficiency was obtained for the medium texture soil, with 20 kGy all present pesticides were removed in all layers. In the case of argyles texture soil, it was necessary a 30 kGy to remove the totality of present pesticides. (author)

  20. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric

    2013-01-01

    harvested for human consumption by taking wheat grains as example. Results show that grains, grain surface and soil are the compartments predominantly influencing the mass evolution of most pesticides in the plant–environment system as a function of substance degradation in plant components and overall...... of model dynamics provides additional information of the evolution of pesticides in food crops, which is important for regulators and practitioners. In addition, the parametric representation of system dynamics allows for drastically reducing input data requirements and for comparing harvest fractions......Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...

  1. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi, E-mail: shilpi@dbeb.iitd.ac.in

    2015-06-30

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture.

  2. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    International Nuclear Information System (INIS)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-01-01

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture

  3. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants

    NARCIS (Netherlands)

    Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Berg, van den F.; Barriuso, Enrique

    2016-01-01

    Volatilization from plant foliage is known to have a great contribution to pesticide emission to the atmosphere. However, its estimation is still difficult because of our poor understanding of processes occurring at the leaf surface. A compartmental approach for dissipation processes of

  4. Oral acute toxicity study of selected botanical pesticide plants used ...

    African Journals Online (AJOL)

    aghomotsegin

    Key words: Oral acute toxicity, biopesticide, plant extracts, Lake Victoria Basin. INTRODUCTION. There is a very long history of use of botanical extracts for human and veterinary medicine, as well as for the protection of field and stored crops (Berger, 1994). In the recent decades, however, due to the introduction of.

  5. Pesticides residues in water treatment plant sludge: validation of analytical methodology using liquid chromatography coupled to Tandem mass spectrometry (LC-MS/MS); Residuos de agrotoxicos em lodo de estacao de tratamento de agua: validacao de metodologia analitica utilizando cromatografia liquida acoplada a espectrometria de massas em Tandem (LC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Moracci, Luiz Fernando Soares

    2008-07-01

    The evolving scenario of Brazilian agriculture brings benefits to the population and demands technological advances to this field. Constantly, new pesticides are introduced encouraging scientific studies with the aim of determine and evaluate impacts on the population and on environment. In this work, the evaluated sample was the sludge resulted from water treatment plant located in the Vale do Ribeira, Sao Paulo, Brazil. The technique used was the reversed phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Compounds were previously liquid extracted from the matrix. The development of the methodology demanded data processing in order to be transformed into reliable information. The processes involved concepts of validation of chemical analysis. The evaluated parameters were selectivity, linearity, range, sensitivity, accuracy, precision, limit of detection, limit of quantification and robustness. The obtained qualitative and quantitative results were statistically treated and presented. The developed and validated methodology is simple. As results, even exploring the sensitivity of the analytical technique, the work compounds were not detected in the sludge of the WTP. One can explain that these compounds can be present in a very low concentration, can be degraded under the conditions of the water treatment process or are not completely retained by the WTP. (author)

  6. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    Science.gov (United States)

    The Food Quality Protection Act (FQPA) of 1996 requires that all tolerances for pesticide chemical residuals in or on food be considered for anticipated exposure. Drinking water is considered a potential pathway for dietary exposure and there is reliable monitoring data for the ...

  7. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; Ricart, Marta; Köck-Schulmeyer, Marianne; Guasch, Helena; Bonnineau, Chloe; Proia, Lorenzo; de Alda, Miren Lopez; Sabater, Sergi; Barceló, Damià

    2015-01-23

    Water reuse is becoming a common practice in several areas in the world, particularly in those impacted by water scarcity driven by climate change and/or by rising human demand. Since conventional wastewater treatment plants (WWTPs) are not able to efficiently remove many organic contaminants and pathogens, more advanced water treatment processes should be applied to WWTP effluents for water reclamation purposes. In this work, a pilot plant based on microfiltration (MF) followed by reverse osmosis (RO) filtration was applied to the effluents of an urban WWTP. Both the WWTP and the pilot plant were investigated with regards to the removal of a group of relevant contaminants widely spread in the environment: 28 pharmaceuticals and 20 pesticides. The combined treatment by the MF-RO system was able to quantitatively remove the target micropollutants present in the WWTP effluents to values either in the low ng/L range or below limits of quantification. Monitoring of water quality of reclaimed water and water reclamation sources is equally necessary to design the most adequate treatment procedures aimed to water reuse for different needs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. PEARL model for pesticide behaviour and emissions in soil-plant systems : description of the processes in FOCUS PEARL v 1.1.1

    NARCIS (Netherlands)

    Leistra, M.; Linden, van der A.M.A.; Boesten, J.J.T.I.; Tiktak, A.; Berg, van den F.

    2001-01-01

    The use of pesticides in agriculture presents risks to the environment, which are increasingly evaluated by using computation models. The new PEARL model simulates the behaviour of pesticides in soil-plant systems and their emissions to the environment. The pesticide model is used in combination

  9. Pesticide Applicator Training Manual, Category 1 - Agricultural, Subcategory - Plant. A Training Program for the Certification of Commercial Pesticide Applicators.

    Science.gov (United States)

    Dewey, J. E., Ed.; Pendleton, R. F., Ed.

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. Each of the eight chapters deals with a different aspect of pesticide use. Chapter one discusses the problems of use, particularly those associated with safety. Chapter two is concerned with the identification and diagnosis of insects…

  10. Plantes pesticides et protection des cultures maraichères en Afrique de l'Ouest (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Yarou, BB.

    2017-01-01

    Full Text Available Pesticidal plants and vegetable crop protection in West Africa. A review. Introduction. Vegetable crops play a leading role in human nutrition and contribute significantly to the incomes of families in West Africa. However, their production is hampered by pressure from pests, which limits their productivity. Literature. This review, based on scientific publications, aims to evaluate the potential of pesticidal plants as an alternative to the use of synthetic pesticides to control vegetable crop pests in West Africa. It shows that the primary current method used to control these pests is mainly based on synthetic pesticides. However, in view of their harmful effects on humans and the environment, in addition to the range of resistant pest populations, the search for alternative approaches is needed. Pesticidal plants are a promising alternative in the West African context. Indeed, various species of pesticidal plant can be used as plant extracts or in association with other crops in pest management. These plants are presented in this review article. Conclusions. Pesticidal plants can be a promising alternative for the pest management of vegetable crops. However, most of these pesticidal plants are uncultivated. Exploring the biocidal capacities of these interesting plants, such as the genus Ocimum, known for its therapeutic, medicinal and food uses, could be of interest for farmers. However, populations need to be made informed of the long-term benefits of products treated with pesticidal plant extract, in order to facilitate their use.

  11. Application of Pesticide Phytoremediation in Irrigated Rice Fields System Using Eceng Gondok (Eichhornia crassipes) Plants

    Science.gov (United States)

    Febriani, Ika Kartika; Hadiyanto

    2018-02-01

    The problem of environmental pollution especially urban water pollution becomes major issue in Indonesia. The cause of water pollution is not only from industrial factory waste disposal but also other causes which become pollution factor. One cause of water pollution is the existence of agricultural activities with the use of the amount of pesticides that exceed the threshold. As regulated in Government Regulation No. 82/2001 on Water Quality Management and Water Pollution Control, it is necessary to manage water quality and control water pollution wisely by taking into account the interests of current and future generations as well as the ecological balance. To overcome the problem of water pollution due to agricultural activities, it is necessary to conduct research on phytoremediation technique by utilizing eceng gondok plant. It is excepted that using this phytoremediation technique can reduce the problem of water pollution due to the use of pesticides on agricultural activities.

  12. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review.

    Science.gov (United States)

    Shahzad, Babar; Tanveer, Mohsin; Che, Zhao; Rehman, Abdul; Cheema, Sardar Alam; Sharma, Anket; Song, He; Rehman, Shams Ur; Zhaorong, Dong

    2018-01-01

    Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pesticide Exposure in Children

    Science.gov (United States)

    Roberts, James R.; Karr, Catherine J.

    2018-01-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  14. Treatment of Pesticides in Wastewater by Heterogeneous and Homogeneous Photocatalysis

    Directory of Open Access Journals (Sweden)

    Catalina Daniela Stan

    2012-01-01

    Full Text Available The effect of different heterogeneous and homogeneous photocatalytic systems on the oxidative degradation of mepiquat chloride in aqueous solutions was investigated. In the case of heterogeneous reactions, the influence of five factors was studied: the type of catalyst, photocatalyst concentration, pH, pesticide concentration, and the presence of H2O2 and/or Fe3+. For homogeneous catalysis, other factors were studied: the oxidising agent and the light source. Nearly complete degradation of mepiquat chloride was obtained after about 180 minutes in the presence of an acid medium (pH3 using a UV-A lamp and TiO2P-25 catalyst (0.5 g/L, for an initial pesticide concentration of 10 ppm. Degradation rates corresponding to homogeneous photocatalysis were lower compared to those corresponding to the use of TiO2 as the photocatalyst.

  15. Treatment of Pesticides in Wastewater by Heterogeneous and Homogeneous Photocatalysis

    OpenAIRE

    Stan, Catalina Daniela; Cretescu, Igor; Pastravanu, Cristina; Poulios, Ioannis; Drăgan, Maria

    2012-01-01

    The effect of different heterogeneous and homogeneous photocatalytic systems on the oxidative degradation of mepiquat chloride in aqueous solutions was investigated. In the case of heterogeneous reactions, the influence of five factors was studied: the type of catalyst, photocatalyst concentration, pH, pesticide concentration, and the presence of H2O2 and/or Fe3+. For homogeneous catalysis, other factors were studied: the oxidising agent and the light source. Nearly complete degradation of me...

  16. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Haley K. Feazel-Orr

    2016-03-01

    Full Text Available Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies.

  17. Pesticides and heavy metals levels in Egyptian leafy vegetables and some aromatic medicinal plants.

    Science.gov (United States)

    Dogheim, S M; Ashraf, El M M; Alla, S A G; Khorshid, M A; Fahmy, S M

    2004-04-01

    A total of 835 samples of leafy vegetables and some aromatic medicinal plants were collected from five different areas of Egypt during 1999. Ninety-seven per cent of the leafy vegetables were contaminated with heavy metals with 39% exceeding the maximum limits for each element. Cadmium was detected in 78 of 116 samples of leafy vegetable, although without any exceeding the maximum limits. However, lead was detected in 99 samples, of which 39 exceeded the maximum limits (0.3 mg kg(-1)) and 56 medicinal plant samples of 70 had lead levels above 0.5 mg kg(-1). Copper was detected in 69 medicinal plant samples, of which 58 samples contained levels higher than 10 mg kg(-1). However, cadmium was only found in 43% of samples with only two of 70 samples above the maximum limit. Seventy-three per cent of the samples of medicinal plants were contaminated with pesticide residues, of which 44% contained amounts that exceeded maximum residue limits. Malathion was the most frequently found pesticide residue, being detected in 203 of 391 (52%.) samples, followed by profenofos, which was detected in 131 of 391 (33%) samples.

  18. Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment.

    Science.gov (United States)

    Sousa, Sérgio; Jiménez-Guerrero, Pedro; Ruiz, Antonio; Ratola, Nuno; Alves, Arminda

    2011-04-01

    Pesticides have been responsible for strong environmental impacts, mainly due to their persistence in the environment. Removal technologies are usually combined, because degradation of organic matter is needed prior to a tertiary treatment to guarantee pesticides elimination to levels below legal limits (normally 0.1 microg L(-1)). Pine bark was studied as an alternative to activated carbon, for organochlorine pesticides removal. A combination of technologies based on biodegradation with activated sludge followed by pine bark adsorption treatment was used for lindane (LIN) and heptachlor (HEP) removal from contaminated waters. Pesticides were quantified throughout the process by GC-ECD preceded by solid-phase microextraction (SPME). An experimental set-up was maintained for 4 months, by feeding a standard solution with pesticides concentration of 1 microg L(-1) each and known organic matter (Chemical Oxygen Demand, COD, -563 mg O2 L(-1)) on a daily basis. COD suffered a reduction of about 81% in the biological step and no increase was detected in the subsequent adsorption treatment. Overall removal efficiency was 76.6% and above 77.7% for LIN and HEP, respectively.

  19. Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny).

    Science.gov (United States)

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Ponsankar, Athirstam; Thanigaivel, Annamalai; Chellappandian, Muthiah; Edwin, Edward-Sam; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2017-06-17

    Comparative toxicity of two chemical pesticides (temephos and monocrotophos) versus a plant-derived betel leaf oil Piper betle (L.) to earthworm Eudrilus eugeniae (Kinberg) and redworm Eisenia fetida Savigny, historically: Eisenia foetida (Savigny 1826), was evaluated. Mortality rate was more prominent in temephos at 100 μg concentration to both the earthworms in filter paper test (FPT) as well as 10 mg concentration in artificial soil test (AST). In contrast, P. betle does not display much mortality rate to both the earthworms even at 1000 mg of treatment concentrations. The lethal concentration (LC 50 ) value was observed at 3.89 and 5.26 mg/kg for temephos and monocrotophos against E. eugeniae and 3.81 and 5.25 mg/kg to E. fetida, respectively. Whereas, LC 50 value of betel leaf oil was only observed at 3149 and 4081 mg/kg to E. eugeniae and E. fetida, respectively. Correspondingly, the avoidance or attraction assay also displayed that earthworms were more sensitive to the soil containing chemical pesticides. Whereas, the avoidance percentage was decreased in the P. betle oil. Similarly, sublethal concentration of chemical pesticides (5 and 6.5 mg) significantly reduced the earthworm weight and growth rate. However, P. betle oil did not change the developmental rate in the duration of the assay (2, 7 and 14 days) even at 4000 mg treatment concentration. The enzyme ratio of CAT and SOD was also affected significantly after exposure to the chemical pesticides (6.5 mg/kg). Hence, our study implied the risk assessment associated with the chemical pesticides and also recommends plant-derived harmless P. betle oil against beneficial species as an alternative pest control agent.

  20. Analysis and study of the distribution of polar and non-polar pesticides in wastewater effluents from modern and conventional treatments.

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Garrido Frenich, Antonia; Martínez Vidal, José Luis

    2010-12-10

    The analysis of a wide range of pesticides in wastewaters (WWs) undergoing different treatments (both modern and conventional) has been studied. The need for optimizing specific extraction methods for each WW effluent based on their physico-chemical characteristics has been considered. A distribution study was performed to establish if the filtration step before extraction is a correct procedure since pesticides can be more prone to be in the aqueous or the solid phase, depending on their hydrophobicity. This evaluation demonstrated that pesticides are distributed between the aqueous phase and the suspended particulate matter (SPM; e.g. pyrethroids are only found in the SPM). The proposed methodologies involved the determination of 39 polar and 139 non-polar pesticides using solid-phase extraction (SPE) and pressurized-liquid extraction (PLE) for the extraction of the aqueous phase and the SPM, respectively. Ultra high pressure liquid chromatography and gas chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS, GC-MS/MS) were used in the determination stage. WW samples from four different technologies were evaluated: membrane bioreactor, extended aeration, maturation pond and anaerobic pond. Validation data for the four effluents studied were generated, obtaining adequate precision values (estimated as % relative standard deviation, RSD) in almost all cases (treatment plant, detecting non-polar and polar pesticides at concentrations in the range 0.02-1.94μgL(-1) and 0.02-0.33μgL(-1), respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. A review of the photodegradability and transformation products of 13 pharmaceuticals and pesticides relevant to sewage polishing treatment.

    Science.gov (United States)

    Mathon, Baptiste; Choubert, Jean-Marc; Miege, Cécile; Coquery, Marina

    2016-05-01

    Many xenobiotics are only partially treated by conventional wastewater treatment plants. Photodegradation is one promising solution currently being investigated to improve their removal from effluents. We present an in-depth review of the photodegradation kinetic parameters of selected pesticides and pharmaceuticals and assess whether the data available in the literature are applicable to polishing treatment processes under sunlight. We made a thorough inventory of literature data describing the photodegradation of pesticides and pharmaceuticals in water, the laboratory, pilot plants, and in situ conditions. To this end, we built a database compiling results on photodegradation experiments from 70 scientific publications covering 13 xenobiotics commonly found in secondary effluents. Special care was taken to compile reliable data on photolysis kinetic parameters (half-life and kinetic rate constant) and removal efficiencies. We also include a comprehensive description of experimental operating conditions and an up-to-date inventory of known phototransformation products. As practical outputs we (i) propose a classification for the xenobiotics according to their photodegradability: fast-, medium- and slow-photodegradable, (ii) compare kinetic parameters in direct and indirect photodegradation conditions, and (iii) list 140 phototransformation products formed by direct or indirect photodegradation. We conclude by identifying gaps in the literature that need to be filled to adapt these available results to the conditions of polishing processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  3. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    Science.gov (United States)

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  4. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants.

    Science.gov (United States)

    Fox, Jennifer E; Gulledge, Jay; Engelhaupt, Erika; Burow, Matthew E; McLachlan, John A

    2007-06-12

    Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the "Green Revolution," this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields.

  5. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures.

    Science.gov (United States)

    Lizano-Fallas, Verónica; Masís-Mora, Mario; Espinoza-Villalobos, David; Lizano-Brenes, Michelle; Rodríguez-Rodríguez, Carlos E

    2017-09-01

    Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Uptake and persistence of pesticides in plants: measurements and model estimates for imidacloprid after foliar and soil application.

    Science.gov (United States)

    Juraske, Ronnie; Castells, Francesc; Vijay, Ashwin; Muñoz, Pere; Antón, Assumpció

    2009-06-15

    The uptake and persistence behaviour of the insecticide imidacloprid in tomato plants treated by (i) foliar spray application and (ii) soil irrigation was studied using two plant uptake models. In addition to a pesticide deposition model, a dynamic root uptake and translocation model was developed, and both models predict residual concentrations of pesticides in or on fruits. The model results were experimentally validated. The fraction of imidacloprid ingested by the human population is on average 10(-2) to 10(-6), depending on the time between pesticide application and ingestion, the processing step, and the application method. Model and experimentally derived intake fractions deviated by less than a factor of 2 for both application techniques. Total imidacloprid residues were up to five times higher in plants treated by foliar spray application than by soil irrigation. However, peeling tomatoes treated by spray application reduces the human intake fraction by up to three orders of magnitude. Model calculations suggest that drip-irrigation in a closed hydroponic system minimizes worker and consumer exposure to pesticides and prevents runoff of pesticide by spray drift and leaching into the environment.

  7. Pesticides: evaluation of environmental pollution

    National Research Council Canada - National Science Library

    Rathore, Hamir Singh; Nollet, Leo M. L

    2012-01-01

    ..., and more. It describes the degradation of pesticides in the atmosphere and in the environment. The text also covers the fate and transport of pesticides in the environment and the effects of pesticides on plants, animals, and humans...

  8. Operative modalities and exposure to pesticides during open field treatments among a group of agricultural subcontractors.

    Science.gov (United States)

    Vitali, Matteo; Protano, Carmela; Del Monte, Annalisa; Ensabella, Francesca; Guidotti, Maurizio

    2009-07-01

    This paper reports the results of a field study of occupational pesticide exposure (respiratory and dermal) among a group of Italian agricultural subcontractors. These workers consistently use pesticides during much of the year, thus resulting in a high exposure risk. Ten complete treatments were monitored during spring/summer. Pesticides that were applied included azinphos-methyl, dicamba, dimethoate, terbuthylazine, and alachlor. Several observations were made on worker operative modalities and the use of personal protective equipment (PPE) during work. Total potential and actual exposure ranged from 14 to 5700 microg and from 0.04 to 4600 microg, respectively. Dermal exposure contributed substantially more than inhalation to the total exposure (93.9-100%). Hand contamination ranged from 0.04 to 4600 microg and was the major contributor to dermal exposure. Penetration through specific protective garments was less than 2.4% in all cases, although penetration through general work clothing was as high as 26.8%. The risk evaluation, based on comparison between acceptable daily intake and total absorbed doses, demonstrates that it is presumable to expect possible health effects for workers regularly operating without PPE and improper tractors. Comparisons between exposure levels and operative modalities highlighted that complete PPE and properly equipped tractors contributed to a significant reduction in total exposure to pesticides during agricultural activities. In conclusion, monitored agricultural subcontractors presented very different levels of pesticide exposure due to the high variability of operative modalities and use of PPE. These results indicate the need to critically evaluate the efficacy of training programs required for obtaining a pesticide license in Italy.

  9. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-06-30

    With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2015-01-01

    Full Text Available The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  11. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet.

    Science.gov (United States)

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min(-1). The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe(2+) dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  12. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    OpenAIRE

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well desc...

  13. Engineering of Paraoxonases for Pre- and Post-treatment of Intoxication by a Broad Spectrum of Nerve Agents and Pesticides

    Science.gov (United States)

    2013-05-01

    0047 TITLE: Engineering of Paraoxonases for Pre- and Post-treatment of Intoxication by a Broad Spectrum of Nerve Agents and Pesticides ...SUBTITLE Engineering of Paraoxonases for Pre- and Post-treatment of Intoxication by a Broad Spectrum of Nerve Agents and Pesticides 5a... mutations . Specifically, we targeted residues 72, 189, 192, 193, 196 and 292, which our docking model of VX with PON1 implicated in substrate binding

  14. Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects.

    Science.gov (United States)

    Lentola, A; David, A; Abdul-Sada, A; Tapparo, A; Goulson, D; Hill, E M

    2017-09-01

    Garden centres frequently market nectar- and pollen-rich ornamental plants as "pollinator-friendly", however these plants are often treated with pesticides during their production. There is little information on the nature of pesticide residues present at the point of purchase and whether these plants may actually pose a threat to, rather than benefit, the health of pollinating insects. Using mass spectrometry analyses, this study screened leaves from 29 different 'bee-friendly' plants for 8 insecticides and 16 fungicides commonly used in ornamental production. Only two plants (a Narcissus and a Salvia variety) did not contain any pesticide and 23 plants contained more than one pesticide, with some species containing mixtures of 7 (Ageratum houstonianum) and 10 (Erica carnea) different agrochemicals. Neonicotinoid insecticides were detected in more than 70% of the analysed plants, and chlorpyrifos and pyrethroid insecticides were found in 10% and 7% of plants respectively. Boscalid, spiroxamine and DMI-fungicides were detected in 40% of plants. Pollen samples collected from 18 different plants contained a total of 13 different pesticides. Systemic compounds were detected in pollen samples at similar concentrations to those in leaves. However, some contact (chlorpyrifos) and localised penetrant pesticides (iprodione, pyroclastrobin and prochloraz) were also detected in pollen, likely arising from direct contamination during spraying. The neonicotinoids thiamethoxam, clothianidin and imidacloprid and the organophosphate chlorpyrifos were present in pollen at concentrations between 6.9 and 81 ng/g and at levels that overlap with those known to cause harm to bees. The net effect on pollinators of buying plants that are a rich source of forage for them but simultaneously risk exposing them to a cocktail of pesticides is not clear. Gardeners who wish to gain the benefits without the risks should seek uncontaminated plants by growing their own from seed, plant

  15. Effect of picung (Pangium edule plant extracts as a botanical pesticide on mortality of coffee berry borer (Hypothenemus hampei

    Directory of Open Access Journals (Sweden)

    soekadar wiryadiputra

    2014-12-01

    Full Text Available Coffee pests known as coffe berry borer (CBB, Hypothenemus hampei were main pests which decreasing the productivity of Indonesian coffee. One of pests controlling was done by insecticides. Generally, plant uses for insecticide show high security level, because the breaking molecule was easy as not dangerous compound. Pangium edule contains of flavanoide, cyanide acid and saponin had potential as an botanical insecticide. The purpose of this research was to prove the potential extract of seed and leaves of picung (Pangium edule as an botanical insecticide for CBB. This research used a complete random design. There were 8 treatments with the concentration of the extract from leaves and seed of picung, one positive control treatment (Carbaril 0,02% formulation and one negative control treatment (aquades. The treatment was repeated four times and carried out observation on every day until six days. The concentrations leaf and seed extracts were 1.0%, 2.5% and 5.0%. The result of the research show that between concentration applied the were no significant different and at observation six days after application the mortality of CBB only around 35 -40% on both extracts (ewater and methanol. The result of the research also show that there were no real differentiation between leaves and seed of picung. LT-50 values were 1.25% and 0.96%, for leaves and seed extract in water for six day observation. From this observation could be concluded that picung tree (Pangium edule is not effective in the controlling CBB in the interval concentration applied and extraction method used. Key words: Botanical pesticide, picung tree, Pangium edule, mortality, Hypothenemus hampei, water extraction, methanol extraction.

  16. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil.

    Science.gov (United States)

    Kırış, Sevilay; Velioglu, Yakup Sedat

    2016-01-01

    The effects of different wash times (2 and 5 min) with tap and ozonated water on the removal of nine pesticides from olives and the transfer ratios of these pesticides during olive oil production were determined. The reliability of the analytical methods was also tested. The applied methods of analysis were found to be suitable based on linearity, trueness, repeatability, selectivity and limit of quantification all the pesticides tested. All tap and ozonated water wash cycles removed a significant quantity of the pesticides from the olives, with a few exceptions. Generally, extending the wash time increased the pesticide reduction with ozonated water, but did not make significant differences with tap water. During olive oil processing, depending on the processing technique and physicochemical properties of the pesticides, eight of nine pesticides were concentrated into olive oil (processing factor > 1) with almost no significant difference between treatments. Imidacloprid did not pass into olive oil. Ozonated water wash for 5 min reduced chlorpyrifos, β-cyfluthrin, α-cypermethrin and imidacloprid contents by 38%, 50%, 55% and 61% respectively in olives.

  17. Effect of pre-plant treatments of yam (Dioscorea rotundata setts on the production of healthy seed yam, seed yam storage and consecutive ware tuber production

    Directory of Open Access Journals (Sweden)

    Abiodun Olufunmilayo Claudius-Cole

    2017-12-01

    Full Text Available Numerous pests and diseases of yams are perpetuated from season to season through the use of infected seed material. Developing a system for generating healthy seed material would disrupt this disease cycle and reduce losses in field and storage. The use of various pre-plant treatments was evaluated in field experiments carried out at three sites in Nigeria. Yam tubers of four preferred local cultivars were cut into 100 g setts and treated with pesticide (fungicide + insecticide mixture, neem extract (1 : 5 w/v, hot water (20 min at 53 °C or wood ash (farmers practice and compared with untreated setts. Pesticide treated setts sprouted better than all other treatments and generally led to lower pest and disease damage of yam tubers. Pesticide treatment increased tuber yields over most treatments, depending on cultivar, but effectively doubled the production as compared to the control. Pesticide and hot water treated setts produced the healthiest seed yams, which had lower storage losses than tubers from other treatments. These pre-treated seed yams produced higher yields corresponding to 700 % potential gain compared to the farmers usual practice. Treatments had no obvious influence on virus incidence, although virus-symptomatic plants yielded significantly less than nonsymptomatic plants. This study demonstrated that pre-plant treatment of setts with pesticide is a simple and effective method that guarantees more, heavier and healthier seed yam tubers.

  18. Adaptation of a resistive model to pesticide volatilization from plants at the field scale: Comparison with a dataset

    Science.gov (United States)

    Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Barriuso, Enrique

    2014-02-01

    Volatilization from plants is known to greatly contribute to pesticide emission into the atmosphere. Modeling would allow estimating this contribution, but few models are actually available because of our poor understanding of processes occurring at the leaf surface, competing with volatilization, and also because available datasets for validating models are lacking. The SURFATM-Pesticides model was developed to predict pesticide volatilization from plants. It is based on the concept of resistances and takes into account two processes competing with volatilization (leaf penetration and photodegradation). Model is here presented and simulated results are compared with the experimental dataset obtained at the field scale for two fungicides applied on wheat, fenpropidin and chlorothalonil. These fungicides were chosen because they are largely used, as well as because of their differentiated vapor pressures. The model simulates the energy balance and surface temperature which are in good agreement with the experimental data, using the climatic variables as inputs. The model also satisfactorily simulates the volatilization fluxes of chlorothalonil. In fact, by integrating estimated rate coefficients of leaf penetration and photodegradation for chlorothalonil giving in the literature, the volatilization fluxes were estimated to be 24.8 ng m-2 s-1 compared to 23.6 ng m-2 s-1 measured by the aerodynamic profile method during the first hours after application. At six days, the cumulated volatilization fluxes were estimated by the model to be 19 g ha-1 compared to 17.5 g ha-1 measured by the inverse modeling approach. However, due to the lack of data to estimate processes competing with volatilization for fenpropidin, the volatilization of this compound is still not well modeled yet. Thus the model confirms that processes competing with volatilization represent an important factor affecting pesticide volatilization from plants.

  19. Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation

    Directory of Open Access Journals (Sweden)

    Wafa Hassen

    2018-02-01

    Full Text Available A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM. The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L were: 0.5% (v/v inoculum size, 15% (v/v olive oil mill wastewater (OMWW and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90°C, pH (6–10, and salt concentration (up to 300 mM NaCl. Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.

  20. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.

    Science.gov (United States)

    Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M

    2009-10-01

    This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.

  1. Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination.

    Science.gov (United States)

    Matsushita, Taku; Morimoto, Ayako; Kuriyama, Taisuke; Matsumoto, Eisuke; Matsui, Yoshihiko; Shirasaki, Nobutaka; Kondo, Takashi; Takanashi, Hirokazu; Kameya, Takashi

    2018-03-16

    Removal efficiencies of 28 pesticide transformation products (TPs) and 15 parent pesticides during steps in drinking water treatment (coagulation-sedimentation, activated carbon adsorption, and ozonation) were estimated via laboratory-scale batch experiments, and the mechanisms underlying the removal at each step were elucidated via regression analyses. The removal via powdered activated carbon (PAC) treatment was correlated positively with the log K ow at pH 7. The adjusted coefficient of determination (r 2 ) increased when the energy level of the highest occupied molecular orbital (HOMO) was added as an explanatory variable, the suggestion being that adsorption onto PAC particles was largely governed by hydrophobic interactions. The residual error could be partly explained by π-π electron donor-acceptor interactions between the graphene surface of the PAC particles and the adsorbates. The removal via ozonation correlated positively with the energy level of the HOMO, probably because compounds with relatively high energy level HOMOs could more easily transfer an electron to the lowest unoccupied molecular orbital of ozone. Overall, the TPs tended to be more difficult to remove via PAC adsorption and ozonation than their parent pesticides. However, the TPs that were difficult to remove via PAC adsorption did not induce strong mutagenicity after chlorination, and the TPs that were associated with strong mutagenicity after chlorination could be removed via PAC adsorption. Therefore, PAC adsorption is hypothesized to be an effective method of treating drinking water to reduce the possibility of post-chlorination mutagenicity associated with both TPs and their parent pesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  3. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  4. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  5. Toxicology of pesticides

    OpenAIRE

    Dubská, Veronika

    2008-01-01

    Toxykology of pesticides Pesticides are substances or mixtures substances as a natural so synthetic origin. By effect of pesticides is removing of pest and undesirable plants. However owing to their toxicity and unaware manipulation with these substances may go to a waste of another than target organism, plants, rivers and land. The target of this graduation theses has been draw up possibility hazards resulting of using these substances.

  6. Pesticide exposure - Indian scene

    International Nuclear Information System (INIS)

    Gupta, P.K.

