WorldWideScience

Sample records for treatment plant design

  1. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  2. Optimal design of regional wastewater pipelines and treatment plant systems.

    Science.gov (United States)

    Brand, Noam; Ostfeld, Avi

    2011-01-01

    This manuscript describes the application of a genetic algorithm model for the optimal design of regional wastewater systems comprised of transmission gravitational and pumping sewer pipelines, decentralized treatment plants, and end users of reclaimed wastewater. The algorithm seeks the diameter size of the designed pipelines and their flow distribution simultaneously, the number of treatment plants and their size and location, the pump power, and the required excavation work. The model capabilities are demonstrated through a simplified example application using base runs and sensitivity analyses. Scaling of the proposed methodology to real life wastewater collection and treatment plants design problems needs further testing and developments. The model is coded in MATLAB using the GATOOL toolbox and is available from the authors.

  3. Design aspects of reverse osmosis plants for rad waste treatment

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.

    1993-01-01

    The potential of reverse osmosis process has been well established in the nuclear waste treatment. The nuclear wastes are characterised by chemically insignificant levels of radioactive nuclides and small amounts (a few hundred ppm) of inactive ionic species. The basic design objectives in these systems aim at higher volume reduction factors, i.e. corresponding to recovery factor of more than 0.9 and a decontamination factor of at least 10, i.e. corresponding to a solute rejection of more than 90%. In this paper, the salient aspects of the design of a reverse osmosis system for radioactive waste treatment is discussed in the light of the operating experience of an experimental plant based on plate module configuration and utilizing cellulose acetate membranes prepared in our laboratory. (author). 3 refs., 5 figs., 2 tabs

  4. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  5. A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.

    Science.gov (United States)

    Stottler, Stag and Associates, San Antonio, TX.

    This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…

  6. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    Science.gov (United States)

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  7. Superstructure development and optimization under uncertainty for design and retrofit of municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    n this contribution, an optimization - based approach is presented for optimal process selec tion and design for domestic wastewater treatment plant s (WWTP s ). In particular, we address the issue of uncertainties by formulating the WWTP design problem as a Stochastic Mixed Integer (Non) Linear ...

  8. Liquid and solid rad waste treatment in advanced nuclear power plants. Application to the SBWR design

    International Nuclear Information System (INIS)

    Tielas Reina, M.; Asuar Alonso, O.

    1994-01-01

    Rad waste treatment requirements for the new generation of American advanced passive and evolutionary power plants are listed in the URD (Utility Requirements Document) of the EPRI (Electrical Power Research Institute). These requirements focus on: - Minimization of shipped solid wastes - Minimization of liquid effluents - Simplification of design and operation, with emphasis not only on waste treatment system design but also on general plant design and operation These objectives are aimed at: - Reducing and segregating wastes at source - Minimizing chemical contamination of these wastes System design simplification is completed by providing free space in the building for the use of mobile plants, either for special services not considered in the basic design or to accommodate future technical advances. (Author)

  9. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  10. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    Science.gov (United States)

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  11. A mathematical programming framework for early stage design of wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2015-01-01

    The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based on e...... the design problem is formulated as a Mixed Integer (Non)linear Programming problem e MI(N)LP e and solved. A case study is formulated and solved to highlight the application of the framework. © 2014 Elsevier Ltd. All rights reserved....... on expert decisions and previous experiences. This paper proposes a new approach based on mathematical programming to manage the complexity of the problem. The approach generates/identifies novel and optimal wastewater treatment process selection, and the interconnection between unit operations to create...

  12. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    Science.gov (United States)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  13. Some design and operating aspects of the Ranger uranium mine treatment plant

    International Nuclear Information System (INIS)

    Baily, P.A.

    1984-01-01

    Environmental considerations were key factors in the design of the Ranger Uranium Mines treatment plant. The mine is located adjacent to the Kakadu National Park and has an average rainfall of 1.6m per annum. No contaminated water or liquid effluents are to be released from the project area and thus water management is a key design and operating fact. Particulate and gas emission criteria influenced design as did occupational hygiene factors (dust, radon, housekeeping, maintenance access). Equipment selection and engineering standards were conservative and resulted in the plant attaining design performance in less than three months from the date of commissioning. A number of mechanical and operational problems were experienced. However, none of these problems have had a significant effect on production

  14. Computer-aided Framework for Synthesis, Design and Retrofit of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande

    Water is used for several purposes in houses and industrial applications, which results in the generation of considerable amounts of wastewater. Wastewater should be handled appropriately which is required from legal, environmental as well as economic and societal perspectives. Wastewater treatment...... be formulated as a process synthesis challenge in the sense that a new taskcan be added to the existing treatment line or one or several existing processes can be changed as a result of the emerging needs. Existing plants need retrofitting due to a number of reasons such as: change in the wastewater flow...... plant (WWTP) design is a formidable challenge. One of the key steps involved is the process synthesis - defined as the selection of treatment processes as a combination of unit operations and processes to create the process flow diagram.As a consequence of the emerging technological developments...

  15. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Shekhar, P.; Sudesh Nath; Gandhi, P.M.; Mishra, S.D.

    1994-01-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author)

  16. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, P; Nath, Sudesh; Gandhi, P M; Mishra, S D [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author). 3 figs., 3 tabs.

  17. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  18. design of a decoupler controller for forced circulation evaporator used in a radioactive treatment plant

    International Nuclear Information System (INIS)

    Abdel-Halim, H.A.

    2005-01-01

    evaporation is a proven method for a treatment of liquid radioactive wastes providing both good decontamination and high concentration . in a radioactive waste treatment plant, an evaporator is used to reduce the volume of medium radioactive liquid waste arising from different applications of nuclear industries. the control system objective is to limit the composition of the liquid waste at a prescribed value. for the safe operation, without damaging the installed equipment, a good control for the evaporator operating pressure and the level of liquid waste inside the separator part has been required. evaporator equipment is a complex process, which is a multivariable, nonlinear and has many disturbances. therefore, design a control strategy for the evaporator is bit difficult. the solution method is based on system decoupling eliminating the parasite interactions between input-output pairing variables and converting multi-inputs multi-outputs (MIMO) system to several single-inputs single-outputs (SISO) systems

  19. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  20. Design of chemical plant

    International Nuclear Information System (INIS)

    Lee, Dong Il; Kim, Seung Jae; Yang, Jae Ho; Ryu, Hwa Won

    1993-01-01

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  1. Internationalisation of the BNFL fuel and waste treatment plant designs the challenges and benefits

    International Nuclear Information System (INIS)

    Hall, M.; Lomax, J. D.

    1995-01-01

    Since the late 1970's BNFL has considerably expanded its range of fuel cycle plants, involving an investment of over US$7.5bn (55bn Won). This has included significant development of its Sellafield site with a wide variety of plants and processes to deal with spent fuel and development of its fuel fabrication facilities at the Spring fields Site. In contrast to reactors, fuel plants are constructed infrequently and it is therefore crucial to 'get it right first time'. The achievement of high levels of safety has been an important factor in the development of these facilities. BNFL has applied safety criteria which are as stringent as any other international safety criteria in terms of the extent to which radiation doses to plant workers and people off-site are minimised from both routine operations and possible fault conditions. Because the plant designs are established and supported by robust safety cases they are capable of being licensed overseas. The benefits of this are lower financial risk and shorter project timescales, due to avoiding the high design and safety case development costs (typically of the order of 20% of project cost) which are incurred in the production of a 'first of a kind' design. This paper briefly discusses the role of safety cases in the UK licensing process and the principle safety standards which are applied to BNFL plants and shows how they achieve high levels of safety by comparing them with equivalent IAEA and US based standards. It illustrates how the plants meet or exceed these safety standards by using specific data from existing safety cases supported by operational data where applicable. It discusses some of the important features of the UK approach to safety and licensing and emphasises the need to examine safety provisions on a case by case basis rather than adopting a prescriptive approach to implementing design provisions if cost effectiveness is to be achieved

  2. Design and development of effluent treatment plants for the Sellafield reprocessing factory

    International Nuclear Information System (INIS)

    Howden, M.

    1989-01-01

    The reprocessing of spent nuclear fuel has been carried out at Sellafield since the early 1950s. The storage of fuel in water filled ponds prior to reprocessing and the reprocessing operation itself results in the generation of a number of radioactive liquid effluents. The highly active liquors are stored in stainless steel tanks and will, with the commissioning of the Windscale Vitrification Plant, be converted into glass for long term storage and disposal. The medium and low active liquors are, after appropriate treatment, discharged to sea well below the Authorised Limits which are set by the appropriate Regulatory Bodies. Since 1960 these have been the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. Even though the discharges have been well below the limits set, BNFL have for many years adopted a policy of reducing the levels of activity still further. Considerable progress has already been made, by changing reprocessing operations regimes but more importantly by the development and construction of specialised effluent treatment plants. Further reductions are, however, planned. Two major effluent treatment plants form the main basis of BNFL's policy to reduce activity discharges from Sellafield. The first, the Site Ion Exchange Effluent Plant, to treat storage pond water was brought into operation in 1985. The second, the enhanced Actinide Removal Plant to treat medium and low active effluents, is programmed to operate in 1992. (author)

  3. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Photographs and drawings were edited into a book in relation with a joint project for environment preservation technologies in high-efficiency extraction and treatment of mineral resources, and detail design for a pilot plant. The book classified the related devices into fabricated devices, purchased devices and electrical devices, and contains detailed drawings and photographs thereof. (NEDO)

  4. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    Science.gov (United States)

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  5. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  6. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  7. Process engineering considerations in the design of the water treatment plant for the Rum Jungle rehabilitation project

    International Nuclear Information System (INIS)

    Ackland, M.C.

    1983-01-01

    The Rum Jungle rehabilitation programme includes the treatment of around 4 million cubic metres of water that has been polluted by previous treatment operations and acidic seepage containing heavy metal salts from slowly oxidising overburden dumps. The water to be treated is of low pH and contains high sulphate levels. Project rehabilitation criteria and the basic chemistry of metal salts in solution were considered in arriving at the final process design. In order to achieve a cost effective plant design, the process was translated into a flow sheet that used unit operations that are more typical of the extractive metallurgical than the traditional water treatment industry. Consideration of the unit operations and the operating aspects of the plant are discussed

  8. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    International Nuclear Information System (INIS)

    Hudson, P.I.; Buckley, C.P.; Miller, W.W.

    1995-01-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation

  9. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  10. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  11. Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant.

    Science.gov (United States)

    Oleszkiewicz, J A; Kalinowska, E; Dold, P; Barnard, J L; Bieniowski, M; Ferenc, Z; Jones, R; Rypina, A; Sudol, J

    2004-12-01

    The proposed transfer of wastewater from the western part of Warsaw, across the Wisla (Vistula) River for joint treatment at the existing eastern side "Czajka" wastewater treatment plant (WWTP) will result in combined winter flows of approx. 580,000 m3 d(-1). One-year of pilot-scale studies defined the COD characteristics and kinetics of nitrogen removal and VFA production from primary sludge. BioWin simulation was used to size and price the optional processes and pointed to the Westbank process as the most cost-effective. The process consists of a sequence of a RAS pre-denitrification zone followed by an anaerobic, anoxic and aerobic zone. Some 100-150 t d(-1) of 10% methanol would be needed to remove 2-4 mg l(-1) of NO3-N above the recommended effluent level TN = 10 mg l(-1). Applying the principle of annual average 80% TN removal, and allowing for use of daily composite samples (rather than grab) could annually save the municipality over 1.5 million Euro on external carbon source.

  12. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Mechanical fabrication)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the mechanical equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  13. DESIGN MANUAL: ODOR AND CORROSION CONTROL IN SANITARY SEWERAGE SYSTEMS AND TREATMENT PLANTS

    Science.gov (United States)

    Wastewater is known to the public for its potential to create odor nuisance. Sometimes it is the odors escaping from sewer manholes that cause complaints; more commonly, the odor source is a wastewater treatment facility. Yet there are wastewater treatment facilities that are fr...

  14. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    Science.gov (United States)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  15. 3-Dimensional Flow Modeling of a Proposed Hanford Waste Treatment Plant Ion-Exchange Column Design

    International Nuclear Information System (INIS)

    ALEMAN, SEBASTIAN

    2002-01-01

    Historically, it has been assumed that the inlet and outlet low activity waste plenums would be designed such that a nearly uniform velocity profile would be maintained at every axial cross-section (i.e., providing nearly 100 percent use of the resin bed). With this proposed design, we see a LAW outlet distributor that results in significant non-axial velocity gradients in the bottom regions of the bed with the potential to reduce the effectiveness'' of the overall resin bed. The magnitude of this efficiency reduction depends upon how far up-gradient of the LAW outlet these non-axial velocities persist and to what extent a ''dead-zone'' is established beneath the LAW outlet. This can impact loading and elution performance of the ion-exchange facility. Currently, no experimental studies are planned. The primary objective of this work was, through modeling, to assess the fluid dynamic impact on ''effective'' resin volume of the full-scale column based on its normal operation using a recently proposed LAW outlet distributor. The analysis effort was limited to 3-D flow only analyses (i.e., no follow on transport analyses) with 3-D particle tracking to approximate the impact that a nonaxial velocity profile would have on bed ''effectiveness''. Additional analyses were performed to estimate under nominal operating conditions the thermal temperature rise across a loaded resin bed and within its particles. Hydrogen bubble formation is not considered in the heat transfer analysis or in the determination of minimum flowrate. All modeling objectives were met

  16. Plant design alternatives for gas treatment with amines; Alternativas de diseno de plantas de tratamiento de gas con aminas

    Energy Technology Data Exchange (ETDEWEB)

    Maioli, Gerardo; Guruchaga, Gustavo; Raventos, Martin [Tecna S.A., Buenos Aires (Argentina)

    2004-07-01

    In the last three years Tecna S.A. has developed a project to install six gas processing plants with amines, whose goal is the removal of carbon dioxide and hydrogen sulfide from natural gas. During the design of the facility several options for control problems solution were presented. The objective is to provide a description of the most important solution implemented in different situations. Comparative analyses of the six plants, that will be useful in time to carry out similarities with other plants or to address future applications, were included. The main conclusion of this work is that the incorporation of technologies and an appropriate selection of control systems improve the operation of the plants, minimizing maintenance and provide better levels of performance in these types of facilities.

  17. Waste Treatment Plant - 12508

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Olds, Erik [US DOE (United States)

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration

  18. Population Growth and Its Impact on the Design Capacity and Performance of the Wastewater Treatment Plants in Sedibeng and Soshanguve, South Africa

    Science.gov (United States)

    Teklehaimanot, Giorgis Z.; Kamika, I.; Coetzee, M. A. A.; Momba, M. N. B.

    2015-10-01

    This study investigated the effects of population growth on the performance of the targeted wastewater treatment plants in Sedibeng District and Soshanguve peri-urban area, South Africa. The impact of population growth was assessed in terms of plant design, operational capacity (flow rate) and other treatment process constraints. Between 2001 and 2007, the number of households connected to the public sewerage service increased by 15.5, 17.2 and 37.8 % in Emfuleni, Lesedi and Midvaal Local Municipalities, respectively. Soshanguve revealed a 50 % increment in the number of households connected to the sewerage system between 1996 and 2001. Except for Sandspruit (-393.8 %), the rate of influent flows received by Meyerton increased by 6.8 ML/day (67.8 %) and 4.7 ML/day (46.8 %) during the dry and wet seasons, respectively. The flow rate appeared to increase during the wet season by 6.8 ML/day (19.1 %) in Leeuwkuil and during the dry season by 0.8 ML/day (3.9 %) in Rietgat. Underperformance of the existing wastewater treatment plants suggests that the rapid population growth in urban and peri-urban areas (hydraulic overloading of the wastewater treatment plants) and operational constraints (overflow rate, retention time, oxygen supply capacity of the plants and chlorine contact time) resulted in the production of poor quality effluents in both selected areas. This investigation showed that the inefficiency of Meyerton Wastewater Treatment Plant was attributed to the population growth (higher volumes of wastewater generated) and operational constraints, while the cause of underperformance in the other three treatment plants was clearly technical (operational).

  19. Design of a pilot plant to study wastewater treatability. Utilization to nitrification-denitrification treatment of urban wastewater; Diseno de una plant pilot para estudios de tratabilidad de aguas residuales. Aplicacion a la nitrificacion/desnitrificaciond e aguas urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Vilches, L. F.; Pineda, D.; Garcia, A.; Fernandez-Pereira, C.

    2002-07-01

    The conventional design and the operation of secondary treatment of urban wastewater treatment plants presents different problems such as bulking foaming, the removal of nutrients as nitrogen and phosphorus, and the excess of sludge. to prevent these problems the use of selectors was initially proposed to selects the floc-formers bacteria against the filamentous microorganisms. In addition, these configurations removed nitrogen by the nitrification-denitrification mechanism and some of them removed both nitrogen and phosphors. In the last years, new systems have been developed to remove nitrogen, reducing the consumption of oxygen and the production of sludge by the use of different microorganisms, and by modifying environmental and operational conditions. To study the treatment urban wastewater in conditions similar to those existing in wastewater treatment plants and to improve the design and operational parameters of a large scale wastewater treatment plant, a versatile pilot plant has been designed. The main components of the plant are described in this paper. (Author) 18 refs.

  20. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  1. Early-stage design of municipal wastewater treatment plants – presentation and discussion of an optimisation based concept

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    decisions and previous experiences . In this contribution, we propose a new approach based on mathematical programming to manage the complexity of the problem and generate novel and optimal WWTP network designs for domestic WWT. Within this context, a superstructure concept is used to represent....... This database is embedded within the mixed integer nonlinear programming problem formulated and solved in GAMS for different objective function s (e.g . total annualized costs, etc . ) and constraint definitions (e.g. effluent discharge limits) . The developed framework is highlighted using the benchmark plant......The number of alternative WWT technologies has grown steadily to meet increasingly stringent performance demands which increased the importance and complexity of early-stage decision making in WWTP design and retrofitting problems. Currently the conceptual design task is handled bas ed on expert...

  2. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  3. Design of commercial dyeing wastewater treatment facility with e-beam (based on the results of pilot plant)

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Sung Myun; Kim, Jin-Kyu; Kim, Yuri; Yang, Mun Ho; Choi, J.S.; Ahn, S.J.; Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.