    2004-01-01

    Use of pesticides in India began in 1948 when DDT was imported for malaria control and BHC for locust control. India started pesticide production with manufacturing plant for DDT and benzene hexachloride (BHC) (HCH) in the year 1952. In 1958, India was producing over 5000 metric tonnes of pesticides. Currently, there are approximately 145 pesticides registered for use, and production has increased to approximately 85,000 metric tonnes. Rampant use of these chemicals has given rise to several short-term and long-term adverse effects of these chemicals. The first report of poisoning due to pesticides in India came from Kerala in 1958 where, over 100 people died after consuming wheat flour contaminated with parathion. Subsequently several cases of pesticide-poisoning including the Bhopal disaster have been reported. Despite the fact that the consumption of pesticides in India is still very low, about 0.5 kg/ha of pesticides against 6.60 and 12.0 kg/ha in Korea and Japan, respectively, there has been a widespread contamination of food commodities with pesticide residues, basically due to non-judicious use of pesticides. In India, 51% of food commodities are contaminated with pesticide residues and out of these, 20% have pesticides residues above the maximum residue level values on a worldwide basis. It has been observed that their long-term, low-dose exposure are increasingly linked to human health effects such as immune-suppression, hormone disruption, diminished intelligence, reproductive abnormalities, and cancer. In this light, problems of pesticide safety, regulation of pesticide use, use of biotechnology, and biopesticides, and use of pesticides obtained from natural plant sources such as neem extracts are some of the future strategies for minimizing human exposure to pesticides

  7. Medicinal plants in the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Nenad M. Zlatić

    2015-07-01

    Full Text Available The purpose of this paper is to present a review of highly developed medicinal usages of plants in the treatment of cancer. In the last decades, the cancer treatment has been included in this range of plant use, due to plant active substances. Active substances or secondary metabolites are generally known for their widespread application. When it comes to the cancer treatment, these substances affect the uncontrolled cell division. Therefore, the plants which are the source of these substances are proved to be irreplaceable in this field of medicine. This paper deals with some of the most significant plants well known for their multiple aspects of beneficial medicinal influence. The group of the plants described is comprised of the following species: Taxus brevifolia (Taxaceae, Catharanthus roseus (Apocynaceae, Podophyllum peltatum (Berberidaceae, Camptotheca accuminata (Cornaceae, and Cephalotaxus harringtonia (Cephalotaxaceae. The comprehensive description of the plants in this paper includes the morphological characteristics, the features and the representation of the molecular structures of active substances, the particular influence that these active substances have and the general importance of the substances as seen from the aspect of cancer treatment mostly with reference to the impacts on cell cycle.

  8. Wastewater treatment as an energy production plant

    Science.gov (United States)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  9. Effects of organic pollutants from wastewater treatment plants on aquatic invertebrate communities.

    Science.gov (United States)

    Bunzel, Katja; Kattwinkel, Mira; Liess, Matthias

    2013-02-01

    Pesticides are a major stressor for stream ecosystem health. They enter surface waters from diffuse agricultural sources but also from point sources such as municipal wastewater treatment plants (WWTPs). However, to date, no studies have focused on the ecological effects of pesticide-contaminated WWTP effluent on macroinvertebrate communities. On the basis of governmental monitoring data of 328 sites in Hesse, Germany, we identified insecticidal long-term effects on the structure of the macroinvertebrate community up to 3 km downstream of WWTPs. The effects were quantified using the trait-based SPEAR(pesticides) index, which has been shown to be an effective tool for identifying community effects of pesticide contamination. In addition, based on the German Saprobic Index, we revealed that WWTPs are still an important source of oxygen-depleting organic pollution, despite the extensive technological improvements in wastewater management over several centuries. In general, our findings emphasize the need to take municipal WWTPs into consideration in the management of river basins under the EU Water Framework Directive to achieve good ecological and chemical status for European streams and rivers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  11. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    International Nuclear Information System (INIS)

    Maldonado, M.I.; Malato, S.; Perez-Estrada, L.A.; Gernjak, W.; Oller, I.; Domenech, Xavier; Peral, Jose

    2006-01-01

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (α-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  12. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  13. Microwave-assisted extraction versus Soxhlet extraction in the analysis of 21 organochlorine pesticides in plants.

    Science.gov (United States)

    Barriada-Pereira, M; Concha-Graña, E; González-Castro, M J; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D; Fernández-Fernández, E

    2003-08-01

    A method to determine 21 organochlorine pesticides in vegetation samples using microwave-assisted extraction (MAE) is described and compared with Soxhlet extraction. Samples were extracted with hexane-acetone (1:1, v/v) and the extracts were cleaned using solid-phase extraction with Florisil and alumine as adsorbents. Pesticides were eluted with hexane-ethyl acetate (80:20, v/v) and determined by gas chromatography and electron-capture detection. Recoveries obtained (75.5-132.7% for Soxhlet extraction and 81.5-108.4% for MAE) show that both methods are suitable for the determination of chlorinated pesticides in vegetation samples. The method using microwave energy was applied to grass samples from parks of A Coruña (N.W. Spain) and to vegetation from the contaminated industrial area of Torneiros (Pontevedra, N.W. Spain).

  14. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric

    2013-01-01

    in spatially resolved frameworks for comparative assessment. In the present paper, we thus analyze the dynamics of substance masses in a multi-compartment plant–environment system by applying mathematical decomposition techniques. We thereby focus on the evolution of pesticide residues in crop components...... residence time in soil. Additional influences are associated with substance molecular weight and time span between pesticide application and crop harvest. Building on these findings, we provide an accurate and yet simple linear approximation of the dynamical system to predict masses in harvested crop...

  15. Stanovení vybraných pesticidů a jejich metabolitů technikou LC/MS

    OpenAIRE

    Kořínková, Petra

    2011-01-01

    Pesticides are the substances designed for destroying, preventing and controlling of pests and protection of plants. Their wide usage in agriculture causes contamination of ground, surface and drinking water, because wastewater treatment plants are not able to remove them. Mostly used pesticides are triazine based pesticides. However their usage is worldwide reduced because of their negative influences on human health and contamination of environment especially with their metabolites, about t...

  16. Management of Treatment and Prevention of Acute OP Pesticide Poisoning by Medical Informatics, Telemedicine and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Sahoo

    2013-10-01

    Full Text Available Acute organophosphorous pesticide (OP poisoning kills a lot of people each year. Treatment of acute OP poisoning is of very difficult task and is a time taking event. Present day informatics methods (telemedicine, bioinformatics methods (data mining, molecular modeling, docking, cheminformatics, and nanotechnology (nanomedicine should be applied in combination or separately to combat the rise of death rate due to OP poisoning. Use of informatics method such as Java enabled camera mobiles will enable us early detection of insecticidal poisoning. Even the patients who are severely intoxicated (suicidal attempts can be diagnosed early. Telemedicine can take care for early diagnosis and early treatment. Simultaneously efforts must be taken with regard to nanotechnology to find lesser toxic compounds (use less dose of nanoparticle mediated compounds: nano-malathion as insecticides and find better efficacy of lesser dose of compounds for treatment (nano-atropine of OP poisoning. Nano-apitropine (atropine oxide may be a better choice for OP poisoning treatment as the anticholinergic agent; apitropine and hyoscyamine have exhibited higher binding affinity than atropine sulfate. Synthesis of insecticides (malathion with an antidote (atropine, apitropine in nanoscale range will prevent the lethal effect of insecticides.

  17. Pesticide residues in food of plant origin from Southeast Asia – A Nordic project

    DEFF Research Database (Denmark)

    Skretteberg, L. G.; Lyrån, B.; Holen, B.

    2015-01-01

    Fruits and vegetables from Souteast Asia were analysed for the presence of pesticide residues. A total of 721 samples of 63 different commodities were collected in 2011. The products were imported to Denmark, Finland, Norway and Sweden from ten countries; about 80% were imported from Thailand. Th...

  18. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Science.gov (United States)

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  19. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Directory of Open Access Journals (Sweden)

    Marc eBardin

    2015-07-01

    Full Text Available The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i the selection pressure exerted by it on populations of plant pathogens and (ii on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringensis and apparition of resistance of the codling moth Cydia pomonella to the Cydia pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss i.e. modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  20. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  1. Comparison of buckwheat, red clover, and purple tansy as potential surrogate plants for use in semi-field pesticide risk assessments with Bombus impatiens

    Directory of Open Access Journals (Sweden)

    Angela E. Gradish

    2016-07-01

    Full Text Available Background. Bumble bees (Bombus spp. are important wild and managed pollinators. There is increased interest in incorporating data on bumble bees into risk assessments for pesticides, but standardized methods for assessing hazards of pesticides in semi-field and field settings have not yet been established for bumble bees. During semi-field studies, colonies are caged with pesticide-treated flowering surrogate plants, which must be attractive to foragers to ensure colony exposure to the test compound, and must produce an ample nectar and pollen to sustain colonies during testing. However, it is not known which plant(s are suitable for use in semi-field studies with bumble bees. Materials and Methods. We compared B. impatiens foraging activity and colony development on small plots of flowering buckwheat (Fagopyrum esculentum, var. common, red clover (Trifolium pratense, and purple tansy (Phacelia tanacetifolia under semi-field conditions to assess their suitability as surrogate plants for pesticide risk assessment studies with bumble bees. We also compared the growth characteristics and input requirements of each plant type. Results. All three plant types generally established and grew well. Red clover and purple tansy experienced significant weed pressure and/or insect pest damage. In contrast, pest pressure was extremely low in buckwheat. Overall, B. impatiens foraging activity was significantly greater on buckwheat plots than red clover or purple tansy, but plant type had no effect on number of individuals produced per colony or colony weight. Discussion. Because of the consistently high foraging activity and successful colony development observed on buckwheat plots, combined with its favourable growth characteristics and low maintenance requirements, we recommend buckwheat as a surrogate plant for use in semi-field pesticide toxicity assessments with B. impatiens.

  2. Pesticides: chemicals for survival

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1981-01-01

    Pesticides are chemicals used to control pests such as insects, weeds, plant diseases, nematodes, and rodents. The increased use of pesticides since 1945 has greatly aided the increase in crop production, protected livestock from diseases such as trypanosomiasis, protected man from diseases such as malaria and filarisis, decreased losses of stored grain, and has generally improved man's welfare. Despite the enormous benefits derived from pesticides these chemicals are not problem-free. Many pesticides are toxic to living organisms and interfere with specific biochemical systems. To measure the very small quantities of a pesticide radiolabelled chemicals are frequently essential, particularly to measure changes in the chemical structure of the pesticide, movement of the pesticide in soil, plants, or animals, amounts of pesticide going through various steps in food processing, etc. The use of radiolabelled pesticides is shortly shown for metabolism of the pesticide in crop species, metabolism in ruminant, in chickens and eggs, in soil, and possibly leaching and sorption in soil, hydrolysis, bio-concentration, microbial and photodegradation, and toxicity studies

  3. ACUTE EXOGENOUS INTOXICATIONS WITH ORGANOPHOSPHORUS PESTICIDES: DURATION OF THE HOSPITAL TREATMENT AND CLINICAL CRITERIA FOR PROGNOSIS

    Directory of Open Access Journals (Sweden)

    Petko Marinov

    2017-05-01

    Full Text Available Purpose: Several criteria have been suggested to estimate the intoxication severity, yet so far no system of clinical criteria has been developed to determine the duration of hospitalisation. The forecast is linked to the influence of the extended corrected QT interval and GCS (Glasgow Coma Scale on the frequency of the developing acute pulmonary insufficiency and lethality. The average duration of hospital treatment is also crucial. First of all, it is determined by the intoxication severity and lasts from 3 to 26 days. The aim of this study is to develop an individual forecast about the duration of hospitalisation for patients suffering from acute exogenous intoxication with organophosphorus pesticides (OPP. Materials/Methods: The subjects are 160 patients. We use statistical regression analysis to study the significance of 5 of the most typical clinical indicators of organophosphorus intoxication on the duration of hospitalisation: type of conscience, presence of spasms, pulmonary oedema, shock and multi-organ insufficiency syndrome (MOIS. To forecast the treatment length, we obtain simplified mathematical expressions in the form of score estimates. Results: The significance of the clinical indicators “MOIS”, “conscience” and “spasm” has been confirmed. A forecast matrix that gives the opportunity to forecast the personal duration of hospital treatment for each patient has been built.

  4. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2013-09-01

    This study examined the relationship between molecular properties and the fate of trace organic contaminants (TrOCs) in the aqueous and solid phases during wastewater treatment by MBR. A set of 29 TrOCs was selected to represent pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides that occur ubiquitously in municipal wastewater. Both adsorption and biodegradation/transformation were found responsible for the removal of TrOCs by MBR treatment. A connection between biodegradation and molecular structure could be observed while adsorption was the dominant removal mechanism for the hydrophobic (logD>3.2) compounds. Highly hydrophobic (logD>3.2) but readily biodegradable compounds did not accumulate in sludge. In contrast, recalcitrant compounds with a moderate hydrophobicity, such as carbamazepine, accumulated significantly in the solid phase. The results provide a framework to predict the removal and fate of TrOCs by MBR treatment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Ternary cycle treatment of high saline wastewater from pesticide production using a salt-tolerant microorganism.

    Science.gov (United States)

    Wu, Xiang; Du, Ya-guang; Qu, Yi; Du, Dong-yun

    2013-01-01

    The material of this study is provided by biological aerobic treatment of high saline wastewater from pesticide production. The microorganism used for biodegradation has been identified by gene-sequencing as a strain of Bacillus sp. SCUN. The best growth condition for the salt-tolerant microorganism has been studied by varying the pH, immobilized microorganism dosage and temperature conditions. The feasibility of pretreating wastewater in ethyl chloride production containing 4% NaCl has been discussed. It was found that under the pH range of 6.0-8.0, immobilized microorganism dosage of 1.5 g/L, temperature of 30 °C, and NaCl concentration of 0-3%, the microorganism achieves the best growth for biodegradation. After domestication, the strain can grow under 4% NaCl. This salt-tolerant microorganism is effective in the pretreated high saline wastewater. With a newly developed ternary cycle treatment, the chemical oxygen demand removal approaches 58.3%. The theoretical basis and a new method for biological treatments in biodegradation of high saline wastewater in ethyl chloride production are discussed.

  6. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, John [Department of Environmental Toxicology, University of California, Davis, CA (United States); Department of Environmental Studies, University of California, Santa Cruz, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: jwhunt@ucdavis.edu; Anderson, Brian [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: anderson@ucdavis.edu; Phillips, Bryn [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: bmphillips@ucdavis.edu; Tjeerdema, Ron [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: rstjeerdema@ucdavis.edu; Largay, Bryan [Largay Hydrologic Sciences, LLC, 160 Farmer Street Felton, CA 95018-9416 (United States)], E-mail: bryan.largay@sbcglobal.net; Beretti, Melanie [Resources Conservation District of Monterey County, 744-A La Guardia Street, Salinas, CA 93905 (United States)], E-mail: beretti.melanie@rcdmonterey.org; Bern, Amanda [California Regional Water Quality Control Board, Central Coast Region, 895 Aerovista Place, Suite 101, San Luis Obispo, CA 93401 (United States)], E-mail: abern@waterboards.ca.gov

    2008-11-15

    Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations. - Toxicity identification evaluations identified key pesticides in agricultural runoff, and their concentrations were reduced by farmer-installed vegetated treatment systems.

  7. Optimising Solar Photocatalytic Mineralization of Pesticides at Solar Plant by Adding Inorganic Oxidising Species: Application to the Recycling of Pesticide Containers; Optimizacion de la Mineralizacion Fotocatalitica de Pesticidas en una Planta Solar mediante Adicion de Especies Inorganicas Oxidantes: Aplicacion al Reciclado de Envases de Pesticidas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez, P.; Caceres, J.; Campos, A.; Carrion, A. [Ciemat. Plataforma Solar de Almeria. Almeria (Spain)

    2000-07-01

    This paper focuses on optimising the use of additional oxidants in the photocatalytic degradation of a complex mixture of ten commercial pesticides. The CPC solar pilot plant used for the tests has 8.9 m''2 of collector surface and a total volume of 247 L. Same TOC quantities of each pesticide were added to achieve the desired initial TOC concentration in all the experiments (from 5 tp 100 mg of TOC per litre). Experiments were performed with H{sub 2}O{sub 2} and S{sub 2}O{sub 8}''-2, but only peroxydisulphate was chosen for optimisation, because better results have been obtained with it. In addition to the consumption of the oxidant under different experiment conditions, the effect of peroxydisulphate and TOC concentrations was also evaluated. The mechanism of peroxydisulphate action is discussed with these results. The effect of reusing water and catalysts has also been studied. The results obtained from these experiments have been used to decide the dimensions and operating conditions of a solar photocatalytic plant, the final objective of which is the treatment of rinsates produced by washing pesticide containers. (Author) 37 refs.

  8. Food processing as a means for pesticide residue dissipation

    Directory of Open Access Journals (Sweden)

    Đorđević Tijana

    2016-01-01

    Full Text Available Pesticides are one of the major inputs used for increasing agricultural productivity of crops. However, their inadequate application may produce large quantities of residues in the environment and, once the environment is contaminated with pesticides, they may easily enter into the human food chain through plants, creating a potentially serious health hazard. Nowadays, consumers are becoming more aware of the importance of safe and high quality food products. Thus it is pertinent to explore simple, cost-effective strategies for decontaminating food from pesticides. Various food processing techniques, at industrial and/or domestical level, have been found to significantly reduce the contents of pesticide residues in most food materials. The extent of reduction varies with the nature of pesticides, type of commodity and processing steps. Pesticides, especially those with limited movement and penetration ability, can be removed with reasonable efficiency by washing, and the effectiveness of washing depends on pesticide solubility in water or in different chemical solvents. Peeling of fruit and vegetable skin can dislodge pesticide residues to varying degrees, depending on constitution of a commodity, chemical nature of the pesticide and environmental conditions. Different heat treatments (drying, pasteurization, sterilization, blanching, steaming, boiling, cooking, frying or roasting during various food preparation and preservation processes can cause losses of pesticide residues through evaporation, co-distillation and/or thermal degradation. Product manufactures, from the simplest grain milling, through oil extraction and processing, juicing/pureeing or canning of fruits and vegetables, to complex bakery and dairy production, malting and brewing, wine making and various fermentation processes, play a role in the reduction of pesticide contents, whereby each operation involved during processing usually adds to a cumulative effect of reduction of

  9. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  10. Post-ozonation in a municipal wastewater treatment plant improves water quality in the receiving stream.

    Science.gov (United States)

    Ashauer, Roman

    2016-01-01

    Removal of organic micropollutants from wastewater by post-ozonation has been investigated in a municipal wastewater treatment plant (WWTP) temporarily upgraded with full-scale ozonation, followed by sand filtration, as an additional treatment step of the secondary effluent. Here, the SPEAR (species at risk) indicator was used to analyse macroinvertebrate abundance data that were collected in the receiving stream before, during and after ozonation to investigate whether ozonation improved the water quality. The SPEAR values indicate a better water quality downstream the WWTP during ozonation. With ozonation the relative abundance of vulnerable macroinvertebrates in the stream receiving the treated wastewater increases from 18 % (CI 15-21 %) to 30 % (CI 28-32 %). This increase of 12 % (CI 8-16 %) indicates improved ecological quality of the stream and shifts classification according to the Water Framework Directive from poor to moderate. The SPEAR concept, originally developed to indicate pesticide stress, also appears to indicate toxic stress by a mixture of various micropollutants including pharmaceuticals, personal care products and pesticides. The responsiveness of the SPEAR indicator means that those macroinvertebrates that are vulnerable to pesticide pollution are also vulnerable to micropollutants from WWTPs. The change in the macroinvertebrate community downstream the WWTP indicates that toxicity by pollutants decreased by more than one order of magnitude during ozonation. Ozonation followed by sand filtration has favourable impacts on the composition of the macroinvertebrate community and can improve the water quality in the receiving stream.

  11. Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material.

    Science.gov (United States)

    Zaller, Johann G; König, Nina; Tiefenbacher, Alexandra; Muraoka, Yoko; Querner, Pascal; Ratzenböck, Andreas; Bonkowski, Michael; Koller, Robert

    2016-08-17

    Seed dressing with pesticides is widely used to protect crop seeds from pest insects and fungal diseases. While there is mounting evidence that especially neonicotinoid seed dressings detrimentally affect insect pollinators, surprisingly little is known on potential side effects on soil biota. We hypothesized that soil organisms would be particularly susceptible to pesticide seed dressings as they get in direct contact with these chemicals. Using microcosms with field soil we investigated, whether seeds treated either with neonicotinoid insecticides or fungicides influence the activity and interaction of earthworms, collembola, protozoa and microorganisms. The full-factorial design consisted of the factor Seed dressing (control vs. insecticide vs. fungicide), Earthworm (no earthworms vs. addition Lumbricus terrestris L.) and collembola (no collembola vs. addition Sinella curviseta Brook). We used commercially available wheat seed material (Triticum aesticum L. cf. Lukullus) at a recommended seeding density of 367 m(-2). Seed dressings (particularly fungicides) increased collembola surface activity, increased the number of protozoa and reduced plant decomposition rate but did not affect earthworm activity. Seed dressings had no influence on wheat growth. Earthworms interactively affected the influence of seed dressings on collembola activity, whereas collembola increased earthworm surface activity but reduced soil basal respiration. Earthworms also decreased wheat growth, reduced soil basal respiration and microbial biomass but increased soil water content and electrical conductivity. The reported non-target effects of seed dressings and their interactions with soil organisms are remarkable because they were observed after a one-time application of only 18 pesticide treated seeds per experimental pot. Because of the increasing use of seed dressing in agriculture and the fundamental role of soil organisms in agroecosystems these ecological interactions should

  12. Pesticidal plants: a viable alternative insect pest management approach for resource-poor farming in Africa.

    OpenAIRE

    Stevenson, Philip C.; Nyirenda, Stephen P.; Mvumi, Brighton; Sola, Phosiso; Kamanula, John M.; Sileshi, Gudeta; Belmain, Steven R.

    2012-01-01

    Drivers behind food security and crop protection issues vis-à-vis the food losses caused by pests include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and pesticide withdrawals. Integrated pest management, therefore, becomes a compulsory strategy in agriculture, which offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM a...

  13. Botanical repellents and pesticides traditionally used against hematophagous invertebrates in Lao People's Democratic Republic: a comparative study of plants used in 66 villages.

    Science.gov (United States)

    de Boer, Hugo; Vongsombath, Chanda; Pålsson, Katinka; Björk, Lars; Jaenson, Thomas G T

    2010-05-01

    Hematophagous parasites such as leeches, ticks, mites, lice, bedbugs, mosquitoes, and myiasis-producing fly larvae are common health problems in Lao People's Democratic Republic. Several arthropod-borne infections, e.g., malaria, dengue fever, and Japanese encephalitis, are endemic there. Effective vector control methods including the use of pesticides, insecticide-treated bed nets, and synthetic and plant-based repellents are important means of control against such invertebrates and the pathogens they may transmit or directly cause. In this study, we documented traditional knowledge on plants that are used to repel or kill hematophagous arthropods, including mosquitoes, bedbugs, human lice, mites and ticks, fly larvae, and blood-sucking leeches. Structured interviews were carried out in 66 villages comprising 17 ethnic groups, covering a range of cultures, throughout Lao People's Democratic Republic. A total of 92 plant species was recorded as traditional repellents (including plants for pesticidal usages) in 123 different plant-ectoparasite combinations. The number and species of plants, and animal taxa repelled (or killed) per plant species differed per region, village, and ethnic group. Traditional use was confirmed in the scientific literature for 74 of these plant species, and for an additional 13 species using literature on closely related species. The use of botanical repellents and pesticides from many plant species is common and widespread in the Lao countryside. In the future, the identification of the active components in certain plants to develop more optimal, inexpensive repellents, insecticides, acaricides, or antileech compounds as alternatives to synthetic repellents/pesticides against blood-feeding insects, ticks, mites, and leeches is warranted.

  14. Medicinal Plants for Diabetes Treatment During Pregnancy.

    Science.gov (United States)

    Damasceno, Debora Cristina; Leal-Silva, Thais; Soares, Thaigra Sousa; Moraes-Souza, Rafaianne Queiroz; Volpato, Gustavo Tadeu

    2017-01-01

    Diabetes mellitus is a syndrome of great importance that affects an increasing number of people every day. In particular, diabetes is a common and important disease during pregnancy and is marked by complications, both fetal and maternal, that increase the risks of morbidity and mortality for diabetic pregnant women and their offspring. Drugs such as insulin and hypoglycemic drugs are given to treat diabetes, but regular exercise and adequate diet have also been indicated. Furthermore, coadjutant therapies such as medicinal plants are popularly used to reduce diabetes-induced hyperglycemia, either within or outside the context of pregnancy. However, studies examining plant use for diabetes treatment are necessary to confirm its possible effects and its safety for the mother and fetus. The objective of this literature review was to conduct a survey of plant species that are utilized worldwide and their stated therapeutic uses. A literature search was performed using the terms "diabetes and pregnancy", which resulted in the identification of 31,272 articles. Of these studies, only 12 (0.0038%) were related to medicinal plants, demonstrating that there has been little investigation into this issue. Of the papers analyzed in this review, half evaluated plant leaves, indicating that these scientific studies attempted to reproduce the preparations commonly used by various populations, i.e., in the form of tea. Additionally, more than 90% of studies utilized experimental animals to evaluate the maternal-fetal safety of medicinal plant substances that may potentially be dangerous for humans. Thus, once confidence levels for plant-derived substances are established based on toxicological analyses and safety is confirmed, it is possible that plants will be used to complement conventional diabetes therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    Energy Technology Data Exchange (ETDEWEB)

    Marincas, O; Avram, V; Moldovan, Z [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Petrov, P [Water Treatment Station Siluet B, 21 Pencho Slaveikov Street, Varna 9000 (Bulgaria); Ternes, T, E-mail: olivian.marincas@itim-cj.r [Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  16. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    International Nuclear Information System (INIS)

    Chen Sheng; Sun Dezhi; Chung, J.-S.

    2007-01-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe 2+ concentration of 40 mmol/L and H 2 O 2 dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH) 2 was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD 5 ) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m 2 carrier day)

  17. Spatial distribution of organic pollutants in industrial construction and demolition waste and their mutual interaction on an abandoned pesticide manufacturing plant.

    Science.gov (United States)

    Huang, Sheng; Zhao, Xin; Sun, Yanqiu; Ma, Jianli; Gao, Xiaofeng; Xie, Tian; Xu, Dongsheng; Yu, Yi; Zhao, Youcai

    2016-04-01

    A comprehensive field investigation of organic pollutants was examined in industrial construction and demolition waste (ICDW) inside an abandoned pesticide manufacturing plant. Concentrations of eight types of pesticides, a metabolite and two intermediates were studied. The ICDW was under severe and long-term contamination by organophosphorus, intermediates and pyrethroid pesticide with mean concentrations of 23,429, 3538 and 179.4 mg kg(-1), respectively. FT-IR analysis suggested that physical absorption and chemical bonding were their mutual interaction forms. Patterns of total pesticide spatial distribution showed good correlations with manufacturing processes spreading all over the plant both in enclosed workshops and in residues randomly dumped outside, while bricks and coatings were the most vulnerable to pollutants. Ultimately the fate of the OPPs was diversified as the immersion of ICDW in water largely transferred the pollutants into aquatic systems while exposure outside did not largely lead to pesticide degradation. The adoption of centralized collections for the disposal of wastes could only eliminate part of the contaminated ICDW, probably due to lack of knowledge and criteria. Correlation matrix and cluster analysis indicated that regulated disposal and management of polluted ICDW was effective, thus presenting the requirement for its appropriate disposal.

  18. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology.

    Science.gov (United States)

    Chiu, Yu-Han; Williams, Paige L; Gillman, Matthew W; Gaskins, Audrey J; Mínguez-Alarcón, Lidia; Souter, Irene; Toth, Thomas L; Ford, Jennifer B; Hauser, Russ; Chavarro, Jorge E

    2018-01-01

    Animal experiments suggest that ingestion of pesticide mixtures at environmentally relevant concentrations decreases the number of live-born offspring. Whether the same is true in humans is unknown. To examine the association of preconception intake of pesticide residues in fruits and vegetables (FVs) with outcomes of infertility treatment with assisted reproductive technologies (ART). This analysis included 325 women who completed a diet assessment and subsequently underwent 541 ART cycles in the Environment and Reproductive Health (EARTH) prospective cohort study (2007-2016) at a fertility center at a teaching hospital. We categorized FVs as having high or low pesticide residues using a validated method based on surveillance data from the US Department of Agriculture. Cluster-weighted generalized estimating equations were used to analyze associations of high- and low-pesticide residue FV intake with ART outcomes. Adjusted probabilities of clinical pregnancy and live birth per treatment cycle. In the 325 participants (mean [SD] age, 35.1 [4.0] y; body mass index, 24.1 [4.3]), mean (SD) intakes of high- and low-pesticide residue FVs were 1.7 (1.0) and 2.8 (1.6) servings/d, respectively. Greater intake of high-pesticide residue FVs was associated with a lower probability of clinical pregnancy and live birth. Compared with women in the lowest quartile of high-pesticide FV intake (women in the highest quartile (≥2.3 servings/d) had 18% (95% CI, 5%-30%) lower probability of clinical pregnancy and 26% (95% CI, 13%-37%) lower probability of live birth. Intake of low-pesticide residue FVs was not significantly related to ART outcomes. Higher consumption of high-pesticide residue FVs was associated with lower probabilities of pregnancy and live birth following infertility treatment with ART. These data suggest that dietary pesticide exposure within the range of typical human exposure may be associated with adverse reproductive consequences.

  19. Environmental exergy analysis of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Mora Bejarano, C.H.; Oliveira Junior, S. de [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: carlos.bejarano@poli.usp.br; silvio.oliveira@poli.usp.br

    2006-12-15

    This work evaluates the environmental impact of Wastewater Treatment Plants (WTP) based on data generated by the exergy analysis, calculating and applying environmental impact indexes for two WTP located in the Metropolitan Area of Sao Paulo. The environmental impact of the waste water treatment plants was done by means of evaluating two environmental impact exergy based indexes: the environmental exergy efficiency and the total pollution rate (Rpol,t). The environmental exergy efficiency is defined as the ratio of the exergy of the useful effect of the WTP to the total exergy consumed by human and natural resources, including all the exergy inputs. That relation is an indication of the theoretical potential of future improvements of the process. Besides the environmental exergy efficiency, it is also used the total pollution rate, based on the definition done by Makarytchev (1997), as the ratio of the destroyed exergy associated to the process wastes to the exergy of the useful effect of the process. The analysis of the results shows that this method can be used to quantify and also optimise the environmental performance of Wastewater Treatment Plants. (author)

  20. Plantes pesticides et protection des cultures maraichères en Afrique de l'Ouest (synthèse bibliographique)

    OpenAIRE

    Yarou, BB.; Silvie, P.; Assogba Komlan, F.; Mensah, A.; Alabi, T.; Verheggen, F.; Francis, F.

    2017-01-01

    Introduction. Les cultures maraichères occupent une place importante pour l'alimentation humaine et contribuent significativement aux revenus des familles en Afrique de l'Ouest, mais leur production est confrontée à une pression des bioagresseurs qui limite leur productivité. Littérature. Cette revue, basée sur des publications scientifiques, a pour objectif d'évaluer le potentiel des plantes pesticides comme alternative à l'usage des pesticides de synthèse pour lutter contre les bioagresseur...

  1. Plantes pesticides et protection des cultures maraichères en Afrique de l’Ouest (synthèse bibliographique)

    OpenAIRE

    Yarou, Boni Barthélémy; Silvie, Pierre; Assogba Komlan, Françoise; Mensah, Armel; Alabi, Taofic; Verheggen, François; Francis, Frédéric

    2017-01-01

    Introduction. Les cultures maraichères occupent une place importante pour l’alimentation humaine et contribuent significativement aux revenus des familles en Afrique de l’Ouest, mais leur production est confrontée à une pression des bioagresseurs qui limite leur productivité. Littérature. Cette revue, basée sur des publications scientifiques, a pour objectif d’évaluer le potentiel des plantes pesticides comme alternative à l’usage des pesticides de synthèse pour lutter contre les bioagress...

  2. Radiation treatment of secondary effluent from a sewage treatment plant

    International Nuclear Information System (INIS)

    Jung, Jinho; Yoon, J.-H.; Chung, H.-H.; Lee, M.-J.