    2001-01-01

    A pilot plant for a large-scale test of dyeing facility wastewater (flow rate of 1,000m 3 per day from 80,000m 3 /day of total wastewater) was constructed and operated with the electron accelerator of 1MeV, 40kW. The accelerator was installed in February 1998 and the Tower Style Biological treatment facility (TSB) was also installed in October 1998. The wastewater is injected under the e-beam irradiation area through the nozzle type injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Performance statistics are given

  4. Design of future municipal wastewater treatment plants: A mathematical approach to manage complexity and identify optimal solutions

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    The increasing number of alternative wastewater treatment (WWT) technologies and stricter effluent requirements imposed by regulations make the early stage decision making for WWTP layout design, which is currently based on expert decisions and previous experiences, much harder. This paper...... therefore proposes a new approach based on mathematical programming to manage the complexity of the problem and generate/identify novel and optimal WWTP layouts for municipal/domestic wastewater treatment. Towards this end, after developing a database consisting of primary, secondary and tertiary WWT...... solved to obtain the optimal WWT network and the optimal wastewater and sludge flow through the network. The tool is evaluated on a case study, which was chosen as the Benchmark Simulation Model no.1 (BSM1) and many retrofitting options for obtaining a cost-effective treatment were investigated...

  5. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  6. Plant design and beam utilization

    International Nuclear Information System (INIS)

    Svendsen, E.B.

    1983-01-01

    Plant design and beam utilization are two things closely tied together: without a proper plant design, one can never get good beam utilization. When a company decides to build an irradiation facility, there are some major decisions to be made right in the beginning. These decisions can be most important for the long-term success or failure of the irradiation facility, because the company normally will have to live with these decisions during the whole life-time of the irradiation equipment. To start with the decision has to be made whether to select a cobalt-60 irradiation plant or an accelerator irradiation plant. This decision can only be reached after a careful study of the products and the 'weight' and the material of the products the company wants to irradiate. As an old accelerator-man, I tend to personally favor accelerators, although I am very impressed by the newer cobalt-60 pallet irradiation plants from A.E.C.L. I believe that they have a great future in the emerging field of food irradiation. As I have primarily been involved with accelerators during the last 14 years, this paper is only dealing with different design approaches and utilizations of accelerator-plants. (author)

  7. Implementing plant design changes economically

    International Nuclear Information System (INIS)

    Seamans, L.D.

    1994-01-01

    Consumers Power Company, as is the case with most utilities, is challenged by the necessity to control non-modification design changes. At the Consumers' Palisades Nuclear Plant, the challenge was met by the establishment of a project team that developed an innovative comprehensive design control process called Functional Equivalent Substitution (FES). This paper describes: (1) the project team composition; (2) the process development methodology; and (3) the implementation results

  8. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  9. The effect of public or private structures in wastewater treatment on the conditions for the design, construction and operation of wastewater treatment plants.

    Science.gov (United States)

    Grünebaum, T; Bode, H

    2004-01-01

    Organised in public or private structures, wastewater services have to cope with different framework conditions as regards planning, construction, financing and operation. This leads quite often to different modes of management. In recent years there has been a push for privatisation on the water sector in general, the reasons for which are manifold, ranging from access to external know-how and capital to synergistic effects through integration of wastewater treatment into other tasks of similar or equal nature. Discussed are various models of public/private partnership (PPP) in wastewater treatment, encompassing for example the delegation of partial tasks or even the proportional or entire transfer of ownership of treatment facilities to private third parties. Decisive for high performance and efficiency is not the legal or organisational form, but rather the clear and unmistakable definition of tasks which are to be assigned to the different parties, customers and all other partners involved, as well as of clear-cut interfaces. On account of the (of course legitimate) profit-oriented perspective of the private sector, some decision-making processes in relation to project implementation (design and construction) and to operational aspects will differ from those typically found on the public sector. This does apply to decisions on investments, financing and on technical solutions too. On the other hand, core competencies in wastewater treatment should not be outsourced, but remain the public bodies' responsibility, even with 'far-reaching' privatisation models. Such core competencies are all efforts geared to sustainable wastewater treatment as life-supporting provision for the future or as contribution to the protection of health and the environment and to the development of infrastructure. Major areas of wastewater treatment and other related tasks are reviewed. The paper concludes with a list of questions on the issue of outsourcing.

  10. Enrichment planting without soil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Where enrichment planting had been carried out with either of the two species Picea abies and Pinus contorta, the survival of the planted seedlings was at least as good as after planting in a normal clear cut area treated with soil scarification. This was in spite of the fact that the seedlings were placed shallow in the humus layer without any soil treatment. However, they were sheltered from insects by treatment before planting. Where enrichment planting was carried out with Pinus sylvestris the survival in dense forest was poor, but in open forest the survival was good. The growth of planted seedlings was enhanced by traditional clearing and soil treatment. However, this was for Pinus sylvestris not enough to compensate for the loss of time, 1-2 years, caused by arrangement of soil scarification. The growth of seedlings planted under crown cover was directly related to basal area of retained trees. However, the variation in height growth among individual seedlings was very big, which meant that some seedlings grow well also under a fairly dense forest cover. The pioneer species Pinus sylvestris reacted more strongly to basal area of retained trees than did the shade tolerant species Picea abies. Enrichment planting seems to be a necessary tool for preserving volume productivity, at places where fairly intensive harvest of mature trees has been carried out in stands of ordinary forest type in central Sweden. If double seedlings, with one Picea abies and one Pinus sylvestris, are used, the probability for long term establishment is enhanced 13 refs, 20 figs, 4 tabs

  11. Overall plant design of PWRs

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1980-01-01

    In the present lecture the main components and safety related systems are described, to get a general overview about the safety measures in a PWR. The idea to introduce safety systems is to protect the nuclear reactor core against the so-called design accidents and to prevent the release of activity to the environment. Furthermore the operation personnel has to be protected against radioactive contamination. All redundant and diversified safety measures used in a nuclear power station ensure reliable and safe operation of the plant in all modes of operation. To minimize the operational risk to an extended minimum besides active safety systems a lot of passive safety barriers are foreseen. With the design and construction, tests and quality assurance measures are performed to assure a safe plant operation. (orig.)

  12. Design of nuclear power plants

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1987-01-01

    The criteria of design and safety, applied internationally to systems and components of PWR type reactors, are described. The main criteria of the design analysed are: thermohydraulic optimization; optimized arrangement of buildings and components; low costs of energy generation; high level of standardization; application of specific safety criteria for nuclear power plants. The safety criteria aim to: assure the safe reactor shutdown; remove the residual heat and; avoid the release of radioactive elements for environment. Some exemples of safety criteria are given for Angra-2 and Angra-3 reactors. (M.C.K.) [pt

  13. Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission

    Directory of Open Access Journals (Sweden)

    Donatella Caniani

    2015-10-01

    Full Text Available The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs. Moreover, the increasing interest in the greenhouse gas (GHG emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new tools that include additional performance indicators related to GHG emissions and energy consumption as well as traditional effluent quality parameters. Energy consumption, in fact, can be considered as an indirect source of GHGs. This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.

  14. Application of numerical simulation on optimum design of two-dimensional sedimentation tanks in the wastewater treatment plant.

    Science.gov (United States)

    Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-05-01

    The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.

  15. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  16. The design of Chp plants

    International Nuclear Information System (INIS)

    Tomassetti, G.

    2001-01-01

    Chp is considered with a bottom-up view, as the most efficient way to satisfy the needs of the users. In order to achieve optimal results a particular care must be used in analyzing the thermal and electrical loads and their interactions. On this basis and taking into account the relationships among the user and the suppliers of electricity, fuels and heat, the energy market structure, the cost of energy and the tax assessment it is possible to properly design Chp plants with benefits for the users [it

  17. Design of heat treatments for 9-12%Cr steels to optimise creep resistance for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Morris, P.F.; Sachadel, U.A.; Clarke, P.D. [Tata Steel Europe, Rotherham (United Kingdom). Swinden Technology Centre; CRD and T, IJmuiden (Netherlands)

    2010-07-01

    Optimisation of the creep rupture properties of Steel 92 (9%Cr, 0.5%Mo, 2%W) by modification of heat treatment and C:N ratio has been studied. It was shown that a higher austenization temperature and double tempering at lower temperature can significantly extend creep life of the standard composition. The increase in austenization temperature from 1060 C and double tempering at 660 C/3h instead of single tempering at 780 C/2h resulted in the increase of stress rupture life from 1,734 to 6,179h at 650 C/110MPa. Even greater improvement in creep life was achieved by the combination of the modified heat treatment and decreased C:N ratio. In this case the creep life was extended to 10,255 h at 650 C/110MPa. A further increase in austenitization temperature to 1200 C for the decreased C:N ratio variant extended the rupture life to 17,118h. Initial results indicate that this modified heat treatment schedule does not result in notch brittle behaviour and most of the improvement in creep strength remains after a simulated post weld heat treatment at 740 C. The stress rupture programme is continuing and at 600 C test durations are approaching 60,000h. To explain the effect on rupture life thermodynamic calculations, microscopic investigations and a literature study were performed. Electron metallography investigations revealed that the lower tempering temperature resulted in a finer distribution of nano-size particles. Calculations show that increasing the austenitization temperature gave more dissolved B, N, C, Nb and V. The lower C:N ratio resulted in a higher atomic fraction of N in nano-size particles on subsequent tempering. Dissolved B should stabilize M{sub 23}M{sub 6} and dissolved N, C, Nv, and V should allow precipitation of a higher volume fraction of nano-size carbo-nitrides during tempering. Literature data suggest that lower tempering temperatures could also change their type from MX to M{sub 2}X. (orig.)

  18. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  19. The research for the design verification of nuclear power plant based on VR dynamic plant

    International Nuclear Information System (INIS)

    Wang Yong; Yu Xiao

    2015-01-01

    This paper studies a new method of design verification through the VR plant, in order to perform verification and validation the design of plant conform to the requirements of accident emergency. The VR dynamic plant is established by 3D design model and digital maps that composed of GIS system and indoor maps, and driven by the analyze data of design analyzer. The VR plant could present the operation conditions and accident conditions of power plant. This paper simulates the execution of accident procedures, the development of accidents, the evacuation planning of people and so on, based on VR dynamic plant, and ensure that the plant design will not cause bad effect. Besides design verification, simulated result also can be used for optimization of the accident emergency plan, the training of accident plan and emergency accident treatment. (author)

  20. Reality testing a plant design 'virtually' anywhere

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The development of a new world-wide-web compatible information system known as HyperPlant will allow users to navigate real-time three-dimensional plant design and contraction software. It is anticipated that corporate Intranets will be created to facilitate computer-aided design of industrial plants such as piping routes, process schematics, fabrication drawings, and allow use of PDMS (the Plant Design Management System). HyperPlant can also assist in plant commissioning and operation as well as for planning operation and maintenance procedures. (UK)

  1. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  2. Shielding design for better plant availability

    International Nuclear Information System (INIS)

    Biro, G.G.

    1975-01-01

    Design methods are described for providing a shield system for nuclear power plants that will facilitate maintenance and inspection, increase overall plant availability, and ensure that man-rem exposures are as low as practicable

  3. Effects of foundation conditions on plant design

    International Nuclear Information System (INIS)

    Ehasz, J.L.

    1975-01-01

    Design considerations for nuclear plant foundations are examined including site stability, bearing capacity and settlement, dynamic response, and structural modeling techniques for dynamic analysis. (U.S.)

  4. ESBWR-An economical passive plant design

    International Nuclear Information System (INIS)

    Gonzalez Lopez, A.; Rao, A.

    1996-01-01

    This paper provides an overview of the design features of the European Simplified Boiling Water Reactor (ESBWR) design. The ESBWR is a plant design that builds on the Simplified Boiling Water Reactor (SBWR) design described in Reference 1 and 2. The major objective of the ESBWR programme is to develop a plant design that utilizes the basic simplicity of the SBWR design features to improve overall economics as discussed in Reference 3. The design is being developed by an international team of utilities, designers and researchers, with the objective of applying it to the utility and regulatory requirements of Europe. (Author)

  5. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  6. Design quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig

  7. Design quality assurance for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig.

  8. Design of a uranium recovery pilot plant

    International Nuclear Information System (INIS)

    1984-01-01

    The engineering design of a pilot plant of uranium recover, is presented. The diagrams and specifications of the equipments such as pipelines, pumps, values tanks, filters, engines, etc... as well as metallic structure and architetonic design is also presented. (author)

  9. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  10. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  11. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  12. Design Of Feedforward Controllers For Multivariable Plants

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Controllers based on simple low-order transfer functions. Mathematical criteria derived for design of feedforward controllers for class of multiple-input/multiple-output linear plants. Represented by simple low-order transfer functions, obtained without reconstruction of states of commands and disturbances. Enables plant to track command while remaining unresponsive to disturbance in steady state. Feedback controller added independently to stabilize plant or to make control system less susceptible to variations in parameters of plant.

  13. NSS design and plant construction interfaces

    International Nuclear Information System (INIS)

    Stewart, J.J.; Cobb, W.A.

    1976-01-01

    Interface management between NSS design, balance-of-plant design, and plant construction may have a significant effect on schedule stretchout and total plant costs. The paper discusses the importance of the NSS supplier's interface management role, the favorable and unfavorable influencing factors, and examples of interface areas in which experience has demonstrated that problems may arise. Where appropriate, actions are defined to avoid the problems or mitigate the consequences

  14. ESBWR-an economical passive plant design

    International Nuclear Information System (INIS)

    Arnold, H.; Stoop, P.M.; Gonzales, A.; Rao, A.

    1996-01-01

    The ESBWR is a plant design that builds on the GKN Dodewaard natural-circulation reactor and the simplified boiling water reactor (SBWR) design. The major objective of the ESBWR program, which has been in place for the past 3 yr, is to develop a plant design with proven technology that improves the overall plant economics. It utilizes the experience and basic simplicity of the Dodewaard plant and 670-MW(electric) SBWR design features. The design is being developed by an international team of utilities, designers, and researchers. It is being designed to meet the utility and regulatory requirements of Europe. It also addresses the key economic challenges for future nuclear power stations

  15. FY 1996 report on the cooperative research on the development of environmentally friendly high efficiency mineral resource extraction/treatment technology. Basic design of pilot plant and a part of the detailed design; 1996 nendo kankyo chowagata kokoritsu kobutsu shigen chushutsu shori gijutsu no kaihatsu ni kansuru kenkyu kyoryoku. Pilot plant no kihon sekkei oyobi ichibu shosai sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is a cooperative research on the development of environmental harmony type high efficiency mineral resource extraction/treatment technology. It aims to study/develop a system to recover valuable metals from unused resources in the Republic of Kazakhstan using the environmental harmony type technology which is easy to operate/maintain and is environmentally friendly with no mine pollution caused. In the project, which started in FY 1994, a pilot plant is finally constructed in Kazakhstan, a recovery system to be applied is demonstrated, and the comprehensive assessment of the system is made. Concretely, the recovery of Cu, Au, Ag, etc. is tried from the Nikolayevska low grade ore and Zhezkent tailings. This is a system into which the following techniques are integrated: treatment before dressing such as flotation, leaching of Cu, etc. by acid including bacteria, solvent leaching, electrowinning, cyanogen leaching activated carbon treatment and wastewater treatment of Au and Ag. As to the design/fabrication of pilot plant, conducted was the conceptual design in FY 1995, and the basic design, a part of the detailed design (crushing/grinding/leaching/dewatering facilities of the process of the acid (bacteria) leaching of Cu, etc.), and the fabrication in FY 1996. (NEDO).

  16. Controller design for interval plants

    International Nuclear Information System (INIS)

    Al-Sunni, F.M.

    2003-01-01

    We make use of celebrated Kharitoniv theorem to come up with a design procedure for the stabilization of uncertain systems in the parameters using low order controllers. The proposed design is based on classical design methods. A Non-linear programming (NLP) approach for the design of higher order controllers is also presented. We present our results and give illustrating examples. (author)

  17. Plant aging and design bases documentation

    International Nuclear Information System (INIS)

    Kelly, J.

    1985-01-01

    As interest in plant aging and lifetime extension continues to grow, the need to identify and capture the original design bases for the plant becomes more urgent. Decisions on lifetime extension and availability must be based on a rational understanding of design input, assumptions, and objectives. As operating plant time accumulates, the history of the early design begins to fade. The longer the utility waits, the harder it will be to re-establish the original design bases. Therefore, the time to develop this foundation is now. This paper demonstrates the impact that collecting and maintaining the original design bases of the plant can have on a utility's lifetime extension program. This impact becomes apparent when considering the technical, regulatory and financial aspects of lifetime extension. It is not good enough to know that the design information is buried somewhere in the corporate archives, and that given enough time, it could be retrieved. To be useful to the lifetime extension program, plant design information must be concise, readily available (i.e., retrievable), and easy to use. These objectives can only be met through a systematic program for collecting and presenting plant design documentation. To get the maximum benefit from a lifetime extension program, usable design bases documentation should be available as early in the plant life as possible. It will help identify areas that require monitoring today so that data is available to make rational decisions in the future

  18. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  19. Use of robotics in a Radwaste treatment plant

    International Nuclear Information System (INIS)

    Leeks, C.W.E.

    1991-01-01

    A 762 Unimate Puma, clean room standard Robot has been installed and commissioned in the Radwaste Treatment Plant at the Winfrith Technology Centre. The robot interacts with a variety of purpose designed tools and proprietary welding equipment. It performs 13 dedicated tasks in the final closure and health physics operations, before the 500 litre waste drum is despatched from the plant. (author)

  20. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  1. Designing wastewater treatment plants for small towns: a program in Visual Basic; Programa en Visual Basic de: Diseno de estaciones de depuracion de aguas residuales en pequenos y medianos nucleos

    Energy Technology Data Exchange (ETDEWEB)

    Coolado Lara, R. [Universidad de Cantabria (Spain)

    2000-07-01

    A program for designing wastewater treatment plants for towns of between 5 and 100,000 inhabitants is presented. This program, in Visual Basic for Windows, allows you to select several types of sewage: urban, farm and industrial, as well as percolation water and storm water. The program can choose between several types of pre-treatments, primary, secondary and tertiary treatments, until the required contamination level of the effluent is reached. The corresponding input and output forms are shown on the screen and a summary of the variables and a dimensioned drawing of the required solution can be printed out. (Author)

  2. Information management systems improve advanced plant design

    International Nuclear Information System (INIS)

    Turk, R.S.; Serafin, S.A.; Leckley, J.B.

    1994-01-01

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering's Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. The data-based approach and applications associated with the IMS were developed, and have proven highly effective, for plant modifications, configuration management, and operations and maintenance applications at Duke Power Company's operating nuclear plants. This paper presents its major features and benefits. 4 refs

  3. MHI - Westinghouse joint FBR tank plant design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Vijuk, R.M.; Aoki, I.; Messhil, T.

    1988-01-01

    Mitsubishi Heavy Industries and Westinghouse Advanced Energy Systems Division have combined their experience and capabilities to design a tank type fast breeder reactor plant. This tank type reactor has been refined and improved during the last three years to better compete in cost, safety, and operation with alternative power plants. This Mitsubishi/Westinghouse joint design offers economic advantages due to the use of steel structures, modular construction, nitrogen cells for the intermediate loops, reactor cavity air cooling and the use of the guard vessel as the containment vessel. Inherent characteristics in the reactor design provide protection to the public and the plant investment

  4. Virtual environments for nuclear power plant design

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-01-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP)

  5. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  6. IRIS Nuclear Power Plant design

    International Nuclear Information System (INIS)

    Carelli, M. D.; Cobian, J.