    2002-01-01

    Radiation treatment using gamma-rays was investigated in order to reclaim the secondary effluent from a sewage treatment plant. The radiation treatment reduced BOD by 85% irrespective of absorbed dose, and the removals of COD, TOC and color were up to 64%, 34% and 88%, respectively, at a dose of 15 kGy. Gamma-rays effectively disinfected microorganisms and completely removed them at a dose of 0.3 kGy. The combination of gamma-rays and titanium dioxide significantly improved the treatment process. The increases of COD, TOC and color removals were 40%, 10% and 20%, respectively. As confirmed by EPR and the spin-trapping method, this increase was partly caused by the increase of hydroxyl radicals in the presence of titanium dioxide

  3. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  4. Pesticide Labels

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  5. Remediation of soil contaminated with pesticides by treatment with gamma radiation;Remediacao de solos contaminados com agrotoxicos pelo tratamento com radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Janilson Silva

    2009-07-01

    The discharge of empty plastic packaging of pesticides can be an environmental concern mainly by soil contamination. Nowadays, Brazil figures in third place among the leading world pesticide markets. An understanding of the processes that affect the transport and fate of pesticides is crucial to assess their potential for contamination of soil and groundwater, and to develop efficient and cost-effective site management and soil remediation strategies. Due to its impact on soil remediation has made sorption a major topic of research on soil-pesticide interactions. The main objective of this study is the evaluation of the pesticides transferring from contaminated mixture of commercial polymeric packing of high-density polyethylene, HDPE, used in agriculture to soil and their removal by gamma irradiation. Two soil samples of argyles compositions and media composition were exposed to a mixture of commercial polymeric packing contaminated with the pesticides methomyl, dimethoate, carbofuran, methidathion, triazine, thiophos, atrazine, ametryne, endosulfan, chloropyrifos, thriazophos and trifluralin. The pesticides leaching from packaging to soil was homogeneous considering a experimental research. The radiation treatment presented high efficiency on removal pesticides from both soil, but it depends on the physical-chemical characteristics of the contaminated soil. The higher efficiency was obtained in soils with higher organic material and humidity. The higher efficiency was obtained for the medium texture soil, with 20 kGy all present pesticides were removed in all layers. In the case of argyles texture soil, it was necessary a 30 kGy to remove the totality of present pesticides. (author)

  6. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  7. Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment.

    Science.gov (United States)

    Hao, Jianxiong; Wuyundalai; Liu, Haijie; Chen, Tianpeng; Zhou, Yanxin; Su, Yi-Cheng; Li, Lite

    2011-05-01

    Degradation of the 3 pesticides (acephate, omethoate, and dimethyl dichloroviny phosphate [DDVP]) by electrolyzed water was investigated. These pesticides were commonly used as broad-spectrum insecticides in pest control and high-residual levels had been detected in vegetables. Our research showed that the electrolyzed oxidizing (EO) water (pH 2.3, available chlorine concentration:70 ppm, oxidation-reduction potential [ORP]: 1170 mV) and the electrolyzed reducing (ER) water (pH 11.6, ORP: -860 mV) can reduce the pesticide residues effectively. Pesticide residues on fresh spinach after 30 min of immersion in electrolyzed water reduced acephate by 74% (EO) and 86% (ER), omethoate by 62% (EO) and 75% (ER), DDVP by 59% (EO) and 46% (ER), respectively. The efficacy of using EO water or ER water was found to be better than that of using tap water or detergent (both were reduced by more than 25%). Besides spinach, the cabbage and leek polluted by DDVP were also investigated and the degradation efficacies were similar to the spinach. Moreover, we found that the residual level of pesticide residue decreased with prolonged immersion time. Using EO or ER water to wash the vegetables did not affect the contents of Vitamin C, which inferred that the applications of EO or ER water to wash the vegetables would not result in loss of nutrition. © 2011 Institute of Food Technologists®

  8. GC-MS analysis of pesticidal essential oils from four Kenyan plants

    African Journals Online (AJOL)

    Gladys

    2015-04-01

    Apr 1, 2015 ... Essential oils are complex mixtures of odours and steam volatile compounds which are deposited by plants in the ... have been found to have no specific biological functions in plants, but constitute many compounds that are insect .... linked to a 5975 C mass selective detector (Agilent Technologies,.

  9. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    Science.gov (United States)

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  10. Characterization of bound residues in plants

    International Nuclear Information System (INIS)

    Stratton, G.D. Jr.; Wheeler, W.B.

    1986-01-01

    The characterization of unextractable (or 'bound') pesticide residues in plants can be difficult owing to the insoluble nature of the pesticide-plant complex. An unextractable residue can be defined as material derived from the applied pesticide which remains in the plant matrix after exhaustive organic solvent extraction. Experiments with a variety of pesticide classes in plants indicate that the level of unextractable residue varies with the plant species, the pesticide and the exposure time of the plant to the pesticide. Methods used in attempts to release 'bound' residues from solvent-extracted plant tissues include acid hydrolyses, enzymatic treatments and techniques of high-temperature distillation. These methods solubilize or release varying amounts of unextractable material; the amounts depend on the pesticide and on the extent to which the plant fibre is degraded. In experiments using radiolabelled dieldrin (1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-exo-1, 4-endo-5,6-dimethanonaphthalene), carbofuran (2,3-dihydro-2, 2-dimethylbenzofuran-7-yl methylcarbamate) and permethrin ([3-phenoxybenzyl(+-)-3-(2, 2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate]) in radishes, portions of the unextractable material solubilized by the above methods were identified as parent compound and/or closely related metabolites. The bioavailability and toxicological significance of unextractable pesticide residues need to be evaluated. (author)

  11. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  12. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-07-01

    Full Text Available Population growth and intensification of industrial activities have increased the deterioration of natural resources. Industrial, hospital and residential wastes are dumped directly into landfills without processing, polluting soils. This action will have consequences later, because the liquid substance resulting from the putrefaction of organic material plows into the soil to reach water bodies. Cities arise without planning, industrial and household wastes are discharged into rivers, lakes and oceans without proper treatment, affecting water resources. It is well known that in the next century there will be fierce competition for fresh water on the planet, probably due to the scarcity of it. Demographic expansion has occurred without proper health planning, degrading oceans, lakes and rivers. Thus, a large percentage of world population suffers from diseases related to water pollution. Accordingly, it can be concluded that sewage treatment is essential to human survival, to preserve rivers, lakes and oceans. An Effluent Treatment Plant (ETP treats wastewater to reduce its pollution to acceptable levels before sending them to the oceans or rivers. To automate the operation of an ETP, motors, sensors and logic blocks, timers and counters are needed. These functions are achieved with programmable logic controllers (PLC and Supervisory Systems. The Ladder language is used to program controllers and is a pillar of the Automation and Control Engineering. The supervisory systems allow process information to be monitored, while the PLC are responsible for control and data acquisition. In the age we live in, process automation is used in an increasing scale in order to provide higher quality, raise productivity and improve the proposed activities. Therefore, an automatic ETP will improve performance and efficiency to handle large volumes of sewage. Considering the growing importance of environmental awareness with special emphasis

  13. SELECTIVITY OF PESTICIDES OVER PREDATORS OF COTTON PLANT PESTS SELETIVIDADE DE INSETICIDAS SOBRE O COMPLEXO DE PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Izidro dos Santos de Lima Júnior

    2010-08-01

    Full Text Available

    The cotton plant hosts a complex of pests that can damage plant structures. Its supported development, in this agroecosystem, demands the implementation of an integrated pest management (IPM system. The goal of this research was to study the selectivity of pesticides over predators of cotton plant pests. The experimental design was randomized blocks, with 9 treatments (84 days after the emergence and 4 replicates. The sampling involved the beat cloth method, with 5 beats per plot, allowing to identify and count the living predators. Clotianidin 500 WP (200 g ha-1, Carbosulfan 400 SC (400 mL ha-1, Benfuracarb 400 EC (450 mL ha-1, Cartap hydrochloride 500 SP (1,000 g ha-1, Thiamethoxam 250 WG (200 g ha-1, and Acetamiprid 200 SP (150 g ha-1 were not selective for the complex of the predators identified, with mortality percentages ranging from moderately toxic to toxic. Etofenprox 300 EC (450 mL ha-1 was the most toxic pesticide, when compared to the others treatments. The Flonicamid 500 WG (150 g ha-1 treatment was selective, with average of predators

  14. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities.

    Science.gov (United States)

    Jin, Qing; Jiang, Qiuyue; Zhao, Lei; Su, Cuizhu; Li, Songshuo; Si, Fangyi; Li, Shanshan; Zhou, Chenhao; Mu, Yonglin; Xiao, Ming

    2017-10-10

    Antagonistic soil microorganisms, which are non-toxic, harmless non-pollutants, can effectively reduce the density of pathogenic species by some ways. Bacillus velezensis strain S3-1 was isolated from the rhizosphere soil of cucumber, and was shown to inhibit plant pathogens, promote plant growth and efficiently colonize rhizosphere soils. The strain produced 13 kinds of lipopeptide antibiotics, belonging to the surfactin, iturin and fengycin families. Here, we presented the complete genome sequence of S3-1. The genome consists of one chromosome without plasmids and also contains the biosynthetic gene cluster that encodes difficidin, macrolactin, surfactin and fengycin. The genome contains 86 tRNA genes, 27 rRNA genes and 57 antibiotic-related genes. The complete genome sequence of B. velezensis S3-1 provides useful information to further detect the molecular mechanisms behind antifungal actions, and will facilitate its potential as a biological pesticide in the agricultural industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    Science.gov (United States)

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  16. Planting methods and treatment for black walnut seedlings.

    Science.gov (United States)

    Robert D. Williams

    1974-01-01

    Neither planting method nor stock treatment had any appreciable effect on survival and growth of black walnut, but survival and growth were significantly affected by the planting site and site preparation.

  17. Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography.

    Science.gov (United States)

    Wei, Jin-Chao; Hu, Ji; Cao, Ji-Liang; Wan, Jian-Bo; He, Cheng-Wei; Hu, Yuan-Jia; Hu, Hao; Li, Peng

    2016-02-03

    A simple, rapid, and sensitive method using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) combined with sweeping micellar electrokinetic chromatography (sweeping-MEKC) has been developed for the determination of nine organophosphorus pesticides (chlorfenvinphos, parathion, quinalphos, fenitrothion, azinphos-ethyl, parathion-methyl, fensulfothion, methidathion, and paraoxon). The important parameters that affect the UA-DLLME and sweeping efficiency were investigated. Under the optimized conditions, the proposed method provided 779.0-6203.5-fold enrichment of the nine pesticides compared to the normal MEKC method. The limits of detection ranged from 0.002 to 0.008 mg kg(-1). The relative standard deviations of the peak area ranged from 1.2 to 6.5%, indicating the good repeatability of the method. Finally, the developed UA-DLLME-sweeping-MEKC method has been successfully applied to the analysis of the investigated pesticides in several medicinal plants, including Lycium chinense, Dioscorea opposite, Codonopsis pilosula, and Panax ginseng, indicating that this method is suitable for the determination of trace pesticide residues in real samples with complex matrices.

  18. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  19. Focus on 14 sewage treatment plants in the Mpumalanga Province ...

    African Journals Online (AJOL)

    In order to identify the treatment methods used in different sewage treatment plants (STPs) in the Mpumalanga Province and to determine the efficiency of wastewater treatment by these plants, municipal STPs were surveyed, and raw and treated wastewater samples collected. A total of 14 STPs were visited and the ...

  20. Microbial pesticide removal in rapid sand filters for drinking water treatment – Potential and kinetics

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    Filter sand samples, taken from aerobic rapid sand filters used for treating groundwater at three Danish waterworks, were investigated for their pesticide removal potential and to assess the kinetics of the removal process. Microcosms were set up with filter sand, treated water, and the pesticides...... or metabolites mecoprop (MCPP), bentazone, glyphosate and p-nitrophenol were applied in initial concentrations of 0.03–2.4 μg/L. In all the investigated waterworks the concentration of pesticides in the water decreased – MCPP decreased to 42–85%, bentazone to 15–35%, glyphosate to 7–14% and p-nitrophenol 1....../L) increased from 0.21%/g filter sand to 0.75%/g filter sand, when oxygen availability was increased from 0.28 mg O2/g filter sand to 1.09 mg O2/g filter sand. Bentazone was initially cleaved in the removal process. A metabolite, which contained the carbonyl group, was removed rapidly from the water phase...

  1. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands.

    Science.gov (United States)

    Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis

    2017-06-15

    The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  3. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  4. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  5. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    Science.gov (United States)

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  6. Costs and water quality effects of wastewater treatment plant centralization

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    The costs and water quality impacts of two regional configurations of municipal wastewater treatment plants in Northeastern Illinois are compared. In one configuration, several small treatment plants are consolidated into a smaller number of regional facilities. In the other, the smaller plants continue to operate. Costs for modifying the plants to obtain various levels of pollutant removal are estimated using a simulation model that considers the type of equipment existing at the plants and the costs of modifying that equipment to obtain a range of effluent levels for various pollutants. A dynamic water-quality/hydrology simulation model is used to determine the water quality effects of the various treatment technologies and pollutant levels. Cost and water quality data are combined and the cost-effectiveness of the two treatment configurations is compared. The regionalized treatment-plant configuration is found to be the more cost-effective.

  7. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  8. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  9. Medicinal plants used for the treatment of jaundice and hepatitis ...

    African Journals Online (AJOL)

    The present study deals with socio-economic documentation of medicinal plant species against jaundice and hepatitis. A total of 30 plant species belonging to 24 families were reported by local practitioners for the treatment of jaundice and hepatitis. The most important plant species are Adiantum capillus, Boerhaavia ...

  10. A Survey of Knowledge, Attitude and Practice of Planting Greenhouse Operators in Yazd in Regard with Health Hazards Associated with Pesticide use in 2012-2013

    Directory of Open Access Journals (Sweden)

    MR Mirshekari

    2015-11-01

    Full Text Available Introduction: Pesticides used in agriculture in order to protect crops and plants from pests, diseases and weeds are regarded as one of the major sources of environmental pollution, with produce a negative effect on the health of living organisms, including humans.Therefore this study aimed to evaluate knowledge, attitude and practice of planting greenhouse operators in Yazd in regard with health hazards associated with pesticide use in 2012-2013. Methods: This study was a cross-sectional study, which its population consisted of active nursery operators in Yazd. In this randomized study, 250 samples were selected out of 2233 greenhouse operators and then knowledge, attitudes and behavior of workers were measured using a questionnaire. After the study data were collected and codified, they ere entered into SPSS software. Moreover T-test and ANOVA tests were utilized to compare the average. Results: The results of the present study revealed that out of all greenhouse operators, 134 (6/53% had received pesticideuse training were trained. Education of 74 (29% of the operaters were reported at the initial level. Experience of 104 operaters (9/41% was revealed 6-10 years. 73 (2/29% of operaters aged between 25 and 35 years. Moreover, the results showed, none of the officers receive the full credit(Maximum knowledge score is 13. Attitudes of 243 operaters towards the use of pesticides in greenhouses was reported at a high level. Performance of 138 operaters were moderate. Conclusions: Although operaters nformation in such fields as precautions when working with pesticides lies relatively at a good level in some other contexts such as respiratory masks for spraying and special work uniform, lack of sufficient information was reported for indicating the need to develop and implement specialized training programs.

  11. Development of an efficient method for multi residue analysis of 160 pesticides in herbal plant by ethyl acetate hexane mixture with direct injection to GC-MS/MS.

    Science.gov (United States)

    Taha, Sherif M; Gadalla, Sohair A

    2017-11-01

    A simple and efficient multi residue method was developed, for the analysis of 160 pesticides by GC-MS/MS in herbal plants. The developed method employs pesticide residue extraction by EtAC/ n. hexane (6:4) with a cleanup step using florisil/ PSA mixture. The optimized conditions have resulted in lower co-extracted matrix components than those extracted using EtAC or MeCN (QuEChERS method), according to FTIR and full scan GC/MS analyses. In addition, the developed method (EtAC/ Hexane) eliminates the evaporation step that is usually performed when using MeCN as an extraction solvent prior to the GC-MS/MS injection. The developed method was fully validated on chamomile, based on SANTE/11945/2015 guidelines. Where, intraday recoveries were estimated at three concentration levels of 10, 50 and 250μgkg -1 . However, interday recoveries have also been carried out, at 250μgkg -1 . In addition, intraday recoveries were estimated for two other herbal plants (thyme and marjoram), at 250μgkg -1 . Three point calibration mixtures were prepared in ethyl acetate solvent and in the blank extracts of chamomile, thyme, and marjoram, in order to check the linearity and matrix effect. The average recoveries for most of the studied pesticides ranged from 70% to 100% at 50 and 250μgkg -1 with relative standard deviations below 20%. The validated method was successfully applied for determination of pesticide residues in 20 herb samples, collected from the Egyptian market. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microbial pesticides

    Science.gov (United States)

    Michael L. McManus

    1991-01-01

    Interest in the use of microbial pesticides has intensified because of public concern about the safety of chemical pesticides and their impact in the environment. Characteristics of the five groups of entomopathogens that have potential as microbial pesticides are briefly discussed and an update is provided on research and development activities underway to enhance the...

  13. Pesticide use and application: An Indian scenario

    International Nuclear Information System (INIS)

    Abhilash, P.C.; Singh, Nandita

    2009-01-01

    Agricultural development continues to remain the most important objective of Indian planning and policy. In the process of development of agriculture, pesticides have become an important tool as a plant protection agent for boosting food production. Further, pesticides play a significant role by keeping many dreadful diseases. However, exposure to pesticides both occupationally and environmentally causes a range of human health problems. It has been observed that the pesticides exposures are increasingly linked to immune suppression, hormone disruption, diminished intelligence, reproductive abnormalities and cancer. Currently, India is the largest producer of pesticides in Asia and ranks twelfth in the world for the use of pesticides. A vast majority of the population in India is engaged in agriculture and is therefore exposed to the pesticides used in agriculture. Although Indian average consumption of pesticide is far lower than many other developed economies, the problem of pesticide residue is very high in India. Pesticide residue in several crops has also affected the export of agricultural commodities in the last few years. In this context, pesticide safety, regulation of pesticide use, proper application technologies, and integrated pest management are some of the key strategies for minimizing human exposure to pesticides. There is a dearth of studies related to these issues in India. Therefore, the thrust of this paper was to review the technology of application of pesticides in India and recommend future strategies for the rational use of pesticides and minimizing the problems related to health and environment.

  14. Pesticide use and application: An Indian scenario

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.C., E-mail: pcabhilash@gmail.com [Eco-Auditing Group, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Nandita, E-mail: nanditasingh8@yahoo.co.in [Eco-Auditing Group, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh (India)

    2009-06-15

    Agricultural development continues to remain the most important objective of Indian planning and policy. In the process of development of agriculture, pesticides have become an important tool as a plant protection agent for boosting food production. Further, pesticides play a significant role by keeping many dreadful diseases. However, exposure to pesticides both occupationally and environmentally causes a range of human health problems. It has been observed that the pesticides exposures are increasingly linked to immune suppression, hormone disruption, diminished intelligence, reproductive abnormalities and cancer. Currently, India is the largest producer of pesticides in Asia and ranks twelfth in the world for the use of pesticides. A vast majority of the population in India is engaged in agriculture and is therefore exposed to the pesticides used in agriculture. Although Indian average consumption of pesticide is far lower than many other developed economies, the problem of pesticide residue is very high in India. Pesticide residue in several crops has also affected the export of agricultural commodities in the last few years. In this context, pesticide safety, regulation of pesticide use, proper application technologies, and integrated pest management are some of the key strategies for minimizing human exposure to pesticides. There is a dearth of studies related to these issues in India. Therefore, the thrust of this paper was to review the technology of application of pesticides in India and recommend future strategies for the rational use of pesticides and minimizing the problems related to health and environment.

  15. Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAJ09 isolated from pesticides treated Achillea clavennae rhizosphere soil.

    Science.gov (United States)

    Rajasankar, R; Manju Gayathry, G; Sathiavelu, A; Ramalingam, C; Saravanan, V S

    2013-05-01

    In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.

  16. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development

    Directory of Open Access Journals (Sweden)

    Ahmed Mohammed AlJabr

    2017-01-01

    Full Text Available This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L. In addition, the most toxic compound (coumarin observed in the current study, deteriorated the growth resulting tremendous reduction (78.39% in efficacy of conversion of digested food (ECD, and (ECI efficacy of conversion of ingested food (70.04% of tenth-instar red palm weevil larvae. The energy-deficient red palm weevil larvae through their intrinsic abilities showed enhanced response to their digestibility resulting 27.78% increase in approximate digestibility (AD compared to control larvae. The detoxification response of Rhynchophorus ferrugineus larvae determined by the quantitative expression of cytochrome P450, esterases, and glutathione S-transferase revealed enhanced expression among moderately toxic and ineffective compounds. These genes especially cytochrome P450 and GST detoxify the target compounds by enhancing their solubility that leads rapid excretion and degradation resulting low toxicity towards red palm weevil larvae. On the other hand, the most toxic (coumarin silenced the genes involved in the red palm weevil detoxification mechanism. Based on the toxicity, growth retarding, and masking detoxification activities, coumarin could be a useful future natural red palm weevil-controlling agent.

  17. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development.

    Science.gov (United States)

    AlJabr, Ahmed Mohammed; Hussain, Abid; Rizwan-Ul-Haq, Muhammad; Al-Ayedh, Hassan

    2017-01-20

    This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD 50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. The energy-deficient red palm weevil larvae through their intrinsic abilities showed enhanced response to their digestibility resulting 27.78% increase in approximate digestibility (AD) compared to control larvae. The detoxification response of Rhynchophorus ferrugineus larvae determined by the quantitative expression of cytochrome P450 , esterases , and glutathione S-transferase revealed enhanced expression among moderately toxic and ineffective compounds. These genes especially cytochrome P450 and GST detoxify the target compounds by enhancing their solubility that leads rapid excretion and degradation resulting low toxicity towards red palm weevil larvae. On the other hand, the most toxic (coumarin) silenced the genes involved in the red palm weevil detoxification mechanism. Based on the toxicity, growth retarding, and masking detoxification activities, coumarin could be a useful future natural red palm weevil-controlling agent.

  18. A bionanohybrid ZnAl-NADS ecological pesticide as a treatment for soft rot disease in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Morales-Irigoyen, Erika Elizabeth; de Las Mercedes Gómez-Y-Gómez, Yolanda; Flores-Moreno, Jorge Luis; Franco-Hernández, Marina Olivia

    2017-09-18

    Pectobacterium carotovorum (Pc) is a phytopathogenic strain that causes soft rot disease in potato (Solanum tuberosum L.), resulting in postharvest losses. Chemical control is effective for managing this disease, but overdoses cause adverse effects. Because farmers insist on using chemical agents for crop protection, it is necessary to develop more effective pesticides in which the active compound released can be regulated. In this context, we proposed the synthesis of ZnAl-NADS, in which nalidixic acid sodium salt (NADS) is linked to a ZnAl-NO 3 layered double hydroxide (LDH) host as a nanocarrier. XRD, FT-IR, and SEM analyses confirmed the successful intercalation of NADS into the interplanar LDH space. The drug release profile indicated that the maximum release was completed in 70 or 170 min for free NADS (alone) or for NADS released from ZnAl-NADS, respectively. This slow release was attributed to strong electrostatic interactions between the drug and the anion exchanger. A modulated release is preferable to the action of the bulk NADS, showing increased effectiveness and minimizing the amount of the chemical available to pollute the soil and the water. The fitting data from modified Freundlich and parabolic diffusion models explain the release behavior of the NADS, suggesting that the drug released from ZnAl-NADS bionanohybrid was carried out from the interlamellar sites, according to the ion exchange diffusion process also involving intraparticle diffusion (coeffect). ZnAl-NADS was tested in vitro against Escherichia coli (Ec) and Pc and exhibited bacteriostatic and biocidal effects at 0.025 and 0.075 mg mL -1 , respectively. ZnAl-NADS was also tested in vivo as an ecological pesticide for combating potato soft rot and was found to delay typical disease symptoms. In conclusion, ZnAl-NADS can potentially be used to control pests, infestation, and plant disease.

  19. DETERMINATION OF ORGANOCHLORINE PESTICIDES IN DRINKING WATERS SAMPLED FROM CLUJ AND HUNEDOARA COUNTIES

    Directory of Open Access Journals (Sweden)

    MARIA-ELISABETA LOVÁSZ

    2011-03-01

    Full Text Available Determination of organochlorine pesticides in drinking waterssampled from Cluj and Hunedoara counties. Pesticides are found scattered indifferent environmental factors (water, air, soil wherefrom they are drawn off byvegetal and animal organisms. Water pollution by pesticides results from the plantprotection products industry and also from massive application of these resourcesin agriculture and other branches of economy. Pesticides can reach surface wateralong with dripping waters and by infiltration may reach the groundwater layers,organochlorine pesticides are most often found in the water sources (dieldrin,endrin, DDT, aldrin, lindane, heptachlor, etc. due to their increased persistence inthe external environment. This study followed up the determination oforganochlorine pesticides in 14 drinking water samples collected from the outputof water treatment plants in Cluj and Hunedoara counties that process surfacewater and deep-water sources. For identification of organochlorine pesticides, thegas chromatographic method after liquid-liquid extraction was used, by a gascromatograph Shimadzu GC 2010 with detector ECD (Electron CaptureDetection. There were not detected higher values than the method detection limit(0.01 μg/l in the drinking water samples collected and analyzed for both totalorganochlorine pesticides and components, which were well below the maximumconcentration admitted by Law 452/2002 regarding drinking water quality. Resultsare correlated with the sanitary protection areas for water sources and with the useof agricultural lands in the area. The solution to reduce risk of pesticides use isecological agriculture , which gains increasingly more ground in Romania too.

  20. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, Sten Bay; Sin, Gürkan

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  1. Microbial degradation of pesticides in rapid sand filters used for drinking water treatment

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen

    in rapid sand filters was not associated with methane oxidation. Based on the present investigations and literature, it was suggested that phenoxy acid degradation in rapid sand filters is due to primary metabolism, and that degradation might be stimulated by enriching naturally occurring specific...... degraders in the sand filters upon exposure to phenoxy acid contaminated groundwater. A suite of evidence showed that the herbicide bentazone was co-metabolically transformed to hydroxy-bentazone by the methanotrophic enrichment culture. Subsequently, it was investigated whether bentazone degradation...... a sequential reactor system, where methanotrophs are grown in the aeration tanks and transported to the rapid sand filters where they can perform co-metabolic pesticide biodegradation. It was suggested that bentazone removal can be stimulated at waterworks, by stimulating growth of methanotrophs. Overall...

  2. Recognition and Management of Pesticide Poisonings

    Science.gov (United States)

    The Recognition and Management of Pesticide Poisonings: 6th Edition manual gives healthcare providers a quick reference resource for the best toxicology and treatment information for patients with pesticide exposures.

  3. Research about impacts of specific pollutants like herbicides upon microbial activity of activated sludge systems in wastewater treatment plants

    Science.gov (United States)

    Hong, Wei; Liu, Shi-qing; Han, Cong; Chang, Gong-fa; Liu, Bo; Zou, Xiao-feng

    2017-04-01

    The impacts of five types of typical specific pollutants like herbicides (including prometon, propazine, acetochlor, metolachlor and bentazone) upon microbial activity of activated sludge systems in wastewater treatment plants were studied by quantitatively feeding specific pollutants into these systems and measuring changes to specific oxygen uptake rate (SOUR) of the systems. The research results suggest that all these five types of specific pollutants significantly inhibit microbial and aerobic metabolisms of the activated sludge systems. The impacts of these herbicides are arranged as follows according to their degrees: bentazoneactivated sludge by 17.0%, 28.4%, 25.8% and 31.1% respectively. The SOUR declined by 37.1% when the concentration of acetochlor was 10mg/L. Useful lessons may be drawn from this study for controlling concentration of specific pollutants like herbicides in influents of the wastewater treatment plants in pesticide parks.

  4. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides.

    Directory of Open Access Journals (Sweden)

    Prisila Mkenda

    Full Text Available Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders. Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin and T. diversifolia (the sesquiterpene lactone tagitinin A. Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.

  5. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides.

    Science.gov (United States)

    Mkenda, Prisila; Mwanauta, Regina; Stevenson, Philip C; Ndakidemi, Patrick; Mtei, Kelvin; Belmain, Steven R

    2015-01-01

    Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris) that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders). Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin) and T. diversifolia (the sesquiterpene lactone tagitinin A). Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.

  6. OPERATION OF THE HOUSEHOLD SEWAGE TREATMENT PLANTS IN POLAND

    Directory of Open Access Journals (Sweden)

    Marcelina Pryszcz

    2015-01-01

    Full Text Available In many rural communities the building of sewage collection and treatment system is still current and important problem of water and wastewater management. Besides the collection of sewage in the septic tank, the solution for wastewater treatment from individual buildings without access to sewerage system is the construction of household sewage treatment plants. Construction of household sewage treatment plant poses a number of challenges for municipalities and potential investors. The existing plants should be analyzed, so that in the future the selected systems would be characterized by high performance, simple operation and reliable exploitation. In the paper, the assessment of selection criteria of adopted technical solution and the functioning of household sewage treatment plants is carried out.

  7. Degradation of Organophosphorus Pesticides in Water during UV/H2O2 Treatment: Role of Sulphate and Bicarbonate Ions

    OpenAIRE

    Fadaei, Am; Dehghani, Mh; Mahvi, Ah; Nasseri, S.; Rastkari, N.; Shayeghi, M.

    2012-01-01

    The photodegradation of two organophosphorus pesticides, malathian and diazinon, by sulfate radicals and bicarbonate radicals in aqueous solution were studied. The effect of the operational parameters such as pH, salt concentration, water type, H2O2 concentration and initial concentration of pesticides was studied. Gas chromatography mass spectroscopy (GC–MS) was used for analyses of pesticides. When salt effect was studied, it was found that sodium bicarbonate was the most powerful inhibitor...

  8. Contribution of Sample Processing to Variability and Accuracy of the Results of Pesticide Residue Analysis in Plant Commodities.

    Science.gov (United States)

    Ambrus, Árpád; Buczkó, Judit; Hamow, Kamirán Á; Juhász, Viktor; Solymosné Majzik, Etelka; Szemánné Dobrik, Henriett; Szitás, Róbert

    2016-08-10

    Significant reduction of concentration of some pesticide residues and substantial increase of the uncertainty of the results derived from the homogenization of sample materials have been reported in scientific papers long ago. Nevertheless, performance of methods is frequently evaluated on the basis of only recovery tests, which exclude sample processing. We studied the effect of sample processing on accuracy and uncertainty of the measured residue values with lettuce, tomato, and maize grain samples applying mixtures of selected pesticides. The results indicate that the method is simple and robust and applicable in any pesticide residue laboratory. The analytes remaining in the final extract are influenced by their physical-chemical properties, the nature of the sample material, the temperature of comminution of sample, and the mass of test portion extracted. Consequently, validation protocols should include testing the effect of sample processing, and the performance of the complete method should be regularly checked within internal quality control.

  9. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  10. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  11. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  12. Pesticides and Human Health

    Science.gov (United States)

    ... X Y Z A-Z Index Health & Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Plants Pest ... our environment When pesticides are used on the food we eat The risk of health problems depends not only on how toxic the ingredients are ( ...

  13. Citizen's Guide to Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    This guide provides suggestions on pest control and safety rules for pesticide use at home. Pest prevention may be possible by modification of pest habitat: removal of food and water sources, removal or destruction of pest shelter and breeding sites, and good horticultural practices that reduce plant stress. Nonchemical alternatives to pesticides…

  14. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    Science.gov (United States)

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  15. Tracer work in pesticide research

    International Nuclear Information System (INIS)

    Gonzales, B.P.

    1989-01-01

    Innumerable studies on the large number of pesticides being used throughout the world led to some adverse findings on the properties and behavior of these chemicals and their degradation products in revelation to potential toxicity and environmental pollution. However, it is also a fact (difficult to accept as it may) that the use of pesticides as an indirect means of increasing food production cannot yet be dispensed with despite the potential dangers attributed to it. What can be done is to insure its judicious application which means minimizing its effectiveness in controlling pest infestations. To be able to do this it is necessary to know not only what pesticide is to be used against a given pest but also the fate of pesticide after application to a particular environment under prevailing conditions. Knowledge of the distribution and persistence of the parent compounds under metabolites will also help either, to confirm or to dispel the alleged dangers posed by them. Radiotracer methodology is particularly effective for this type of work because it permits highly sensitive analysis with minimum clean-up and permits one to determine even the bound residues which defies ordinary extraction procedures. Some studies made are studies on fate of pesticides in plant after foliar application to plant needs, uptake and translocation of systemic pesticides, fate of pesticides in soil, bioaccumulation of pesticide by aquatic organisms, etc. This particular study is on distribution of pesticide among the components of a rice/fish ecosystem. This project aims to generate data from experiments conducted in a model ecosystem using radiolabelled lindane and carbo-furan. In both cases, results show a decline in extractable species from the recommended dosage of pesticide application although they tend to imbibe a considerable amount of pesticide. It is hoped that depuration in additional experiments will bring useful results. (Auth.)