    2002-01-01

    IRIS(International Reactor Innovative and Secure) is a novel light water reactor with a modular, integral primary system configuration. This concept, initially developed in response to the first NERI solicitation, is now being pursued by an international consortium of 20 participants from seven countries. IRIS is designed to satisfy the four key requirements for Generation IV systems: enhanced safety, improved economics, proliferation resistance and waste minimization. Its main features are: small-to-medium power (100-335 MWe/module); long life core 5 to 10 years) without shuffling or refueling; optimized maintenance with repair shutdown intervals of a least four years; simplified compact design with the primary vessel housing steam generators, pressurizer and pumps; safety by design where accidents are positively eliminated by design rather than engineering to cope with their consequences; loss of coolant accidents of any size and loss of low accidents are eliminated as major safety concerns; estimated power generation total cost is projected to be competitive with other power options. IRIS is one of four new reactor designs currently under NRC review. Projected schedule calls for design certification by 2008 and being ready for deployment by 2001 or later. This rather short schedule is made possible by the fact that IRIS is based on proven light water technology and new technology development is not required. (Author)

  7. Uprading of existing treatment plants in Poland

    OpenAIRE

    Stene-Johansen, S.; Paulsrud, B.

    1994-01-01

    During the first Phase, diagnostic studies have been carried out at selected treatment plants in order to identify problems and how to improve treatment efficiency (Report 1 st. Phase). The report in hand (2nd. Phase) gives recommendations for upgrading/rehabilitation and other improvements based on full scale experiments at selected treatment plants. State Pollution Control Authority (SFT) The Royal Norwegian Ministry of Environment (MD)

  8. LBB considerations for a new plant design

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Mandava, P.R.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1997-04-01

    The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of Double-Ended Guillotine Breaks (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970s. The DEGB postulation is responsible for the many hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars, but also cause plant congestion leading to reduced reliability in inservice inspection and increased man-rem exposure. While use of leak-before-break technology saved hundreds of millions of dollars in backfit costs to many operating Westinghouse plants, value-impacts resulting from the application of this technology for future plants are greater on a per plant basis. These benefits will be highlighted in this paper. The LBB technology has been applied extensively to high energy piping systems in operating plants. However, there are differences between the application of LBB technology to an operating plant and to a new plant design. In this paper an approach is proposed which is suitable for application of LBB to a new plant design such as the Westinghouse AP600. The approach is based on generating Bounding Analyses Curves (BAC) for the candidate piping systems. The general methodology and criteria used for developing the BACs are based on modified GDC-4 and Standard Review Plan (SRP) 3.6.3. The BAC allows advance evaluation of the piping system from the LBB standpoint thereby assuring LBB conformance for the piping system. The piping designer can use the results of the BACs to determine acceptability of design loads and make modifications (in terms of piping layout and support configurations) as necessary at the design stage to assure LBB for the, piping systems under consideration.

  9. New design system for nuclear power plant

    International Nuclear Information System (INIS)

    Kakuta, Masataka; Yoshinaga, Toshiaki; Yoshida, Ikuzo; Tokumasu, Shinji.

    1980-01-01

    As for the machine and equipment layout and the piping design for nuclear power plants, the multilateral coordination and study on such factors as functions, installation, radiation exposure and maintenance are required, and the high reliability is demanded. On the other hand, the quantity of things handled is enormous, therefore it is difficult to satisfy completely the above described requirements and to make plant planning which is completely free from the mutual interference of machines, equipments and pipings by the ordinary design with drawings only. Thereupon, the following new device was adopted to the design method for the purposes of improving the quality and shortening the construction period. Namely at the time of designing new plants, the rationalization of plant planning method was attempted by introducing color composite drawings and the technique of model engineering, at the same time, the newly developed design system for pipings was applied with a computer, thus the large accomplishment was able to be obtained regarding the improvement of reliability and others by making the check-up of the propriety. The design procedures of layout and piping, the layout design and general coordination in nuclear power stations with models and color composite drawings and the design system are explained. (Kako, I.)

  10. SEPI an expert system for plant design

    International Nuclear Information System (INIS)

    Carotenuto, M.; Corleto, P.; Landeyro, P.

    1988-01-01

    The availability and suitability of technological information is of great importance in every kind of design task, especially when safety and reliability considerations are involved. In this paper an ''expert system for plant design'' (SEPI), is presented, together with its first application to nuclear back-end plants. This system is available on ENEA computer network. It is thought to be used both to collect know-how developed in the field and to assist unskilled designers during selection, evaluation and dimensioning tasks. It attemps to reproduce the normal way of ''reasoning'' and acting, and provides some graphic facilities

  11. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  12. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.

    Science.gov (United States)

    Ribera, G; Clarens, F; Martínez-Lladó, X; Jubany, I; V Martí; Rovira, M

    2014-01-01

    A combined methodology using life cycle assessment (LCA) and human health risk assessment (HHR) is proposed in order to select the percentage of water in drinking water treatment plants (DWTP) that should be nanofiltered (NF). The methodological approach presented here takes into account environmental and social benefit criteria evaluating the implementation of new processes into conventional ones. The inclusion of NF process improves drinking water quality, reduces HHR but, in turn, increases environmental impacts as a result of energy and material demand. Results from this study lead to balance the increase of the impact in various environmental categories with the reduction in human health risk as a consequence of the respective drinking water production and consumption. From an environmental point of view, the inclusion of NF and recommended pretreatments to produce 43% of the final drinking water means that the environmental impact is nearly doubled in comparison with conventional plant in impact categories severely related with electricity production, like climate change. On the other hand, the carcinogenic risk (HHR) associated to trihalomethane formation potential (THMFP) decreases with the increase in NF percentage use. Results show a reduction of one order of magnitude for the carcinogenic risk index when 100% of drinking water is produced by NF. © 2013. Published by Elsevier B.V. All rights reserved.

  13. Considering plant life management influences on new plant design

    International Nuclear Information System (INIS)

    Dam, R.F.; Choy, E.; Soulard, M.; Nickerson, J.H.; Hopwood, J.

    2003-01-01

    After operating successfully for more than half their design life, owners of CANDU reactors are now engaging in Plant Life Management (PLiM) activities to ensure not only life attainment, but also life extension. For several years, Atomic Energy of Canada Ltd. (AECL) has been working with domestic and offshore CANDU utilities on a comprehensive and integrated CANDU PLiM program that will see existing CANDU plants successfully and reliably operate through their design life and beyond. To support the PLiM program development, a significant level of infrastructure has been, and continues to be, developed at AECL. This includes the development of databases that document relevant knowledge and background to allow for a more accessible and complete understanding of degradation issues and the strategies needed to deal with these issues. As the level of integration with various project, services and R and D activities in AECL increases, this infrastructure is growing to encompass a wider range of design, operations and maintenance details to support comprehensive and quantitative assessment of CANDU stations. With the maturation of the PLiM program, these processes were adapted for application to newer plants. In particular, a fully integrated program was developed that interrelates the design basis, operations, safety, and reliability and maintenance strategies, as applied to meet plant design goals. This has led to the development of the maintenance-based design concept. The various PLiM technologies, developed and applied in the above programs with operating stations, are being modified and tailored to assist with the new plant design processes to assure that ACR- Advanced CANDU Reactor meets its targets for operation, maintenance, and lifetime performance. Currently, the ACR, developed by Atomic Energy of Canada Ltd. (AECL), is being designed with features to increase capacity factors, to reduce the risk of major equipment failures, to improve access to key components

  14. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  15. Design of a nuclear steam reforming plant

    International Nuclear Information System (INIS)

    Malherbe, J.

    1980-01-01

    The design of a plant for the steam reforming of methane using a High Temperature Reactor has been studied by CEA in connection with the G.E.G.N. This group of companies (CEA, GAZ DE FRANCE, CHARBONNAGES DE FRANCE, CREUSOT-LOIRE, NOVATOME) is in charge of studying the feasibility of the coal gasification process by using a nuclear reactor. The process is based on the hydrogenation of the coal in liquid phase with hydrogen produced by a methane steam reformer. The reformer plant is fed by a pipe of natural gas or SNG. The produced hydrogen feeds the gasification plant which could not be located on the same site. An intermediate hydrogen storage between the two plants could make the coupling more flexible. The gasification plant does not need a great deal of heat and this heat can be satisfied mostly by internal heat exchanges

  16. Design of ANFIS Structures and GMDH Type-Neural Network for Prediction of Optimum Coagulant Dosage in Water Treatment Process Case Study: Great Water Treatment Plant in Guilan Province

    Directory of Open Access Journals (Sweden)

    Allahyar Daghbandan

    2015-11-01

    Full Text Available Given the increasing importance of surface water bodies as supply sources of drinking water and regarding the requirement for using different chemicals at various stages of water treatment processes, it is essential to investigate coagulant consumption in water treatment plants. Determination of the required dosage of coagulants used in the coagulation and flocculation unit is one of the most important decisions in water treatment operations. For this purpose, the jar test is generally used to determine the type and concentration of suitable coagulants in a water treatment plant. However, the test is rather time-consuming and unreliable due to the inaccurate results it yields. Instead, intelligent methods can be employed to overcome this shortcoming of the jar test. In this study, experimental data were collected over the period from 2011 to 2012 and further refined for study. Two non-linear models based on adaptive neuro-fuzzy inference system (ANFIS and GMDH-type neural networks were then developed and experimental results were used to determine the optimum poly-aluminium chloride dosage for use at Guilan water treatment plant. The effects of input parameters including temperature, pH, turbidity, suspended solids, electrical conductivity, and color were investigated on coagulant dosage. The ANFIS model was found to outperform the GMDH model in predicting the required poly-aluminium chloride dosage.

  17. Medicinal plants in the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Nenad M. Zlatić

    2015-07-01

    Full Text Available The purpose of this paper is to present a review of highly developed medicinal usages of plants in the treatment of cancer. In the last decades, the cancer treatment has been included in this range of plant use, due to plant active substances. Active substances or secondary metabolites are generally known for their widespread application. When it comes to the cancer treatment, these substances affect the uncontrolled cell division. Therefore, the plants which are the source of these substances are proved to be irreplaceable in this field of medicine. This paper deals with some of the most significant plants well known for their multiple aspects of beneficial medicinal influence. The group of the plants described is comprised of the following species: Taxus brevifolia (Taxaceae, Catharanthus roseus (Apocynaceae, Podophyllum peltatum (Berberidaceae, Camptotheca accuminata (Cornaceae, and Cephalotaxus harringtonia (Cephalotaxaceae. The comprehensive description of the plants in this paper includes the morphological characteristics, the features and the representation of the molecular structures of active substances, the particular influence that these active substances have and the general importance of the substances as seen from the aspect of cancer treatment mostly with reference to the impacts on cell cycle.

  18. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  19. Design and construction of nuclear power plants

    International Nuclear Information System (INIS)

    Meiswinkel, Ruediger; Meyer, Julian; Schnell, Juergen

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters of the German concrete yearbook ''Beton-Kalender'' are now available in English. The new English BetonKalender Series delivers internationally useful engineering expertise and industrial know-how from Germany.

  20. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  1. The plant design analyser and its applications

    International Nuclear Information System (INIS)

    Whitmarsh-Everiss, M.J.

    1992-01-01

    Consideration is given to the history of computational methods for the non-linear dynamic analysis of plant behaviour. This is traced from analogue to hybrid computers. When these were phased out simulation languages were used in the batch mode and the interactive computational capabilities were lost. These have subsequently been recovered using mainframe computing architecture in the context of small models using the Prototype Plant Design Analyser. Given the development of parallel processing architectures, the restriction on model size can be lifted. This capability and the use of advanced Work Stations and graphics software has enabled an advanced interactive design environment to be developed. This system is generic and can be used, with suitable graphics development, to study the dynamics and control behaviour of any plant or system for minimum cost. Examples of past and possible future uses are identified. (author)

  2. Quality planning for major plant design modifications

    International Nuclear Information System (INIS)

    Dulee, R.J.

    1988-01-01

    This paper reviews the approach and activities undertaken by Public Service Electric and Gas Company's (PSE and G's) nuclear quality assurance (QA) department to support major plant design modifications conducted during refueling outages at Salem Generating Station. It includes the planning and implementation of quality plans developed to provide both QA and quality control (QC) coverage of modification performed by contracted service organizations

  3. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)

  4. Basic user guide for the radwaste treatment plant computer system

    International Nuclear Information System (INIS)

    Keel, A.

    1990-07-01

    This guide has been produced as an aid to using the Radwaste Treatment Plant computer system. It is designed to help new users to use the database menu system. Some of the forms can be used in ways different from those explained and more complex queries can be performed. (UK)

  5. Treatment of some power plant waters

    International Nuclear Information System (INIS)

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  6. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  7. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  8. Design of 90-mgd wastewater reclamation plant

    International Nuclear Information System (INIS)

    Cain, C.B.; Kluesener, J.W.; Lazarus, E.

    1981-01-01

    Ninety MGD of municipal secondary effluent is to be reclaimed for use as cooling water in the Palo Verde Nuclear Generating Station in Arizona. The water reclamation plant design criteria are presented for nitrification, lime-soda softening, filtration, and sludge processing. In-pipe storage is used for flow equalization. Forced air down-draft trickling filters with computer-controlled recycle are used for nitrification. Effluent recirculation is used to maintain constant sludge blanket dept in the upflow solids contact clarifier softening units. An influent flow-splitting, gravity-backwash, dual-media filter is used for final suspended solids removal. Rheological data was used in the hydraulic design of sludge piping. Computerized automatic flushing also aids in preventing sludge pumping problems. Reclamation plant design and construction are integrated in one Engineering-Procurement-Construction project conducted by a single company. 5 refs

  9. Integrated design of SIGMA uranium enrichment plants

    International Nuclear Information System (INIS)

    Rivarola, Martin E.; Brasnarof, Daniel O.

    1999-01-01

    In the present work, we describe a preliminary analysis of the design feedbacks in a Uranium Enrichment Plant, using the SIGMA concept. Starting from the result of this analysis, a computer code has been generated, which allows finding the optimal configurations of plants, for a fixed production rate. The computer code developed includes the model of the Thermohydraulic loop of a SIGMA module. The model contains numerical calculations of the main components of the circuit. During the calculations, the main components are dimensioned, for a posterior cost compute. The program also makes an estimation of the enrichment gain of the porous membrane, for each separation stage. Once the dimensions of the main components are known, using the enrichment cascade calculation, the capital and operation costs of the plant could be determined. At this point it is simple to calculate a leveled cost of the Separative Work Unit (SWU). A numerical optimizer is also included in the program. This optimizer finds the optimal cascade configuration, for a given set of design parameters. The whole-integrated program permits to investigate in detail the feedback in the component design. Therefore, the sensibility of the more relevant parameters can be computed, with respect of the economical variables of the plant. (author)

  10. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  11. Heat exchanger design for desalination plants

    International Nuclear Information System (INIS)

    1979-03-01

    The Office of Saline Water (OSW) accomplished a very large amount of significant work related to the design and performance of large heat exchanger bundles and enhanced heat transfer surfaces. This work was undertaken to provide basic technical and economic data for the design of distillation plants for the desalination of seawater, and should be of value to other industrial applications as well. The OSW work covers almost every aspect of heat exchanger design, and ranges academic research to data gathering on commercial desalting plants. Exchanger design configurations include multistage flash plant condensers, vertical tube falling film and upflow evaporators, and horizontal tube spray film evaporators. Unfortunately, the data is scattered through a large number of reports of which many are concerned primarily with factors other than heat transfer, and the quality of reporting and the quality of the data are far from consistent. This report catalogues and organizes the heat exchanger data developed by the OSW. Some analysis as to the validity of the data is made and ranges of performance that can be expected are given. Emphasis is placed on the vertical tube, falling film evaporators. A thorough analysis of the large literature file that was surveyed was not possible. No analysis was made of the quality of original data, but apparent data discrepancies are pointed out where such discrepancies happen to be found

  12. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  13. Westinghouse AP600 advanced nuclear plant design

    International Nuclear Information System (INIS)

    Gangloff, W.

    1999-01-01

    As part of the cooperative US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) Program and the Electric Power Research Institute (EPRI), the Westinghouse AP600 team has developed a simplified, safe, and economic 600-megawatt plant to enter into a new era of nuclear power generation. Designed to satisfy the standards set by DOE and defined in the ALWR Utility Requirements Document (URD), the Westinghouse AP600 is an elegant combination of innovative safety systems that rely on dependable natural forces and proven technologies. The Westinghouse AP600 design simplifies plant systems and significant operation, inspections, maintenance, and quality assurance requirements by greatly reducing the amount of valves, pumps, piping, HVAC ducting, and other complex components. The AP600 safety systems are predominantly passive, depending on the reliable natural forces of gravity, circulation, convection, evaporation, and condensation, instead of AC power supplies and motor-driven components. The AP600 provides a high degree of public safety and licensing certainty. It draws upon 40 years of experience in light water reactor components and technology, so no demonstration plant is required. During the AP600 design program, a comprehensive test program was carried out to verify plant components, passive safety systems components, and containment behavior. When the test program was completed at the end of 1994, the AP600 became the most thoroughly tested advanced reactor design ever reviewed by the US Nuclear Regulatory Commission (NRC). The test results confirmed the exceptional behavior of the passive systems and have been instrumental in facilitating code validations. Westinghouse received Final Design Approval from the NRC in September 1998. (author)

  14. DU-AGG pilot plant design study

    International Nuclear Information System (INIS)

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule

  15. Exergy analysis of an IGCC design configuration for Plant Wansley

    International Nuclear Information System (INIS)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.

    1989-01-01

    An integrated gasification-combined-cycle power plant design was developed for Georgia Power Company's Plant Wansley. This paper discusses the plant configuration and presents the most important results obtained from a detailed exergy analysis of the plant design. This analysis will be completed in a subsequent paper through an exergoeconomic analysis to identify design improvements for reducing the electricity cost

  16. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  17. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  18. Project designing of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Krychtalek, Z.; Linek, V.

    1989-01-01

    The geological and seismic parameters are listed of the Temelin nuclear power plant. The division of the site in building zones is described. The main zones consist of the power generation unit zone with the related auxiliary buildings of hot plants and of the auxiliary buildings of the nonactive part with industrial buildings. The important buildings are interconnected with communication and technology bridges. Cooling towers and spray pools and the entrance area are part of the urbanistic design. The architectonic design of the buildings uses standard building elements and materials. The design of the buildings is based on the requirements on their function and on structural load and on the demands of maximal utilization of the type of the reinforced concrete prefab structure system. The structure is made of concrete or steel cells. The project design is based on Soviet projects. The layout is shown of the main power generation units and a section is presented of a 1,000 MW unit. (J.B.). 2 figs

  19. Medicinal Plants for Diabetes Treatment During Pregnancy.

    Science.gov (United States)

    Damasceno, Debora Cristina; Leal-Silva, Thais; Soares, Thaigra Sousa; Moraes-Souza, Rafaianne Queiroz; Volpato, Gustavo Tadeu

    2017-01-01

    Diabetes mellitus is a syndrome of great importance that affects an increasing number of people every day. In particular, diabetes is a common and important disease during pregnancy and is marked by complications, both fetal and maternal, that increase the risks of morbidity and mortality for diabetic pregnant women and their offspring. Drugs such as insulin and hypoglycemic drugs are given to treat diabetes, but regular exercise and adequate diet have also been indicated. Furthermore, coadjutant therapies such as medicinal plants are popularly used to reduce diabetes-induced hyperglycemia, either within or outside the context of pregnancy. However, studies examining plant use for diabetes treatment are necessary to confirm its possible effects and its safety for the mother and fetus. The objective of this literature review was to conduct a survey of plant species that are utilized worldwide and their stated therapeutic uses. A literature search was performed using the terms "diabetes and pregnancy", which resulted in the identification of 31,272 articles. Of these studies, only 12 (0.0038%) were related to medicinal plants, demonstrating that there has been little investigation into this issue. Of the papers analyzed in this review, half evaluated plant leaves, indicating that these scientific studies attempted to reproduce the preparations commonly used by various populations, i.e., in the form of tea. Additionally, more than 90% of studies utilized experimental animals to evaluate the maternal-fetal safety of medicinal plant substances that may potentially be dangerous for humans. Thus, once confidence levels for plant-derived substances are established based on toxicological analyses and safety is confirmed, it is possible that plants will be used to complement conventional diabetes therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  1. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  2. Economic comparison of fusion power plant designs

    International Nuclear Information System (INIS)

    O'Neill, J.E.

    1986-01-01

    Over the past 10 yr, a number of studies have been developed for fusion power plants of various types (tokamaks, mirrors, etc.) complete with figures of merit such as cost estimates and estimates of the cost of generating electricity (COE). Each of these designs involves unresolved physics and engineering problems which, it is assumed, will eventually be worked out. Because of such uncertainties the figures of merit associated with such designs are not to be compared as absolute measures of worth but as relative indicators of progress within a given concept type. As part of Grumman's involvement in fusion energy development, an effort has been undertaken to compare economic indicators from the referenced studies in order to determine the cost trend in recent reactor design activities

  3. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  4. New nuclear plant design and licensing process

    International Nuclear Information System (INIS)

    Luangdilok, W.

    1996-01-01

    This paper describes latest developments in the nuclear power reactor technology with emphasis on three areas: (1) the US technology of advanced passive light water reactors (AP600 and S BWR), (2) regulatory processes that certify their safety, and (3) current engineering concerns. The goal is to provide and insight of how the government's regulatory agency guarantees public safety by looking into how new passive safety features were designed and tested by vendors and how they were re-evaluated and retested by the US NRC. The paper then discusses the US 1989 nuclear licensing reform (10 CFR Part 52) whose objectives are to promote the standardization of nuclear power plants and provide for the early and definitive resolution of site and design issues before plants are built. The new licensing process avoids the unpredictability nd escalated construction cost under the old licensing process. Finally, the paper summarizes engineering concerns found in current light water reactors that may not go away in the new design. The concerns are related the material and water chemistry technology in dealing with corrosion problems in water-cooled nuclear reactor systems (PWRs and BWRs). These engineering concerns include core shroud cracking (BWRs), jet pump hold-down beam cracking (BWRs), steam generator tube stress corrosion cracking (PWR)

  5. Industrial plant for electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Tyminnski, B.; Zimek, Z; Ostapczuk, A.; Licki, J.

    2001-01-01

    The electron beam flue gas treatment technology was invented many years ago. Research on the process has been carried out in Japan, USA, Germany and Poland. However, the recent fidings, based on the experiments performed at pilot plant at Electric Power Station Kaweczyn, led to developments which made process mature just at the dawn of the XXI century. The process is being implemented in the full industrial scale at Electric Power Station Pomorzany (Dolna Odra EPS Group). Other developments are reported in Japan and after Nagoya's pilot plant experiments, an industrial plant has been built in China and another one is constructed in Japan. There are remarkable differences in technological and design solutions applied in all these installations. Developments achieved at EPS Kaweczyn pilot plant and INCT laboratory unit were the basis for the project realized at EPS Pomorzan

  6. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  7. Biorefinery plant design, engineering and process optimisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Ehimen, Ehiazesebhor Augustine

    2014-01-01

    Before new biorefinery systems can be implemented, or the modification of existing single product biomass processing units into biorefineries can be carried out, proper planning of the intended biorefinery scheme must be performed initially. This chapter outlines design and synthesis approaches...... applicable for the planning and upgrading of intended biorefinery systems, and includes discussions on the operation of an existing lignocellulosic-based biorefinery platform. Furthermore, technical considerations and tools (i.e., process analytical tools) which could be applied to optimise the operations...... of existing and potential biorefinery plants are elucidated....

  8. Biogas plants: Design, construction and operation

    International Nuclear Information System (INIS)

    2001-01-01

    At the big readiness of waste coming from the agricultural activities are looked for the production of Energy and Payments, the biogas like product of the organic decomposition under anaerobic conditions, their composition and characteristic. The elements that conform the design as the digester, the storage, the load tanks and it discharges and the conduction is described and analyzed. They are given a series of elements to obtain the characteristics of the system possible to place as: planning, calculations, evaluation, execution and operation. Lastly the steps are indicated that should be continued in the construction of the plant including planning for the work

  9. Designs of new plants of high capacity

    International Nuclear Information System (INIS)

    Borges R, Diego A

    1999-01-01

    The Caracas electricity in their desire to lend the best service to the community is doing the necessary projects of generation expansion to fulfill and requirements of demand of next decade in to the metropolitan area. The projects of the new plants of Recifes and El Sitio, have been conceptualized in way of executing the engineering and patterns construction of highest quality and once setting in service, to reach the highest indexes of operative. To reach these goals it is planned to use the most advanced technological designs that are in the market at the moment to world in generation and transmission of power

  10. Preparation of plant and system design description documents

    International Nuclear Information System (INIS)

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute's Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants

  11. Denitrogenation of purines in adsorption towers design and construction of treatment pilot plant; Desnitrogenacion de purines porcinos en torres de desorcion: diseno y construccion de una planta piloto de tratamiento

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo Barrio, M. D.; Alamo del Martin, J.; Irusta Mata, R.

    2002-07-01

    Nitrogen is the nutrient that generally limits the amount of manure that can be applied to the land in accordance with current regulatory requirements. This is the reason why nitrogen removal has tended to be a major focus in the development of agricultural wastes treatment procedures. In this study, a denitrogenation pilot-plant was designed and constructed in order to investigate air stripping as method for removing ammonia from liquid fraction of swine manure wastewaters. The high ammonia removal efficiency reached using the air stripping method indicates that it could provide an interim solution for current waste management problems in the swine industry. The developed technology is applicable to middle-size pig farms, thanks to the reduce cost of the necessary facilities and to the managing and maintenance facility of the equipment. (Author) 5 refs.

  12. Aseismic design of Hamaoka Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mizuno, Norihiro

    1975-01-01

    The Hamaoka Nuclear Power Plant of Chubu Electric Power Co. is designed so as to maintain structural safety against an earthquake of 300 gal. For the purpose, a compound-type reactor-housing building is employed, which contains a reactor, operation control and waste disposal facilities. The merits accruing from this scheme are as follows. (1) The shielding walls of the waste disposal facility can be utilized effectively in aseismatic design, leading to the increased rigidity of the building and the uniform distribution of resistance. (2) Due to the large area of the foundation, the load in earthquake can be mitigated, and it resulted in the higher structural stability. Moreover, seismic energy can be dissipated into ground. After the description of the compound building structure, it is explained how the structural resistance and the ground dissipation of seismic energy contribute to potential earthquake resistance. (Mori, K.)

  13. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  15. An optimization based framework for design and retrofit of municipal wastewater treatment plants: Case study on side-stream nitrogen removal technologies

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    Existing WWTPs need retrofitting due to several d iffe rent reasons such as: change in the wastewater flow and co mposition, change in the effluent limitat ions , as well as changes in the wastewater treatment trends. Specifically, increased nitrogen limitations in the regulations for the WWTP ef...

  16. Innovative Offshore Wind Plant Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, William L. [Glosten Associates, Inc., Seattle, WA (United States); Nordstrom, Charles J. [Glosten Associates, Inc., Seattle, WA (United States); Morrison, Brent J. [Glosten Associates, Inc., Seattle, WA (United States)

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  17. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  18. Radioactive Waste Evaporation: Current Methodologies Employed for the Development, Design, and Operation of Waste Evaporators at the Savannah River Site and Hanford Waste Treatment Plant

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2003-01-01

    Evaporation of High level and Low Activity (HLW and LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The cross pollination and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The cross pollination of technologies and methods is expected to benefit the Department of Energy's Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes

  19. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  20. Design concepts of nuclear desalination plants

    International Nuclear Information System (INIS)

    2002-11-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an inter regional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States. It is aimed at planners, designers and potential end-users in those Member States interested in further assessment of nuclear desalination. Interested readers are also referred to two related and recent IAEA publications, which contain useful information in this area: Introduction of Nuclear Desalination: A Guidebook, Technical Report Series No. 400 (2000) and Safety Aspects of Nuclear Plants Coupled with Seawater Desalination Units, IAEA-TECDOC-1235 (2001)

  1. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  2. Effluent treatment plant and decontamination centre, Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    The Bhabha Atomic Research Centre, Trombay, has a number of plants and laboratories, which generate Radioactive Liquid Waste and Protective Wears. Two facilities have been established in late 1960s to cater to this requirement. The Centre, on the average generates about 50,000 m"3 of active liquid effluents of varying specific activities. The Effluent Treatment Plant was setup to receive and process radioactive liquids generated by various facilities of BARC in Trombay. It also serves a single-point discharge facility to enable monitoring of radioactive effluents discharged from the Trombay site. About 120-150 Te of protective wears and inactive apparel are generated annually from various radioactive facilities and laboratories of BARC. In addition, contaminated fuel assembly components are generated by DHRUVA and formerly by CIRUS. These components require decontamination before its recycle to the fuel assembly process. The Decontamination Centre, setup in late 1960s, is mandated to carry out the above mentioned decontamination activities

  3. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  4. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  5. A multipurpose irradiation plant for simultaneous treatment of different foods

    International Nuclear Information System (INIS)

    Carassiti, F.; Tata, A.

    1982-01-01

    An industrial multipurpose irradiation plant with a particularly high effectiveness of radiation utilization is presented. The originality of this conceptual design consists of the simultaneous treatment of two products, which are separately irradiated to either high or low absorbed doses. A pneumatical transport system into appropriate channels with air mixing during irradiation has been proposed for the radappertization of granular animal feed, meanwhile a conventional truck-conveyor system has been suggested for the sprout inhibition treatment of potatoes. Moreover, potatoes pass through the irradiation cell twice at high and low level respectively. (author)

  6. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  7. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  8. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  9. Water treatment for 500 MWe PHWR plants

    International Nuclear Information System (INIS)

    Vasist, Sudheer; Sharma, M.C.; Agarwal, N.K.

    1995-01-01

    Large quantities of treated water is required for power generation. For a typical 500 MWe PHWR inland station with cooling towers, raw water at the rate of 6000 m 3 /hr is required. Impurities in cooling water give rise to the problems of corrosion, scaling, microbiological contamination, fouling, silical deposition etc. These problems lead to increased maintenance cost, reduced heat transfer efficiency, and possible production cut backs or shutdowns. The problems in coastal based power plants are more serious because of the highly corrosive nature of sea water used for cooling. An overview of the cooling water systems and water treatment method is enumerated. (author). 2 refs., 1 fig

  10. Global sensitivity analysis in wastewater treatment plant model applications: Prioritizing sources of uncertainty

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist; Neumann, Marc B.

    2011-01-01

    This study demonstrates the usefulness of global sensitivity analysis in wastewater treatment plant (WWTP) design to prioritize sources of uncertainty and quantify their impact on performance criteria. The study, which is performed with the Benchmark Simulation Model no. 1 plant design, complements...... insight into devising useful ways for reducing uncertainties in the plant performance. This information can help engineers design robust WWTP plants....... a previous paper on input uncertainty characterisation and propagation (Sin et al., 2009). A sampling-based sensitivity analysis is conducted to compute standardized regression coefficients. It was found that this method is able to decompose satisfactorily the variance of plant performance criteria (with R2...

  11. The Waste Treatment Plant, a Work in Progress

    International Nuclear Information System (INIS)

    Hamel, W. F. Jr.; Duncan, G. M.

    2006-01-01

    There are many challenges in the design and construction of Department of Energy's (DOE) Waste Treatment and Immobilization Plant (WTP) at the Hanford site. The plant is being built to process some 55 million gallons of radioactive waste from 177 underground tanks. Engineering and construction are progressing on this largest project in the DOE complex. This paper describes some of WTP's principal recent challenges and opportunities and how they are being addressed to minimize impact on the project, enhance the capabilities of the facilities, and reduce risk. A significant new development in 2005 was the need to account for higher seismic accelerations than originally specified for the facility structures and equipment. Efforts have centered on continuing design and construction with minimal risk, while the final seismic design spectra was developed. Other challenges include development of an alternative cesium ion exchange resin to minimize the risk from reliance on a single product, implementing advanced analytical techniques to improve laboratory performance, adopting a thinner walled high level waste (HLW) canister to reduce waste volume and mission duration, and commissioning a comprehensive external flowsheet review of the design, along with its underpinning technologies, and projected plant operability. These challenges make it clear that WTP is a work in progress, but the challenges are being successfully resolved as the design and construction move on to completion. (authors)

  12. Quality assurance in the design of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide provides the requirements and recommendations related to the establishment and implementation of quality assurance for design of items for a nuclear power plant. The requirements of this Guide shall be applied to the extent necessary during all constituent activities of the nuclear power plant project, such as design, manufacture, construction, commissioning and operations. Its requirements and recommendations shall be implemented, as appropriate, by the responsible organization or by its designated representatives: by plant designers, architect-engineers or manufacturers, when involved in performing design activities related to items to be manufactured; by site constructors, when involved in field engineering activities; by plant operators and other organizations, when involved in design activities related to plant modifications or to selection of spare or replacement parts; and by design consultants and other technical organizations, when performing any engineering activity that affects the work of other design organizations during various stages of nuclear power plant projects

  13. Designing nuclear power plants for improved operation and maintenance

    International Nuclear Information System (INIS)

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig

  14. Designing nuclear power plants for improved operation and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig.

  15. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  16. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    Science.gov (United States)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  17. Economics of wastewater treatment in GTL plant using spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Enyi, G.C.; Nasr, G.G.; Burby, M. [University of Salford, Manchester, M5 4WT (United Kingdom)

    2013-07-01

    In a Gas-to-liquid (GTL) plant, significant quantities of CO2 and reaction water are produced and various chemicals are used as intermediate treatment chemicals. The reaction water is contaminated by these chemicals which impair the pH and the related properties of the water. The pH has to be controlled in the effluent treatment unit before the water is re-used or released to the environment. The overall aim of this investigation is to create a novel technique to address the problem of waste water treatment in GTL plants which will assist in the reduction of greenhouse gas (CO2) emissions into the atmosphere. A laboratory-scale effluent neutralisation unit for pH control utilising gas injectors was designed and built. The unit used the CO2 produced as a by-product of GTL process as wastewater treatment chemical instead of the conventional Sulphuric acid. The quality of wastewater after treatment with CO2 met the standards set by the state regulatory agency. The economics of the new process shows a better payout period of 3.6 years for capital investment of $1,645 Million compared to 4.7 years for an existing plant layout with capital investment of $1,900 Million. The effects of increase in plant capacity showed a lower payback back of 2.8 years for plant capacity of 140,000 barrels/day (22258 m3/day), 3.6 years for 34,000 barrels/day and 6.0 years for 12,500 barrels/day (1987 m3/day) plant capacity. The sensitivity analysis using crystal ball simulator with 'Microsoft Excel' shows that the annual revenue has the greatest effects on the NPV of the plant than the CAPEX and inflation rate. Apart from the environmental benefits the process generates by reducing CO2 emissions into the atmosphere, the study also concludes that the replacement of conventional Sulphuric acid (H2SO4) unit with CO2 improves the economics of the plant.

  18. Productivity of sugarcane plants of ratooning with fertilizing treatment

    Directory of Open Access Journals (Sweden)

    MUHADIONO

    2010-01-01

    Full Text Available Latief AS, Syarief R, Pramudya B, Muhadiono. 2010. Productivity of sugarcane plants of ratooning with various fertilizing treatments. Nusantara Bioscience 2: 43-47. This research aims to determine the sugarcane plants of ratooning productivity with low external input of fertilization treatment towards farmers can increase profits. The method used is the Completely Randomized Block Design (CRBD with four treatments and three repetitions (4x3. Sugarcane varieties R 579 planted in each patch experiment 5x5 m2. Dosage of fertilizer: P0 = 3.6 kg/year plot experiment was 100% dosage usage of chemical fertilizers used by farmers. Further dosages were P1 (75% = 2.7 kg/plot, P2 (50% = 1.8 kg/plot and P3 (0.25% = 0.9 kg/plot, each supplemented with fertilizer 5 mL of liquid organic/patch a year. Sugarcane crops with a variety of treatment showed no significant difference. The highest productivity was achieved at dosages of P2 (50% chemical fertilizers plus organic fertilizer is 21.67 kg per square meter. Chemical fertilizers can be saved 7 quintals per hectare a year or Rp 997,500 per year. Additional costs of liquid organic fertilizer Rp. 100,000 per hectare year and labor Rp 100,000 per hectare, so the additional advantage of saving farmers fertilizer Rp. 797,500 per year.