  16. Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005

    Science.gov (United States)

    Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.

    2008-01-01

    Pesticide occurrence and distribution in the lower Clackamas River basin was evaluated in 2000?2005, when 119 water samples were analyzed for a suite of 86?198 dissolved pesticides. Sampling included the lower-basin tributaries and the Clackamas River mainstem, along with paired samples of pre- and post-treatment drinking water (source and finished water) from one of four drinking water-treatment plants that draw water from the lower river. Most of the sampling in the tributaries occurred during storms, whereas most of the source and finished water samples from the study drinking-water treatment plant were obtained at regular intervals, and targeted one storm event in 2005. In all, 63 pesticide compounds were detected, including 33 herbicides, 15 insecticides, 6 fungicides, and 9 pesticide degradation products. Atrazine and simazine were detected in about half of samples, and atrazine and one of its degradates (deethylatrazine) were detected together in 30 percent of samples. Other high-use herbicides such as glyphosate, triclopyr, 2,4-D, and metolachlor also were frequently detected, particularly in the lower-basin tributaries. Pesticides were detected in all eight of the lower-basin tributaries sampled, and were also frequently detected in the lower Clackamas River. Although pesticides were detected in all of the lower basin tributaries, the highest pesticide loads (amounts) were found in Deep and Rock Creeks. These medium-sized streams drain a mix of agricultural land (row crops and nurseries), pastureland, and rural residential areas. The highest pesticide loads were found in Rock Creek at 172nd Avenue and in two Deep Creek tributaries, North Fork Deep and Noyer Creeks, where 15?18 pesticides were detected. Pesticide yields (loads per unit area) were highest in Cow and Carli Creeks, two small streams that drain the highly urban and industrial northwestern part of the lower basin. Other sites having relatively high pesticide yields included middle Rock Creek and

  17. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena...

  18. Influence of the application of sewage sludge on the degradation of pesticides in the soil.

    Science.gov (United States)

    Sánchez, M E; Estrada, I B; Martínez, O; Martín-Villacorta, J; Aller, A; Morán, A

    2004-11-01

    A study was made of the influence of the application of sewage sludge on the degradation of pesticides in the soil. Two kinds of sludge were used, with different characteristics, one from an urban treatment plant and one from a food processing plant. Three organophosphorus insecticides, fenitrothion, diazinon and dimethoate, were studied. The relative importance was determined of the chemical and biological degradation processes, which involved experiments on soil and sterile soil samples. A comparative study was also made of the degradation of pesticide residues and the evolution of the microbial population. The application of sludge seems to have a complex effect on the degradation of pesticides, determined by the bioavailability and biodegradability of their active ingredient. The biodegradation of pesticide residues brings about alterations in the microorganism population of the soil. copyright 2004 Elsevier Ltd.

  19. Degradation of non-biodegradable pesticides in water by coupling photo catalysis and bio treatment; Eliminacion de plaguicidas no biodegrabables en aguas mediante acoplamiento de fotocatalisis solar y oxidacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Martin, M. M.; Sanchez Perez, J. A.; Malato Rodriguez, S.

    2008-07-01

    The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing different pure and commercial pesticides (dimethoate, oxydemeton-methyl, carbaryl, oxamyl, methomyl, imidacloprid, dimethoate and pyrimethanil). Different initial concentrations were assayed. Variation in biodegradability with photo catalytic treatment intensity was tested using Pseudomonas putida. Biodegradation efficiencies after the photoreaction were found to be lower for the pesticide solution with the higher concentration, showing that to achieve sufficient biodegradability, the photo-Fenton treatment time must be increased with pesticide concentration. Bio treatment was carried out in different reactor including sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source (wastewater containing an easily biodegradable substrate, such as urban wastewater) before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a pesticide solutions up to of 500 mg/L of DOC. (Author)

  20. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  1. Potential accumulation of estrogenic substances in biofilms and aquatic plants collected in sewage treatment plant (STP) and receiving water

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, T.; Kuch, B.; Kern, A.; Metzger, J.W. [Inst. for Sanitary Engineering, Water Quality and Solid Waste Management ISWA, Stuttgart Univ. (Germany)

    2004-09-15

    During the past years the estrogenic potency of natural (e.g. estrone and 17{beta}-estradiol E2) and synthetic hormones (e.g. ethinylestradiol EE2) and xenoestrogens (e.g. pesticides, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dioxins (PCDDs) and furans (PCDFs), alkylphenolic compounds or bisphenol A (BPA)) has attracted increasing scientific attention. Especially the occurrence and behaviour of these substances in waste water of sewage treatment plants (STPs) were often investigated. Andersen et al. found steroid estrogen concentrations in the effluent of a municipal STP always below the limit of quantification of 1 ng/l. However, Aerni et al. detected E2 and EE2 concentrations up to 6 ng/l and 2 ng/l, and alkylphenols, alkylphenolmonoand diethoxylates even at {mu}g/l concentrations in the effluent of a wastewater treatment plant with a significant industrial impact3. In activated and digested sewage sludge concentrations of estrone and E2 up to 37 ng/g and 49 ng/g, of the synthetic EE2 up to 17 ng/g were observed4. In river sediments the concentrations detected were lower with up to 2 ng/g estrone and 0,9 ng/g EE24. In the meantime many studies exist about raw and treated water in STPs, but there is little knowledge about the influence of estrogenic active substances on aquatic plants so far. In this study we investigated therefore the potency of estrogenic substances to accumulate in the duckweed Lemna minor from STP in comparison to the estrogenicity of duckweed from a natural pond, biofilms in drain and microsieve of the STP by the in vitro E-Screen- and LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). In addition, we tested the estrogenic activity of moss-like aquatic plants collected at different sites of the receiving water and analyzed the concentrations of four phenolic xenoestrogens in the effluent by GC/MS.

  2. Stimulation treatments of large-seed leguminous plants Pt. 1

    International Nuclear Information System (INIS)

    Nagy, Istvan; Borbely, Ferenc; Nagy, Janos; Dezsi, Zoltan

    1983-01-01

    The effect of low dose X-ray irradiation on the sprouting and initial growth of some leguminous plants was studied. After having the seeds of peas, beans, lupines and horse beans irradiated, the sprouting rate, the amount of sprouting plants, the length of the roots, the sprouts and the sprouting plants, the electrolyte conductivity and the water uptake were determined. The height and the amount of the plants were measured after a period of 6 weeks. According to the sprout-length values, an increased variation in the plant features can be observed as a result of irradiation treatment: both stimulation and inhibition of plant growth occured, depending on the variety of the leguminosae. The indices of sprouting and initial growth agree well with each other. (V.N.)

  3. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  4. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  5. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  6. Cleaning and reusing backwash water of water treatment plants

    Science.gov (United States)

    Skolubovich, Yury; Voytov, Evgeny; Skolubovich, Alexey; Ilyina, Lilia

    2017-10-01

    The article deals with the treatment of wash water of water treatment plants open water sources. The results of experimental studies on the choice of effective reagent, cleaning and disposal of wash water of filters. The paper proposed a new two-stage purification technology and multiple reuse of wash water of water purification stations from open surface sources

  7. influence of treatment of seed potato tubers with plant crude

    African Journals Online (AJOL)

    ACSS

    Seed potato tuber treatment with plant crude essential oil extracts. 297 were pipetted on to filter paper (Whatman No. 9;. 18.5 cm diameter; Whatman, Maidstone, Kent,. Germany), which was taped inside of the lid of each plastic, at the pre-determined treatment doses. The jars were lid-sealed and arranged in a completely ...

  8. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  9. Enhancement of micropollutant degradation at the outlet of small wastewater treatment plants.

    Directory of Open Access Journals (Sweden)

    Luca Rossi

    Full Text Available The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole. The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments.

  10. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants

    Science.gov (United States)

    Rossi, Luca; Queloz, Pierre; Brovelli, Alessandro; Margot, Jonas; Barry, D. A.

    2013-01-01

    The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole) was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material) were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole). The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments. PMID:23484055

  11. Assessment of Pesticide Residue Levels in Vegetables sold in some ...

    African Journals Online (AJOL)

    Dr. kelechi

    (1996) defined a pesticide as any product that kills or control various types of pest (plant or animal that is harmful ... pesticides that get into the plant tissues may be transformed (metabolised) or sequestered in the tissues to .... pesticide was detected in the tissue of the vegetables from Oyingbo with those in the tissues of the ...

  12. Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, P. [Ecole Centrale de Lyon (France). Lab. Photocatalyse, Catalyse et Environnement; Vannier, S. [Chambre d' Agriculture de Vaucluse, Avignon (France); Dussaud, J. [Ahlstrom Research, Pont Eveque (France); Rubis, J.P. [Lycee Viticole, Orange (France)

    2004-11-01

    The objective was to assess in a vineyard the effect of purifying by solar photocatalysis the title rinse waters (presently rejected or, extremely rarely, cleaned in specific installations) in terms of efficacy and on-site ease-of-use for the wine grower. The on-site, self-functioning, solar purifying unit included a corrugated-steel inclined plate of area S=1 m{sup 2} onto which a TiO{sub 2}-coated thin material had been stuck, a 100-l tank, and an aquarium-type pump powered by a photovoltaic panel. For a vineyard of area A=0.15 km{sup 2}, the rinse water (about 80 l) corresponding to each of four typical vine treatments was analysed (major pesticides for each treatment, TOC, Microtox test and, in one case, BOD{sub 5}) by independent laboratories, before and after purification for 8 days. These analyses showed that the S/A ratio tested was insufficient. From the relatively low final organic content reached in one case, it is calculated that a three-time higher S/A ratio might suffice, but new trials are necessary to determine whether it is valid for the other typical cases. Inferred contribution of inorganic ions to the post-photocatalytic treatment toxicity points out to the need for an additional detoxification. However, even with a too small S, the photocatalytic treatment markedly improved the quality of the rinse waters. These field experiments have also demonstrated that the purifying prototype is robust, and easy to install and use on site by the wine grower. (Author)

  13. Transport and fate of microplastic particles in wastewater treatment plants.

    Science.gov (United States)

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  14. Sustainable operation of a biological wastewater treatment plant

    Science.gov (United States)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  15. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    Science.gov (United States)

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  16. Treatment rationale for dogs poisoned with aldicarb (carbamate pesticide : clinical review

    Directory of Open Access Journals (Sweden)

    L. F. Arnot

    2011-05-01

    Full Text Available The treatment rationale for dogs poisoned by aldicarb is reviewed from a pharmacological perspective. The illegal use of aldicarb to maliciously poison dogs is a major problem in some parts of the world. In South Africa, it is probably the most common canine poisoning treated by companion animal veterinarians. Aldicarb poisoning is an emergency and veterinarians need to be able to diagnose it and start with effective treatment immediately to ensure a reasonable prognosis. Successful treatment depends on the timely use of an anti-muscarinic drug (e.g. atropine. Additional supportive treatment options, including fluid therapy, diphenhydramine, benzodiazepines and the prevention of further absorption (activated charcoal should also be considered. Possible complications after treatment are also briefly discussed.

  17. Degradation of Organophosphorus Pesticides in Water during UV/H2O2 Treatment: Role of Sulphate and Bicarbonate Ions

    Directory of Open Access Journals (Sweden)

    Am Fadaei

    2012-01-01

    Full Text Available The photodegradation of two organophosphorus pesticides, malathian and diazinon, by sulfate radicals and bicarbonate radicals in aqueous solution were studied. The effect of the operational parameters such as pH, salt concentration, water type, H2O2 concentration and initial concentration of pesticides was studied. Gas chromatography mass spectroscopy (GC–MS was used for analyses of pesticides. When salt effect was studied, it was found that sodium bicarbonate was the most powerful inhibitor used, while sodium sulfate was the weakest one. The highest degradation in UV/H2O2 process for malathion was found in alkaline condition and for diazinon in acidic condition. The photodegradation in all waters used in this work exhibited first order kinetics. Photodegradation rate in distilled water was higher than real water. The degradation of pesticides increased with increasing of H2O2 concentration.

  18. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  19. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  20. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  1. Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata.

    Science.gov (United States)

    Walvekar, Varsha Ashok; Bajaj, Swati; Singh, Dileep K; Sharma, Shilpi

    2017-07-01

    India is one of the leading countries in production and indiscriminate consumption of pesticides. Owing to their xenobiotic nature, pesticides affect soil microorganisms that serve as mediators in plant growth promotion. Our study aimed to deliver a comprehensive picture, by comparing the effects of synthetic pesticides (chlorpyriphos, cypermethrin, and a combination of both) with a biopesticide (azadirachtin) at their recommended field application level (L), and three times the recommended dosage (H) on structure and function of microbial community in rhizosphere of Vigna radiata. Effect on culturable fraction was assessed by enumeration on selective media, while PCR-denaturing gradient gel electrophoresis (DGGE) was employed to capture total bacterial community diversity. This was followed by a metabolic sketch using community-level physiological profiling (CLPP), to obtain a broader picture of the non-target effects on rhizospheric microbial community. Although plant parameters were not significantly affected by pesticide application, the microbial community structure experienced an undesirable impact as compared to control devoid of pesticide treatment. Examination of DGGE banding patterns through cluster analysis revealed that microbial community structure of pesticide-treated soils had only 70% resemblance to control rhizospheric soil even at 45 days post application. Drastic changes in the metabolic profiles of pesticide-treated soils were also detected in terms of substrate utilization, rhizospheric diversity, and evenness. It is noteworthy that the effects exacerbated by biopesticide were comparable to that of synthetic pesticides, thus emphasizing the significance of ecotoxicological assessments before tagging biopesticides as "safe alternatives."

  2. Medicinal plants indications from herbal healers for wound treatment

    Directory of Open Access Journals (Sweden)

    Maria Willianne Alves do Nascimento

    2016-06-01

    Full Text Available The objective was to identify medicinal plants indicated by commercial herbal healers for wound treatment, in street markets. A descriptive study conducted in a capital city in the northeast of Brazil, through interviews. The results indicate that plant commerce by healers of both genders, aged between 37 to 52 years, from those 69.3% learned about their function with family members. Forty-eight plant species were cited for wound treatment, between those, all participants cited Barbatimão and Mastic. From the plants Sambacaitá, Open Nettle, Yellow Uchi, Corona, Xiquexique, Senna and Pindaíba no properties to prove their indication was found for wound treatment. The stem bark was the most indicated part (96.15%, 81.03% of participants informed that plants should be kept dry for conservation. Studies to clarify the biological activities and collateral effects of medicinal plants are needed, beyond training for healers about indications, prepare, storage/conservation, and expiration date.

  3. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  4. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  5. Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone.

    Science.gov (United States)

    Agatz, Annika; Brown, Colin D

    2017-05-15

    Mathematical models of pesticide fate and behaviour in soils have been developed over the last 30years. Most models simulate fate of pesticides in a 1-dimensional system successfully, supporting a range of applications where the prediction target is either bulk residues in soil or receiving compartments outside of the soil zone. Nevertheless, it has been argued that the 1-dimensional approach is limiting the application of knowledge on pesticide fate under specific pesticide placement strategies, such as seed, furrow and band applications to control pests and weeds. We report a new model (2-DROPS; 2-Dimensional ROots and Pesticide Simulation) parameterised for maize and we present simulations investigating the impact of pesticide properties (thiamethoxam, chlorpyrifos, clothianidin and tefluthrin), pesticide placement strategies (seed treatment, furrow, band and broadcast applications), and soil properties (two silty clay loam and two loam top soils with either silty clay loam, silt loam, sandy loam or unconsolidated bedrock in the lower horizons) on microscale pesticide distribution in the soil profile. 2-DROPS is to our knowledge the first model that simulates temporally- and spatially-explicit water and pesticide transport in the soil profile under the influence of explicit and stochastic development of root segments. This allows the model to describe microscale movement of pesticide in relation to root segments, and constitutes an important addition relative to existing models. The example runs demonstrate that the pesticide moves locally towards root segments due to water extraction for plant transpiration, that the water holding capacity of the top soil determines pesticide transport towards the soil surface in response to soil evaporation, and that the soil type influences the pesticide distribution zone in all directions. 2-DROPS offers more detailed information on microscale root and pesticide appearance compared to existing models and provides the

  6. Ecological investigation of application of pesticides in rice fields

    International Nuclear Information System (INIS)

    Nouri, J.; Arjomandi, R.; Bayat, H.

    2000-01-01

    Among several pests of rice as one of the main agricultural products in Iran, rice borer, C hilo sarsaparilla is one of the most important pests of this crop. Use of pesticides coincided with the occurrence of this pest in the northern region of Iran in 1972. At present in order to control this pest, more than 12000 tones of pesticides granules are used annually. Ecological effects of pesticides application and the use of Trichograma sp. as a natural enemy, for assessing the impacts of pesticides in environments, especially on different living organisms on the plant, in irrigation water, and in 5 cm depth of surface soil, were investigated in two regions of Amol, named Osk. Mahalleh and Capik Field of Tashbandan. Results indicated that the two treatments were not different on crop loss. One the contrary, in the pesticide treatment, there was a considerable dec tease in the population of living organisms, particularly, no organism was observed in 5 cm depth of surface soil. It is recommended that in order to maintain the balance of environment, the use of chemicals for controlling rice borer must be with extreme care, only in the inevitable was with the use of principles of Integrated Pest Management

  7. Saudi medicinal plants for the treatment of scorpion sting envenomation

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Asmari

    2017-09-01

    Full Text Available Scorpion sting envenoming poses major public health problems. The treatment modalities include antivenoms, chemical antidotes and phytotherapy, with varying degrees of effectiveness and side effects. In this investigation, we reviewed the use of Saudi medicinal plants for the treatment of scorpion sting patients. The relevant literature was collected using the online search engines including Science Direct, Google and PubMed with the help of specific keywords. We also used the printed and online resources at our institutional library to gather the relevant information on the use of medicinal plants for the treatment of scorpion sting patients. A descriptive statistics was used for data compilation and presentation. The results of this survey showed the use of at least 92 medicinal plants with beneficial effects for treating victims of stings of different scorpion species. These commonly used herbs spanned to 37 families whilst different parts of these plants were employed therapeutically for alleviation of envenomation symptoms. The application of leaves (41% was preferred followed by roots (19%, whole plant (14% and seeds (9%. The use of latex (4%, stem (3%, flowers (3% and bark (3% was also reported. In some cases, tannin (2%, rhizome (1% and shoot (1% were also used. In conclusion, herbal medicines are effectively used for the treatment of patients with scorpion envenomation. This type of medication is free from side effects as observed with chemical antidotes or antivenom therapy. It is important to identify the active ingredients of herbal drugs for improving their therapeutic potential in traditional medicine.

  8. Treatment of a wastewater from a pesticide manufacture by combined coagulation and Fenton oxidation.

    Science.gov (United States)

    Pliego, G; Zazo, J A; Pariente, M I; Rodríguez, I; Petre, A L; Leton, P; García, J

    2014-11-01

    The treatment of a non-biodegradable agrochemical wastewater has been studied by coupling of preliminary coagulation-flocculation step and further Fenton oxidation. High percentages of chemical oxygen demand (COD) removal (up to 58 %) were achieved in a first step using polyferric chloride as coagulant. This reduced significantly the amount of H2O2 required in the further Fenton oxidation. Using the stoichiometric amount relative to COD around 80 % of the remaining organic load was mineralized. The combined treatment allowed achieving the regional discharge limits of ecotoxicity at a cost substantially lower than the solution used so far where these wastewaters are managed as hazardous wastes.

  9. Pesticide Reevaluation

    Science.gov (United States)

    Learn about the process for periodically evaluating registered pesticides to ensure they meet current science standards for risk assessment, as required by the Federal Insecticide Fungicide and Rodenticide Act.

  10. Antimicrobial Pesticides

    Science.gov (United States)

    ... may be harboring disease organisms. Determining human and ecological risks from exposure to antimicrobial pesticides requires different ... Open Government Regulations.gov Subscribe USA.gov White House Ask. Contact Us Hotlines FOIA Requests Frequent Questions ...

  11. Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment.

    Science.gov (United States)

    Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan

    2017-11-01

    To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources

  12. Possibilities of implementing nitrogen removal at Swedish wastewater treatment plants

    International Nuclear Information System (INIS)

    Hultman, Bengt; Plaza, Elzbieta; Tendaj-Xavier, Marta

    1987-01-01

    Problems related to eutrophication and oxygen consumption have been considered as the major factors in deterioration of the water quality in Swedish lakes, rivers and coastal areas. Technical solutions to reduce oxygen-consuming materials and eutrophication have up to now been directed towards the removal of biochemical oxygen demand (BOD) and phosphorus. Thus, biological and chemical treatment of municipal wastewater is usually prescribed, and at present about 90% of the municipal wastewater from Swedish urban areas is treated both biologically and chemically. Most plants are designed for post-precipitation, although the treatment plants may now be operated in a modified way, for example, with the use of preprecipitation, two-point precipitation or recirculation of chemical sludges. Hultman and Moore (1982) have presented an overview of Swedish practice in municipal wastewater treatment. Although Swedish treatment of municipal wastewater concentrates on the removal of biochemical oxygen demand and phosphorus, the environmental and operational effects of nitrogen have been discussed for many years

  13. Fate of Organohalogens in U.S. Wastewater Treatment Plants and Estimated Chemical Releases to Soils Nationwide from Biosolids Recycling

    Science.gov (United States)

    Heidler, Jochen; Halden, Rolf U.

    2009-01-01

    This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through U.S. treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 U.S. states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (± 95% confidence interval) of quantifiable compounds in influent ranged from 4.2 ± 0.8 µg L−1 for triclocarban to 0.03 ± 0.01 µg L−1 for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 ± 0.08 and 0.07 ± 0.04 µg L−1, respectively). Median aqueous-phase removal efficiencies (± 95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 ± 2%) > triclocarban (87 ± 7%) > dichlorocarbanilide (55 ± 20%) > fipronil (18 ± 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27,600 ± 9,600 and 15,800 ± 8,200 µg kg−1 for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 ± 70%) to triclocarban (87 ± 29%) to triclosan (28 ± 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258,000 ± 110,00 kg yr−1 (mean ± 95% confidence

  14. Pesticide Use Site Index

    Science.gov (United States)

    The Pesticide Use Site Index will help a company (or other applicant) identify which data requirements are needed to register a pesticide product. It provides information on pesticide use sites and pesticide major use patterns.

  15. Application of Intelligent System for Water Treatment Plant Operation

    Directory of Open Access Journals (Sweden)

    A Mirsepassi

    2004-10-01

    Full Text Available The water industry is facing increased pressure to produce higher quality treated water at a lower cost. The efficiency of a treatment process closely is related to the operation of the plant. To improve the operating performance, an Artificial Neural Network (ANN paradigm has been applied to a water treatment plant. An ANN which is able to learn the non-linear performance relationships of historical data of a plant has been proved to be capable of providing operational guidance for plant operators. A back-propagation network is used to determine the alum and polymer dosages. The results showed that the ANN model was most promising. The correlation coefficients (r between the actual and predicted values for the alum and polymer dosages were both 0.97 and the average absolute percentage errors were 4.09% and 8.76% for the alum and polymer dosages, respectively. The application of the ANN model was illustrated using data from Wyong Shire Council’s Mardi Water Treatment Plant on the Central Coast of NSW.

  16. Medicinal Plants for the Treatment of Hypertrophic Scars

    Directory of Open Access Journals (Sweden)

    Qi Ye

    2015-01-01

    Full Text Available Hypertrophic scar is a complication of wound healing and has a high recurrence rate which can lead to significant abnormity in aesthetics and functions. To date, no ideal treatment method has been established. Meanwhile, the underlying mechanism of hypertrophic scarring has not been clearly defined. Although a large amount of scientific research has been reported on the use of medicinal plants as a natural source of treatment for hypertrophic scarring, it is currently scattered across a wide range of publications. Therefore, a systematic summary and knowledge for future prospects are necessary to facilitate further medicinal plant research for their potential use as antihypertrophic scar agents. A bibliographic investigation was accomplished by focusing on medicinal plants which have been scientifically tested in vitro and/or in vivo and proved as potential agents for the treatment of hypertrophic scars. Although the chemical components and mechanisms of action of medicinal plants with antihypertrophic scarring potential have been investigated, many others remain unknown. More investigations and clinical trials are necessary to make use of these medical plants reasonably and phytotherapy is a promising therapeutic approach against hypertrophic scars.

  17. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    OpenAIRE

    Alshabab Mary Shick; Andrianova Maria; Alsalloum Dergham

    2016-01-01

    Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times) dosages of reagents (acidifier, coagulant, flocculant) in several actual stages of treatment (acidificatio...

  18. Industrial plant for electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Tyminnski, B.; Zimek, Z; Ostapczuk, A.; Licki, J.

    2001-01-01

    The electron beam flue gas treatment technology was invented many years ago. Research on the process has been carried out in Japan, USA, Germany and Poland. However, the recent fidings, based on the experiments performed at pilot plant at Electric Power Station Kaweczyn, led to developments which made process mature just at the dawn of the XXI century. The process is being implemented in the full industrial scale at Electric Power Station Pomorzany (Dolna Odra EPS Group). Other developments are reported in Japan and after Nagoya's pilot plant experiments, an industrial plant has been built in China and another one is constructed in Japan. There are remarkable differences in technological and design solutions applied in all these installations. Developments achieved at EPS Kaweczyn pilot plant and INCT laboratory unit were the basis for the project realized at EPS Pomorzan

  19. Infrequent use of medicinal plants from India in snakebite treatment

    Directory of Open Access Journals (Sweden)

    Manali Sughosh Upasani

    2018-03-01

    Full Text Available Snakes have fascinated humankind for millennia. Snakebites are a serious medical, social, and economic problem that are experienced worldwide; however, they are most serious in tropical and subtropical countries. The reasons for this are 1 the presence of more species of the most dangerous snakes, 2 the inaccessibility of immediate medical treatment, and 3 poor health care. The goal of this study was to collect information concerning rare, less utilized, and less studied medicinal plants. More than 100 plants were found to have potential to be utilized as anti-snake venom across India. Data accumulated from a variety of literature sources revealed useful plant families, the parts of plants used, and how to utilize them. In India, there are over 520 plant species, belonging to approximately 122 families, which could be useful in the management of snakebites. This study was conducted to encourage researchers to create herbal antidotes, which will counteract snake venom. These may prove to be an inexpensive and easily assessable alternative, which would be of immense importance to society. Plants from families such as Acanthaceae, Arecaceae, Apocynaceae, Caesalpiniaceae, Asteraceae, Cucurbitaceae, Fabaceae, Euphorbiaceae, Lamiaceae, Rubiaceae, and Zingiberaceae are the most useful. In India, experts of folklore are using herbs either single or in combination with others. Keywords: Appraise traditional medicinal plants, Ethnomedicine, India, Snake antivenom

  20. Treatment of anxiety and depression: medicinal plants in retrospect.

    Science.gov (United States)

    Fajemiroye, James O; da Silva, Dayane M; de Oliveira, Danillo R; Costa, Elson A

    2016-06-01

    Anxiety and depression are complex heterogeneous psychiatric disorders and leading causes of disability worldwide. This review summarizes reports on the fundamentals, prevalence, diagnosis, neurobiology, advancement in treatment of these diseases and preclinical assessment of botanicals. This review was conducted through bibliographic investigation of scientific journals, books, electronic sources, unpublished theses and electronic medium such as ScienceDirect and PubMed. A number of the first-line drugs (benzodiazepine, azapirone, antidepressant tricyclics, monoamine oxidase inhibitors, serotonin selective reuptake inhibitors, noradrenaline reuptake inhibitors, serotonin and noradrenaline reuptake inhibitors, etc.) for the treatment of these psychiatric disorders are products of serendipitous discoveries. Inspite of the numerous classes of drugs that are available for the treatment of anxiety and depression, full remission has remained elusive. The emerging clinical cases have shown increasing interests among health practitioners and patients in phytomedicine. The development of anxiolytic and antidepressant drugs of plant origin takes advantage of multidisciplinary approach including but not limited to ethnopharmacological survey (careful investigation of folkloric application of medicinal plant), phytochemical and pharmacological studies. The selection of a suitable plant for a pharmacological study is a basic and very important step. Relevant clues to achieving this step include traditional use, chemical composition, toxicity, randomized selection or a combination of several criteria. Medicinal plants have been and continue to be a rich source of biomolecule with therapeutic values for the treatment of anxiety and depression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  1. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  2. A performance indicators system for urban wastewater treatment plants.

    Science.gov (United States)

    Quadros, Sílvia; João Rosa, Maria; Alegre, Helena; Silva, Catarina

    2010-01-01

    A performance assessment system (PAS) is an important instrument to provide a cost-effective and sustainable management of wastewater treatment plants (WWTPs). Despite the fact that many PASs have been developed in recent years, important aspects of WWTP evaluation have not yet been considered. This paper presents the framework and the overall performance indicators of a PAS developed for urban WWTPs.

  3. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  4. Realizing Steady Supply to a Treatment Plant from Multiple Sources

    NARCIS (Netherlands)

    van Nooijen, R.R.P.; Kolechkina, A.G.

    2016-01-01

    In sewer systems sewage from different areas is often treated in a shared Waste Water Treatment Plant (WWTP). Currently the flows from different areas are usually determined by needs local to that area. During dry weather this may result in large variations in the flow into the WWTP. There are two

  5. Influence of Treatment of Seed Potato Tubers with Plant Crude ...

    African Journals Online (AJOL)

    A pot experiment was conducted at Sirinka Agricultural Research Centre, in north eastern Ethiopia, to evaluate the effect of treating seed potato tubers with crude plant essential oil extracts, on the growth and yield of the potato crop. Treatments consisted of seed potato tubers treated with dill weed, spearmint, black cumin ...

  6. Modelling total sewage water discharge to a regional treatment plant.

    NARCIS (Netherlands)

    Witter, J.V.; Stricker, H.

    1986-01-01

    In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in

  7. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  8. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  9. Optimal design of wastewater treatment plant using adaptive ...

    African Journals Online (AJOL)

    From this work, it has been found that artificial intelligence based optimization techniques such as adaptive simulated annealing is found to be suitable for the optimal design of wastewater treatment plant. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 107-113. AJOL African Journals Online.

  10. Ethnobotanical survey of plants used for the treatment of ...

    African Journals Online (AJOL)

    Constipation is the commonest gastrointestinal complaint in most developed and poor countries including South Africa. An ethnobotanical survey of plants used by herbalists, traditional healers and rural dwellers for the treatment of constipation was conducted in the Nkonkobe Municipality, Eastern Cape Province of South ...

  11. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  12. Basic user guide for the radwaste treatment plant computer system

    International Nuclear Information System (INIS)

    Keel, A.

    1990-07-01

    This guide has been produced as an aid to using the Radwaste Treatment Plant computer system. It is designed to help new users to use the database menu system. Some of the forms can be used in ways different from those explained and more complex queries can be performed. (UK)

  13. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  14. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  15. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... the waste water [3]. Aim. The aim of this project is to bring into existence a Small Scale Waste Water. Treatment Plant that can convert a waste water with high Chemical Oxygen ... Reduce water born disease and high acidic nature of water ... proper maintenance and operation training is made available to ...