  19. How to optimize hydrogen plant designs

    Energy Technology Data Exchange (ETDEWEB)

    van Weenen, W F; Tielrooy, J

    1983-01-01

    In a typical hydrogen plant of the type which will be discussed, methane or higher hydrocarbons are reformed with steam in a steam hydrocarbon reformer operating at a pressure of 250 to 400 psig, a temperature of 1500 to 1600/sup 0/F, and with a ratio of steam to carbon in the feed of about 3.0. Following the reformer and cooling, there is a single stage of high temperature carbon monoxide shift conversion. Optionally, after further cooling, this may be followed by a second stage of carbon monoxide shift conversion operating at a lower temperature to obtain a more favourable equilibrium; this is called low temperature shift conversion. After cooling to ambient temperature, and separation of the condensate, the gas is passed through a Pressure Swing Adsorption (PSA)l unit which removes all the impurities along with a small amount of hydrogen. The waste gas from the PSA unit containing all the impurities is used as fuel to the reformer. Heat is recovered from the reformer flue gas, reformer product, high temperature shift converter product and low temperature shift converter product. This paper discusses some of the process variables and design variables which must be considered in arriving at an optimized design. Seven different flow schemes are discussed in the light of the objectives they are designed for. The seven schemes and their objectives are: Flow Scheme 1 - lowest first cost; moderate efficiency, Flow Scheme 2 - high efficiency, low cost; Flow Scheme 3 - low feed plus fuel, moderately high efficiency; Flow Scheme 4 - lowest feed plus fuel; Flow Scheme 5 - lowest feed, low fuel; Flow Scheme 6 -lowest feed, highest efficiency; and Flow Scheme 7 - lowest feed plus fuel, export electric power instead of export electric power instead of export steam. 15 figures, 1 table.

  20. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  1. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  2. Nuclear power plant equipment design and construction rules

    International Nuclear Information System (INIS)

    Boiron, P.

    1983-03-01

    Presentation of the AFCEN (French association for nuclear power plant equipment design and construction rules) working, of its edition activity and of somes of its edited documents such as RCC-C (design and construction rules for PWR power plant fuel assemblies) and RCC-E (design and construction rules for nuclear facility electrical equipments) [fr

  3. Liquid Metal Fast Breeder Reactor plant maintenance and equipment design

    International Nuclear Information System (INIS)

    Swannack, D.L.

    1982-01-01

    This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment

  4. An Update on Modifications to Water Treatment Plant Model

    Science.gov (United States)

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  5. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  6. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  7. Design of Radioactive Waste Management Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide is addressed to the administrative and technical authorities and specialists dealing with the design, construction and operation of nuclear power plants, and in particular waste management facilities at nuclear power plants. This Guide has been prepared as part of the IAEA Waste Handling, Treatment and Storage programme. It is a follow-up document to the Code of Practice on Management of Radioactive Wastes from Nuclear Power Plants published in 1985 in the IAEA Safety Standards, Safety Series No. 69, in which basic principles for management of radioactive wastes at nuclear power plants are set out. The IAEA has established wide ranging programmes to provide Member States with guidance on different aspects of safety and technology related to thermal neutron power reactors and associated nuclear fuel cycle operations, including those for management of radioactive wastes. There are many IAEA publications related to various technical and safety aspects of different nuclear energy applications. All these publications are issued by the Agency for the use of Member States in connection with their own nuclear technological safety requirements. They are based on national experience contributed by experts from different countries and relate to common features in approaches to the problems discussed. However, the final decision and legal responsibility in any regulatory procedure always rest with the Member State. This particular Guide aims to provide general and detailed principles for the design of waste management facilities at nuclear power plants. It emphasizes what and how specific safety requirements for the management of radioactive wastes from nuclear power plants can be met in the design and construction stage. The safety requirements for operation of such facilities will be considered in the Agency's next Safety Series publication, Safety Guide 50-SG-011, Operational Management for Radioactive Effluents and Wastes Arising in Nuclear Power Plants

  8. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  9. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-07-01

    Full Text Available Population growth and intensification of industrial activities have increased the deterioration of natural resources. Industrial, hospital and residential wastes are dumped directly into landfills without processing, polluting soils. This action will have consequences later, because the liquid substance resulting from the putrefaction of organic material plows into the soil to reach water bodies. Cities arise without planning, industrial and household wastes are discharged into rivers, lakes and oceans without proper treatment, affecting water resources. It is well known that in the next century there will be fierce competition for fresh water on the planet, probably due to the scarcity of it. Demographic expansion has occurred without proper health planning, degrading oceans, lakes and rivers. Thus, a large percentage of world population suffers from diseases related to water pollution. Accordingly, it can be concluded that sewage treatment is essential to human survival, to preserve rivers, lakes and oceans. An Effluent Treatment Plant (ETP treats wastewater to reduce its pollution to acceptable levels before sending them to the oceans or rivers. To automate the operation of an ETP, motors, sensors and logic blocks, timers and counters are needed. These functions are achieved with programmable logic controllers (PLC and Supervisory Systems. The Ladder language is used to program controllers and is a pillar of the Automation and Control Engineering. The supervisory systems allow process information to be monitored, while the PLC are responsible for control and data acquisition. In the age we live in, process automation is used in an increasing scale in order to provide higher quality, raise productivity and improve the proposed activities. Therefore, an automatic ETP will improve performance and efficiency to handle large volumes of sewage. Considering the growing importance of environmental awareness with special emphasis

  10. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  11. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  12. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  13. Focus on 14 sewage treatment plants in the Mpumalanga Province ...

    African Journals Online (AJOL)

    In order to identify the treatment methods used in different sewage treatment plants (STPs) in the Mpumalanga Province and to determine the efficiency of wastewater treatment by these plants, municipal STPs were surveyed, and raw and treated wastewater samples collected. A total of 14 STPs were visited and the ...

  14. Plant Design for the Production of DUAGG

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    2003-01-01

    The cost of producing DUAGG is an important consideration for any interested private firm in determining whether DUCRETE is economically viable as a material of construction in next-generation spent nuclear fuel casks. This study analyzed this project as if it was a stand-alone project. The capital cost includes engineering design, equipment costs and installation, start up, and management; the study is not intended to be a life-cycle cost analysis. The costs estimated by this study are shown in Table ES.1, and the conclusions of this study are listed in Table ES.2. The development of DUAGG and DUCRETE is a major thrust of the Depleted Uranium Uses Research and Development Project. An obvious use of depleted uranium is as a shielding material (e.g., DUCRETE). DUCRETE is made by replacing the conventional stone aggregate in concrete with DUAGG. One objective of this project is to bring the development of DUCRETE to a point at which a demonstrated basis exists for its commercial deployment. The estimation of the costs to manufacture DUAGG is an important part of this effort. Paul Lessing and William Quapp developed DUAGG and DUCRETE as part of an Idaho National Engineering and Environmental Laboratory (INEEL) program to find beneficial uses for depleted uranium (DU). Subsequently, this technology was licensed to Teton Technologies, Inc. The DUAGG process mixes DUO 2 with sintering materials and additives to form pressed briquettes. These briquettes are sintered at 1300 C, and the very dense sintered briquettes are then crushed and classified into gap-graded size fractions. The graded DUAGG is then ready to be used to make high-strength heavy DUCRETE. The DUCRETE shielding will be placed into an annular steel cask-shell mold, which has internal steel reinforcing bars. The objectives of this study are to (1) use previous DUAGG process developments to design a plant that will produce DUAGG at a baseline rate, (2) determine the size of the equipment required to meet the

  15. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  16. Safety principles and design management of Chashma Nuclear Power Plant

    International Nuclear Information System (INIS)

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  17. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  18. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  19. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  20. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  1. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  2. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  3. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  4. Plant availability design aspects of Korean next generation reactor

    International Nuclear Information System (INIS)

    Woo Sang Lim; Ha Chung Beak

    1998-01-01

    The purpose of this paper is to describe the KNGR design concepts adopted for reducing forced outages and refueling outages, and current design changes, to assess their availability impacts compared to existing domestic nuclear power plants, and then to identify design directions for next design stage. (author)

  5. Engineering study radioactive liquid waste treatment plant refurbishment

    International Nuclear Information System (INIS)

    Suazo, I.L.

    1994-01-01

    This feasibility study will investigate the opportunities, restrictions and cost impact to refurbish the existing Radioactive Liquid Waste Treatment Plant (RLWTP) while utilizing the same basic criteria that was used in the development of the new Radioactive Liquid Waste Treatment Facility (RLWTF). The objective of this study is to perform a more in-depth analysis of refurbishing the existing than has been done in the past so as to provide a basis for comparison between refurbishing the existing or constructing a new. The existing plant is located at Technical Area 50 (TA-50) within the Los Alamos National Laboratory (LANL). The initial structure was built in 1963. Over the ensuing years, the building has been modified and several additions have been constructed. In 1966, laboratories, ion exchange and pretreatment functions were added. The decontamination and decommissioning activities and ventilation equipment were added in 1984. The following assumptions are the basic parameters considered in the development of a design concept to refurbish the RLWTP: (1) Allow continued operation of the during retrofit construction. (2) Design the necessary expansion within the site constraints. (3) Satisfy National Pollutant Discharge Elimination System (NPDES) and National Emission Standards for Hazardous Air Pollutants (NESHAPS) permit conditions and other environmental regulations. (4) Comply with present DOE Orders and building code requirements. The refurbishment concept is a phased demolition and construction process

  6. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... and NH4; therefore it is classified as a strong waste. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ..... MSc. thesis, university of Jordan. Bataineh F, Najjar ...

  7. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  8. The System 80+ Standard Plant design control document. Volume 20

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains 2 technical specifications bases as part of Appendix 16 A Tech Spec Bases. They are TS B3.8 Electrical Power Technical Systems Bases and TS B3.9 Refueling Operations Bases. All 3 parts of section 17 (QA) and all 10 parts of section 18 (Human Factors) of the ADM Design and Analysis are contained in this volume. Topics covered in section 17 are: design phase QA; operations phase QA; and design phase reliability assurance. Topics covered by section 18 are: design team organization; design goals; design process; functional task analysis; control room configuration; information presentation; control and monitoring; verification and validation; and review documents

  9. Medicinal plants used for the treatment of jaundice and hepatitis ...

    African Journals Online (AJOL)

    The present study deals with socio-economic documentation of medicinal plant species against jaundice and hepatitis. A total of 30 plant species belonging to 24 families were reported by local practitioners for the treatment of jaundice and hepatitis. The most important plant species are Adiantum capillus, Boerhaavia ...

  10. Conceptual design of a laser fusion power plant

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Meier, W.R.; Monsler, M.J.

    1977-01-01

    A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned

  11. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  12. The System 80+ Standard Plant design control document. Volume 15

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all five parts of section 12 (Radiation Protection) of the ADM Design and Analysis. Topics covered are: ALARA exposures; radiation sources; radiation protection; dose assessment; and health physics program. All six parts and appendices A and B for section 13 (Conduct of Operations) of the ADM Design and Analysis are also contained in this volume. Topics covered are: organizational structure; training program; emergency planning; review and audit; plant procedures; industrial security; sabotage protection (App 13A); and vital equipment list (App 13B)

  13. The System 80+ Standard Plant design control document. Volume 18

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains the following technical specifications of section 16 (Technical Specifications) of the ADM Design and Analysis: TS 3.3 Instrumentation; TS 3.4 Reactor Coolant System; TS 3.5 Emergency Core Cooling System; TS 3.6 Containment Systems; TS 3.7 Plant Systems; TS 3.8 Electrical Power Systems; TS 3.9 Refueling Operations; TS 4.0 Design Features; TS 5.0 Administrative Controls. Appendix 16 A Tech Spec Bases is also included. It contains the following: TS B2.0 Safety Limits Bases; TS B3.0 LCO Applicability Bases; TS B3.1 Reactivity Control Bases; TS B3.2 Power Distribution Bases

  14. Generation IV nuclear plant design strategies

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation Generation IV nuclear reactor design criteria are examined under the light of known nuclear properties of fissile and fertile nuclei. Their conflicting nature is elucidated along with the resulting inevitability of a multitude of designs. The designs selected as candidates for further development are evaluated with respect to their potential to serve the different design criteria, thereby revealing their more difficult aspects of realization and the strong research challenges lying ahead

  15. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  16. The System 80+ Standard Plant design control document. Volume 19

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains five technical specification bases that are part of Appendix 16 A of the ADM Design and Analysis. They are: TS B3.3 Instrumentation Bases; TS B3.4 RCS Bases; TS B3.5 ECCS Bases; TS B3.6 Containment Systems Bases; and TS B3.7 Plant Systems Bases

  17. The System 80+ Standard Plant design control document. Volume 2

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the CDM: (2.8) Steam and power conversion; (2.9) Radioactive waste management; (2.10) Tech Support Center; (2.11) Initial test program; (2.12) Human factors; and sections 3, 4, and 5. Also covered in this volume are parts 1--6 of section 1 (General Plant Description) of the ADM Design and Analysis

  18. Water protection in coke-plant design

    Energy Technology Data Exchange (ETDEWEB)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  19. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  20. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  1. System Definition and Analysis: Power Plant Design and Layout

    International Nuclear Information System (INIS)

    1996-01-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals

  2. MPD3: a useful medicinal plants database for drug designing.

    Science.gov (United States)

    Mumtaz, Arooj; Ashfaq, Usman Ali; Ul Qamar, Muhammad Tahir; Anwar, Farooq; Gulzar, Faisal; Ali, Muhammad Amjad; Saari, Nazamid; Pervez, Muhammad Tariq

    2017-06-01

    Medicinal plants are the main natural pools for the discovery and development of new drugs. In the modern era of computer-aided drug designing (CADD), there is need of prompt efforts to design and construct useful database management system that allows proper data storage, retrieval and management with user-friendly interface. An inclusive database having information about classification, activity and ready-to-dock library of medicinal plant's phytochemicals is therefore required to assist the researchers in the field of CADD. The present work was designed to merge activities of phytochemicals from medicinal plants, their targets and literature references into a single comprehensive database named as Medicinal Plants Database for Drug Designing (MPD3). The newly designed online and downloadable MPD3 contains information about more than 5000 phytochemicals from around 1000 medicinal plants with 80 different activities, more than 900 literature references and 200 plus targets. The designed database is deemed to be very useful for the researchers who are engaged in medicinal plants research, CADD and drug discovery/development with ease of operation and increased efficiency. The designed MPD3 is a comprehensive database which provides most of the information related to the medicinal plants at a single platform. MPD3 is freely available at: http://bioinform.info .

  3. Medicinal plants indications from herbal healers for wound treatment

    OpenAIRE

    Maria Willianne Alves do Nascimento; Regina Célia Sales Santos Veríssimo; Maria Lysete de Assis Bastos; Thaís Honório Lins Bernardo

    2016-01-01

    The objective was to identify medicinal plants indicated by commercial herbal healers for wound treatment, in street markets. A descriptive study conducted in a capital city in the northeast of Brazil, through interviews. The results indicate that plant commerce by healers of both genders, aged between 37 to 52 years, from those 69.3% learned about their function with family members. Forty-eight plant species were cited for wound treatment, between those, all participants cited Barbatimão and...

  4. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  5. The System 80+ Standard Plant design control document. Volume 23

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains part 16 References and Appendix 19 A Design Alternatives for section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Also covered is section 20 Unresolved Safety Issues of the ADM Design and Analysis. Finally sections 1--6 of the ADM Emergency Operations Guidelines are contained in this volume. Information covered in these sections include: standard post-trip actions; diagnostic actions; reactor trip recovery guideline; LOCA recovery; SG tube rupture recovery

  6. Sphagnum growth in floating cultures: Effect of planting design

    Directory of Open Access Journals (Sweden)

    Y. Hoshi

    2017-11-01

    Full Text Available To establish rapid and stable Sphagnum growth, capitulum culture of a selected strain of S. palustre was carried out using a floating culture method. Four planting treatments were tested at mountain and urban sites in Kumamoto Prefecture on Kyushu Island, south-west Japan. Capitula were planted in colonies of different sizes on 30 cm square floating rafts, but with strict control of the number (75–77 of capitula per raft. The initial cover of live green Sphagnum ranged from 15 to 20 %. Growth of the colonies was followed throughout the growing season (April to November of 2008. After three months, green coverage rates reached 40–50 % in all planting treatments. At the end of the growing season, the highest Sphagnum cover (almost 90 % at the urban site was recorded in the planting treatment with eleven re-introduced colonies of seven capitula (‘11×7cap’, while the highest capitulum number and biomass (dry weight gain occurred in the ‘4×19cap’ planting treatment. Average stem elongation ranged from 5 cm to 7 cm in the ‘77×1cap’ and ‘4×19cap’planting treatments, respectively, indicating that the larger sized colony grew longer stems. However, contrary to expectation, the ‘4×19cap’planting treatment - which had the largest colony size - did not deliver the highest number of newly formed side shoots.

  7. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  8. Seismic design for Monju FBR power plant

    International Nuclear Information System (INIS)

    1982-01-01

    This technical report introduces the basic concept on the aseismatic design of the FBR ''Monju'' power station, of which the construction in Tsuruga is planned by the Power Reactor and Nuclear Fuel Development Corp. The safety design of Monju has been performed according to ''The concept of evaluating the safety of fast breeder reactors'', and the thought concerning the aseismatic design also is written in it. According to it, ''The guide for the examination of aseismatic design regarding power reactor facilities'' should be referred to, and the classification according to the importance in aseismatic design must be made, taking the features in the design of liquid metal-cooled FBRs fully in consideration. In the aseismatic design of Monju performed according to these basic concept, the following two points were examined. In the aseismatic design of the equipment and piping, the difference of construction from LWRs such as low pressure, thin walled and high temperature construction is taken in consideration. The classification according to the aseismatic importance of the system and equipment is made on the basis of the features in the design of Monju. The classification according to aseismatic importance, the method of calculating earthquake power, the combination of loads and the allowable limit, and the aseismatic construction of the main facilities are reported. (Kako, I.)

  9. Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective

    Directory of Open Access Journals (Sweden)

    Amit Kishore Singh

    2018-06-01

    Full Text Available Ulcer is one of the most common diseases affecting throughout the world population. The allopathic treatment of ulcer adversely affects the health by causing harmful side effects. Currently, many herbal plants and secondary metabolites have been used for the ulcer treatment. In the present review, many herbal plants and their parts (root, rhizome, bark, leaves and fruits have been listed in the table are currently being used for ulcer treatment. These metabolites are responsible for ulcer-neutralization or anti-inflammatory properties. In silico study, plant metabolites showed interaction between protodioscin (secondary metabolites of Asparagus racemosus and interferon-γ (virulent factor of gastric ulcer during molecular docking. All the residues of interferon-γ exhibited hydrophobic interactions with plant metabolites. These interactions helps in understanding the plant secondary metabolites vis a vis will open a new door in the research field of new drug discovery and designing for the ulcer treatment.

  10. MHI-Westinghouse joint FBR tank plant design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Vijuk, R.M.; Aoki, I.; Meshii, T.