  16. Biofiltration treatment of odors from municipal solid waste treatment plants.

    Science.gov (United States)

    Liu, Qiang; Li, Mi; Chen, Rong; Li, Zhengyue; Qian, Guangren; An, Taicheng; Fu, Jiamo; Sheng, Guoying

    2009-07-01

    An in situ compost biofilter was established for the treatment of odors from biostabilization processing of municipal solid waste. The concentrations of total volatile organic compounds (VOCs) in odors and their components were measured. Biofilter media was characterized in terms of total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic matter (OM), pH value and determination of bacterial colony structure. Gas chromatography-mass spectrometry (GC-MS) analysis showed that the main components of the produced gas were benzene, toluene, ethylbenzene and xylene (BTEX) along with other alkanes, alkenes, terpenes, and sulphur compounds. The compost biofilter had remarkable removal ability for alkylated benzenes (>80%), but poor removal for terpenes ( approximately 30%). Total VOC concentrations in odors during the biostabilization process period ranged from 0.7 to 87 ppmv, and the VOC removal efficiency of the biofilter varied from 20% to 95%. After about 140 days operation, TN, TC, TP and OM in compost were kept almost stable, but the dissolved N, NH(4)-N and NO(3)-N experienced an increase of 44.5%, 56.2% and 76.3%, respectively. Dissolved P decreased by 27.3%. The pH value experienced an increase in the early period and finally varied from 7.38 to 8.08. Results of bacterial colony in packing material indicated that bacteria and mold colony counts increased, but yeasts and actinomyces decreased along with biofilter operation, which were respectively, 3.7, 3.4, 0.04 and 0.07 times of their initial values.

  17. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lei Lin

    2018-04-01

    Full Text Available Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91. Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  18. Economics of wastewater treatment in GTL plant using spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Enyi, G.C.; Nasr, G.G.; Burby, M. [University of Salford, Manchester, M5 4WT (United Kingdom)

    2013-07-01

    In a Gas-to-liquid (GTL) plant, significant quantities of CO2 and reaction water are produced and various chemicals are used as intermediate treatment chemicals. The reaction water is contaminated by these chemicals which impair the pH and the related properties of the water. The pH has to be controlled in the effluent treatment unit before the water is re-used or released to the environment. The overall aim of this investigation is to create a novel technique to address the problem of waste water treatment in GTL plants which will assist in the reduction of greenhouse gas (CO2) emissions into the atmosphere. A laboratory-scale effluent neutralisation unit for pH control utilising gas injectors was designed and built. The unit used the CO2 produced as a by-product of GTL process as wastewater treatment chemical instead of the conventional Sulphuric acid. The quality of wastewater after treatment with CO2 met the standards set by the state regulatory agency. The economics of the new process shows a better payout period of 3.6 years for capital investment of $1,645 Million compared to 4.7 years for an existing plant layout with capital investment of $1,900 Million. The effects of increase in plant capacity showed a lower payback back of 2.8 years for plant capacity of 140,000 barrels/day (22258 m3/day), 3.6 years for 34,000 barrels/day and 6.0 years for 12,500 barrels/day (1987 m3/day) plant capacity. The sensitivity analysis using crystal ball simulator with 'Microsoft Excel' shows that the annual revenue has the greatest effects on the NPV of the plant than the CAPEX and inflation rate. Apart from the environmental benefits the process generates by reducing CO2 emissions into the atmosphere, the study also concludes that the replacement of conventional Sulphuric acid (H2SO4) unit with CO2 improves the economics of the plant.

  19. RESPONSE OF TOMATO PLANTS EXPOSED TO TREATMENT WITH NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Tommaso Giordani

    2012-07-01

    Full Text Available In this work the response of Tomato plants cv. Micro-Tom to nanoparticles (NPs treatment was investigated. Tomato seedlings were grown in hydroponic condition and NPs treatments were carried out by adding Fe3O4 or TiO2 NPs to nutrient solution. At the end of treatments, NPs root uptake and tissue deposition were investigated using Environmental Scanning Electron Microscope, equipped with energy dispersive spectroscopy for chemical identification. At morphological level, one week after the beginning of NP treatment, seedlings grown with high concentration of TiO2 NPs showed an abnormal proliferation of root hairs, as compared to the control seedlings and to the seedlings exposed to Fe3O4 NPs, Shoot morphology did not differ in tomato seedlings grown under different conditions and no symptoms of toxicity were observed in NP-treated plants. In order to analyse genetic effects of NPs treatments, RNA transcription was studied in roots of NP-exposed and control plants by Illumina RNA sequencing, evidencing the induction of transposable elements.

  20. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  1. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  2. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  3. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  4. Bioaccumulation of heavy metals and two organochlorine pesticides (DDT and BHC) in crops irrigated with secondary treated waste water.

    Science.gov (United States)

    Mishra, Virendra K; Upadhyay, Alka R; Tripathi, B D

    2009-09-01

    Four crop plants Oryza sativa (rice), Solanum melongena (brinjal), Spinacea oleracea (spinach) and Raphanus sativus (radish) were grown to study the impact of secondary treated municipal waste water irrigation. These plants were grown in three plots each of 0.5 ha, and irrigated with secondary treated waste water from a sewage treatment plant. Sludge from the same sewage treatment plant was applied as manure. Cultivated plants were analyzed for accumulation of heavy metals and pesticides. Results revealed the accumulation of six heavy metals cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu), nickel (Ni), and zinc (Zn) as well as two pesticides [1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane; DDT] and benzene hexa chloride (BHC). Order of the plants for the extent of bioaccumulation was S. oleracea > R. sativus > S. melongena > O. sativa. The study has shown the secondary treated waste water can be a source of contamination to the soil and plants.

  5. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Antoni Sánchez

    2011-04-01

    Full Text Available Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  6. Optimization of sol-gel medium for entrapment of acetylcholinesterase enzyme in biosensor for pesticide detection

    Science.gov (United States)

    Wijayanti, S. D.; Rahayu, F. S.; Widyaningsih, T. D.

    2018-03-01

    Pesticides are chemical substances used to kill and control pests or diseases that can damage crops. The use of pesticides should be done precisely because the accumulation of chemicals contained in pesticides can cause various health effects. Therefore, detection of pesticide residues on plants is important to reduce the risk of poisoning due to pesticide residues. Some of the conventional methods that have been done to detect pesticide residues have weaknesses among expensive tools, takes a long time, and are generally performed by trained laboratory technicians. Biosensors are analytical devices that can measure the quantitative or semi-quantitative targets of analyte by utilizing a bioreceptor such as enzyme. Several studies have shown that enzyme-based acetylcholinesterase-based biosensors can be used to detect pesticide residues in vegetable samples. The objective of this research was to get a proper silica based sol-gel formulation with molar ratio of H2O:TEOS and NaOH concentration as immobilization medium of acetylcholinesterase enzyme for biosensor application. Response Surface Methodology (RSM) was used in order to determine the interaction between the parameters studied and resulting responses which were amount and activity of acetylcholinesterase enzyme. Based on the research, the best result for immobilized enzyme activity was shown by molar ratio (H2O: TEOS) 1: 8 and 4 mM NaOH treatment.

  7. [Effects of pesticides and plant bio-stimulants on the germination of chlamydospores and in vitro development of the nematophagous fungus Pochonia chlamydosporia].

    Science.gov (United States)

    Ceiro, Wilson G; Arévalo, Jersys; Hidalgo-Díaz, Leopoldo

    2015-01-01

    The effects of pesticides and plant bio-stimulants used in protected vegetable production systems on the fungus Pochonia chlamydosporia are unknown. The effectiveness of P. chlamydosporia against Meloidogyne spp. could be affected by products used in protected vegetable production systems. Two in vitro assays were carried out to evaluate any potential effect that pesticides and bio-stimulants often used in these systems could have on the fungus. The effect on chlamydospore germination was evaluated in a first assay, and mycelia growth and sporulation in a second. With these results, the compatibility of each product with the fungus was determined. Chlamydospores germination was over 50% with the control, FitoMas E, Biobras-16 and Amidor. Lower results were observed with other products, with some of them even inhibiting germination completely. Fungal growth was potentiated by Biobras-16 to 106.23%, promoted up to 50-100% by the control, FitoMas E and Cuproflow, and was below 50% with the rest of the products.Cipermetrina, Benomilo, Zineb, Mitigan, Karate, FitoMas E and Amidor promoted fungal sporulation, which was below 50% with Cuproflow and completely inhibited by the other products. Fifty-four percent of the products evaluated were compatible with P. chlamydosporia, while 8% were toxic and 38%, very toxic. Cipermetrina, Karate, Amidor, Benomilo, Zineb, Mitigan and FitoMas E were compatible with P. chlamydosporia. If it is necessary to use any of the other products for integrated pest management in protected vegetable production systems, it is recommended to avoid direct contact with P. chlamydosporia. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  8. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... WW wastewater. WWTP wastewater treatment plant. List of symbols. bH, b'H. OHO endogenous respiration and death rates (/d). Additional subscripts T and 20 denote rates at T and 20oC fav, fat. OHO fraction of AS with respect to VSS and TSS. Additional subscripts i or e denote aerobic digester influent or ...

  9. Tropical American plants in the treatment of infectious diseases.

    Science.gov (United States)

    Dvorkin-Camiel, Lana; Whelan, Julia S

    2008-01-01

    The increasingly diverse U.S. immigrant populations and the growing use of medicinal herbs create a need for health care professionals to expand their knowledge in this area. This is a review of tropical plants, Annona Muricata, Artemisia absinthium, Cinchona officinalis, Illicium verum, Momordica charantia, Opuntia streptacantha, Schinus terebinthifolius, and Tabebuia avellanedae (impetiginosa), commonly used by Latino and Haitian populations for the treatment of infectious disease. All the eight plants discussed here have one or more of the following: antibacterial, antiviral, antifungal, or antiparasitic properties. All of these plants are primarily known and used in the tropical region, but they are also readily available for purchase in the United States, specifically in the ethnic markets. This review discusses their traditional uses, chemical constituents, proven scientific evidence, and toxicities.

  10. 77 FR 12295 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2012-02-29

    ... Agent, Ceres International LLC, on behalf of Consumo Em Verde S.A., Plant Biotechnology, Technology Park... potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide... 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing...

  11. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  12. Types of pesticides and determination of their residues

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2010-01-01

    The pesticide is any material or component used to protect from pests. Its toxic effect is related to the chemical structure, which can be divided into 3 types : 1- Metal pesticides : Sulphur, cupper, zinc, mercury; 2- Vegetal pesticides : advanced and less toxic to the general health; 3- Synthetic organo pesticides : organo chlorine, organophosphorous, carbamate and pyrethroids. Pesticides in the soil undergo biological dissociation according to their concentration and chemical structure. High concentration of the pesticides in the soil may lead to fertility decrease due to destruction of micro-organisms by the pesticides. Many methods are used to analyze the residues of pesticides in plant or soil : 1- Chromatographic methods : Gas chromatography, gas liquid chromatography and high performance liquid chromatography; 2- Spectroscopy methods : spectrophotometer and mass spectrometer; 3- Isotopic methods : based on tracers technique which is the most sensitive and accurate method and can estimate minor amounts of the pesticides. (author)

  13. High Rate Water Treatment Plant System: Successful Implementation

    Directory of Open Access Journals (Sweden)

    Mohajit Mohajit

    2015-10-01

    Full Text Available The High Rate Water Treatment Plant (HR-WTP system, which is inexpensive, effective and efficient, has been developed to reduce the common operational problems, and also as an alternative for the development of water treatment plant systems capacity in Indonesia. HR-WTP-system is superior to those of conventional WTP-systems in respect to its capacity, performance, as well as operational liability of the system.Mathematical model of the HR-WTP system had been developed and simulation using the mathematical model as well as field observation had been clarified.Implementation of HR-WTP-system in up-rating of the Dekeng-WTP system at PDAM Kota Bogor proved successful in increasing the plant capacity from its original of 500 Lps to more than 1200 Lps. Anothersuccessful application of HR-WTP-system was experienced in the upgrading and up-rating of the Pedindang-WTP system at PDAM Kota Pangkalpinang where the plant capacity can be increased from its original of 50 Lps to 300 Lps. The performance of the WTP-system was also significantly improved from poor performance to very good performance.

  14. Tax treatment of cogeneration plants; Steuerliche Behandlung von Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Niklas; Haats, Jochen [Becker Buettner Held, Muenchen (Germany)

    2011-06-14

    In a BMF letter dated from 14th March, 2011 (IV D 2 - S 7124/07/10002), the fiscal authority has used the decision of the Federal Fiscal Court (Munich, Federal Republic of Germany) from 18th December, 2008 (V R 80/07) as an opportunity to pronounce a business activity, the pre-tax deduction and assessment basis of the free withdrawal in the operation of combined heat and power plants (CHP plants) and in particular of cogeneration (CHP). In addition to the VAT treatment, the income tax treatment of CHP as amended by Financial Management has changed due to the majority decision of the director of the income tax department of the federal and state governments in 2010.

  15. THE TOXICITY OF SEWAGE FROM SELECTED MUNICIPAL SEWAGE TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Andrzej Butarewicz

    2015-07-01

    Full Text Available This paper presents the results of the toxicity of crude and purified sewage from three municipal sewage treatment plants located in the Podlaskie Voivodeship. The bioindicative analysis, based on the use of the Microtox M500 analyzer and Vibrio fischeri bacteria, has shown high or significant toxicity in all the raw wastewater samples, according to Persoone classification. Classification by Sawicki differentiates more the results of acute toxicity tests of crude sewage, because only 66% of samples were toxic. All treated wastewater samples showed no toxicity. The obtained results of the study indicate the efficacy of removing toxic compounds in waste water treatment plants based on the classic activated sludge technology and sequential reactors (SBR and no risk at discharging the treated sewage into the water of receivers.

  16. Modelling of an oil refinery wastewater treatment plant.

    Science.gov (United States)

    Pinzón Pardo, A L; Brdjanovic, D; Moussa, M S; López-Vázquez, C M; Meijer, S C F; Van Straten, H H A; Janssen, A J H; Amy, G; Van Loosdrecht, M C M

    2007-11-01

    The Activated Sludge Model No. 3 (ASM3) and Dutch calibration guidelines (STOWA) were evaluated in the modelling of an activated sludge system treating effluents from a large oil refinery. The plant was designed to remove suspended solids, organic matter and nitrogen from wastewater at an average water temperature of 34 degrees C. The plant consists of three tanks in series; the first two tanks operate in on-off aeration mode with pure oxygen for N-removal, whilst extra methanol is added for the denitrification, and the third tank is maintained as constantly aerobic. Calibration was performed based on a simplified influent characterisation and extra batch experiments (nitrification and denitrification). With the adjustment of only four parameters the model proved capable of describing the performance of the plant concerning both the liquid phase and the biomass. The model was further used to analyse possible modifications in the plant layout and optimize operational conditions in order to reduce operating costs. Modelling results indicated reduction in methanol dosage by implementing an idle time between aerobic and anoxic phases. In this way, surplus methanol was prevented from entering during the aerobic period. Moreover, simulations showed that the most cost-effective option regarding the denitrification process was a combined pre-post-denitrification scheme, without the need for enlarging existing basins. It can be concluded that although ASM3 and STOWA guidelines were originally developed for domestic wastewater application at a temperature range of 10 to 20 degrees C, they proved well capable of describing the performance of an oil refinery wastewater treatment plant operating at 34 degrees C. Moreover, the plant model proved useful for optimization of the plant performance regarding operational costs.

  17. A performance indicators system for urban wastewater treatment plants

    OpenAIRE

    Quadros, S.; Rosa, M. J.; Alegre, H.; Silva, C.

    2009-01-01

    The use of performance assessment systems (PAS) is an important tool to provide a cost-effective and sustainable management of wastewater treatment plants (WWTP). Despite many PAS have been developed in recent years, important aspects of WWTP evaluation are not yet considered. This paper presents the framework and the overall performance indicators of a PAS developed for urban WWTP. 8 8p DHA/NES 2009 11-13 Março 2009

  18. Health effects on nearby residents of a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Thornton, John; Anderson-Mahoney, P.M.; Takhar, Harpreet

    2003-01-01

    Objectives: The aim of the study was to evaluate the health status of nearby residents of a wood treatment plant who had sustained prolonged low-level environmental exposure to wood processing waste chemicals. Methods: A population of 1269 exposed residents who were plaintiffs or potential plaintiffs in a lawsuit against the wood treatment plant were evaluated by questionnaire for a health history and symptoms. A representative sample of 214 exposed subjects was included in the analysis. One hundred thirty-nine controls were selected from 479 unexposed volunteers and matched to the exposed subjects as closely as possible by gender and age. Subjects and controls completed additional questionnaires and were evaluated by a physician for medical history and physical examination, blood and urine testing, neurophysiological and neuropsychological studies, and respiratory testing. Environmental sampling for wood processing waste chemicals was carried out on soil and drainage ditch sediment in the exposed neighborhood. Results: The exposed subjects had significantly more cancer, respiratory, skin, and neurological health problems than the controls. The subjective responses on questionnaires and by physician histories revealed that the residents had a significantly greater prevalence of mucous membrane irritation, and skin and neurological symptoms, as well as cancer. (Exposed versus unexposed, cancer 10.0% versus 2.08%, bronchitis 17.8% versus 5.8%, and asthma by history 40.5% versus 11.0%) There were significantly more neurophysiologic abnormalities in adults of reaction time, trails A and B, and visual field defects. Conclusions: Adverse health effects were significantly more prevalent in long-term residents near a wood treatment plant than in controls. The results of this study suggest that plant emissions from wood treatment facilities should be reduced

  19. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  20. Study of wastewater treatment plants efficiency using radiotracers

    International Nuclear Information System (INIS)

    Dawi, W. D. A.

    2010-11-01

    This study was performed to investigate and diagnose hydrodynamic behavior of the Military Hospital wastewater treatment plant. The plant comprises two units of treatment, each of them has a separate system. The investigation was carried out using ''1''3''1I as a radiotracer. The concept of residence time distribution (RTD) was used to investigate the efficiency of the aeration tanks, secondary clarifiers and chlorine tanks. Preliminary treatment and modeling of the trace data was performed using two software package applied by the International Atomic Energy Agency (IAEA) namely 4621 counter version 1.0.0 and RTD software. Plug flow pattern (parallel flow) was detected in the aeration tank and secondary clarifier of system 1 in one unit, while no homogeneous mixing was observed in the chlorine tank. Short - circuiting (by - passing) was evident in the aeration tank of system 2 in the other unit, which significantly reduced the operating efficiency. The percentage of dead volumes clearly suggests that the aeration tank and secondary clarifier were well utilized in the whole plant. (Author)

  1. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  2. Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2010-03-01

    Full Text Available Many food products are subjected to quality control analyses for detection of surface residue/contaminants, and there is a trend of requiring more and more documentation and reporting by farmers regarding their use of pesticides. Recent outbreaks of food borne illnesses have been a major contributor to this trend. With a growing need for food safety measures and “smart applications” of insecticides, it is important to develop methods for rapid and accurate assessments of surface residues on food and feed items. As a model system, we investigated detection of a miticide applied to maize leaves and its miticidal bioactivity over time, and we compared two types of reflectance data: fourier transformed infrared (FTIR data and hyperspectral imaging (HI data. The miticide (bifenazate was applied at a commercial field rate to maize leaves in the field, with or without application of a surfactant, and with or without application of a simulated “rain event”. In addition, we collected FTIR and HI from untreated control leaves (total of five treatments. Maize leaf data were collected at seven time intervals from 0 to 48 hours after application. FTIR data were analyzed using conventional analysis of variance of miticide-specific vibration peaks. Two unique FTIR vibration peaks were associated with miticide application (1,700 cm−1 and 763 cm−1. The integrated intensities of these two peaks, miticide application, surfactant, rain event, time between miticide application, and rain event were used as explanatory variables in a linear multi-regression fit to spider mite mortality. The same linear multi-regression approach was applied to variogram parameters derived from HI data in five selected spectral bands (664, 683, 706, 740, and 747 nm. For each spectral band, we conducted a spatial structure analysis, and the three standard variogram parameters (“sill”, “range”, and “nugget” were examined as possible “indicators” of miticide

  3. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  4. Importance and toxicological effects of organophosphorus pesticides: A comprehensive review

    OpenAIRE

    M. Kazemi; A. M. Tahmasbi; R. Valizadeh; A. A. Naserian; M. M. Moheghi; A. Soni

    2012-01-01

    Environmental risk assessment is an estimate of the likelihood or probability of an adverse impact on the environment resulting from human activities such as applying of pesticides against of target pests (insects, plant pathogens, weeds, nematodes, microbes, mollusks, birds, mammals, fish and so on) in the agriculture. Since the Withdrawal of organochlorine pesticides from use, organophosphorus pesticides (OPs) have become the most widely used pesticides available today in the entire world e...

  5. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    Science.gov (United States)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  6. Radiation induced microbial pesticide

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Young Keun; Kim, Jae Sung; Kim, Jin Kyu; Lee, Sang Jae

    2000-01-01

    To control plant pathogenic fungi, 4 strains of bacteria (K1, K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 13 kinds of fungi. Mutants of K1 and YS1 strains were induced by gamma-ray radiation and showed promising antifungal activities. These wild type and mutants showed resistant against more than 27 kinds of commercial pesticides among 30 kinds of commercial pesticides test particularly, YS1-1006 mutant strain showed resistant against hydrogen oxide. And mutants had increased antifungal activity against Botryoshaeria dothidea. These results suggested that radiation could be an useful method for the induction of functional mutants. (author)

  7. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  8. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  9. Classification of crops grown in or imported into the European Union for pesticide residue assessment

    NARCIS (Netherlands)

    Velde-Koerts T van der; Muller E; Ossendorp BHC; Plantenziektenkundige dienst; SIR; Plantenziektenkundige Dienst

    2003-01-01

    An important aspect of food safety is the control of pesticide residues on food. Pesticide residue assessments are conducted to establish legal limits, known as maximum residue limits (MRLs), for pesticide residues in plant and animal commodities. In the EC guidelines for pesticide

  10. Wastewater-based epidemiology to assess pan-European pesticide exposure.

    Science.gov (United States)

    Rousis, Nikolaos I; Gracia-Lor, Emma; Zuccato, Ettore; Bade, Richard; Baz-Lomba, Jose Antonio; Castrignanò, Erika; Causanilles, Ana; Covaci, Adrian; de Voogt, Pim; Hernàndez, Félix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; Plósz, Benedek Gy; Ramin, Pedram; Ryu, Yeonsuk; Thomas, Kevin V; van Nuijs, Alexander; Yang, Zhugen; Castiglioni, Sara

    2017-09-15

    Human biomonitoring, i.e. the determination of chemicals and/or their metabolites in human specimens, is the most common and potent tool for assessing human exposure to pesticides, but it suffers from limitations such as high costs and biases in sampling. Wastewater-based epidemiology (WBE) is an innovative approach based on the chemical analysis of specific human metabolic excretion products (biomarkers) in wastewater, and provides objective and real-time information on xenobiotics directly or indirectly ingested by a population. This study applied the WBE approach for the first time to evaluate human exposure to pesticides in eight cities across Europe. 24 h-composite wastewater samples were collected from the main wastewater treatment plants and analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates and pyrethroids, by liquid chromatography-tandem mass spectrometry. The mass loads (mg/day/1000 inhabitants) were highest for organophosphates and lowest for triazines. Different patterns were observed among the cities and for the various classes of pesticides. Population weighted loads of specific biomarkers indicated higher exposure in Castellon, Milan, Copenhagen and Bristol for pyrethroids, and in Castellon, Bristol and Zurich for organophosphates. The lowest mass loads (mg/day/1000 inhabitants) were found in Utrecht and Oslo. These results were in agreement with several national statistics related to pesticides exposure such as pesticides sales. The daily intake of pyrethroids was estimated in each city and it was found to exceed the acceptable daily intake (ADI) only in one city (Castellon, Spain). This was the first large-scale application of WBE to monitor population exposure to pesticides. The results indicated that WBE can give new information about the "average exposure" of the population to pesticides, and is a useful complementary biomonitoring tool to study population-wide exposure to pesticides. Copyright

  11. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  12. Study of pesticides removal by processes used in Spain to produce drinking water; Eliminacion de plaguicidas mediante procesos utilizados en Espana para la produccion de agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, M. P.; Claver, A.; Miguel, N.; Ovelleiro, J. L.

    2007-07-01

    The aim of this research work is study the effectiveness of treatments habitually used in drinking water plants in plants to remove 44 pesticides detected systematically in Ebro river basin Applied techniques are: pre oxidation by chlorine or ozone, chemical precipitation with aluminium sulphate and activated carbon adsorption. The intensive treatment (preoxidation, coagulation.flocculation and activated carbon adsorption) is a few less effective with chlorine than with ozone although both treatments achieve average removal yields of studied pesticides high, about 90%. (Author) 35 refs.

  13. Multiresidue determination of pesticides in crop plants by the quick, easy, cheap, effective, rugged, and safe method and ultra-high-performance liquid chromatography tandem mass spectrometry using a calibration based on a single level standard addition in the sample.

    Science.gov (United States)

    Viera, Mariela S; Rizzetti, Tiele M; de Souza, Maiara P; Martins, Manoel L; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2017-12-01

    In this study, a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, optimized by a 2 3 full factorial design, was developed for the determination of 72 pesticides in plant parts of carrot, corn, melon, rice, soy, silage, tobacco, cassava, lettuce and wheat by ultra-high-performance liquid chromatographic tandem mass spectrometry (UHPLC-MS/MS). Considering the complexity of these matrices and the need of use calibration in matrix, a new calibration approach based on single level standard addition in the sample (SLSAS) was proposed in this work and compared with the matrix-matched calibration (MMC), the procedural standard calibration (PSC) and the diluted standard addition calibration (DSAC). All approaches presented satisfactory validation parameters with recoveries from 70 to 120% and relative standard deviations≤20%. SLSAS was the most practical from the evaluated approaches and proved to be an effective way of calibration. Method limit of detection were between 4.8 and 48μgkg -1 and limit of quantification were from 16 to 160μgkg -1 . Method application to different kinds of plants found residues of 20 pesticides that were quantified with z-scores values≤2 in comparison with other calibration approaches. The proposed QuEChERS method combined with UHPLC-MS/MS analysis and using an easy and effective calibration procedure presented satisfactory results for pesticide residues determination in different crop plants and is a good alternative for routine analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  15. Assessing human health risks from pesticide use in conventional and innovative cropping systems with the BROWSE model.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Kennedy, Marc C; Barriuso, Enrique; Alletto, Lionel; Justes, Eric; Munier-Jolain, Nicolas; Mamy, Laure

    2017-08-01

    Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency

  16. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  17. Investigation on the Fate of Some Pesticides and Their Effects on the Microbial Environment in Cultivation of Green gram (Vigna radiata), Mustard green (Brassica rapa) and Kale (Brassica oleracea)

    International Nuclear Information System (INIS)

    Theingi Nwe; Khin Maung Saing

    2010-12-01

    The main aim of the present work was to find out the persistence of some pesticide residues in some vegetable crops and to investigate the effect of pesticide on soil count. Edible parts of green gram, Mustard green and Kale were extracted and analyzed for the presence and degradation of applied pesticide residuse in relation to time. The pesticide residue concentration in plant samples were analyzed by UV spectrometry. According to UV result data, Acephate pesticide in stored green gram seeds was rapidly declined from 2.91mg/kg (two weeks after application) to 0.96mg/kg (three weeks after application). But, four weeks after application, Acephate residues were not detected in the seeds of green gram. In the seeds of green gram, Dimethoate pesticide residues were detected from 1.26mg/kg (one week after application) to 0.89mg/kg (four weeks after treatment). In Mustard green and Kale, Malathion pesticide residues were detected at day seven after application. But Chlorpyrifos pesticide residues were detected in both mustard green and kale at day three after application. Beyond day three, chlorpyrifos pesticide residues were not detected. The respective chemical residues have been partially identified by IR Spectrometry. These can be confirmed with IR absorption peaks that the residues are the utilized chemicals. According to IR data, it can be predicted whether pesticide residues remained or not in the samples.

  18. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  19. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  20. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  1. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  2. Polyphenols: planting the seeds of treatment for the metabolic syndrome.

    Science.gov (United States)

    Cherniack, E Paul

    2011-06-01

    Greater understanding about the pathogenesis of metabolic syndrome and potential causes suggests that plant polyphenols might be useful as a treatment. Dietary excess energy can be stored in adipocytes, leading to the release of proinflammatory cytokines and adipose-related hormones that cause vascular injury. Plant polyphenols, organic compounds found in numerous plant species and their fruits, are being actively studied as potential treatments for components of the metabolic syndrome. Individual polyphenols that have been examined include resveratrol, quercetin, epigallocathechin-3-gallate, and curcumin. Resveratrol lowers weight, blood pressure, glucose, and insulin resistance in rodents, and a human trial is currently underway. Quercetin decreases lipid and glucose levels in obese rats, and in a human investigation of subjects with the metabolic syndrome has lowered blood pressure without significant alteration of lipids. Epigallocathechin-3-gallate-induced weight loss has attenuated glucose levels and insulin resistance in rodents and improved hemoglobin A(1c) and lipid in human studies. Plant extracts also can be used. Grape seed and chokeberry extracts have decreased blood pressure and lipid levels in small human trials. Other human investigations have shown the beneficial effects of cocoa, coffee, carob, and Momordica charantia. Thus far, most studies have involved a small number of subjects and have been of short duration. Future studies should be designed to account for a disease process in which the pathogenic factors may take place for years before disease manifestations take place, the possibly limited bioavailability of polyphenols, and the potential need to provide combinations or modifications of polyphenols. Published by Elsevier Inc.

  3. Towards energy neutrality of wastewater treatment plants via deammonification process

    Science.gov (United States)

    Janiak, Kamil; Łojek, Andrzej; Muszyński-Huhajło, Mateusz

    2017-11-01

    Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load) in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.). With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  4. Towards energy neutrality of wastewater treatment plants via deammonification process

    Directory of Open Access Journals (Sweden)

    Janiak Kamil

    2017-01-01

    Full Text Available Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.. With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  5. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact o......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters.......Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact...... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters...

  6. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  7. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    OpenAIRE

    Shuai Shao; Hailin Mu; Fenglin Yang; Yun Zhang; Jinhua Li

    2016-01-01

    Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing...

  8. Homeopathic Treatment of Arabidopsis thaliana Plants Infected with Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Devika Shah-Rossi

    2009-01-01

    Full Text Available Homeopathic basic research is still in the screening phase to identify promising model systems that are adapted to the needs and peculiarities of homeopathic medicine and pharmacy. We investigated the potential of a common plant-pathogen system, Arabidopsis thaliana infected with the virulent bacteria Pseudomonas syringae, regarding its response towards a homeopathic treatment. A. thaliana plants were treated with homeopathic preparations before and after infection. Outcome measure was the number of P. syringae bacteria in the leaves of A. thaliana, assessed in randomized and blinded experiments. After a screening of 30 homeopathic preparations, we investigated the effect of Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol (a homeopathic complex remedy, and Biplantol 30x on the infection rate in five or six independent experiments in total. The screening yielded significant effects for four out of 30 tested preparations. In the repeated experimental series, only the homeopathic complex remedy Biplantol induced a significant reduction of the infection rate (p = 0.01; effect size, d = 0.38. None of the other four repeatedly tested preparations (Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol 30x yielded significant effects in the overall evaluation. This phytopathological model yielded a small to medium effect size and thus might be of interest for homeopathic basic research after further improvement. Compared to Bion (a common SAR inducer used as positive control, the magnitude of the treatment effect of Biplantol was about 50%. Thus, homeopathic formulations might have a potential for the treatment of plant diseases after further optimization. However, the ecological impact should be investigated more closely before widespread application.

  9. Determination of the priority substances regulated by 2000/60/EC and 2008/105/EC Directives in the surface waters supplying water treatment plants of Athens, Greece.

    Science.gov (United States)

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Thomaidis, Nikolaos S; Kotrikla, Anna Maria; Vagi, Maria C; Petsas, Andreas S; Lekkas, Demetris F; Lekkas, Themistokles D

    2017-03-21

    An investigation into the occurrence of priority substances regulated by 2000/60/EC Water Framework Directive and 2008/105/EC Directive was conducted for a period of one year in the surface water sources supplying the water treatment plants (WTPs) of Athens and in the raw water of WTPs. Samples from four reservoirs and four water treatment plants of Athens were taken seasonally. The substances are divided into seven specific groups, including eight volatile organic compounds (VOCs), diethylhexylphthalate, four organochlorine pesticides (OCPs), three organophosphorus/organonitrogen pesticides (OPPs/ONPs), four triazines and phenylurea herbicides, pentachlorophenol, and four metals. The aforementioned substances belong to different chemical categories, and different analytical methods were performed for their determination. The results showed that the surface waters that feed the WTPs of Athens are not burdened with significant levels of toxic substances identified as European Union (EU) priority substances. Atrazine, hexachlorocyclohexane, endosulfan, trifluralin, anthracene and 4-nonylphenol were occasionally observed at very low concentrations. Their presence in a limited number of cases could be attributed to waste disposal, agricultural activities, and to a limited industrial activity in the area nearby the water bodies.

  10. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.

    1992-01-01

    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  11. Plant-wide Control Strategy for Improving Produced Water Treatment

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2016-01-01

    This work focuses on investigation and development of an innovative Produced Water Treatment (PWT) technology for offshore oil & gas production by employing the model-based plant-wide control strategy. The key contributions lie in two folds: (i) the advanced anti-slug analysis and control...... quality in a continuous and real-time manner. However, this new solution relies on the availability of reliable Oilin-Water (OiW) real-time measuring technologies, which apparently are still quite challenging and un-matured....

  12. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  13. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  14. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  15. Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems.

    Science.gov (United States)

    Riaz, Ghazala; Tabinda, Amtul Bari; Iqbal, Shakir; Yasar, Abdullah; Abbas, Mateen; Khan, Abdul Muqeet; Mahfooz, Yusra; Baqar, Mujtaba

    2017-10-03

    Extensive use of Pesticides in agriculture and its surface runoff in river water is a major environmental concern. The present study evaluated the phytoremediation potential of Eichornia crassipes, Pistia strateotes and algae (Chaetomorpha sutoria, Sirogonium sticticum and Zygnema sp.) for organochlorine and pyrethroid pesticides. Water and plant samples were extracted by liquid phase and solid phase extraction respectively and analyzed by high-performance liquid chromatography. Eleven treatments (T1-T11) with and without plants were used for phytoremediation of organochlorine and pyrethroid pesticides. During the experiment, P. strateotes, E. crassipes and algae (C. sutoria, S. sticticum and Zygnema sp.) showed the highest removal efficiency with 62 (71% root, 29% shoot), 60 (67% root, 33% shoot), and 58% respectively for organochlorine and 76 (76% root, 24% shoot), 68 (69% root, 31% shoot), and 70% respectively for pyrethroids for the respective aquatic plants. Dissipation rate constant of treatments with plants (T2, T3, T5, T6, T8, and T9) was significantly higher (p plants (T10 and T11, control) for both organochlorine and pyrethroid. The bioconcentration factor of pyrethroid treatments (T3, T6, and T9) was significantly higher (p < 0.05) as compared to that of organochlorine treatments (T2, T5 and T8). The removal efficiency of E. crassipes, P. strateotes and algae (C. sutoria, S. sticticum and Zygnema sp.) for pyrethroids was significantly higher (p < 0.01) as compared to that of organochlorine.

  16. Bioimpact of application of pesticides with plant growth hormone (gibberellic acid on target and non-target microorganisms

    Directory of Open Access Journals (Sweden)

    Mohamed Abdullah Al Abboud

    2014-12-01

    Full Text Available The objective of this investigation was to determine the impacts of fungicide, insecticide, plant growth hormone (gibberellic acid on soil microbiota, and the growth characteristics of Aspergillus flavus. In the fungicide or insecticide mixed with plant growth hormone treated soil sample, the total viable number of soil microbiota was found to be higher than that of the soil treated with fungicide or insecticide alone. Moderate effect of insecticide used on the total number of fungi was observed. On the other hand the effect of insecticide on soil bacteria was more than effect of fungicide, and the negative effect of fungicide on soil bacteria was observed particularly at latent periods (15 and 20 days of application. A great sensitivity to fungicide and insecticide was observed in the case of nitrogen fixing bacteria. At 15 days after fungicide and insecticide application the adverse effect was found. Morphological deformations were clear in A. flavus cultivated on medium containing fungicide, the fungus failed to form conidiospores, conidiophores and vesicles. Intermediate and terminal outgrowths like blisters and terminal vesicle originate from hyphae. The addition of plant growth hormone reduced the effect of fungicide on fungus.

  17. Research of small house hold sewage treatment plant working

    Directory of Open Access Journals (Sweden)

    Ernesta Valeikaitė

    2015-10-01

    Full Text Available In Lithuania centralized municipal wastewater treatment technologies are applied quite effectively, but there is little evidence of the functioning of individual small wastewater treatment plants. The paper presents the small device AT-6, in the city of Vilnius, and the treated sewage results (BDS7, nitrate, ammonium, total nitrogen, total phosphorus and phosphate concentrations. Studies have shown that treated sewage indicators based on ammonium and nitrate ion concentrations are good. These substances are 2–10 times less than it can be in drinking water according to HN 24: 2003. Concentration of phosphates in the treated sewage ranged from 3.57 to 9.33 mg/L and exceeded the indicators, which were compared. The phosphorus environmental aspect is not dangerous, because treated sewage is not discharged into surface water bodies. Dealing from the pattern of biological indicators and enzymatic activity, the quality of activated sludge is good. Treated sewage does not impair the natural state.

  18. Surface treatments for material protection in nuclear power plants

    International Nuclear Information System (INIS)

    De, P.K.; Gadiyar, H.S.

    1987-01-01

    The paper highlights some of the surface treatment methods used in nuclear power plants to improve their performance. The corrosion resistance of zirconium alloys results from the formation of an adherent and protective film of ZrO 2 . Graphite coating of zircaloy-2 cladding minimizes the susceptibility to environmental induced cracking. Magnetite formation during the hot conditioning operation improves the corrosion resistance of carbon steel as well as controls the spread of radioactivity. It has been illustrated how the surface treatment is helpful for redistributing residual stress to facilitate conversion of tensile stress to compressive stress to mitigate failures due to stress corrosion and fatigue corrosion. Inhibitors and passivators can modify the surface conditions (in situ) of condenser tubes and cooling water systems. These aspects have been dealt in the text of the paper. (author). 8 refs., 3 figures

  19. The Waste Treatment Plant, a Work in Progress

    International Nuclear Information System (INIS)

    Hamel, W. F. Jr.; Duncan, G. M.

    2006-01-01

    There are many challenges in the design and construction of Department of Energy's (DOE) Waste Treatment and Immobilization Plant (WTP) at the Hanford site. The plant is being built to process some 55 million gallons of radioactive waste from 177 underground tanks. Engineering and construction are progressing on this largest project in the DOE complex. This paper describes some of WTP's principal recent challenges and opportunities and how they are being addressed to minimize impact on the project, enhance the capabilities of the facilities, and reduce risk. A significant new development in 2005 was the need to account for higher seismic accelerations than originally specified for the facility structures and equipment. Efforts have centered on continuing design and construction with minimal risk, while the final seismic design spectra was developed. Other challenges include development of an alternative cesium ion exchange resin to minimize the risk from reliance on a single product, implementing advanced analytical techniques to improve laboratory performance, adopting a thinner walled high level waste (HLW) canister to reduce waste volume and mission duration, and commissioning a comprehensive external flowsheet review of the design, along with its underpinning technologies, and projected plant operability. These challenges make it clear that WTP is a work in progress, but the challenges are being successfully resolved as the design and construction move on to completion. (authors)

  20. Plant phenolics in the prevention and treatment of cancer.

    Science.gov (United States)

    Wahle, Klaus W J; Brown, Iain; Rotondo, Dino; Heys, Steven D

    2010-01-01

    Epidemiological studies indicate that populations consuming high levels of plant derived foods have low incidence rates of various cancers. Recent findings implicate a variety of phytochemicals, including phenolics, in these anticancer properties. Both monophenolic and polyphenolic compounds from a large variety of plant foods, spices and beverages have been shown to inhibit or attenuate the initiation, progression and spread of cancers in cells in vitro and in animals in vivo. The cellular mechanisms that phenolics modulate to elicit these anticancer effects are multi-faceted and include regulation of growth factor-receptor interactions and cell signaling cascades, including kinases and transcription factors, that determine the expression of genes involved in cell cycle arrest, cell survival and apoptosis or programmed cell death. A major focus has been the inhibitory effects of phenolics on the stress-activated NF-KB and AP-1 signal cascades in cancer cells which are regarded as major therapeutic targets. Phenolics can enhance the body's immune system to recognize and destroy cancer cells as well as inhibiting the development of new blood vessels (angiogenesis) that is necessary for tumour growth. They also attenuate adhesiveness and invasiveness of cancer cells thereby reducing their metastatic potential. Augmentation of the efficacy ofstandard chemo- and radiotherapeutic treatment regimes and the prevention of resistance to these agents is another important effect of plant phenolics that warrants further research. Plant phenolics appear to have both preventative and treatment potential in combating cancer and warrant further, in-depth research. It is interesting that these effects of plant phenolics on cancer inhibition resemble effects reported for specific fatty acids (omega-3 PUFA, conjugated linoleic acids). Although phenolic effects in cells in vitro and in animal models are generally positive, observations from the less numerous human interventions are

  1. Limited dissemination of the wastewater treatment plant core resistome

    DEFF Research Database (Denmark)

    Munck, Christian; Albertsen, Mads; Telke, Amar

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissem......Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role...... in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes...... of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting...

  2. Engineering study radioactive liquid waste treatment plant refurbishment

    International Nuclear Information System (INIS)

    Suazo, I.L.

    1994-01-01

    This feasibility study will investigate the opportunities, restrictions and cost impact to refurbish the existing Radioactive Liquid Waste Treatment Plant (RLWTP) while utilizing the same basic criteria that was used in the development of the new Radioactive Liquid Waste Treatment Facility (RLWTF). The objective of this study is to perform a more in-depth analysis of refurbishing the existing than has been done in the past so as to provide a basis for comparison between refurbishing the existing or constructing a new. The existing plant is located at Technical Area 50 (TA-50) within the Los Alamos National Laboratory (LANL). The initial structure was built in 1963. Over the ensuing years, the building has been modified and several additions have been constructed. In 1966, laboratories, ion exchange and pretreatment functions were added. The decontamination and decommissioning activities and ventilation equipment were added in 1984. The following assumptions are the basic parameters considered in the development of a design concept to refurbish the RLWTP: (1) Allow continued operation of the during retrofit construction. (2) Design the necessary expansion within the site constraints. (3) Satisfy National Pollutant Discharge Elimination System (NPDES) and National Emission Standards for Hazardous Air Pollutants (NESHAPS) permit conditions and other environmental regulations. (4) Comply with present DOE Orders and building code requirements. The refurbishment concept is a phased demolition and construction process

  3. Control of pesticides 2003

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    . 3) Insecticides containing cypermethrin, deltamethrin, lambda-cyhalothrin, methoprene and cyromazine. 4) Plant growth regulators containing 1-napthylacetic acid. All products were examined for the content of the respective active ingredients and for the content of OPEO and NPEO. All samples but one...... containing methoprene complied with the accepted tolerance limits with respect to the content of the active ingredient as specified in Danish Statutory Order on pesticides. None of the 44 examined samples contained OPEO, but 5 of the samples contained NPEO. Three of these five samples were produced before...

  4. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge.

    Science.gov (United States)

    Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto

    2017-09-01

    This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg -1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Exposure assessment of residents living near a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Horsak, Randy D.; Parker, Frank M. III; Takhar, Harpreet

    2003-01-01

    We report the results of environmental sampling and modeling in a neighborhood adjacent to a wood processing plant. This plant used creosote and pentachlorophenol (PCP) to treat wood for over 70 years. Between 1999 and 2001, environmental samples were obtained to quantify the level of environmental contamination from the wood processing plant. Blood from 10 residents was measured for chlorinated dioxins and dibenzofurans. Soil sediment samples from drainage ditches and attic/dust samples from nearby residents' homes were tested for polychlorinated dioxins, furans, and polycyclic aromatic hydrocarbons (PAH). The dioxin congeners analysis of the 10 residents revealed elevated valued for octachlorodibenzo-p-dioxin and heptachlorodibenzo-p-dioxin compatible with PCP as the source. The levels of carcinogenic PAHs were higher than background levels and were similar to soil contamination on wood preserving sites. Wipe sampling in the kitchens of 11 homes revealed that 20 of the 33 samples were positive for octachlorinated dioxins with a mean value of 10.27 ng/m 2 . The soil, ditch samples, and positive wipe samples from the homes indicate a possible ongoing route of exposure to the contaminants in the homes of these residents. Modeled air exposure estimated for the wood processing waste chemicals indicate some air exposure to combustion products. The estimated air levels for benzo(a)pyrene and tetrachlorodibenzodiozin in this neighborhood exceeded the recommended levels for these compounds in some states. The quantitative data presented suggest a significant contamination of a neighborhood by wood processing waste chemicals. These findings suggest the need for more stringent regulations on waste discharges from wood treatment plants

  6. Health hazards related to Soba sewage treatment plant, Sudan

    Directory of Open Access Journals (Sweden)

    Rasha Osman Abdelwahab Abdelmoneim

    2017-12-01

    Full Text Available The aim of this study was to determine the health hazards acquired by the residents nearby Soba sewage treatment plant. A descriptive cross-sectional study was carried out in Soba locality, Khartoum, Sudan. An interviewer-administrated questionnaire was assigned to 462 residents of the area living in four geographically distributed squares around the sewage plant. The data was analyzed in SPSS; Cronbach’s alpha reliability scale of measurement was used to check the internal validity of six variables related to the quality of life. A logistic regression analysis was used to assess the relationship between the health hazards and the quality of life. Among the 462 residents, difficulty in breathing (37.9% and nausea (37.2 were the principal health hazards. Moreover, the residents had a satisfactory level of awareness (88.7% about the health hazards. The utmost impact on the quality of life was psychological (97.2%. It was statistically correlated with the reported factors, which impacted the quality of life in the district as revealed by the Cronbach’s alpha reliability test with absenteeism (P=0.026, disability (P=0.014, socialization (P=0.032 and death (P=0.016. A logistic regression analysis revealed chemical hazards had a statistically significant association (P<0.05 with quality of life of the residents of Soba district. The study strongly entails the fact that sewage treatment plants crave exceptional consideration from the concerned responsible authorities, together with the fact that the evolved health threats should be confronted with immense responsibility as soon as possible.

  7. Practical tracer investigations of pesticide residues in agricultural ecosystem

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    According to the FAO's latest estimates, the world food supply can only be guaranteed if the 1982 agricultural production is increased by approx. 50% by the year 2000. 2/3 of this production increase must be achieved on areas already under cultivation. This means that in addition to balanced mineral fertilization the use of pesticides will have to be intensively continued in order to fully exploit the improved yield potential of the cultivated plants achieved by breeding. The primary research objective is therefore to extend our knowledge of the uptake and effects of pesticides in the plant as well as their persistence in agricultural ecosystems in order to be able to apply them both more efficiently and more safely. The Institute of Radioagronomy at the Kernforschungsanlage Juelich GmbH (Juelich Nuclear Research Centre) is carrying out practical experiments into these problems using 14 C-labelled pesticides under field conditions. In this way statements will become possible on the uptake and residue situation in plants, translocation and metabolism in the soil, the balance in the year of application as well as on the uptake of untreated cultures in the crop rotation. Parallel to this, uptake after leaf spraying or after seed grain treatment is being studied under standardized conditions, as well as for example the mineralization, sorption and fixation of active substances and metabolites in the soil. Results from the past 12 years are being utilized as a basis for an evaluation of the state of knowledge. (orig.)

  8. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  9. Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP).

    Science.gov (United States)

    Martins, Joana; Peixe, Luísa; Vasconcelos, Vítor M

    2011-08-01

    Cyanobacteria may be important components of wastewater treatment plants' (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.

  10. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  11. Demasculinization of male fish by wastewater treatment plant effluent

    Science.gov (United States)

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  12. New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae, an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands

    Directory of Open Access Journals (Sweden)

    Mariana C. Ferreira

    2017-01-01

    Full Text Available Vellozia gigantea is a rare, ancient, and endemic neotropical plant present in the Brazilian Rupestrian grasslands. The dichloromethane extract of V. gigantea adventitious roots was phytotoxic against Lactuca sativa, Agrostis stolonifera, and Lemna paucicostata, and showed larvicidal activity against Aedes aegypti. Phytotoxicity bioassay-directed fractionation of the extract revealed one new isopimaradiene, 8(9,15-isopimaradien-1,3,7,11-tetraone, and three new cleistanthane diterpenoids, 7-oxo-8,11,13-cleistanthatrien-3-ol, 3,20-epoxy-7-oxo-8,11,13-cleistanthatrien-3-ol, and 20-nor-3,7-dioxo-1,8,11,13-cleistanthatetraen-10-ol. These new structures are proposed based on interpretation of 1H, 13C, COSY, NOESY, HSQC, and HMBC NMR data. 8(9,15-isopimaradien-1,3,7,11-tetraone was especially phytotoxic with an IC50 value (30 μM comparable to those of commercial herbicides clomazone, EPTC, and naptalam. In addition, 7-oxo-8,11,13-cleistanthatrien-3-ol provided 100% mortality at a concentration of 125 ppm against one-day-old Ae. aegypti larvae. Our results show that ancient and unique plants, like the endangered narrowly endemic neotropical species V. gigantea present in the Rupestrian grasslands, should also be protected because they can be sources of new bioactive compounds.

  13. Recognition and Management of Pesticide Poisonings. Third Edition.

    Science.gov (United States)

    Morgan, Donald P.

    This manual aids health professionals in recognizing and treating pesticide poisonings. Suggested treatments are appropriate for implementation in the small hospitals and clinics which usually receive the victims of pesticide poisoning. Classes of compounds covered include: (1) organophosphate cholinesterase-inhibiting pesticides; (2) carbamate…

  14. Occurrence and removal of estrogens in Brazilian wastewater treatment plants

    International Nuclear Information System (INIS)

    Pessoa, Germana P.; Souza, Neyliane C. de; Vidal, Carla B.; Alves, Joana A.C.; Firmino, Paulo Igor M.; Nascimento, Ronaldo F.; Santos, André B. dos

    2014-01-01

    This paper evaluated the occurrence and removal efficiency of four estrogenic hormones in five biological wastewater treatment plants (WWTPs), located in the State of Ceará, Brazil. The five WWTPs comprised: two systems consisted of one facultative pond followed by two maturation ponds, one facultative pond, one activated sludge (AS) system followed by a chlorination step, and one upflow anaerobic sludge blanket (UASB) reactor followed by a chlorination step. Estrogen occurrence showed a wide variation among the analyzed influent and effluent samples. Estrone (E1) showed the highest occurrence in the influent (76%), whereas both 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) presented a 52% occurrence, and the compound 17β-estradiol 17-acetate (E2-17A), a 32% one. The occurrence in the effluent samples was 48% for E1, 28% for E2, 12% for E2-17A, and 40% for EE2. The highest concentrations of E1 and EE2 hormones in the influent were 3050 and 3180 ng L −1 , respectively, whereas E2 and E2-17A had maximum concentrations of 776 and 2300 ng L −1 , respectively. The lowest efficiencies for the removal of estrogenic hormones were found in WWTP consisted of waste stabilization ponds, ranging from 54 to 79.9%. The high-rate systems (AS and UASB), which have chlorination as post-treatment, presented removal efficiencies of approximately 95%. - Highlights: • The occurrence of four endocrine disrupting chemicals was evaluated. • The removal efficiency of four hormones in low-cost plants was examined. • Estrogen occurrence showed a wide variation in influent and effluent samples. • Estrone showed the highest occurrence in the influent and the effluent samples. • WSP treatment was observed to be less effective for removing estrogens

  15. Occurrence and removal of estrogens in Brazilian wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Germana P. [Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Rua do Contorno, S/N Campus do Pici, Bl. 713, CEP: 60455-900, Fortaleza, CE (Brazil); Souza, Neyliane C. de [Department Sanitary and Environmental Engineering, State University of Paraíba, Rua Juvêncio Arruda, S/N, Campus Universitário, Bodocongó, CEP: 58109-790, Campina Grande, PB (Brazil); Vidal, Carla B.; Alves, Joana A.C.; Firmino, Paulo Igor M. [Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Rua do Contorno, S/N Campus do Pici, Bl. 713, CEP: 60455-900, Fortaleza, CE (Brazil); Nascimento, Ronaldo F. [Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Rua do Contorno, S/N Campus do Pici, Bl. 940, CEP: 60451-970, Fortaleza, CE (Brazil); Santos, André B. dos, E-mail: andre23@ufc.br [Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Rua do Contorno, S/N Campus do Pici, Bl. 713, CEP: 60455-900, Fortaleza, CE (Brazil)

    2014-08-15

    This paper evaluated the occurrence and removal efficiency of four estrogenic hormones in five biological wastewater treatment plants (WWTPs), located in the State of Ceará, Brazil. The five WWTPs comprised: two systems consisted of one facultative pond followed by two maturation ponds, one facultative pond, one activated sludge (AS) system followed by a chlorination step, and one upflow anaerobic sludge blanket (UASB) reactor followed by a chlorination step. Estrogen occurrence showed a wide variation among the analyzed influent and effluent samples. Estrone (E1) showed the highest occurrence in the influent (76%), whereas both 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) presented a 52% occurrence, and the compound 17β-estradiol 17-acetate (E2-17A), a 32% one. The occurrence in the effluent samples was 48% for E1, 28% for E2, 12% for E2-17A, and 40% for EE2. The highest concentrations of E1 and EE2 hormones in the influent were 3050 and 3180 ng L{sup −1}, respectively, whereas E2 and E2-17A had maximum concentrations of 776 and 2300 ng L{sup −1}, respectively. The lowest efficiencies for the removal of estrogenic hormones were found in WWTP consisted of waste stabilization ponds, ranging from 54 to 79.9%. The high-rate systems (AS and UASB), which have chlorination as post-treatment, presented removal efficiencies of approximately 95%. - Highlights: • The occurrence of four endocrine disrupting chemicals was evaluated. • The removal efficiency of four hormones in low-cost plants was examined. • Estrogen occurrence showed a wide variation in influent and effluent samples. • Estrone showed the highest occurrence in the influent and the effluent samples. • WSP treatment was observed to be less effective for removing estrogens.

  16. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract parasitoids of the diamondback moth to cabbage plants

    NARCIS (Netherlands)

    Charleston, D.S.; Gols, R.; Hordijk, C.A.; Kfir, R.; Vet, L.E.M.; Dicke, M.

    2006-01-01

    Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5®, were investigated for their impact on the flight response of two

  17. Use of labelled pesticides in pesticide research studies and problems in the interpretation of the data

    International Nuclear Information System (INIS)

    Sree Ramulu, U.S.; Krishnamoorthy, K.K.

    1980-01-01

    The introduction of labelled pesticides has helped to solve number of problems connected with the formation and degradation of pesticides, factors influencing the above, location of the metabolites in the plants etc. However in most of the studies, the active ingredient has been labelled and diluted and applied at the recommended doses. But the efficacy of the pesticide is modified by the method of formulation, nature of fillers, emulsifiers, solvents, size of droplets etc. Hence the utility as well as the limitations in the use of labelled pesticides in the formulations are discussed. Also due to the variations in the half life of the radioisotopes used for labelling, the use of labelled pesticides for long as well as short duration crops has also been indicated. Autoradiography has become an useful tool in studying the movement of pesticide in the plant, and insects and also locating the regions of high concentration of pesticides and their residues. Though useful, the production of artefacts caused by exudation of cell sap, and other exudates, thickness of samples, increasing time of contact in the case of low energy radioisotope labelled compounds etc. have prevented the use of this technique on a wide scale. The problems in the preparation of autoradiographs of the plant specimens treated with labelled pesticides are also discussed. (author)

  18. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography - MS/MS in various food matrices.

    Science.gov (United States)

    Danezis, G P; Anagnostopoulos, C J; Liapis, K; Koupparis, M A

    2016-10-26

    One of the recent trends in Analytical Chemistry is the development of economic, quick and easy hyphenated methods to be used in a field that includes analytes of different classes and physicochemical properties. In this work a multi-residue method was developed for the simultaneous determination of 28 xenobiotics (polar and hydrophilic) using hydrophilic interaction liquid chromatography technique (HILIC) coupled with triple quadrupole mass spectrometry (LC-MS/MS) technology. The scope of the method includes plant growth regulators (chlormequat, daminozide, diquat, maleic hydrazide, mepiquat, paraquat), pesticides (cyromazine, the metabolite of the fungicide propineb PTU (propylenethiourea), amitrole), various multiclass antibiotics (tetracyclines, sulfonamides quinolones, kasugamycin and mycotoxins (aflatoxin B1, B2, fumonisin B1 and ochratoxin A). Isolation of the analytes from the matrix was achieved with a fast and effective technique. The validation of the multi-residue method was performed at the levels: 10 μg/kg and 100 μg/kg in the following representative substrates: fruits-vegetables (apples, apricots, lettuce and onions), cereals and pulses (flour and chickpeas), animal products (milk and meat) and cereal based baby foods. The method was validated taking into consideration EU guidelines and showed acceptable linearity (r ≥ 0.99), accuracy with recoveries between 70 and 120% and precision with RSD ≤ 20% for the majority of the analytes studied. For the analytes that presented accuracy and precision values outside the acceptable limits the method still is able to serve as a semi-quantitative method. The matrix effect, the limits of detection and quantification were also estimated and compared with the current EU MRLs (Maximum Residue Levels) and FAO/WHO MLs (Maximum Levels) or CXLs (Codex Maximum Residue Limits). The combined and expanded uncertainty of the method for each analyte per substrate, was also estimated. Copyright © 2016 Elsevier B

  19. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    Science.gov (United States)

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document

  1. Evaluation of wastewater treatment plant at Khartoum refinery company

    International Nuclear Information System (INIS)

    Alnour, Y. A. M.

    2010-03-01

    A wastewater treatment plant has been established in Khartoum Refinery Company in order to treat 1800 meters cubic per day, and to meet the increase in the number of employees and the continued expansion of the company. The study aims to evaluate the performance of the station after a three years period of work, and calculate the efficiency of the station through the following variables: average removal of the biological oxygen demand, chemical oxygen demand, suspended solids and oils, by taking water samples before and after treatment, every week for two month, analysis of samples were conducted in the central laboratory at KRC. The determination of the station efficiency revealed that the station is working well. Treated water characteristics are in conformity with the specifications set by the world Organization Health. It is also proved to be suitable for use in irrigation the amount of water entering to treatment is very large (1500 cubic meters), which lead to dilution of the BOD, COD, SS and oils concentrations. The reason being misuse of water by employees in addition to the large number of damage in the water pipes. The station must be re-evaluated after a certain (5 years) period to determine the impact of future increases of employees, and it is effect on the efficiency of the station. It is recommended to improve the behaviour of employees regarding the use of water, so as to reduce the dilution. (Author)

  2. Plant-wide modelling and control of nitrous oxide emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo

    % of those CO2 equivalents comes from N2O emissions. It becomes therefore relevant, within the context of reducing the carbon footprint of wastewater treatment (WWT) systems, to develop control strategies aimed at the minimization of the emissions of this gas. Till now, few operation strategies have been....... However, in full-scale continuously-aerated wastewater treatment systems such control strategies cannot be implemented. Furthermore, the available control strategies developed for N2O emissions are not online, namely they do not change the operating conditions automatically as a function of on...... environments and a multi-criteria evaluation, taking into account not only the N2O emissions but also the effluent quality and the operational costs, is carried out. This is because the reduction of the carbon footprint of WWT plants cannot be achieved at the expense of worse effluent quality and unreasonably...

  3. The latest make-up water treatment plant for power plants

    International Nuclear Information System (INIS)

    Yokomizo, Yuichi

    1997-01-01

    As the change of the outside environment surrounding power stations, the strengthening of the environmental standard of water quality and the upgrading of required water quality standard are described. The reduction of colloidal silica in thermal power plant water and the reduction of iron and organic chlorine in PWR water are necessary. Recently it became difficult to secure water for power stations, and in dry season, the water for power stations is sometimes cut for securing livelihood and agricultural water. For the means of securing stable water source, the installation of seawater desalting plants increased. The types, the constitution of the plants and the operation performance are reported. Recently the water treatment technology using MF, UF and RO membranes has become to be adopted. The relation of the substances to be removed to the range of filtration of respective membranes is shown. The conventional method is the combination of coagulative sedimentation, filtration and ion exchange resin, but the membrane technology uses UF and RO membranes. The technical features of UF (ultrafiltration) and RO (reverse osmosis) membrane facilities and deaerating membrane are explained. (K.I.)

  4. Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP).

    Science.gov (United States)

    Drewnowski, Jakub; Remiszewska-Skwarek, Anna; Fernandez-Morales, Francisco Jesus

    2018-02-21

    In this work, the effect of the improvement carried out at a large-scale wastewater treatment plant (WWTP) was evaluated, by means of modelling works, with the aim to determine the influence of the modernization over the process performance. After modernization, the energy consumption due to the aeration decreased about a 20% maintaining the effluent quality. In order to double-check the good effluent quality, modelling works were carried out at the full-scale plant. After calibration, the model was applied to the upgraded full-scale plant obtaining deviations lower than 10%. Then, the performance of the main biochemical processes was evaluated in terms of oxygen uptake rate (OUR), ammonia uptake rate (AUR), and chemical oxygen demand (COD) consumption. The rate of the main processes depending on the aeration, that is OUR and AUR, were about 22 gO 2 /(kg VSS·h) and 2.9 gN/(kg VSS·h), respectively.

  5. 76 FR 35861 - Safety Culture at the Waste Treatment and Immobilization Plant

    Science.gov (United States)

    2011-06-20

    ... Treatment and Immobilization Plant AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice... Immobilization Plant located at the Hanford site in the state of Washington. DATES: Comments, data, views, or... Treatment and Immobilization Plant Pursuant to 42 U.S.C. Sec. 2286a(a)(5) Atomic Energy Act of 1954, As...

  6. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  7. The Identification, Analysis, and Treatment of Odor Nuisance Released from Wastewater Treatment Plants

    OpenAIRE

    Zhou, Yubin

    2017-01-01

    Odor nuisance has been a challenge to management of wastewater treatment plants (WWTPs) and endanger the relationship between these facilities and neighbors. A systematic methodology was developed to investigate and understand odor nuisances from WWTPs, and provide practical solutions to solve these problems. The study of this methodology includes the incorporation of both chemical and sensorial methods, optimization of sampling techniques, development of analytical methods for specific odora...

  8. Liquid waste treatment plant with e-beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kim, Yuri

    2003-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the laboratory of EB-TECH Co., many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000 m 3 /day of wastewater from 80,000 m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for Pan Asia Paper Co. Cheongwon Mill, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. The method for the removal of heavy metals from wastewater and other technologies are developed with the joint works with Institute of Physical Chemistry (IPC) of Russian Academy of Sciences. (author)

  9. Tracking influent inorganic suspended solids through wastewater treatment plants.

    Science.gov (United States)

    Ekama, G A; Wentzel, M C; Sötemann, S W

    2006-01-01

    From an experimental and theoretical investigation of the continuity of influent inorganic suspended solids (ISS) along the links connecting the primary settling tank (PST), fully aerobic or N removal activated sludge (AS) and anaerobic and aerobic sludge digestion unit operations, it was found that the influent wastewater (fixed) ISS concentration is conserved through primary sludge anaerobic digestion, activated sludge and aerobic digestion unit operations. However, the measured ISS flux at different stages through a series of wastewater treatment plant (WWTP) unit operations is not equal to the influent ISS flux, because the ordinary heterotrophic organisms (OHO) biomass contributes to the ISS flux by differing amounts depending on the active fraction of the VSS solids at that stage.

  10. Computational Analysis of Sedimentation Process in the Water Treatment Plant

    Science.gov (United States)

    Tulus; Suriati; Situmorang, M.; Zain, D. M.

    2017-09-01

    This study aims to determine how the distribution of sludge concentration and velocity of water flow in the water treatment plant in equilibrium state. The problems are solved by implementing the finite element method to a momentum transport equation which is a basic differential equation that is used for liquid-solid mixtures with high solid concentrations. In the finite element method, the flow field is broken down into a set of smaller fluid elements. The domain is considered as a container in the space of three-dimensional (3D). The sludge concentration distribution as well as the water flow velocity distribution in the inlet, central and outlet are different. The results of numerical computation are similar compared to the measurement results.

  11. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...... was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP1 (ASM1 & 3) and WWTP2 (ASM2d). The second set of models includes a reactive settler, which extends the description...... of the nonreactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive settler: 1...

  12. Limited dissemination of the wastewater treatment plant core resistome

    Science.gov (United States)

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O. A.