    1987-01-01

    Mitsubishi Heavy Industries and Westinghouse Advanced Energy Systems Division have combined their experience and capabilities to design a tank type fast breeder reactor plant. This tank type reactor has been refined and improved during the last three years to better compete in cost, satety, and operation with alternative power plants. This Mitsubishi/Westinghouse joint design offers economic advantages due to the use of steel structures, modular construction, nitrogen cells for the intermediate loops, reactor cavity air cooling and the use of the guard vessel as the containment vessel. Inherent characteristics in the reactor design provide protection to the public and the plant investment. (author)

  11. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  12. Computer code development plant for SMART design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  13. The System 80+ Standard Plant design control document. Volume 10

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains Appendices 6A, 6B, and 6C for section 6 (Engineered Safety Features) of the ADM Design and Analysis. Also, parts 1--5 of section 7 (Instrumentation and Control) of the ADM Design and Analysis are covered. The following information is covered in these parts: introduction; reactor protection system; ESF actuation system; system required for safe shutdown; and safety-related display instrumentation

  14. The System 80+ Standard Plant design control document. Volume 17

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 2-7 and appendix 15A for section 15 (Accident Analysis) of the ADM Design and Analysis. Topics covered in these parts are: decrease in heat removal; decrease in RCS flow rate; power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; release of radioactive materials. The appendix covers radiological release models. Also contained here are five technical specifications for section 16 (Technical Specifications) of the ADM Design and Analysis. They are: TS 1.0 Use and Applications; TS 2.0 Safety Limits; TS 3.0 LCO Availability; TS 3.1 Reactivity Control; and TS 3.2 Power Distribution

  15. Advanced designs of VVER reactor plant

    International Nuclear Information System (INIS)

    Mokhov, V.A.

    2010-01-01

    The history of VVER reactors, current challenges and approaches to the challenges are highlighted. The VVER-1200 reactor of 3+ generation for AES-2006 units are under construction at the Leningrad 2 nuclear power plant (LNPP-2). The main parameters are listed and details are presented of the vessel, steam generator, and improved fuel. The issue of the NPP safety is discussed. Additional topics include the MIR-1200 reactor unit, VVER-600, and VVER-SCP (Generation 4). (P.A.)

  16. The Effects of Designated Pollutants on Plants

    Science.gov (United States)

    1978-11-01

    Persea americana Mill. Haas and Bacon Barley Hordeum vulgare L. CM 67 Bean Phaseolus vulgaris L. Pinto, U.I. III Briza Briza maxima L. Ornamental...Tagetes patula L. French dwarf double goldie Marigold Tagetes erecta L. American ,Senator Dirksen Petunia Petunia hybrida Vilm. White cascade Radish...Probit analysis of five plant species: citrus seedlings, lemon, orange,, grape, French marigold, American marigold. Probit scale is the probability that a

  17. Spray pond design for nuclear power plants

    International Nuclear Information System (INIS)

    Codell, R.B.; Asce, A.M.

    1986-01-01

    This paper presents a complex methodology for assessing the performance of spray ponds in ultimate heat sink service at nuclear power plants. A spray pond performance model, developed in the companion paper, is used in conjunction with on-site and off-site meteorological data to predict the highest temperature and greatest 30 day water loss which can reasonable be expected to occur during the lifetime of the plant. The performance model for heat and mass transfer is used to develop an efficient phenomenological model used to scan the long-term meteorological records. Refined estimates of temperature or water loss may then be based on more complicated models if necessary. Short-term onsite data are correlated to the long-term off-site data to formulate correction factors for the difference in location. Cumulative distribution functions for temperature and water loss are determined from the long-term meteorological records to predict the occurrence of these quantities which are less severe that the peak. The methodology is demonstrated using data and parameters from the Palo Verde nuclear plant as an example

  18. An approach to nuclear plant design and modification support for Russian-designed plants in Eastern Europe

    International Nuclear Information System (INIS)

    Ioannidi, J.; Akins, M.J.

    2002-01-01

    The Western nuclear countries have embarked on numerous programs to improve the safety of the Russian-designed nuclear power plants. In Russian-designed plants in Eastern Europe, plant management is being asked for the first time to decide which safety projects to implement and is finding itself lacking in nuclear safety analytical tools and practices, funds, and experience with project management and project engineering skills and tools. Some of the major areas where assistance is needed are: 1) Defining plant weaknesses toward nuclear safety. 2) Evaluating and grading the importance to safety of proposed modification. 3) Project Planning and Scheduling using computer based scheduling software. 4) Project Finance Development and Management using well defined cash flow management techniques. 5) Contract Management and Change Control. 6) Interface Management. Each of these areas requires a significant amount of discussion to understand the issues and problems associated with them. However, this paper is limited to the Project Management areas. This paper encourages the use of a design engineering firm experienced in safety practices and associated management and technical skills to serve as the Owner's Engineer/Project Management Consultant for the program period for a Russian-designed plants located outside Russia. This approach would allow for the availability and transfer of knowledge of safety practices to plant personnel and owners engineers at nuclear plants outside Russia, improving their nuclear safety culture. The plant personnel would control plant modernizations and upgrades based upon a proven and well-defined process for detailed project definition, configuration change control, and project management. This offers the opportunity to enhance the long-term safety culture by developing plant personnel knowledgeable of the safety practices, plant design basis, developing a modification control process enabling them to control the design basis through future

  19. The System 80+ Standard Plant design control document. Volume 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the DCD introduction and contains sections 1 and parts 1--7 of section 2 of the CDM. Parts 1--7 included the following: (2.1) Design of SSC; (2.2) Reactor; (2.3) RCS and connected systems; (2.4) Engineered Safety Features; (2.5) Instrumentation and Control; (2.6) Electric Power; and (2.7) Auxiliary Systems

  20. The System 80+ Standard Plant design control document. Volume 11

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers parts 6 and 7 and appendix 7A for section 7 (Instrumentation and Control) of the ADM Design and Analysis. The topics covered by these are: other systems required for safety; control systems not required by safety; and CMF evaluation of limiting faults. Parts 1--3 of section 8 (Electric Power) of the ADM are also included in this volume. Topics covered by these parts are: introduction; offsite power system; and onsite power system

  1. The System 80+ Standard Plant design control document. Volume 21

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 1--10 of section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Topics covered are: methodology; initiating event evaluation; accident sequence determination; data analysis; systems analysis; external events analysis; shutdown risk assessment; accident sequence quantification; and sensitivity analysis. Also included in this volume are Appendix 19.8A Shutdown Risk Assessment and Appendix A to Appendix 19.8A Request for Information

  2. Design basis reconstitution and configuration management of nuclear power plants

    International Nuclear Information System (INIS)

    Smith, P.R.

    1989-01-01

    The major design requirements of nuclear power plant components, systems, and structures are found in the plant's licensing commitments documented in the Final Safety Analysis Report and in the technical specification commitments of the plant. These specifications consider the original design and its degradation by in-service use. Before a nuclear power plant begins operation, the plant systems, structures, and organizational elements are functionally arranged to operate in a particular way. This functional arrangement is specified by the plant's design requirements and is called its configuration. The paper discusses configuration management and information management for configuration management. The management of large amounts of information and the various information systems associated with nuclear generating facilities is an ever-growing challenge for utilities. Plant operations involve a complex interrelation among data elements, especially in relation to design modifications and operational changes. Consequently, the operation of these data systems is interrelated and, as a result, redundant data items may exist. Thus, in view of the need to control and manage the plant configuration baseline, managers are striving to streamline their information management programs, which usually involves the integration of data-base systems

  3. Safety criteria for design of nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    In Finland the general safety requirements for nuclear power plants are presented in the Council of State Decision (395/91). In this guide, safety principles which supplement the Council of State Decision and which are to be used in the design of nuclear power plants are defined

  4. Advanced nuclear power plant design with minimized use of cables

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The objective of this report is to present a nuclear power plant design with a minimum utilization of cables. The report describes the types of software and hardware that will be needed to minimize hard-wired control and instrumentation circuits and to reduce the quantity of low voltage power cables while maintaining a high availability and reliability of the plant control systems

  5. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    Wen, S.-J.; Hwang, S.-L.; Tsai, C.-M.

    1980-01-01

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10 -5 -10 -3 μCi/cm 3 . The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  6. The System 80+ Standard Plant design control document. Volume 24

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains sections 7--11 of the ADM Emergency Operations Guidelines. Topics covered are: excess steam demand recovery; loss of all feedwater; loss of offsite power; station blackout recovery; and functional recovery guideline. Appendix A Severe Accident Management Guidelines and Appendix B Lower Mode Operational Guidelines are also included

  7. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  8. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    Choice-Academy

    The paper presents economic value of the design and manufacturing of essential oil production plant ... system with the required precision for standard quality of oil at affordable cost. Thus, the ..... still, steam injection and distribution systems,.

  9. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    The Design and Manufacturing of Essential oil Distillation Plant for rural poverty ... The adaptation of oil distillation technology for essential oil production is ... based on local resources and the first prototype has been manufactured and tested.

  10. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  11. Design verification for large reprocessing plants (Proposed procedures)

    International Nuclear Information System (INIS)

    Rolandi, G.

    1988-07-01

    In the 1990s, four large commercial reprocessing plants will progressively come into operation: If an effective and efficient safeguards system is to be applied to these large and complex plants, several important factors have to be considered. One of these factors, addressed in the present report, concerns plant design verification. Design verification provides an overall assurance on plant measurement data. To this end design verification, although limited to the safeguards aspects of the plant, must be a systematic activity, which starts during the design phase, continues during the construction phase and is particularly performed during the various steps of the plant's commissioning phase. The detailed procedures for design information verification on commercial reprocessing plants must be defined within the frame of the general provisions set forth in INFCIRC/153 for any type of safeguards related activities and specifically for design verification. The present report is intended as a preliminary contribution on a purely technical level, and focusses on the problems within the Agency. For the purpose of the present study the most complex case was assumed: i.e. a safeguards system based on conventional materials accountancy, accompanied both by special input and output verification and by some form of near-real-time accountancy involving in-process inventory taking, based on authenticated operator's measurement data. C/S measures are also foreseen, where necessary to supplement the accountancy data. A complete ''design verification'' strategy comprehends: informing the Agency of any changes in the plant system which are defined as ''safeguards relevant''; ''reverifying by the Agency upon receiving notice from the Operator on any changes, on ''design information''. 13 refs

  12. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  13. Simplified nuclear plant design for tomorrow's energy needs

    International Nuclear Information System (INIS)

    Slember, R.

    1989-09-01

    Commercial nuclear powered plants play an important role in the strategic energy plans of many countries throughout the world. Many energy planners agree that nuclear plants will have to supply an increasing amount of electrical energy in the 1990s and beyond. Just as other major industries are continually taking steps to update and improve existing products, the United States' nuclear industry has embarked on a program to simplify plant systems, shorten construction time and improve economics for new plant models. One of the models being developed by Westinghouse Electric Corporation and Burns and Roe Company is the Advanced Passive 600 MWe design which incorporates safety features that passively protect the reactor during assumed abnormal operating events. These passive safety systems utilize natural circulation/cooling for mitigating abnormal events and simplify plant design and operation. This type of system eliminates the need for costly active safety grade components, results in a reduction of ancillary equipment and assists in shortening construction time. The use of passive safety systems also permits design simplification of the auxiliary systems effectively reducing operating and maintenance requirements. Collectively, the AP600 design features result in a safe plant that addresses and alleviates the critical industry issues that developed in the 1980s. Further, the design addresses utility and regulatory requirements for safety, reliability, maintainability, operations and economics. Program results to date give confidence that the objectives of the Advanced Passive 600 design are achievable through overall plant simplification. The report will include timely results from the work being performed on the salient technical features of the design, plant construction and operation. Other required institutional changes, such as the prerequisite for a design which is complete and licensed prior to start of construction, will also be presented

  14. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  15. Toshiba integrated information system for design of nuclear power plants

    International Nuclear Information System (INIS)

    Abe, Yoko; Kawamura, Hirobumi; Sasaki, Norio; Takasaka, Kiyoshi

    1993-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plants and has been introducing Computer Aided Engineering (CAE). Up to the present, TOSHIBA has been developing computer systems which support each field of design and applying them to the design of nuclear power plants. The new design support system has been developed to integrate each of those systems in order to realize much greater improvement in accuracy and increase of reliability in design using state-of-the-art computer technology

  16. Support to design and construction of the PBMR plant

    International Nuclear Information System (INIS)

    Cazorla, F.; Moron, P.; Gonzalez, J. I.

    2010-01-01

    Developing the new reactor design to a licensable state for constructing a pilot plant is a tough task require specific resources, concerning knowledge and previous experience, which trespassing the pure scientific or technologic knowledge linked to the reactor conceptual design. Taking into consideration the experience derived from the collaboration between the South African company PBMR (PTY) Ltd.; the Pebble Bed Modular Reactor Designer, and Tecnatom SA, the article presents some of the aspects in which the companies or organization in charge of the design can demand external support to license and construct the pilot plants with guaranteed success. (Author)

  17. OPERATION OF THE HOUSEHOLD SEWAGE TREATMENT PLANTS IN POLAND

    Directory of Open Access Journals (Sweden)

    Marcelina Pryszcz

    2015-01-01

    Full Text Available In many rural communities the building of sewage collection and treatment system is still current and important problem of water and wastewater management. Besides the collection of sewage in the septic tank, the solution for wastewater treatment from individual buildings without access to sewerage system is the construction of household sewage treatment plants. Construction of household sewage treatment plant poses a number of challenges for municipalities and potential investors. The existing plants should be analyzed, so that in the future the selected systems would be characterized by high performance, simple operation and reliable exploitation. In the paper, the assessment of selection criteria of adopted technical solution and the functioning of household sewage treatment plants is carried out.

  18. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.

    1997-01-01

    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  19. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... that plants with return sludge Side-Stream Hydrolysis (SSH) instead of the normal anaerobic process tank tended to have significantly fewer unwanted GAOs in contrast to many plants with traditional mainstream anaerobic tank and thus it was proposed that this system might be an effective strategy of control...

  20. Recent advances in design procedures for high temperature plant

    International Nuclear Information System (INIS)

    1988-01-01

    Thirteen papers cover several aspects of design for high temperature plant. These include design codes, computerized structural analysis and mechanical properties of materials at high temperatures. Seven papers are relevant for fast reactors and these are indexed separately. These cover shakedown design, design codes for thin shells subjected to cyclic thermal loading, the inelastic behaviour of stainless steels and creep and crack propagation in reactor structures under stresses caused by thermal cycling loading. (author)

  1. Human factors engineering in Clinch River Breeder plant design

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Kaushal, N.N.; Snider, J.

    1982-01-01

    The Clinch River Breeder Reactor Plant (CRBRP) Project formed a Control Room Task Force to ensure that lessons learned from the Three Mile Island accident are incorporated into the design. The charter for the Control Room Task Force was to review plant operations from the control room. The focus was on the man-machine interface to ensure that the systems' designs and operator actions meshed to properly support plant operation during normal and off-normal conditions. Specific items included for review are described. This paper describes the methodology utilized to accomplish the Task Forces' objectives and the results of the review

  2. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  3. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  4. LMFBR plant design features for sodium spill and fire protection

    International Nuclear Information System (INIS)

    Palm, R.E.

    1982-01-01

    Design features have been developed for an LMFBR plant to protect the concrete structures from potential liquid spills and fires and prevent sodium-concrete reactions. The inclusion of these features in the plant design reduces the severity of design basis accident conditions imposed on containment and other critical plant structures. Steel liners are provided in cells containing radioactive sodium systems, and catch pans are located in non-radioactive sodium system cells. The design requirements and descriptions of each of these protective features are presented. The loading conditions, analytical approach and numerical results are also included. Design of concrete cell structures that are subject to high temperature effects from sodium spills is discussed. The structural design considers the influence of high temperature on design properties of concrete and carbon steel materials based on results of a comprehensive test program. The development of these design features and high temperature design considerations for the Clinch River Breeder Reactor Plant (CRBRP) are presented in this paper

  5. System 80+ Design and Licensing : Improving Plant Reliability

    International Nuclear Information System (INIS)

    Newman, Robert E.

    1989-01-01

    The U. S. nuclear industry is striving to improve plant reliability and availability through improved plant design, component designs and plant maintenance. In an effort to improve safety and to demonstrate that commercial nuclear power is economically competitive with other energy sources, the utilities, nuclear vendors, architect engineers and constructors, and component suppliers are all participating in an industry-wide effort to develop improved Light Water Reactor (LWR) designs that are based upon the many years of successful LWR operation. In an age when the world faces the environmental pressures of the greenhouse effect and acid rain, electricity generated from nuclear energy must play an increasing role in the energy picture of Korea, the United States and the rest of the world. This paper discusses the plant availability requirement that has been established by the industry-wide effort mentioned above. After briefly describing Combustion Engineering's program for development of the System 80 Plus standard design and the participation of the Korea Advanced Energy Research Institute (KAERI) in the program, the paper then describes the design features that are being incorporated into System 80+. The industry ALRR Program has established a very ambitious criterion of 87% for the plant availability of future nuclear units. To satisfy such a requirement, the next generation of nuclear plants will include a great many design improvements that reflect the hundreds of years of operating experience that we have accrued. C-ESA's System 80+ will include a number of design changes that improve operating margins and make the plant easier to operate and maintain. Not surprisingly, there is a great deal of overlap between improved safety and improved reliability. In the end, our design will satisfy the future needs of the utilities, the regulators, and the public. C-E is very pleased that KAERI is working with US to achieve these important goals

  6. Methodology for modular nuclear plant design and construction

    International Nuclear Information System (INIS)

    Lapp, C.W.; Golay, M.

    1992-01-01

    During the past decade, the rising cost of nuclear power plant construction has caused the cancellation of many projects and has forced some utilities into bankruptcy. Many factors have contributed to capital cost increases, including regulatory changes, the absence of standard designs, and low worker productivity. Low worker productivity can be attributed to the conventional building process, which is not conductive to productive labor. This study presents innovative ways to reduce the capital cost of nuclear plants through more efficient construction processes designed to increase worker productivity. A major portion of the plant capital cost is the interest paid during construction on borrowed capital. Modular fabrication could potentially reduce interest payments by compressing the construction schedule of nuclear facilities. Additional cost savings expected from modular designs arise from improved quality, productivity, and schedule control in fabrication of plant elements within a factory environment

  7. Treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-12-01

    This rule is to be applied to the design, construction, and operation of facilities for treatment of water contaminated with radioactive material in stationary nuclear power plants with LWRs and HTRs. According to the requirements of the rule these facilities are to be designed, constructed, and operated in such a way that a) uncontrolled discharge of water contaminated with radioactive material is avoided, b) the activity discharged with water is as low as possible, c) water contaminated with radioactive material will not reach the ground, d) the radiation exposure as a consequence of direct radiation, contamination, and inhalation of the persons occupied in the facilities is as low as possible and as a maximum corresponds to the values laid down in the radiation protection regulation or to the values of the operating license. This rule is not to be applied to facilities for coolant and storage pit clean-up as well as facilities for the treatment of concentrates produced during the contamination of the water. (orig./HP) [de

  8. Wastewater treatment and reuse. Indian power plant turns sewage into process water

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.; Schroedter, F.; Demmerle, C. [ERM Lahmeyer International, Neu-Isenburg (Germany)

    2000-07-01

    Lahmeyer International provided consulting services for a private Indian investor of a 200 MW diesel engine power plant, in reviewing and controlling the EPC Contractor from Korea with regard to the treatment plant for dosmestic wastewater and the reverse osmosis plant for desalination. The wastewater treatment and subsequent water treatment for cooling water production comprised: mechanical treatment, biological treatment of domestic wastewater, lime softening, sand filtration, disinfection, micro-filtration, reverse osmosis. The services as Owner's Engineer included: (1) the review of the EPC Contractor's treatment concept, (2) the selection of internationally renowned manufacturer, (3) the review of the detailed design (including civil, mechanical, electrical and I and C work), and (4) onsite technical assistance to the Client during construction and commissioning phase. (orig.)