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome. PMID:26419330

  13. Modeling of biobasins of an oil refinery wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    RADOSTIN K. KUTSAROV

    2015-04-01

    Full Text Available The biobasins of the largest wastewater treatment plant (WWTP on the Balkans has been examined. Samples were taken four times from the inlet and outlet flow. The concentration of the total hydrocarbons, benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in the wastewater has been obtained by gas chromatography. The average experimental concentrations were used when the mass balance was made. The results indicate that about 60% of pollutants are emitted in the air, about 22% are assimilated through biodegradation, and nearly 18% leave WWTP with the purified water. The measured concentrations were also modeled by Water 9.3 program. Comparison between the measured amounts of pollution concentrations and those forecasted by the Water 9.3 program has been made.

  14. Plant-derived therapeutics for the treatment of metabolic syndrome.

    Science.gov (United States)

    Graf, Brittany L; Raskin, Ilya; Cefalu, William T; Ribnicky, David M

    2010-10-01

    Metabolic syndrome is defined as a set of coexisting metabolic disorders that increase an individual's likelihood of developing type 2 diabetes, cardiovascular disease and stroke. Medicinal plants, some of which have been used for thousands of years, serve as an excellent source of bioactive compounds for the treatment of metabolic syndrome because they contain a wide range of phytochemicals with diverse metabolic effects. In order for botanicals to be effectively used against metabolic syndrome, however, botanical preparations must be characterized and standardized through the identification of their active compounds and respective modes of action, followed by validation in controlled clinical trials with clearly defined endpoints. This review assesses examples of commonly known and partially characterized botanicals to describe specific considerations for the phytochemical, preclinical and clinical characterization of botanicals associated with metabolic syndrome.

  15. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of Central Wastewater Treatment Plant on the Environment

    International Nuclear Information System (INIS)

    Cackovic, M.; Marovic, G.; Pehnec, G.; Sencar, J.; Vadic, V.

    2013-01-01

    Project CUPOVZ (Zagreb Central Wastewater Treatment Plant) is the first concession for wastewater purification in Croatia. For the City of Zagreb this project provides compliance with EU ecological standards in the field of environmental protection and protection of waters. The construction of CUPOVZ has finished in 2007, and 'Zagrebaèke otpadne vode - Upravljanje i pogon d.o.o.' is responsible for its management, proper working and regular maintenance. The influence of the wastewater treatment plant on the environment has been monitored since the beginning of the construction in 2003. Monitoring includes radioactivity measurements and measurements of specific air pollutants. This paper presents the measuring results obtained at CUPOVZ in 2011. Measurements were carried out over four months; for thirty days in each season. Ionising radiation was measured using ALARA ED dosimeters (expressed here as mean daily absorbed dose rates). In 2011 average absorbed dose rate at CUPOVZ was 77 ± 4 nGyh -1 . Equivalent dose for population was assessed on yearly base 0.680 ± 0.064 mSv. Samples of ammonia (NH 3 ), hydrogen sulphide (H 2 S) and mercaptans (RSH) were collected by 24-hour sampling. Twenty-four-hour concentrations of ammonia ranged between 2.3 μg/m 3 and 23.0 μg/m 3 , concentrations of hydrogen sulphide were between 0 μg/m 3 and 17.8 μg/m 3 , while mercaptan concentrations ranged between 0 μg/m 3 and 0.93 μg/m 3 . H 2 S levels occasionally exceeded values set by Croatian air protection legislation.(author)

  17. Pesticide degradation in a 'biobed' composting substrate.

    Science.gov (United States)

    Fogg, Paul; Boxall, Alistair B A; Walker, Allan; Jukes, Andrew A

    2003-05-01

    Pesticides play an important role in the success of modern farming and food production. However, the release of pesticides to the environment arising from non-approved use, poor practice, illegal operations or misuse is increasingly recognised as contributing to water contamination. Biobeds appear to offer a cost-effective method for treating pesticide-contaminated waste. This study was performed to determine whether biobeds can degrade relatively complex pesticide mixtures when applied repeatedly. A pesticide mixture containing isoproturon, pendimethalin, chlorpyrifos, chlorothalonil, epoxiconazole and dimethoate was incubated in biomix and topsoil at concentrations to simulate pesticide disposal. Although the data suggest that interactions between pesticides are possible, the effects were of less significance in biomix than in topsoil. The same mixture was applied on three occasions at 30-day intervals. Degradation was significantly quicker in biomix than in topsoil. The rate of degradation, however, decreased with each additional treatment, possibly due to the toxicity of the pesticide mixture to the microbial community. Incubations with chlorothalonil and pendimethalin carried out in sterile and non-sterile biomix indicated that degradation, rather than irreversible adsorption to the matrix, was the main mechanism responsible for the reduction in recovered residues. Results from these experiments suggest that biobeds offer a viable means of treating pesticide waste.

  18. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Wang, C.X.; Wang, Z.J. [Chinese Academy of Science, Beijing (China). Ecoenvironmental Science Research Center

    2005-08-01

    Sewage and industrial effluents from biological treatment plant have been widely used for agricultural irrigation in north part of China. In the present study, field surveys were carried out in the farmlands irrigated by effluents from biological treatment plants that receive sewage wastewater and industrial discharges. Residues of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the soils irrigated using both ground water and effluents were compared. The origins of PAHs in the soils were discussed. The results showed that wastewater irrigation could cause accumulation of PAHs in soils close to the pollution discharge. Significantly higher concentrations of PAHs were observed in the sampling sites close to the entrance of main channel in contrast to those along branches and the reference sites. There was no significant relationship between the accumulation of persistent organic pollutants and organic matter content in soil (TOC). Soil contamination of these persistent organic pollutants as affected by effluent irrigation was characterized by the dominant accumulation of high-molecular-weight PAHs (HMW-PAHs). In the case study, concentration of benzo(a)pyrane (BaP, 45.6 ng/g), indeno(1,2,3-cd)pyrene (IcP, 86.3 ng/g), benzo(g,h,i)perlene (BgP, 66.9 ng/g) could exceed the limits of the soil quality standard for biodegraded soils. In identification of the sources, the IcP/BgP values of PAHs in soils were more close to that in air particulates from coal/coke source (1.09 {+-} 0.03 ng/g). Therefore, both of the PAHs residues in effluents and emission from a nearby coal/coke plant were responsible. Also in this case study, low levels of the OCPs were observed and were not of significant concern in this wastewater irrigation area.

  19. Double-planting can affect gains from weed control treatments

    Science.gov (United States)

    David B. South

    2010-01-01

    Double-planting is the practice of planting two seedlings at every planting spot. When both seedlings survive, then either the less vigorous seedling is removed or each seedling is given an equal chance of being removed. Some researchers double-plant so that tree growth among experimental plots is not affected by initial differences in stocking. However, double-...

  20. 75 FR 19387 - Pesticide Experimental Use Permit; Receipt of Application; Comment Request

    Science.gov (United States)

    2010-04-14

    ... working beef processing plant environment. A copy of the application and any information submitted is... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticide(s...

  1. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  2. transgenic plants

    African Journals Online (AJOL)

    been initiated in this area by the Global Pest. Resistance Management Programme located at. MSU. Through effective resistance management training, pesticide use patterns change, and the effective lift: span of pesticides and host plant resistance technology increases. Effective resistance management can mean reduced.

  3. Pesticides exposure in Pakistan: a review.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq; Sultana, Nargis

    2007-11-01

    This is the first systematic review of studies done since 1960, and to give an integrated picture of pesticides exposure to humans, animals, plants, waters, soils/sediments, atmosphere etc. in Pakistan. Authors have extracted data from different departments, published literature in research journals and National reports. Although the wide-spread usage of pesticides in Pakistan has controlled the pests, but like other countries, it has started causing environmental problems in the area. In some areas of Punjab and Sindh groundwater has been found contaminated and is constantly being under the process of contamination due to pesticide use. There is considerable evidence that farmers have overused and misused pesticides especially in cotton-growing areas. It is evident from the biological monitoring studies that farmers are at higher risk for acute and chronic health effects associated with pesticides due to occupational exposure. Furthermore, the intensive use of pesticides (higher sprays more than the recommended dose) in cotton areas involves a special risk for the field workers, pickers, and of an unacceptable residue concentration in cottonseed oil and cakes. The authors have also discussed the merits and demerits of different studies. The review will set the future course of action of different studies on pesticide exposure in Pakistan. Data limitations are still the major obstacle towards establishing clear environmental trends in Pakistan. The authors suggest that a reliable monitoring, assessment and reporting procedures shall be implemented in accordance with appropriate environmental policies, laws and regulations in order to minimize the pesticides exposure.

  4. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The

  5. Environmental aspects in plant protection practices of non-agricultural pesticide users: case study of communes and the ministry of public works and transport (MET) of the Walloon Region (Belgium).

    Science.gov (United States)

    Godeaux, D; Schiffers, B; Culot, M

    2008-01-01

    In order to gain a better understanding of non-agricultural pesticide use and to prepare the legislative and technical dossiers required under the Water Framework Directive, between October 2006 and March 2007, two surveys were conducted of 97 Walloon communes and 65 districts of the Walloon Ministry of Public Works and Transport (MET) (General Directorates for Motorways and Roads and for Waterway Infrastructure). The questionnaire (26 questions on six topics) was sent by e-mail or fax, with a response rate of 60 out of 97 communes and 33 out of 65 districts. This article describes the environmental aspects of the surveys (health-related aspects are the subject of separate article). The surveys have brought to light a number of good practices (including zero pesticides) and a growing awareness of environmental issues among non-agricultural users. However, bad habits, legislation infringements and a failure to follow good plant protection practice are still a problem and pose major environmental risks (in the form of water pollution from pesticides). Information, awareness-raising and training therefore remain a priority for non-agricultural users.

  6. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  7. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg.

    Science.gov (United States)

    Ajonina, Caroline; Buzie, Christopher; Rubiandini, Rafi Herfini; Otterpohl, Ralf

    2015-01-01

    Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk.

  8. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    Science.gov (United States)

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  9. Treatment of fly ash from power plants using thermal plasma

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Mayman

    2017-05-01

    Full Text Available Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  10. Diversity of microbiota found in coffee processing wastewater treatment plant.

    Science.gov (United States)

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  11. Non-persistent pesticides removal in constructed wetlands

    Science.gov (United States)

    Tu, Yue; Jiang, Lei; Li, Haixiang

    2018-03-01

    The heavy use of non-persistent pesticides, resulting in the accumulation of environment and destroy the aquatic environment. This paper presents the research status of using CWs to treat non-persistent pesticides in water. The removal mechanisms are mainly physical deposition, chemical hydrolysis and plant absorption. Analysis of the factors that affect the removal effect are mainly the nature of pesticides, HRT, plants. Some scholars have proposed that secondary products of non-persistent pesticides may be more harmful to the environment, However, the relevant reports are scarce.

  12. Beyond the conventional life cycle inventory in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo-Toja, Yago, E-mail: yago.lorenzo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Alfonsín, Carolina [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Amores, María José; Aldea, Xavier; Marin, Desirée [Cetaqua, Water Technology Centre, 08940 Cornellà de Llobregat, Barcelona (Spain); Moreira, María Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain)

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO{sub 2} emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. - Highlights: • The influence of LCI quality on the environmental assessment

  13. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption.

    Science.gov (United States)

    Houbraken, Michael; Spranghers, Thomas; De Clercq, Patrick; Cooreman-Algoed, Margot; Couchement, Tasmien; De Clercq, Griet; Verbeke, Sarah; Spanoghe, Pieter

    2016-06-15

    The use of pesticides contributes to the productivity and the quality of the cultivated crop. A large portion of the agricultural produce is not consumed as it is not an edible part or the quality of the product is too low. This waste of agricultural produce can be valorised as a substrate for the production of certain insects for human consumption. However, pesticides applied on the plants might accumulate during the life cycle of the insects fed on the waste materials and may cause a health risk to humans consuming the insects. Pesticide residues in larvae of the yellow mealworm, Tenebrio molitor, were investigated. We monitored the accumulation of pesticides in the larvae upon consumption of contaminated fresh produce. An increased uptake rate by the insects was found for pesticides with higher Kow-values. Excretion of pesticides by the insect was inversely related to the log(Kow) values of the pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Design for Wuhan Green sewage treatment plant using SBR activated sludge process

    OpenAIRE

    Tu, Guanyue

    2017-01-01

    The objective of the thesis project was to design a sewage treatment plant using Sequencing Batch Reactor(SBR) activated sludge process based on the requirements of Wuhan green sewage treatment plant. The main contents of the thesis are process comparison and selection,structure selection and plant layout arrangement. SBR process includes five phases,charging,aeration,sedimentation,discharge and standby process.SBR reactors treat the sewage from mechanical biological treatment facilities...

  15. Pesticide Environmental Stewardship Program (PESP)

    Science.gov (United States)

    PESP is an EPA partnership program that works with the nation's pesticide-user community to promote IPM practices. Pesticide users can reduce the risks from pests and pesticides. Members include organizations and companies in the pesticide-user community.

  16. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    International Nuclear Information System (INIS)

    Centofanti, Tiziana; McConnell, Laura L.; Chaney, Rufus L.; Beyer, W. Nelson; Andrade, Natasha A.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Anderson, Marya O.; Novak, Jeffrey M.

    2016-01-01

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18–39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations. - Highlights: • Historical applications of organochlorine pesticides are a risk to local ecosystems. • Low cost and sustainable mitigation measures are needed to reduce risks. • Organic matter rich amendments were added to contaminated soil. • Earthworms microcosms were used to measure bioaccumulation factors. • Aged composts were most effective at mitigating risks to ecosystems. - Incorporation of aged dairy manure and biosolids compost amendments is an effective, low cost approach to mitigate risks to terrestrial wildlife from organochlorine pesticides in soils.

  17. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Directory of Open Access Journals (Sweden)

    Christos A. Damalas

    2011-05-01

    Full Text Available Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms, many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence, and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization

  18. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Science.gov (United States)

    Damalas, Christos A.; Eleftherohorinos, Ilias G.

    2011-01-01

    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already

  19. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  20. Environmental impact of pesticides in Egypt.

    Science.gov (United States)

    Mansour, Sameeh A

    2008-01-01

    The first use of petroleum-derived pesticides in Egyptian agriculture was initiated in 1950. Early applications consisted of distributing insecticidal dusts containing DDT/BHC/S onto cotton fields. This practice was followed by use of toxaphene until 1961. Carbamates, organophosphates, and synthetic pyrethroids were subsequently used, mainly for applications to cotton. In addition to the use of about 1 million metric tons (t) of pesticides in the agricultural sector over a 50-yr period, specific health and environmental problems are documented in this review. Major problems represented and discussed in this review are human poisoning, incidental toxicity to farm animals, insect pest resistance, destruction of beneficial parasites and predators, contamination of food by pesticide residues, and pollution of environmental ecosystems. Several reports reveal that chlorinated hydrocarbon pesticide residues are still detectable in several environmental compartments; however, these residues are in decline. Since 1990, there is a growing movement toward reduced consumption of traditional pesticides and a tendency to expand use of biopesticides, including "Bt," and plant incorporated protectants (PIPs). On the other hand, DDT and lindane were used for indoor and hygienic purposes as early as 1952. Presently, indoor use of pesticides for pest control is widespread in Egypt. Accurate information concerning the types and amounts of Egyptian household pesticide use, or numbers of poisoning or contamination incidents, is unavailable. Generally, use of indoor pesticides is inadequately managed. The results of a survey of Egyptian farmers' attitudes toward pesticides and their behavior in using them garnered new insights as to how pesticides should be better controlled and regulated in Egypt.

  1. Environmental risk assessment of Polish wastewater treatment plant activity.

    Science.gov (United States)

    Kudłak, Błażej; Wieczerzak, Monika; Yotova, Galina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek

    2016-10-01

    Wastewater treatment plants (WWTPs) play an extremely important role in shaping modern society's environmental well-being and awareness, however only well operated and supervised systems can be considered as environmentally sustainable. For this reason, an attempt was undertaken to assess the environmental burden posed by WWTPs in major Polish cities by collecting water samples prior to and just after wastewater release points. Both classical and biological methods (Microtox(®), Ostracodtoxkit F™ and comet assay) were utilized to assess environmental impact of given WWTP. Interestingly, in some cases, water quality improvement indicated as a toxicity decrement toward one of the bio-indicating organisms makes water worse for others in the systems. This fact is particularly noticeable in case of Silesian cities where heavy industry and high population density is present. It proves that WWTP should undergo individual evaluation of pollutant removal efficiency and tuned to selectively remove pollutants of highest risk to surrounding regional ecosystems. Biotests again proved to be an extremely important tool to fully assess the impact of environmental stressors on water bodies receiving effluents from WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electrochemical disinfection of secondary wastewater treatment plant (WWTP) effluent.

    Science.gov (United States)

    Pérez, G; Gómez, P; Ibañez, R; Ortiz, I; Urtiaga, A M

    2010-01-01

    In this work the electrochemical disinfection of the effluent of a secondary wastewater treatment plant is investigated. In the experimental work, performed on-site with real effluents of the WWTP located in Vuelta Ostrera (Cantabria, Spain), boron-doped diamond (BDD) electrodes were employed. The initial concentration of E. coli in the effluent of the WWTP varied in the range 1.3 x 10⁴-5.2 x 10⁵ cfu/mL. The influence of two operation variables on the kinetics of E. coli deactivation was investigated: i) The applied current density was varied in the range J=40-120 mA/cm², showing first order kinetics, and linear dependency of the apparent kinetic constant with the applied current density; and ii) the chloride concentration was varied in the range 60-1,050 mg/L, showing that increasing chloride content also enhanced the kinetics of the E. coli deactivation. The latter parameter is particularly important in coastal areas, as in the case of the present study. The formation of disinfection by-products (DBPs) was followed by measuring the content of trihalomethanes (THMs) that nevertheless was maintained below 100 μg/L, so it can be concluded that the formation of DBPs is not a disadvantage of electrochemical disinfection of secondary effluents of WWTP.

  3. Temporal dynamics of antibiotics in wastewater treatment plant influent.

    Science.gov (United States)

    Coutu, Sylvain; Wyrsch, V; Wynn, H K; Rossi, L; Barry, D A

    2013-08-01

    A yearlong field experimental campaign was conducted to reveal time scales over which antibiotic fluxes vary in the influent of a wastewater treatment plant (WTP). In particular, sampling was carried out to ascertain the amplitudes of monthly, daily and hourly fluctuations of several antibiotics. A total of 180 samples was collected at the entrance of a WTP in Lausanne, Switzerland. Sample concentrations were multiplied by flow rate to obtain monthly, daily and hourly mass fluxes of six antibiotics (trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, clindamycin and metronidazole). Seasonality in mass fluxes was observed for all substances, with maximum values in winter being up to an order of magnitude higher than in summer. The hourly measurements of the mass flux of antibiotics were found to have a period of 12h. This was due to peaks in toilet use in the morning and early evening. In particular, the morning peak in flushing coincided with high concentrations (and hence high mass fluxes) due to overnight accumulation of substances in urine. However, little variation was observed in the average daily flux. Consequently, fluctuations in mass fluxes of antibiotics were mainly evident at the monthly and hourly time scales, with little variation on the day-week time scale. These results can aid in optimizing removal strategies and future sampling campaigns focused on antibiotics in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  5. Toxicity Evaluation of Wastewater Treatment Plant Effluents Using Daphnia magna

    Directory of Open Access Journals (Sweden)

    H Movahedian, B Bina, GH Asghari

    2005-04-01

    Full Text Available Toxicity evaluation is an important parameter in wastewater quality monitoring as it provides the complete response of test organisms to all compounds in wastewater. The water flea Daphnia magna straus is the most commonly used zooplankton in toxicological tests. The objective of this study was to evaluate the acute toxicity of effluents from different units of Isfahan Wastewater Treatment Plant (IWTP. The samples were taken from four different physical and biological units. The acute toxicity tests were determined using Daphnia magna. The immobility of Daphnia was determined after 48h. Toxicity results showed that 48h-LC50 and ATU values for raw wastewater were 30% (v/v and 3.33, respectively. It was also found that LC50 values after 48 h for preliminary, primary, and secondary effluents were 32%, 52% and 85% (v/v, respectively. The ATU values for these effluents were 3.1, 1.9, and 1.8, correspondingly. The efficiency levels of preliminary, primary, and secondary units for removal of toxicity were found as 6%, 38.9% and 8%, in that order. Overall, the present investigation indicated that toxicity removal by up to 50% might be achieved in IWPT. Based on the obtained results and regarding the improvement of water quality standards, coupled with public expectations in Iran, it is necessary to consider more stringent water quality policies for regular monitoring and toxicity assessment.

  6. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    Science.gov (United States)

    Centofantia, Tiziana; McConnell, Laura L.; Chaney, Rufus L.; Beyer, W. Nelson; Andradea, Natasha A.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Anderson, Marya O.; Novak, J. M.; Jackson, Dana

    2015-01-01

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18–39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations.

  7. A Comparative Analysis of Pesticides Production, Consumption, and Foreign Trade

    OpenAIRE

    Koltsov, A.

    1990-01-01

    The production, consumption and foreign trade of pesticides are important sectors of the chemical industry in particular, and of the national economy as a whole. The pesticides sector has a positive impact on increasing crop yields and a negative effect on the environment as a pollutant hazardous to plants, humans, etc. To analyze the place and role of pesticides in the national economy, we gathered a large amount of data from sources including national and international statistical yearbooks...

  8. European Union policy on pesticides: implications for agriculture in Ireland.

    Science.gov (United States)

    Jess, Stephen; Kildea, Steven; Moody, Aidan; Rennick, Gordon; Murchie, Archie K; Cooke, Louise R

    2014-11-01

    European Community (EC) legislation has limited the availability of pesticide active substances used in effective plant protection products. The Pesticide Authorisation Directive 91/414/EEC introduced the principle of risk assessment for approval of pesticide active substances. This principle was modified by the introduction of Regulation (EC) 1107/2009, which applies hazard, the intrinsic toxicity of the active substance, rather than risk, the potential for hazard to occur, as the approval criterion. Potential impacts of EC pesticide legislation on agriculture in Ireland are summarised. While these will significantly impact on pesticide availability in the medium to long term, regulations associated with water quality (Water Framework Directive 2000/60/EC and Drinking Water Directive 1998/83/EC) have the potential to restrict pesticide use more immediately, as concerns regarding public health and economic costs associated with removing pesticides from water increase. This rationale will further reduce the availability of effective pesticide active substances, directly affecting crop protection and increasing pesticide resistance within pest and disease populations. In addition, water quality requirements may also impact on important active substances used in plant protection in Ireland. The future challenge for agriculture in Ireland is to sustain production and profitability using reduced pesticide inputs within a framework of integrated pest management. © 2014 Society of Chemical Industry.

  9. Organochlorine Pesticides in the Environment

    Science.gov (United States)

    Stickel, L.F.

    1968-01-01

    Each year for nearly 20 years, thousands of pounds of persistent organochlorine pesticides have been applied to outdoor areas in many countries. These compounds may last for a very long time in the environment, and be carried by wind, water, and animals to places far distant from where they are used. As a result, most living organisms now contain organochlorine residues. This paper constitutes a selective review of the literature concerning the occurrence, distribution, and effects of organochlorines in the environment. Highest concentrations generally occur in carnivorous species. Thus predatory and fish-eating birds ordinarily have higher residues than do herbivores; quantities are similar in birds of similar habits in different countries. Any segment of the ecosystem - marshland, pond, forest, or field - receives various amounts and kinds of pesticides at irregular intervals. The different animals absorb, detoxify, store, and excrete pesticides at different rates. Different degrees of magnification of pesticide residues by living organisms in an environment are the practical result of many interactions that are far more complex than implied by the statement of magnification up the food chain. These magnifications may be millions of times from water to mud or only a few times from food to first consumer. Direct mortality of wild animals as an aftermath of recommended pesticide treatments has been recorded in the literature of numerous countries. However, accidents and carelessness also accompany pesticide use on a percentage basis and are a part of the problem. More subtle effects on the size and species composition of populations are more difficult to perceive in time to effect remedies. The possibility of ecological effects being mediated through changes in physiology and behavior has received some attention and has resulted in some disquieting findings. These include discovery of the activity of organochlorines in stimulating the breakdown of hormones or in

  10. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  11. Evaluating Application of Innovative Technologies to the Operation of a Wastewater Treatment Plant

    National Research Council Canada - National Science Library

    Eick, John

    1999-01-01

    An Advanced Wastewater Treatment Plant (AWTP) was installed at Camp Lejeune, NC, that incorporated tertiary treatment processes designed to protect the nutrient-sensitive nature of the receiving stream, the New River...

  12. Treatment of plants with gaseous ethylene and gaseous inhibitors of ethylene action

    Science.gov (United States)

    Ethylene is an interesting plant hormone to work with. It’s a gas! Literally. And this affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some ...

  13. A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.

    Science.gov (United States)

    Stottler, Stag and Associates, San Antonio, TX.

    This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…

  14. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.; Balcazar, M. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, C.P. 52045 Estado de Mexico (Mexico); Colin, A. [Universidad Autonoma del Estado de Mexico, Toluca (Mexico); Tavera, L. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2002-07-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  15. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    CERN Document Server

    Moreno, J; Colin, A; Tavera, L

    2002-01-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  16. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA.

    Science.gov (United States)

    Sadaria, Akash M; Sutton, Rebecca; Moran, Kelly D; Teerlink, Jennifer; Brown, Jackson Vanfleet; Halden, Rolf U

    2017-06-01

    Urban pest control insecticides-specifically fipronil and its 4 major degradates (fipronil sulfone, sulfide, desulfinyl, and amide), as well as imidacloprid-were monitored during drought conditions in 8 San Francisco Bay (San Francisco, CA, USA) wastewater treatment plants (WWTPs). In influent and effluent, ubiquitous detections were obtained in units of ng/L for fipronil (13-88 ng/L), fipronil sulfone (1-28 ng/L), fipronil sulfide (1-5 ng/L), and imidacloprid (58-306 ng/L). Partitioning was also investigated; in influent, 100% of imidacloprid and 62 ± 9% of total fiproles (fipronil and degradates) were present in the dissolved state, with the balance being bound to filter-removable particulates. Targeted insecticides persisted during wastewater treatment, regardless of treatment technology utilized (imidacloprid: 93 ± 17%; total fiproles: 65 ± 11% remaining), with partitioning into sludge (3.7-151.1 μg/kg dry wt as fipronil) accounting for minor losses of total fiproles entering WWTPs. The load of total fiproles was fairly consistent across the facilities but fiprole speciation varied. This first regional study on fiprole and imidacloprid occurrences in raw and treated California sewage revealed ubiquity and marked persistence to conventional treatment of both phenylpyrazole and neonicotinoid compounds. Flea and tick control agents for pets are identified as potential sources of pesticides in sewage meriting further investigation and inclusion in chemical-specific risk assessments. Environ Toxicol Chem 2017;36:1473-1482. © 2016 SETAC. © 2016 SETAC.

  17. Pesticides poisoning

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    Pesticides are chemical toxicants which are used to kill by their toxic actions, the pest organisms, known to incur significant economic losses or threaten human life, his health and that of his domesticated animals. These toxicants are seldom species-specific. The presence of these or their metabolites may scientific be vouched not only in the environment they are used, but in the entire ecosystem, in the subsoil, in the underwater reservoirs and in the food chain of all non-target species including man, his friends i.e. predator and parasite organisms which be uses against the pests, and in his cherished domesticated animals. In the present paper a survey is made of different groups of toxic chemicals generally used to manage pests, in the ecosystem, food chain and tissues and body parts of non-target species including man and the ones dear to him. Toxicology and biochemistry of these toxic materials and their important metabolites are also briefly discussed with special reference to ways and means through which these poison the above non-target species. (author)

  18. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MC eff ) indicated no unacceptable risk for any of the individual chemicals, while MC eff /PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and

  19. Indoor and outdoor determination of pesticides in air by ion mobility spectrometry.

    Science.gov (United States)

    Gallart-Mateu, D; Armenta, S; de la Guardia, M

    2016-12-01

    The use of ion mobility spectrometry (IMS) has been evaluated as analytical methodology to detect and evaluate the occupational exposure to pesticides. The developed IMS methodology was used, in positive and negative modes, to determine the presence of pesticides in air and to evaluate possible inhalation exposures of workers and users based on active sampling on Teflon membranes and direct thermal desorption IMS. The negative IMS mode was used to determine bensulfuron, clorpyrifos, diniconazole, diuron, flutolanil and imidacloprid, while the positive mode was employed to evaluate formetanate, metalaxyl, metamitrone, metribuzin, paclobutrazol and pirimicarb. The IMS measurements provided limits of detection from 8pg to 600pg. Indoor air samples, from phytosanitary plants, and outdoor samples, obtained from pesticide treatments in a local farm, were analysed providing pesticide air concentrations in the range of 0.04 to>0.25mgm -3 . Occupational exposure of workers and pesticide users were evaluated and compared with values recommended by the authorities, providing useful information to improve the prevention programs in the phytosanitary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pesticide Product Label System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the...

  1. National Pesticide Standard Repository

    Science.gov (United States)

    EPA's National Pesticide Standards Repository collects and maintains an inventory of analytical “standards” of registered pesticides in the United States, as well as some that are not currently registered for food and product testing and monitoring.

  2. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    Science.gov (United States)

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  3. Impact of an estrogenic sewage treatment plant effluent on life-history traits of the freshwater amphipod Gammarus pulex.

    Science.gov (United States)

    Schneider, Ilona; Oehlmann, Jörg; Oetken, Matthias

    2015-01-01

    Despite efforts to upgrade sewage treatment plants (STPs) in the last decades, STPs are still a major source for the contamination of surface waters, including emerging pollutants such as pesticides, pharmaceuticals, personal care products and endocrine disrupting chemicals (EDCs). Because many of these substances are not completely removed in conventional STPs they are regularly detected in surface waters where they have the potential to affect local macroinvertebrate communities. The objective of the current work was to investigate the impact of an estrogenic wastewater effluent on the key life-history traits of the freshwater amphipod Gammarus pulex. G. pulex was exposed in artificial indoor flow-channels under constant conditions to different wastewater concentrations (0%, 33%, 66%, 100%). In parallel the estrogenic activity of wastewater samples was determined using the yeast estrogen screen (YES). Estrogenic activities in the STP effluent were up to 38.6 ng/L estradiol equivalents (EEQ). Amphipods exhibited an increasing body length with increasing wastewater concentrations. Furthermore, we observed a shift of the sex ratio in favour of females, a significantly increased fraction of brooding females and increased fecundity indices with increasing wastewater concentrations. The increased body length is likely to be attributed to the additional nutrient supply while the occurrence of EDCs in the wastewater is the probable cause for the altered sex ratio and fecundity in exposed Gammarus cohorts.

  4. Nephrotoxic Effects of Pesticides

    OpenAIRE

    Gönültaş, Tülin; Aytaç, Necdet; Akbaba, Muhsin

    2018-01-01

    Pesticidesare used extensively throughout the world and, in recent years, their use hasincreased considerably. Pesticides are responsible for several adverse effectson human health, and they represent a potential risk to human. Liver and kidneyare firstly most harmed tissues by pesticides, because pesticides are removedfrom the body by being metabolized in the liver and kidney main road. A broad rangeof pesticides, including organophosphates, organochlorines, carbamates,pyrethroids and triazi...

  5. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were collected from the effluents discharge from Chanchaga water treatment plant into upstream and down stream of the receiving river monthly for six month. Samples were analyzed in the laboratory for microbial counts and ...

  6. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  9. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  10. OptiPhy, a technical-economic optimisation model for improving the management of plant protection practices in agriculture: a decision-support tool for controlling the toxicity risks related to pesticides.

    Science.gov (United States)

    Mghirbi, Oussama; LE Grusse, Philippe; Fabre, Jacques; Mandart, Elisabeth; Bord, Jean-Paul

    2017-03-01

    The health, environmental and socio-economic issues related to the massive use of plant protection products are a concern for all the stakeholders involved in the agricultural sector. These stakeholders, including farmers and territorial actors, have expressed a need for decision-support tools for the management of diffuse pollution related to plant protection practices and their impacts. To meet the needs expressed by the public authorities and the territorial actors for such decision-support tools, we have developed a technical-economic model "OptiPhy" for risk mitigation based on indicators of pesticide toxicity risk to applicator health (IRSA) and to the environment (IRTE), under the constraint of suitable economic outcomes. This technical-economic optimisation model is based on linear programming techniques and offers various scenarios to help the different actors in choosing plant protection products, depending on their different levels of constraints and aspirations. The health and environmental risk indicators can be broken down into sub-indicators so that management can be tailored to the context. This model for technical-economic optimisation and management of plant protection practices can analyse scenarios for the reduction of pesticide-related risks by proposing combinations of substitution PPPs, according to criteria of efficiency, economic performance and vulnerability of the natural environment. The results of the scenarios obtained on real ITKs in different cropping systems show that it is possible to reduce the PPP pressure (TFI) and reduce toxicity risks to applicator health (IRSA) and to the environment (IRTE) by up to approximately 50 %.

  11. Medicinal plants used for the treatment of tuberculosis by Bapedi ...

    African Journals Online (AJOL)

    The majority (61.9%) are indigenous and the rest are exotics, found near homes as weeds or cultivated in home gardens as ornamentals or food plants. ... The therapeutic claims made on medicinal plants used to treat TB by the Bapedi traditional healers are well supported by literature, with 71.4% of the species having ...

  12. A survey of warning colours of pesticides.

    Science.gov (United States)

    Thierauf, Annette; Weinmann, Wolfgang; Auwärter, Volker; Vennemann, Benedikt; Bohnert, Michael

    2010-12-01

    Pesticides are used to protect plants all over the world. Their increasing specificity has been due to utilization of differences in biochemical processes, and has been accompanied by lower human toxicity. Nevertheless cases of poisoning are still observed. While certain toxic substances are provided with characteristic dyes or pigments to facilitate easy identification, no overview of pesticide colors exists. The lack of available product information prompted us to explore the colors and dyes of pesticides registered in Germany, most of which are commercially available worldwide. A compilation of the colors and odors of 207 pesticide products is presented. While some of the substances can be identified by their physical characteristics, in other cases, the range of possibilities can be narrowed by their nature and color.

  13. Determination of Pesticide Residues in Cannabis Smoke

    Directory of Open Access Journals (Sweden)

    Nicholas Sullivan

    2013-01-01

    Full Text Available The present study was conducted in order to quantify to what extent cannabis consumers may be exposed to pesticide and other chemical residues through inhaled mainstream cannabis smoke. Three different smoking devices were evaluated in order to provide a generalized data set representative of pesticide exposures possible for medical cannabis users. Three different pesticides, bifenthrin, diazinon, and permethrin, along with the plant growth regulator paclobutrazol, which are readily available to cultivators in commercial products, were investigated in the experiment. Smoke generated from the smoking devices was condensed in tandem chilled gas traps and analyzed with gas chromatography-mass spectrometry (GC-MS. Recoveries of residues were as high as 69.5% depending on the device used and the component investigated, suggesting that the potential of pesticide and chemical residue exposures to cannabis users is substantial and may pose a significant toxicological threat in the absence of adequate regulatory frameworks.

  14. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against gram-positive bacteria.

    Science.gov (United States)

    Caceres, A; Alvarez, A V; Ovando, A E; Samayoa, B E

    1991-02-01

    Respiratory ailments are important causes of morbidity and mortality in developing countries. Ethnobotanical surveys and literature reviews conducted in Guatemala during 1986-88 showed that 234 plants from 75 families, most of them of American origin, have been used for the treatment of respiratory ailments. Three Gram-positive bacteria causing respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) were used to screen 68 of the most commonly used plants for activity. Twenty-eight of these (41.2%) inhibited the growth of one or more of the bacteria tested. Staphylococcus aureus was inhibited by 18 of the plant extracts, while 7 extracts were effective against Streptococcus pyogenes. Plants of American origin which exhibited antibacterial activity were: Gnaphalium viscosum, Lippia alba, Lippia dulcis, Physalis philadelphica, Satureja brownei, Solanum nigrescens and Tagetes lucida. These preliminary in vitro results provide scientific basis for the use of these plants against bacterial respiratory infections.

  15. Assessment of pesticide use and application practices in tomato ...

    African Journals Online (AJOL)

    Pesticides are of great benefit to agriculture in Kenya by decreasing crop losses due to insects, weeds, plant diseases, rodents and other pests. They also save lives through control of disease carrying insects and increase the quality and quantity of agricultural produce. However, pesticides are poisons and can affect ...

  16. Pesticides Used in Forestry and Their Impacts on Water Quality

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    Approximately 2.1 billion kg active ingredient (a.i.) of pesticides are used in the US annually. Of the 890 a.i.s registered, 20 account for more than 95% of the pesticide used in forest vegetation management. Forest vegetation management, in the broader context, includes such activities as plant protection from animal, insect, bacterial, and fimgal damage. It also...

  17. Pesticide Application and Safety Training. Sale Publication 4070.

    Science.gov (United States)

    Stimmann, M. W.

    This guide is intended for use by those preparing to take the California certification examination for commercial pesticide applicators. The first chapter gives brief descriptions and illustrations of types of insect, vertebrate, plant, and microorganism pests. The other chapters cover pesticide classifications and formulations, labels and…

  18. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    Directory of Open Access Journals (Sweden)

    J. L. Campos

    2016-01-01

    Full Text Available The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG such as carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O, as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1 minimization through the change of operational conditions, (2 treatment of the gaseous streams, and (3 prevention by applying new configurations and processes to remove both organic matter and pollutants. In current WWTPs, to modify the operational conditions of existing units reveals itself as possibly the most economical way to decrease N2O and CO2 emissions without deterioration of effluent quality. Nowadays the treatment of the gaseous streams containing the GHG seems to be a not suitable option due to the high capital costs of systems involved to capture and clean them. The change of WWTP configuration by using microalgae or partial nitritation-Anammox processes to remove ammonia from wastewater, instead of conventional nitrification-denitrification processes, can significantly reduce the GHG emissions and the energy consumed. However, the area required in the case of microalgae systems and the current lack of information about stability of partial nitritation-Anammox processes operating in the main stream of the WWTP are factors to be considered.

  19. Leachate Treatment from Sarimukti Landfill Using Ozone with Sludge from Water Treatment Plant as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yudha Ramdhani Muhammad

    2018-01-01

    Full Text Available Leachate is the liquid waste from anaerobic decomposition in a landfill. The ozonation process can be used for leachate treatment. Sludge from sedimentation in water treatment plant contains 5.96% of Al and 9.35% of Si which can affect of its cation exchange capacity and affects the active site in the catalyst. This study aims to determine the effectivity of sludge in the ozonation process to treat leachate. A 1,5 L semi-batch reactor containing 1 L sample was used in this experiment with the rate of oxygen supply was at 4 L/min taken from ambient air. Two groups of sludge weighing 1.5 grams, 3.0 grams and 4.5 grams were used and activate with physically and chemically activated. The best result was obtained by the physically activated sludge with mass of 4.5 gram O3-L-4,5 AF. The differences of removal efficiency between O3-L-4,5 AF with the control (O3 for turbidity were respectively 13.02% and 7.81%, for EC were 10.57% and 8.29%, for COD were 49.44% and 37.50%, and for residual ozone concentration at the end of contact time were 7.6 mg/L and 9.7 mg/L. It can be concluded that activaed sludge and ozonation can be used as a catalyst in leachate treatment.

  20. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    energy markets and prices. We are in the process of upgrading the current control system to prepare a flexible operation and Smart Grid market integration. The prototype system will be tested online at a plant in Denmark, that in the current market could save up to 300.000 DKK/year in electricity costs....... The solution is based on existing available online plant sensors and is expected to be part of Krüger’s advanced process control software STAR control® already used at plants worldwide....

  1. "Recovery of Iron Coagulants From Tehran Water-Treatment-Plant Sludge for Reusing in Textile Wastewater Treatment"

    OpenAIRE

    F Vaezi; F Batebi

    2001-01-01

    Most of the water treatment plants in Iran discharge their sludge to the environment whithout consideration of possible side effects. Since this kind of sludge is generally considered pollutant, the sludge treatment of water industry seems to be an essential task. Obviously theweight and volume of solids produced during the coagulation process are much more than other wastes of water treatment operations, and their treatment is much more difficult as well. Besides, this sludge contains metal ...

  2. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    Science.gov (United States)

    Swancar, Amy

    1996-01-01

    ground water on seven of nine golf courses studied and in 52 percent of ground-water samples. Concentrations of pesticides in ground water at golf courses were generally low relative to gegulatory guidelines, with 45 percent of all occurrences at trace levels and 92 percent under the maximum contaminant level or guidance concentration. Two of the nine golf courses had not pesticides detectedc in ground water, and a third had only two occurrences, which were at trace levels. Theere were six occurrences of concentrations of arsenic, bentazon, or acephate in ground water above the maximum contaminant level or guidance concentration. Additionally, the following pesticides were detected in ground water from at least one site; atrazine, bromacil, diazinon, diuron, fenamiphos, metalaxyl, oxydiazon, and simazine. The fenamiphos metabolites, fenamiphos sulfoxide and fenamiphos sulfone, also were detected in ground water. Samples from wastewater treatment plants contained trace levels of atrazine, bromacil, and gamma-BHC (Lindane). Concentrations of pesticides in golf course ponds were generally low, with 60 percent of all occurrences at trace levels. All but one of the pond samples collected during the study contained at least one pesticide. The most commonly occurring pesticides in golf course ponds were: atrazine, fenamiphos and fenamiphos sulfoxide, and diuron.

  3. Evaluation of Five Treatment Plants for the Removal of Microcystins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Manuel Álvarez Cortiñas

    2017-06-01

    Full Text Available In Galicia there are supplies that collect water from reservoirs showing growth of cyanobacteria that could produce toxins. The drinking water treatment plants (DWTPs of these supplies should provide adequate treatment and be subjected to maintenance. WHO guidelines make recommendations on the most suitable treatments for removing microcystins. The Department of Health developed a protocol of action against these events jointly with water basin authorities. 4 reservoirs and five treatment plants were identified for this study. The treatments of the plants, the maintenance carried out at the DWTPs and the results for sestonic and dissolved toxins analyzed by the Public Health Laboratory of Galicia in the reservoirs near the point of collection, before the treatment plants and after them, during the 2013-2014 biennium were evaluated.

  4. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units....... N2O emission factors ranged from general, measurement-based, site-specific CH4 and N2O emission factors for the five studied plants were in the upper range of the literature values and default emission factors applied...

  5. Atmospheric cold plasma jet for plant disease treatment

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  6. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  7. Pesticidal and pest repellency activities of a plant derived triterpenoid 2α,3β,21β,23,28-penta hydroxyl 12-oleanene against Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Alam Khan

    2014-01-01

    Full Text Available BACKGROUND: Tribolium castaneum (Herbst is a major pest of stored grain-based products, and cause severe damage to cereal grains throughout the world. The present investigation was aimed to determine the pesticidal and pest repellent activities of 2α,3β,21β,23,28-penta hydroxyl 12-oleanene against T. castaneum. The compound 2α,3β,21β,23,28-penta hydroxyl 12-oleanene is a triterpenoid which was isolated from the roots of Laportea crenulata Gaud. Surface film technique was used for pesticidal screening, whereas, pest repellency property of the triterpenoid was determined by filter paper disc method. RESULTS: At 24 hours of exposure duration, significant mortality records (80% and 86% were observed at doses 0.88 and 1.77 mg/cm². No significant change in mortality records was observed when duration of exposure was increased up to 48 hours. The triterpenoid showed significant repellency activity at doses 0.47 and 0.94 mg/cm². CONCLUSION: These data suggest that the triterpenoid 2α,3β,21β,23,28-penta hydroxyl 12-oleanene possess both pesticidal and pest repellency activities against T. castaneum and can be used in controlling the pest of grain-based products.

  8. Pesticides and children

    International Nuclear Information System (INIS)

    Garry, Vincent F.

    2004-01-01

    Prevention and control of damage to health, crops, and property by insects, fungi, and noxious weeds are the major goals of pesticide applications. As with use of any biologically active agent, pesticides have unwanted side-effects. In this review, we will examine the thesis that adverse pesticide effects are more likely to occur in children who are at special developmental and behavioral risk. Children's exposures to pesticides in the rural and urban settings and differences in their exposure patterns are discussed. The relative frequency of pesticide poisoning in children is examined. In this connection, most reported acute pesticide poisonings occur in children younger than age 5. The possible epidemiological relationships between parental pesticide use or exposure and the risk of adverse reproductive outcomes and childhood cancer are discussed. The level of consensus among these studies is examined. Current concerns regarding neurobehavioral toxicity and endocrine disruption in juxtaposition to the relative paucity of toxicant mechanism-based studies of children are explored

  9. Greenhouse gas emissions from municipal wastewater treatment plants

    Science.gov (United States)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly

  10. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    Science.gov (United States)

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  11. Pesticide use knowledge and practices: A gender differences in Nepal

    International Nuclear Information System (INIS)

    Atreya, Kishor

    2007-01-01

    It is important to understand gender difference on pesticide use knowledge, attitude and practices for identifying pesticide risks by gender and to recommend more gender-sensitive programs. However, very few studies have been conducted so far in Nepal. This study, thus, interviewed a total of 325 males and 109 females during 2005 to assess gender differences on pesticide use knowledge, attitude and practices. More than 50% females had never been to school and only <8% individuals were found trained in Integrated Pest Management (IPM). Almost all males and females did not smoke, drink and eat during pesticides application and also believed that pesticides are harmful to human health, livestock, plant diversity and their environment. However, there were gender differences on household decision on pesticides to be used (p<0.001), care of wind direction during spraying (p=0.032), prior knowledge on safety measures (p=0.016), reading and understanding of pesticides labels (p<0.001), awareness of the labels (p<0.001) and protective covers. Almost all respondents were aware of negative impacts of pesticide use on human health and environment irrespective of gender; however, females were at higher risk due to lower level of pesticide use safety and awareness. It is strongly recommended to initiate gender-sensitive educational and awareness activities, especially on pesticide use practices and safety precautions

  12. Classification of crops grown in or imported into the European Union for pesticide residue assessment

    OpenAIRE

    Velde-Koerts T van der; Muller E; Ossendorp BHC; Plantenziektenkundige dienst; SIR; Plantenziektenkundige Dienst

    2003-01-01

    An important aspect of food safety is the control of pesticide residues on food. Pesticide residue assessments are conducted to establish legal limits, known as maximum residue limits (MRLs), for pesticide residues in plant and animal commodities. In the EC guidelines for pesticide residue assessment, the so-called Lundehn document, agricultural crops are classified into groups in which results are considered to be comparable. Within these groups, the results for one crop may be extrapolated,...

  13. CANDI: A decision support system for management of agricultural pesticides with irrigation

    OpenAIRE

    Peralta, R. C.; Aly, A. H.

    1994-01-01

    The use of pesticides is an integral part of today's agriculture. Pesticides contribute significantly to improved crop productivity and to public health. Some pesticides, even in extremely low concentrations, can pose a risk to human health and to the environment. Applied to plants or soil, pesticides can leach to the groundwater or may be washed off by surface water. A portion of water that has fallen on the earth, either from precipitation or irrigation, infiltrates the soil through pore sp...

  14. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  15. Promising pesticide results

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    wastewater. For example, DDT has been linked to diabetes and liver, pancreatic and breast cancer, and is a 'probable' carcinogen, according to the US Environmental Protection Agency.” DDT has a half-life of up to 30 years in soil, which means only half its toxicity is naturally depleted through chemical breakdown over a 30-year period. Arsenic, however, which was used in DDT pesticides, does not breakdown at all over time. Moreover, epidemiological studies suggest that DDT and DDE cause serious illness. “Perhaps more worrying is the finding that DDT and its breakdown products are transported from warmer to colder climates around the world by a process called global distillation, thereby concentrating in colder climates and accumulating in the food web, leading to long-term ecological damage,” said Barros. By reducing DDT in the environment, these findings have the potential to aid in the sustainable global management of legacy pesticide contamination. For example, Virotec notes there are some 347 former cattle dip sites inthe region of Kyogle Shire Council in northern NSW, 259 in Lismore Shire Council and a further 211 in Richmond Valley Shire Council. The number of sheep dip sites throughout NSW and Queensland, which are also contaminated with arsenic and DDT, are of a comparable scale. Barros went on to point out that while the treatment of arsenic in soil is relatively straightforward, irrespective of whether treated in situ or ex situ, the treatment of DDT in soil is highly problematic. “Most soil treatments designed to destroy organic compounds in soil involve the introduction of key bacterial agents, because lower sources of energy simply do not have the requisite power to breakdown the long-chain organic molecules. However, as DDT is a pesticide it tends to kill both indigenous and introduced bacteria before they can break down the DDT molecule, thereby eliminating the source of potential remediation,” said Barros. Another challenge relates to the

  16. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    Wen, S.-J.; Hwang, S.-L.; Tsai, C.-M.

    1980-01-01

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10 -5 -10 -3 μCi/cm 3 . The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  17. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko

    2006-01-01

    treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios......In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...... streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where...

  18. Treatment with aquatic plants by a Bagdi tribal healer of Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohsina Mukti

    2013-01-01

    Full Text Available Context: Tribal healers mainly use land plants in their medicinal formulations; use of aquatic plants has been scarcely reported. Aims: The aim of the present study was to conduct an ethnomedicinal survey working with a Bagdi tribal healer of Rajbari District, Bangladesh. Settings and Design: The survey was carried out working with a Bagdi healer, who lived alone in the wetlands of Rajbari District and used primarily aquatic plants for treatment. Materials and Methods: Interview of the healer was carried out with the help of a semi-structured questionnaire and the guided field-walk method. Results: The Bagdi healer was observed to use seven different aquatic plant species coming from five plant families for treatment of ailments such as hemorrhoids, tonsillitis, heart disorders, burning sensations and pain in hands or legs, blurred vision, debility, sexual weakness in males, chronic dysentery, infertility in women, constipation, chronic leucorrhea, blackness and foul odor of menstrual blood, hair loss, graying of hair and to keep the head cool. One plant was used to treat what the healer mentioned as "evil eye", this refers to their belief in black-magic. Conclusions: This is the first reported instance of a Bagdi healer who primarily uses aquatic plants for treatment. Ethnomedicinal uses of a number of the plants used by the Bagdi healer have been reported for other places in India and Pakistan. Taken together, the various uses of the different plant species opens up scientific possibilities of new drug discoveries from the plants.

  19. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant.

    Science.gov (United States)

    Boopathy, Raj

    2017-09-01

    The presence of antibiotic resistant bacteria and antibiotic resistance genes in rural sewage treatment plants are not well reported in the literature. The aim of the present study was to study the frequency occurrence of Methicillin Resistant Staphylococcus aureus (MRSA) in a rural sewage treatment plant. This study was conducted using raw sewage as well as treated sewage from a small town sewage treatment plant in rural southeast Louisiana of USA. Results showed the presence of MRSA consistently in both raw and treated sewage. The presence of mecA gene responsible for methicillin resistance was confirmed in the raw and treated sewage water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Energy cogeneration in urban sewage treatment plants; Cogeneracion energetica en depuradoras de aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Cazurra Perez, T.

    1997-04-01

    The management of the sludge it produces is a decisive element in designing and urban waste water treatment plant. For a single plant, or several plants that are geographically close together heat-drying the sludge is a viable post-treatment for joint sludge productions of 18,000 tons per year which is the equivalent of a 40,000 m``3/day treatment flow. Energy cogeneration substantially cuts the cost of providing the heat required, enabling the total cost of drying the sludge to be reduced by 40% and creating additional economic benefits. This makes the thermal drying/cogeneration combination and attractive proposition. (Author)

  1. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  2. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  3. The effects of glyphosate and aminopyralid on an artifical plant communities

    Science.gov (United States)

    The US EPA has responsibility for registration of pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The potential adverse effects of pesticides to nontarget terrestrial plant communities are a concern that must be addressed in the pesticide regist...

  4. Uptake of three antibiotics and an anti-epileptic drug by wheat plants spray irrigated with wastewater treatment plant effluent

    Science.gov (United States)

    With rising demands on water supplies necessitating water reuse, wastewater treatment plant (WWTP) effluent is often used to irrigate agricultural lands. Emerging contaminants, like pharmaceuticals and personal care products (PPCPs), are frequently found in effluent due to limited removal during WWT...

  5. Inland treatment of the brine generated from reverse osmosis advanced membrane wastewater treatment plant using epuvalisation system.

    Science.gov (United States)

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A; Khamis, Mustafa; Karaman, Rafik

    2013-07-03

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43-, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment.

  6. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    Directory of Open Access Journals (Sweden)

    Mohannad Qurie

    2013-07-01

    Full Text Available The reverse osmosis (RO brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF membrane filters (20 kD and 100 kD cutoffs followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012. At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC, PO43−, chemical oxygen demand (COD and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment.

  7. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    Science.gov (United States)

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A.; Khamis, Mustafa; Karaman, Rafik

    2013-01-01

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment. PMID:23823802

  8. Environmental impact assessment of decommissioning treatment about radioactive model plant waste ore storage site

    International Nuclear Information System (INIS)

    Bei Xinyu

    2012-01-01

    Aiming at decommissioning treatment project of radioactive model plant waste ore storage site, based on the detailed investigations of source terms and project description, systematic environmental impacts have been identified. The environmental impacts both during decommissioning treatment, radioactive waste transportation and after treatment are assessed. Some specific environmental protection measures are proposed so as to minimize the adverse environmental impacts. (author)

  9. The Use of Dynamic Mathematical Models for Improving the Designs of Upgraded Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Nadja Hvala

    2017-03-01

    Full Text Available Mathematical models and simulation are becoming increasingly used tools in the optimization of wastewater treatment plants. In this paper, the use of these tools is presented for the wastewater treatment plant upgrading. Two case studies are presented, which will be upgraded for tertiary treatment to achieve effluent total nitrogen and total phosphorous concentrations below 10 mg/l and 1 mg/l, respectively. The plant performance after upgrading was assessed by first designing the process model, before upgrading the model for future operation under dynamic influent conditions. Long-term simulations revealed some bottlenecks in the upgraded plant performance and thus helped to improve the plant designs. In one case the total volume of the reactors was increased subsequently, while in the other case tighter denitrification control or additional reject water treatment was proposed. These results indicate that mathematical models can be considered as valuable tools to complement the established wastewater treatment plant design procedures. Advantages are gained by simulating the operation under dynamic operating conditions, precise wastewater characterization, as well as adjustment of stoichiometric and kinetic parameters to a particular wastewater treatment plant operation.

  10. Chemical aspects of the commissioning and early operation of the BNL pond water treatment plant

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.B.

    1981-11-01

    An account is given of the chemical aspects of the work done in commissioning and setting-to-work the pond water treatment plant at BNL. The plant is designed to maintain the fuel pond within the specified chemical conditions for Magnox fuel storage. In normal operation the treatment requirements are met by anion exchange, i.e. the carbonate and other impurity anions in the pond water are replaced by hydroxide held on an anion exchange resin. This method is referred to as ''anion only''. In the commissioning tests the performance of the plant was substantiated by passing simulated pond water of the correct chemical composition through the plant and monitoring the water quality at the plant outlet. During the first phase of operation on the pond itself the plant was operated in non-standard fashion to convert the chemistry from the previous ''carbonate'' regime to the required conditions. (author)

  11. Ethnobotanical survey of medicinal plants for the treatment of ...

    African Journals Online (AJOL)

    There is an increasing resistance of malaria parasites to cholroquine, one of the affordable and commonly used drugs for malaria in Nigeria. Therefore, the use of plants with anti-malaria properties is now very common in the country. Today, not much has been done to project antimalaria properties of indigenous medicinal ...

  12. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    Science.gov (United States)

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  13. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    Science.gov (United States)

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area.

  14. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  15. Isolation and Purification of Bacterial Strains from Treatment Plants for Effective and Efficient Bioconversion of Domestic Wastewater Sludge

    OpenAIRE

    K. C.A. Jalal; Md. Z.   Alam; Suleyman A.   Muyibi; P. Jamal

    2006-01-01

    Forty six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant, International Islamic University Malaysia (IIUM) treatment plant-1,-2 and 3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants respectively. The results showed that the h...

  16. Development of biofilters to treat the pesticides wastes from spraying applications.

    Science.gov (United States)

    Pigeon, O; de Vleeschouwer, C; Cors, F; Weickmans, B; de Ryckel, B; Pussemier, L; Debongnie, Ph; Culot, M

    2005-01-01

    Several studies carried out in Europe showed the importance of direct losses to the contamination of surface water by pesticides. These pesticides losses can occur at the farm site when the sprayer equipment is filled with the pesticide formulation (spills, overflowing, leaking) and during the clean-up (rinsing) of the sprayer after the treatment. In Belgium studies are carried out on biofilters to treat in an efficient way effluents containing pesticides. The biofilter substrate is elaborated from a homogenised mixture of local soil, chopped straw and peat or composted material, able to absorb or degrade the active substances. Biofilters consist in systems of 2 or 3 units depending on the spray equipment of the farmer and on the configuration of the farmyard. Each unit is made from a 1 m3 plastic container and the different units are stacked in a vertical pile and connected between them using plastic valves and pipes. Eight pilot systems were installed in March 2002 in seven farms and in one agricultural school, all selected in the loamy region of Belgium specialised in arable crops such as cereals, sugar beets and vegetables. The efficacy (yield) of the systems was determined by measuring the balance of the inputs and outputs of the pesticides. Results were expressed in percent of pesticide retained on the biofilters. The results obtained after two years with 5 tracer pesticides (atrazine, carbofuran, diuron, lenacil and simazine) brought on the biofilter installations are very satisfactory since the percentage of retention is generally higher than 95% of the amount applied. In the beginning of 2004, ten new pilot biofilters were installed in several farms or agricultural technical centres (producing cereals, sugar beets, potatoes, vegetables, fruits or ornamental plants), and in a municipal maintenance service. Some biofilters were installed in duplicate in order to compare the efficacy of different substrates. The efficacy of the biofilters was studied for the

  17. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... as dissolve oxygen (DO), nitrates and suspended solids on the environment have been established for sewage plant effluents. However, little work has been done on determining the levels of these waste parameters in water treatment plant effluents (Abdulazeez, 2003). The production of portable water ...

  18. A review of medicinal plants used by the Basotho for treatment of ...

    African Journals Online (AJOL)

    Electronic databases such as Google Scholar, PubMed, and ScienceDirect were also used to obtain information on the antiinflammatory, antimicrobial, and phytochemical activities of the medicinal plants. Results and discussion: 57 plant species are utilised for the treatment of various skin ailments with a majority of them ...

  19. Invasive alien plants used in the treatment of HIV/AIDS-related ...

    African Journals Online (AJOL)

    Results: A total of 38 invasive alien plant species belonging to 23 families were recorded to be used in the treatment of HIV/AIDS related symptoms. The largest proportion of recorded invasive alien plants belonged to the family Asteraceae with 16%. Roots were the most frequently used parts constituting 35% followed ...

  20. Treatment of banana and potato plants with a new antifungal composition (European patent specification)

    NARCIS (Netherlands)

    Stark, J.; Rijn, van F.T.J.; Krieken, van der W.M.; Stevens, L.H.

    2010-01-01

    International publication number: WO 2009/077613 (25.06.2009 Gazette 2009/26) The present invention relates to the treatment of banana and potato plants with a composition containing natamycin and at least one phosphite containing compound

  1. NPDES Permit for the Blackfeet Community Water Treatment Plant in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030643, the Blackfeet Tribe is authorized to discharge from its Blackfoot Community Water Treatment Plant in Glacier County, Montana, to an unnamed intermittent stream which flows to Two Medicine River.

  2. NPDES Permit for Crow Municipal Rural & Industrial Pilot Water Treatment Plant in Montana

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  3. Evaluating Bioaerosol Emissions form in different parts of a Sanitary Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    M. Jahangiri

    2014-02-01

    .Conclusion: Wastewater treatment processes can contaminate the air surrounding the plant, particularly with bacteria bioaerosols. Therefore, it is necessary to control the emissions and protect the health of workers against risks arising from exposure to bioaerosols.

  4. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  5. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  6. Effect of exposure to wastewater treatment plant effluent on fathead minnow reproduction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adult fathead minnows were exposed to dilutions of a historically estrogenic wastewater treatment plant effluent in a 21-d reproduction study. This dataset is...

  7. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  8. Sewage Treatment Plant Points, Tutuila AS, 2009, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Across the United States, municipal wastewater treatment plants receive and treat sewage and other wastewater collected from homes, businesses, and industries. These...

  9. NPDES Permit for Mesa Verde National Park Water Treatment Plant in Colorado

    Science.gov (United States)

    Under NPDES permit number CO-0034462, the United States Department of the Interior, National Park Service is authorized to discharge from the Mesa Verde National Park water treatment plant, in Montezuma County, Colo.

  10. Notification: Hotline Complaint – Drinking Water Treatment Plant at the Fort Belknap Indian Community

    Science.gov (United States)

    Project #OA-FY13-0076, November 13, 2012. On March 22, 2012, the Office of Inspector General (OIG) received a hotline complaint on the construction of the Drinking Water Treatment Plant (DWTP) at the Fort Belknap Indian Community.

  11. Wastewater Treatment Plants Approved by Hawaii DOH, Hawaii, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class contains points indicating the centroid of the 189 TMKs in the state of Hawaii in which Hawaii DOH has approved a wastewater treatment plant,...

  12. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    Science.gov (United States)

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  13. Comparative Life Cycle Assessment and Cost Analysis of Bath Wastewater Treatment Plant Upgrades - slides

    Science.gov (United States)

    Many municipalities are facing the call to increase nutrient removal performance of their wastewater treatment plants in order to limit the impacts of eutrophication on the receiving waterbodies. The associated upgrades often demand investment in new technologies and increases in...

  14. Environmental Life Cycle Assessment and Cost Analysis of Bath, NY Wastewater Treatment Plant: Potential Upgrade Implications

    Science.gov (United States)

    Many communities across the U.S. are required to upgrade wastewater treatment plants (WWTP) to meet increasingly stringent nutrient effluent standards. However, increased capital, energy and chemical requirements of upgrades create potential trade-offs between eutrophication pot...

  15. Environmental Protection Agency (EPA) Facility Registry Service (FRS) Wastewater Treatment Plants

    Data.gov (United States)

    Department of Homeland Security — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS) and NPDES, along with Clean Watersheds Needs Survey...

  16. Emergy Analysis for the Sustainable Utilization of Biosolids Generated in a Municipal Wastewater Treatment Plant

    Science.gov (United States)

    This contribution describes the application of an emergy-based methodology for comparing two management alternatives of biosolids produced in a wastewater treatment plant. The current management practice of using biosolids as soil fertilizers was evaluated and compared to another...

  17. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  18. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of

  19. Pesticides and oncogenic modulation.

    Science.gov (United States)

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Plants used in Guatemala for the treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts.

    Science.gov (United States)

    Caceres, A; Lopez, B R; Giron, M A; Logemann, H

    1991-03-01

    Skin infections are common diseases in developing countries, of which dermatophytoses are of particular concern in the tropics, especially in infants. Through ethnobotanical surveys and literature review 100 plants were detected as being used in Guatemala for the treatment of dermatophytoses. Of these, 44 plants were screened for in vitro activity against the most common dermatophytes (Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes and Trichophyton rubrum). Results showed that aqueous extracts from 22 of the plants tested inhibit one or more of the dermatophytes. The most commonly inhibited dermatophytes were E. floccosum (43.2%), T. rubrum (36.0%), and T. mentagrophytes (31.8%); the less inhibited were M. canis (22.7%) and M. gypseum (24.0%). Plants of American origin which exhibited anti-dermatophyte activity were: Byrsonima crassifolia, Cassia grandis, Cassia occidentalis, Diphysa carthagenensis, Gliricidia sepium, Piscidia piscipula, Sambucus mexicana, Smilax regelii, Solanum americanum and Solanum nigrescens. Fungicidal and fungistatic activities as well as the minimal inhibitory concentration were demonstrated. These results provide a scientific basis for the use of these plants for the treatment of dermatophyte infections in man.