  9. 40 CFR 63.1581 - Does the subpart distinguish between different types of POTW treatment plants?

    Science.gov (United States)

    2010-07-01

    ... different types of POTW treatment plants? 63.1581 Section 63.1581 Protection of Environment ENVIRONMENTAL... treatment plants? Yes, POTW treatment plants are divided into two subcategories. A POTW treatment plant which does not meet the characteristics of an industrial POTW treatment plant belongs in the non...

  10. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  11. Treatment with aquatic plants by a Bagdi tribal healer of Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohsina Mukti

    2013-01-01

    Full Text Available Context: Tribal healers mainly use land plants in their medicinal formulations; use of aquatic plants has been scarcely reported. Aims: The aim of the present study was to conduct an ethnomedicinal survey working with a Bagdi tribal healer of Rajbari District, Bangladesh. Settings and Design: The survey was carried out working with a Bagdi healer, who lived alone in the wetlands of Rajbari District and used primarily aquatic plants for treatment. Materials and Methods: Interview of the healer was carried out with the help of a semi-structured questionnaire and the guided field-walk method. Results: The Bagdi healer was observed to use seven different aquatic plant species coming from five plant families for treatment of ailments such as hemorrhoids, tonsillitis, heart disorders, burning sensations and pain in hands or legs, blurred vision, debility, sexual weakness in males, chronic dysentery, infertility in women, constipation, chronic leucorrhea, blackness and foul odor of menstrual blood, hair loss, graying of hair and to keep the head cool. One plant was used to treat what the healer mentioned as "evil eye", this refers to their belief in black-magic. Conclusions: This is the first reported instance of a Bagdi healer who primarily uses aquatic plants for treatment. Ethnomedicinal uses of a number of the plants used by the Bagdi healer have been reported for other places in India and Pakistan. Taken together, the various uses of the different plant species opens up scientific possibilities of new drug discoveries from the plants.

  12. Preliminary design and economical study of a biogas production-plant using cow manure

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2007-09-01

    Full Text Available This article presents considerations and results from designing a large- scale biogas production-plant using cow manure. The so designed plant capacity allowed processing the dung from 1,300 cows, producing 500 kW of electrical energy from operating a generator which works on a mixture of diesel and biogas fuel. The design included sizing the cowsheds, the manure-collecting systems, transporting the dung, the digester, the effluent tank and the biogas treatment system. An economic study was also done, concluding that project was viable and the importance of the cost of diesel evolving for determining return on investment time.

  13. Sizes of secondary plant components for modularized IRIS balance of plant design

    International Nuclear Information System (INIS)

    Williamson, Martin; Townsend, Lawrence

    2003-01-01

    Herein we report on a conceptual design for a balance of plant (BOP) layout to coordinate with IRIS-like plants. The report consists of results of calculations that sizes of various BOP components. These calculations include the thermodynamic analyses and general sizing of the components in order to determine plant capability and plant layout for studies on modularity and transportability. Mathematical modeling of the BOP system involves a modified ORCENT2 code as well as standard heat transfer methods. Using typical values for PWR type plants, a general BOP design, and IRIS steam generator values, an ORCENT2 heat balance is carried out for the secondary side of the plant. Using the ORCENT2 output, standard heat transfer methods are then used to calculate system performance and component sizes. (author)

  14. GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis.

    Science.gov (United States)

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2016-01-01

    With the rapid advances in prediction tools for discovery of new promoters and their cis-elements, there is a need to improve plant expression methodologies in order to facilitate a high-throughput functional validation of these promoters in planta. The promoter-reporter analysis is an indispensible approach for characterization of plant promoters. It requires the design of complex plant expression vectors, which can be challenging. Here, we describe the use of a plant grammar implemented in GenoCAD that will allow the users to quickly design constructs for promoter analysis experiments but also for other in planta functional studies. The GenoCAD plant grammar includes a library of plant biological parts organized in structural categories to facilitate their use and management and a set of rules that guides the process of assembling these biological parts into large constructs.

  15. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able t...

  16. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...

  17. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  18. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... while the available sources of water are limited and de-. *Corresponding author. ... 186223 m3/d inflow to Asamra wastewater treatment plant. (ASTP) (Bataineh et al., ..... MSc. thesis, university of Jordan. Bataineh F, Najjar M, ...

  19. Ethnobiological survey of plants and animals used for the treatment ...

    African Journals Online (AJOL)

    Ethnobiological survey of plants and animals used for the treatment of acute respiratory ... African Journal of Traditional, Complementary and Alternative Medicines ... Methods: It is a descriptive exploratory study with a quantitative approach, ...

  20. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  1. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  2. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  3. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document

  4. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  5. Design of equipment management information system for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chengyuan

    1996-01-01

    The author describes the ideas and practical method for need analysis, system function dividing, code design, program design and network disposition of equipment purchase management system of nuclear power plant during building, from the view of engineering investment control, schedule control and quality control

  6. Conceptual design of nuclear power plants database system

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Izumi, Fumio; Sudoh, Takashi.

    1984-03-01

    This report is the result of the joint study on the developments of the nuclear power plants database system. The present conceptual design of the database system, which includes Japanese character processing and image processing, has been made on the data of safety design parameters mainly found in the application documents for reactor construction permit made available to the public. (author)

  7. Improved design on Qinshan 300 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Shi Peihua; Cheng Wanli; Lu Rongliang

    1993-01-01

    The main aim, guiding ideology, general performance and parameters of improved design on Qinshan 300 MWe nuclear power plant are presented. Improved items are also introduced including the characteristic of layout in nuclear island building, decreasing unnecessary devices increasing necessary safety facilities and unifying code and standard. The progress of improved design is presented

  8. Improved design on Qinshan 300 MWe nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Peihua, Shi; Wanli, Cheng; Rongliang, Lu [Shanghai Nuclear Engineering Research and Design Inst. (China)

    1993-06-01

    The main aim, guiding ideology, general performance and parameters of improved design on Qinshan 300 MWe nuclear power plant are presented. Improved items are also introduced including the characteristic of layout in nuclear island building, decreasing unnecessary devices increasing necessary safety facilities and unifying code and standard. The progress of improved design is presented.

  9. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  10. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  11. Planting and care of fine hardwood seedlings: Designing hardwood tree plantings for wildlife

    Science.gov (United States)

    Brian J. MacGowan

    2003-01-01

    Woody plants can be of value to many wildlife species. The species of tree or shrub, or the location, size, and shape of planting can all have an impact on wildlife. The purpose of this paper is to discuss the benefits of trees and shrubs for wildlife and how to design tree and shrub plantings for wildlife. Some of the practices may conflict with other management...

  12. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  13. Management of design support for nuclear plant modifications

    International Nuclear Information System (INIS)

    Doyle, F.W.

    1991-01-01

    The paper will present an overview of the Ontario Hydro organization and processes for providing design support to the operating nuclear power plants. Examples of design support for Pickering GS will be highlighted. The process is described from identification of projects through the design, procurement, construction, commissioning and in-service phases. The practices for managing engineering deliverables are discussed in the context of how these integrate into the overall change control process. The interaction of Engineering with Operations, Construction, Supply and the regulatory bodies is discussed both for major retro-fit programs and for ongoing design support to the nuclear power plants. Recent experiences during the 1990 Pickering Station Outage and during the Unit 3 fuel channel replacement program are highlighted and an integrated 5 year plan for upgrading the safety related systems for the Pickering Nuclear Power Plant is presented. (author)

  14. Planning and architectural safety considerations in designing nuclear power plants

    International Nuclear Information System (INIS)

    Konsowa, Ahmed A.

    2009-01-01

    To achieve optimum safety and to avoid possible hazards in nuclear power plants, considering architectural design fundamentals and all operating precautions is mandatory. There are some planning and architectural precautions should be considered to achieve a high quality design and construction of nuclear power plant with optimum safety. This paper highlights predicted hazards like fire, terrorism, aircraft crash attacks, adversaries, intruders, and earthquakes, proposing protective actions against these hazards that vary from preventing danger to evacuating and sheltering people in-place. For instance; using safeguards program to protect against sabotage, theft, and diversion. Also, site and building well design focusing on escape pathways, emergency exits, and evacuation zones, and the safety procedures such as; evacuation exercises and sheltering processes according to different emergency classifications. In addition, this paper mentions some important codes and regulations that control nuclear power plants design, and assessment methods that evaluate probable risks. (author)

  15. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The

  16. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  17. Liquid waste treatment plant with e-beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kim, Yuri

    2003-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the laboratory of EB-TECH Co., many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000 m 3 /day of wastewater from 80,000 m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for Pan Asia Paper Co. Cheongwon Mill, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. The method for the removal of heavy metals from wastewater and other technologies are developed with the joint works with Institute of Physical Chemistry (IPC) of Russian Academy of Sciences. (author)

  18. Plant dynamics studies towards design of plant protection system for PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P. [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Analysis of various design basis events in a fast breeder reactor towards design of plant protection system. Black-Right-Pointing-Pointer Plant dynamic modeling of a sodium cooled fast breeder reactor. Black-Right-Pointing-Pointer Selection of optimum set of plant parameters for considering best plant availability. - Abstract: Prototype fast breeder reactor (PFBR) is a 500 MWe (1250 MWt) liquid sodium cooled pool type reactor currently under construction in India. For a safe and efficient operation of the plant, it is necessary that the reactor is protected from all the transients that may occur in the plant. In order to accomplish this, adequate number of SCRAM parameters is required in the plant protection system with reliable instrumentation. For identifying the SCRAM parameters, the neutronic and thermal hydraulic responses of the plant for various possible events need to be established. Towards this, a one dimensional plant dynamics code DYANA-P has been developed with thermal hydraulic models for reactor core, hot and cold pools, intermediate heat exchangers, pipelines, steam generator, primary sodium circuits and secondary sodium circuits. The code also incorporates neutron kinetics and reactivity feedback models. By a comprehensive plant dynamics study an optimum list of SCRAM parameters and the maximum permissible response time for various instruments used for deriving them have been arrived at.

  19. System 80+TM standard plant: Design and operations overview

    International Nuclear Information System (INIS)

    Matzie, R.A.; Ritterbusch, S.E.

    1999-01-01

    The System 80+ Standard Plant Design is a 1400 MWe evolutionary Advanced Light Water Reactor (ALWR), designed to meet the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) and the demands of the international market for nuclear power plants which are not only safer but also more economical to maintain and operate. ABB Combustion Engineering Nuclear Power used a defense-in-depth process that (1) adds design margin to basic components to improve performance during normal operation and to decrease the likelihood of an unanticipated transient or an accident, (2) improves the redundancy and diversity of safety systems in order to mitigate design basis accidents and prevent severe accidents, and (3) improves severe accident mitigation capability. This paper describes the most important improved systems and components with emphasis on severe accident prevention and mitigation capability. The improved design features were implemented in an evolutionary manner using proven components. This approach ensures that the plant operates safely and economically, as demonstrated by operating plants in the US and the Republic of Korea. Detailed studies, summarized in this paper, have shown that the System 80+ plant availability is expected to exceed the ALWR requirement of 87% and that the annual operations and maintenance costs are expected to be reduced by $14 million. (author)

  20. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  1. Nuclear power plant system environmental design and decision methodology

    International Nuclear Information System (INIS)

    Zendehrouh, Z.; Shinozuka, M.; Schauer, F.P.

    1975-01-01

    The methodology described is concerned with a system reliability analysis by which the correlation among the level of design for the environmental and natural phenomena (earthquake, flood, tornado, etc.), reasonable practical measure of safety (such as conventional safety factor), and damage (radioactivity release) probability are established. In fact, the methodology indicates how the risk of environmental and natural hazard is combined with a specific design in order to evaluate damage probability associated with the design. This leads to the optimum design decision when combined further with the cost considerations involving the radioactivity release. This fundamental approach is essential in the design of nuclear plant structures, because, unlike the convential structures, the architectural considerations and structural analysis requirements alone cannot, by themselves, result in a balanced design in the framework of social requirements. The proposed methodology incorporates the different methods of environmental load determinations with their respective probabilistic formulations as well as detailed and advanced multi-discipline (structural, mechanical, soil, nuclear physics, biology, etc.) theoretical and empirical analysis including the effect of probabilistic nature of design variables, to establish a sound and reasonable design decision model for nuclear power plants. The information required for the analysis is also described and the areas for which further research is desirable are pointed out. Furthermore, the proposed methodology can very well be utilized to determine the requirements of standardized plants to facilitate the speed of their design and review process

  2. Cycle design flexibility for the Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Beu, T.D.; Keys, T.A.; Gardner, D.R.

    1986-01-01

    Fuel cycle length flexibility is being included in the cycle designs of the Browns Ferry Nuclear Plant owned and operated by the Tennessee Valley Authority. Large end-of-cycle exposure windows are accommodated by adjusting the length of end-of-cycle coastdowns. Constraints on cycle designs are being lessened by application of innovative core loading strategies and through implementation of advanced fuel designs. Changes in design bases are evaluated relatively quickly and factored into cycle designs in order to maintain or improve performance

  3. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  4. Design of XML-based plant data model

    International Nuclear Information System (INIS)

    Nair, Preetha M.; Padmini, S.; Gaur, Swati; Diwakar, M.P.

    2013-01-01

    XML has emerged as an open standard for exchanging structured data on various platforms to handle rich, nested, complex data structures. XML with its flexible tree-like data structure allows a more natural representation as compared to traditional databases. In this paper we present data model for plant data acquisition systems captured using XML technologies. Plant data acquisition systems in a typical Nuclear Power Plant consists of embedded nodes at the first tier and operator consoles at the second tier for operator operation, interaction and display of Plant parameters. This paper discusses a generic data model that was designed to capture process, network architecture, communication/interface protocol and diagnostics aspects required for a Nuclear Power Plant. (author)

  5. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  6. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  7. Conceptual design of krypton recovery plant by porous membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fujine, Sachio; Shimizu, Toku; Saito, Keiichiro; Ouchi, Misao

    1979-10-01

    A conceptual design of a krypton recovery plant by porous membrane method was made to study feasibility of treating fuel reprocessing off-gas. Specifications of the plant could be clarified, such as off-gas pretreatment system, first cascade system of gaseous diffusion Hertz cascade composed of two-compartment diffusers, storage system, shield and housing and operating conditions. Capital costs and operating costs of the plant were estimated for different operating conditions and cost parameters. Technical and economic feasibility of the method compares favorably with those of the cryogenic distillation or the solvent absorption method. (author)

  8. Code on the safety of nuclear power plants: Design

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is a compilation of nuclear safety principles aimed at defining the essential requirements necessary to ensure nuclear safety. These requirements are applicable to structures, systems and components, and procedures important to safety in nuclear power plants embodying thermal neutron reactors, with emphasis on what safety requirements shall be met rather than on specifying how these requirements can be met. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants. The document should be used by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies

  9. Design Provisions for Withstanding Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    2015-08-01

    International operating experience has shown that the loss of off-site power supply concurrent with a turbine trip and unavailability of the standby alternating current power system is a credible event. Lessons learned from the past and recent station blackout events, as well as the analysis of the safety margins performed as part of the ‘stress tests’ conducted on European nuclear power plants in response to the Fukushima Daiichi accident, have identified the station blackout event as a limiting case for most nuclear power plants. The magnitude 9.0 earthquake and consequential tsunami which occurred in Fukushima, Japan, in March 2011, led to a common cause failure of on-site alternating current electrical power supply systems at the Fukushima Daiichi nuclear power plant as well as the off-site power grid. In addition, the resultant flooding caused the loss of direct current power supply, which further exacerbated an already critical situation at the plant. The loss of electrical power resulted in the meltdown of the core in three reactors on the site and severely restricted heat removal from the spent fuel pools for an extended period of time. The plant was left without essential instrumentation and controls, and this made accident management very challenging for the plant operators. The operators attempted to bring and maintain the reactors in a safe state without information on the vital plant parameters until the power supply was eventually restored after several days. Although the Fukushima Daiichi accident progressed well beyond the expected consequences of a station blackout, which is the complete loss of all alternating current power supplies, many of the lessons learned from the accident are valid. A failure of the plant power supply system such as the one that occurred at Fukushima Daiichi represents a design extension condition that requires management with predesigned contingency planning and operator training. The extended loss of all power at a

  10. Design and analysis of heat recovery system in bioprocess plant

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar; Rašković, Predrag; Guzović, Zvonimir

    2015-01-01

    Highlights: • Heat integration of a bioprocess plant is studied. • Bioprocess plant produces yeast and ethyl-alcohol. • The design of a heat recovery system is performed by batch pinch analysis. • Direct and indirect heat integration approaches are used in process design. • The heat recovery system without a heat storage opportunity is more profitable. - Abstract: The paper deals with the heat integration of a bioprocess plant which produces yeast and ethyl-alcohol. The referent plant is considered to be a multiproduct batch plant which operates in a semi-continuous mode. The design of a heat recovery system is performed by batch pinch analysis and by the use of the Time slice model. The results obtained by direct and indirect heat integration approaches are presented in the form of cost-optimal heat exchanger networks and evaluated by different thermodynamic and economic indicators. They signify that the heat recovery system without a heat storage opportunity can be considered to be a more profitable solution for the energy efficiency increase in a plant

  11. Stimulation treatments of large-seed leguminous plants Pt. 1

    International Nuclear Information System (INIS)

    Nagy, Istvan; Borbely, Ferenc; Nagy, Janos; Dezsi, Zoltan

    1983-01-01

    The effect of low dose X-ray irradiation on the sprouting and initial growth of some leguminous plants was studied. After having the seeds of peas, beans, lupines and horse beans irradiated, the sprouting rate, the amount of sprouting plants, the length of the roots, the sprouts and the sprouting plants, the electrolyte conductivity and the water uptake were determined. The height and the amount of the plants were measured after a period of 6 weeks. According to the sprout-length values, an increased variation in the plant features can be observed as a result of irradiation treatment: both stimulation and inhibition of plant growth occured, depending on the variety of the leguminosae. The indices of sprouting and initial growth agree well with each other. (V.N.)

  12. Seismic considerations in the design of atomic power plants

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Thakkar, S.K.

    1975-01-01

    A seismic design is one of the most important factors for the safety of nuclear power plants constructed in seismic areas. The various considerations in the design of atomic power plant structures and components to achieve high degree (near absolute) of safety during future probable earthquakes is described as follows: (a) determination of design earthquake parameters for SSE and OBE (b) fixing time history accelerograms and acceleration response spectra (c) mathematical modelling of the reactor building considering soil-structure interaction (d) deciding allowable stresses, damping factors and serviceability limits like drift, displacements and crack widths (e) tests for determining stiffness and damping characteristics of components in-situ before commissioning of plant. The main questions that arise under various items requiring further research investigations or development work are pointed out for discussion. (author)

  13. Computer aided design of piping for a radiochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P G; Chandrasekhar, A; Chandrasekar, A V [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Raju, R P; Mahudeeswaran, K V; Kumar, S V [Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    In a radiochemical plant such as reprocessing plants, process equipment, storage tanks, liquid transfer systems and the associated pipe lines etc. are housed in series of concrete cells. Availability of limited cell space/volume, provision of various modes of liquid transfers with associated redundancies and instrumentation lines with standby alternatives increase the overall piping density. Designing such high density piping layout without interference is quite complex and needs lot of human efforts. This paper briefly describes development of computer codes for the entire scheme of design, drafting and fabrication of piping for nuclear fuel reprocessing plant. The general organisation of various programs, their functions, the complete sequence of the scheme and the flow of data are presented. High degree of reliability of each routine, considerable error checking facilities, marking legends on the drawings, provision for scaling in drafting and accuracy to the extent of one mm in layout design are some of the important features of this scheme. (author). 1 fig.

  14. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  15. Feasibility design study. Land-based OTEC plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, J. H.; Minor, J.; Jacobs, R.

    1979-01-01

    The purpose of this study has been to determine the feasibility of installing 10 MWe (MegaWatt-electric) and 40 MWe land-based OTEC demonstration power plants at two specific sites: Keahole Point on the western shore of the island of Hawaii; and Punta Tuna, on the southeast coast of the main island of Puerto Rico. In addition, the study has included development of design parameters, schedules and budgets for the design, construction and operation of these plants. Seawater systems (intake and discharge pipes) were to be sized so that flow losses were equivalent to those expected with a platform-based OTEC power plant. The power module (components and general arrangement was established based on the TRW design. Results are presented in detail. (WHK)

  16. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Dudziak, D.J.; Krakowski, R.A.

    1981-08-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  17. Optimal design of condenser volume in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Jing; Yan Changqi; Wang Jianjun

    2011-01-01

    The condenser is an important component in the nuclear power plant,whose dimension will influence the economy and the arrangement of the nuclear power plant.In this paper, the calculation model was established according to the design experience. The corresponding codes were also developed. The sensitivity of design parameters which influence the condenser Janume was analyzed. The present optimal design of the condenser, aiming at the volume minimization, was carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme. In addition, the results also verify the feasibility of the complex-genetic algorithm. Furthermore, the results of this paper can provide reference for the design of the condenser. (authors)

  18. Technical guidelines for aseismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1994-06-01

    This document is a translation, in its entirety, of the Japan Electric Association (JEA) publication entitled open-quotes Technical Guidelines for Aseismic Design of Nuclear Power Plants - JEAG 4601-1987.close quotes This guideline describes in detail the aseismic design techniques used in Japan for nuclear power plants. It contains chapters dealing with: (a)the selection of earthquake ground motions for a site, (b) the investigation of foundation and bedrock conditions, (c) the evaluation of ground stability and the effects of ground movement on buried piping and structures, (d) the analysis and design of structures, and (e) the analysis and design of equipment and distribution systems (piping, electrical raceways, instrumentation, tubing and HVAC duct). The guideline also includes appendices which summarize data, information and references related to aseismic design technology

  19. An estimate and evaluation of design error effects on nuclear power plant design adequacy

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1984-01-01

    An area of considerable concern in evaluating Design Control Quality Assurance procedures applied to design and analysis of nuclear power plant is the level of design error expected or encountered. There is very little published data 1 on the level of error typically found in nuclear power plant design calculations and even less on the impact such errors would be expected to have on overall design adequacy of the plant. This paper is concerned with design error associated with civil and mechanical structural design and analysis found in calculations which form part of the Design or Stress reports. These reports are meant to document the design basis and adequacy of the plant. The estimates contained in this paper are based on the personal experiences of the author. In Table 1 is a partial listing of the design docummentation review performed by the author on which the observations contained in this paper are based. In the preparation of any design calculations, it is a utopian dream to presume such calculations can be made error free. The intent of this paper is to define error levels which might be expected in a competent engineering organizations employing currently technically qualified engineers and accepted methods of Design Control. In addition, the effects of these errors on the probability of failure to meet applicable design code requirements also are estimated

  20. Westinghouse AP1000 advanced passive plant: design features and benefits

    International Nuclear Information System (INIS)

    Walls, S.J.; Cummins, W.E.

    2003-01-01

    The Westinghouse AP1000 Program is aimed at implementing the AP1000 plant to provide a further major improvement in plant economics while maintaining the passive safety advantages established by the AP600. An objective is to retain to the maximum extent possible the plant design of the AP600 so as to retain the licensing basis, cost estimate, construction schedule, modularization scheme, and the detailed design from the AP600 program. Westinghouse and the US Nuclear Regulatory Commission staff have embarked on a program to complete Design Certification for the AP1000 by 2004. A pre-certification review phase was completed in March 2002 and was successful in establishing the applicability of the AP600 test program and AP600 safety analysis codes to the AP1000 Design Certification. On March 28, 2002, Westinghouse submitted to US NRC the AP1000 Design Control Document and Probabilistic Risk Assessment, thereby initiating the formal design certification review process. The results presented in these documents verify the safety performance of the API 000 and conformance with US NRC licensing requirements. Plans are being developed for implementation of a series of AP1000 plants in the US. Key factors in this planning are the economics of AP1000, and the associated business model for licensing, constructing and operating these new plants. Similarly plans are being developed to get the AP1000 design reviewed for use in the UK. Part of this planning has been to examine the AP1000 design relative to anticipated UK safety and licensing issues. (author)

  1. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  2. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  3. influence of treatment of seed potato tubers with plant crude

    African Journals Online (AJOL)

    ACSS

    essential oil extracts, on the growth and yield of the potato crop. Treatments consisted of .... Seed potato tuber treatment with plant crude essential oil extracts. 297 were pipetted on to ..... and clove essential oils on sprout suppression in potato ...

  4. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  5. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  6. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  7. Supernatant treatment system design through testing

    International Nuclear Information System (INIS)

    Ploetz, D.K.; Leonard, I.M.

    1988-12-01

    The main purpose of the Supernatant Treatment System (STS) is to remove more than 99.9 percent of the radioactive cesium (Cs-137) from the high-level waste stored in tank 8D-2. Cesium removal is accomplished in the STS by processing the supernatant (liquid) portion of the high-level waste through three or four ion exchange columns filled with zeolite. After treatment in the STS, the decontaminated supernatant is processed as low-level waste and finally encapsulated in cement for eventual disposal. The Cs-137 removed from the waste and absorbed onto zeolite ion exchange material is temporarily stored in tank 8D-1 until it can be encapsulated in glass and disposed of as high-level waste. This report discusses construction and testing of the STS. Design of the STS was started in 1982 in parallel with the selection of the ion exchange material. The construction of this system was accomplished in five phase in parallel with completion of design to allow for faster completion of the project. The existing high-level waste storage tanks -- 8D-1, 8D-2, and 8D-3 -- required major renovations to permit transfer of the high-level waste from tank 8D-2 to tank 8D-1, to house the components that comprise the STS in tank 8D-1, and to store decontaminated wastes in tank 8D-3. Testing in the STS started before construction was complete and was accomplished by first testing components individually. Then the system was retested using simulated supernatant. Integrated testing of the whole Integrated Radwaste Treatment System (IRTS), which includes the STS, Liquid Waste Treatment System (LWTS), Cement Solidification System (CSS), and the Drum Cell, was also performed using simulated supernatant. Finally, slightly radioactive condensate water from tank 8D-1 was processed. After successfully completing this testing, the STS started operations with radioactive supernatant on May 23, 1988. 21 refs., 33 figs., 21 tabs

  8. Advances in HTGR Wastewater Treatment System Design

    International Nuclear Information System (INIS)

    Li Junfeng; Qiu Yu; Wang Jianlong; Jia Fei

    2014-01-01

    The source terms of radioactive wastewater from HTR-PM were introduced. Concentration process should be used to reduce volume. A radioactive wastewater treatment system was designed by using Disc tubular reverse osmosis (DTRO) membrane system. The pretreatment system was simplify by using a cartridge filter. A three-stage membrane system was built. The operated characters to treat low and intermediate radioactive waste water were studied. A concentration rates of 25-50 is reached. The decontamination factor of the membrane system can reach 30-100. (author)

  9. Engineering Design of ITER Prototype Fast Plant System Controller

    Science.gov (United States)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and

  10. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  11. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  12. The Relation of Design Parameters, Plant Capacity and Processing Costs in Cobalt-60 Sterilization Plants

    International Nuclear Information System (INIS)

    Brown, M.G.

    1967-01-01

    The paper describes the main features of three basic types of cobalt-60 sterilization plants which have been designed to provide a complete range of capacities for radiosterilization of medical products. The smallest plant has a capacity of up to 50 000 cubic feet of medical products a year, the intermediate size plant has a capacity of up to 500 000 cubic feet a year, and the largest plant has a capacity in excess of 1000 000 cubic feet a year. The relations between capital costs, rate of production, efficiency and unit processing costs for each type of plant are discussed. The method of selecting the best type of plant for a particular need will also be outlined. (author)

  13. Control room systems design for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs.

  14. Control room systems design for nuclear power plants

    International Nuclear Information System (INIS)

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs

  15. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig./RW)

  16. Design of control rooms and ergonomics in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Modern power plant control rooms are characterized by automation of protection and control functions, subdivision according to functions, computer-aided information processing, and ergonomic design. Automation relieves the personnel of stress. Subdivision according to functions permits optimized procedures. Computer-aided information processing results in variable information output tailored to the actual needs. Ergonomic design assures qualified man-machine interaction. Of course, these characteristics will vary between power plants in dependence of unit power, mode of operation, and safety and availability requirements. (orig.) [de

  17. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  18. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  19. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  20. Three-dimensional computer aided design system for plant layout

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kiguchi, Takashi; Tokumasu, Shinji; Kumamoto, Kenjiro.

    1986-01-01

    The CAD system for three-dimensional plant layout planning, with which the layout of pipings, cable trays, air conditioning ducts and so on in nuclear power plants can be planned and designed effectively in a short period is reported. This system comprises the automatic routing system by storing the rich experience and know-how of designers in a computer as the knowledge, and deciding the layout automatically following the predetermined sequence by using these, the interactive layout system for reviewing the routing results from higher level and modifying to the optimum layout, the layout evaluation system for synthetically evaluating the layout from the viewpoint of the operability such as checkup and maintenance, and the data base system which enables these effective planning and design. In this report, the total constitution of this system and the technical features and effects of the individual subsystems are outlined. In this CAD system for three-dimensional plant layout planning, knowledge engineering, CAD/CAM, computer graphics and other latest technology were introduced, accordingly by applying this system to plant design, the design can be performed quickly, various case studies can be carried out at planning stage, and systematic and optimum layout planning becomes possible. (Kako, I.)

  1. Design basis programs and improvements in plant operation

    International Nuclear Information System (INIS)

    Metcalf, M.F.

    1991-01-01

    Public Service Electric and Gas (PSE and G) Company operates three commercial nuclear power plants in southern New Jersey. The three plants are of different designs and vintages (two pressurized water reactors licensed in 1976 and 1980 and one boiling water reactor licensed in 1986). As the industry recognized the need to develop design basis programs, PSE and G also realized the need after a voluntary 52-day shutdown of one unit because of electrical design basis problems. In its drive to be a premier electric utility, PSE and G has been aggressively active in developing design basis documents (DBDs) with supporting projects and refined uses to obtain the expected value and see the return on investment. Progress on Salem is nearly 75% complete, while Hope Creek is 20% complete. To data, PSE and G has experienced success in the use of DBDs in areas such as development of plant modifications, development of the reliability-centered maintenance program, procedure upgrades, improved document retrieval, resolution of regulatory issues, and training. The paper examines the design basis development process, supporting projects, and expected improvements in plant operations as a result of these efforts

  2. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  3. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs

  4. Development of inelastic design method for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Takahashi, Yukio; Take, Kohji; Kaguchi, Hitoshi; Fukuda, Yoshio; Uno, Tetsuro.

    1991-01-01

    Effective utilization of inelastic analysis in structural design assessment is expected to play an important role for avoiding too conservative design of liquid metal reactor plants. Studies have been conducted by the authors to develop a guideline for application of detailed inelastic analysis in design assessment. Both fundamental material characteristics tests and structural failure tests were conducted. Fundamental investigations were made on inelastic analysis method and creep-fatigue life prediction method based on the results of material characteristics tests. It was demonstrated through structural failure tests that the design method constructed based on these fundamental investigations can predict failure lives in structures subjected to cyclic thermal loadings with sufficient accuracy. (author)

  5. Nuclear power plant C and I design verification by simulation

    International Nuclear Information System (INIS)

    Storm, Joachim; Yu, Kim; Lee, D.Y

    2003-01-01

    An important part of the Advanced Boiling Water Reactor (ABWR) in the Taiwan NPP Lungmen Units no.1 and no.2 is the Full Scope Simulator (FSS). The simulator was to be built according to design data and therefore, apart from the training aspect, a major part of the development is to apply a simulation based test bed for the verification, validation and improvement of plant design in the control and instrumentation (C and I) areas of unit control room equipment, operator Man Machine Interface (MMI), process computer functions and plant procedures. Furthermore the Full Scope Simulator will be used after that to allow proper training of the plant operators two years before Unit no.1 fuel load. The article describes scope, methods and results of the advanced verification and validation process and highlights the advantages of test bed simulation for real power plant design and implementation. Subsequent application of advanced simulation software tools like instrumentation and control translators, graphical model builders, process models, graphical on-line test tools and screen based or projected soft panels, allowed a team to fulfil the task of C and I verification in time before the implementation of the Distributed Control and Information System (DCIS) started. An additional area of activity was the Human Factors Engineering (HFE) for the operator MMI. Due to the fact that the ABWR design incorporates a display-based operation with most of the plant components, a dedicated verification and validation process is required by NUREG-0711. In order to support this activity an engineering test system had been installed for all the necessary HFE investigations. All detected improvements had been properly documented and used to update the plant design documentation by a defined process. The Full Scope Simulator (FSS) with hard panels and stimulated digital control and information system are in the final acceptance test process with the end customer, Taiwan Power Company

  6. Evaluation of masonry wall design at nuclear power plants

    International Nuclear Information System (INIS)

    Con, V.N.; Subramonian, N.; Chokshi, N.

    1983-01-01

    The structural integrity of safety-related masonry walls in operating nuclear power plants may not be maintained when subjected to certain loads and load combinations. The paper presents some findings based upon the review of the design and analysis procedures used by the licensees in the reevaluation of safety-related masonry walls. The design criteria developed by the Structural Engineering Branch (SEB) of the United States Nuclear Regulatory Commission (NRC) along with other standard codes such as the Uniform Building Code, ACI 531-79, ATC 3-06, and NCMA were used as guidance in evaluating the design criteria developed by the licensees. The paper deals with the following subject areas: loads and load combinations, allowable stresses, analytical procedures, and modification methods. The paper concludes that, in general, the masonry walls in nuclear power plants comply with the working stress design requirements. In some cases, certain nonlinear analysis methods were used. The applicability of these methods is discussed. (orig.)

  7. Accounting for maintenance in the design of nuclear power plants

    International Nuclear Information System (INIS)

    Meuwisse, C.; Martin-Mattei, C.; Hamon, L.

    1997-01-01

    The objective of the CIDEM project (French acronym for Design Integrating Availability, Operating Experience and Maintenance) is to control the per-kW production cost of future Electricite de France REP 2000 nuclear plants. In particular, such cost control requires accounting for maintenance and logistic support from the time of design of the future installations. This technical and economic optimization is based on assessment and comparison of possible choices in terms of materials and maintenance, and on the search for potential improvements. In the Basic Design phase, the method involves identifying reference components which are supposed highly similar to the components to be designed. In the Construction phase, it culminates in the early definition of a detailed maintenance and support plant. To be effective, the approach requires realistic tailoring of the studies to be undertaken, and the participation of multidisciplinary teams working in the framework of concurrent engineering. (author)

  8. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  9. Design aid system for nuclear power plant instrumentations

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Ito, Toshiichiro; Fujii, Makoto; Shimada, Nobuhide.

    1987-01-01

    Purpose: To enable to provide design aid for the nuclear power plant instrumentation of high reliability with the minimum cost while eliminating unrequired condition even if there are no data for the ground of the instrumentation design. Constitution: The information data base for the design of process radiation ray monitors are administrated by a data base administration device. The conditions to be satisfied in the process radiation monitors designed based on the data for the circumstances where particular predetermined process radiation monitors are installed, are derived by deduction using information obtained from the data base by way of the data base administration device. The derived design conditions are displayed and the optimum conditions are again reduced and displayed. In this way, the designers are assisted such that optimum designs can be obtained while sufficiently satisfying the safety and also in view of the cost. (Kamimura, M.)

  10. Designing for nuclear power plant maintainability and operability

    International Nuclear Information System (INIS)

    Pedersen, T.J.

    1998-01-01

    Experience has shown that maintenance and operability aspects must be addressed in the design work. ABB Atom has since long an ambition of achieving optimised, overall plant designs, and efficient feedback of growing operating experience has stepwise eliminated shortcomings, and yielded better and better plant operating performances. The records of the plants of the latest design versions are very good; four units in Sweden have operated at an energy availability of 90.1%, and the two Olkiluoto units in Finland at a load factor of 92.7%, over the last decade. The occupational radiation exposures have also been at a low level. The possibilities for implementing 'lessons learned' in existing plants are obviously limited by practical constraints. In Finland and Sweden, significant modernisations are still underway, however, involving replacement of mechanical equipment, and upgrading and backfitting of I and C systems on a large scale, in most of the plants. The BWR 90 design focuses on meeting requirements from utilities as well as new regulatory requirements, with a particular emphasis on the consequences of severe accidents; there shall be no large releases to the environment. Other design improvements involve: all-digital I and C systems and enhanced human factors engineering to improve work environment for operators, optimisation of buildings and containment to decrease construction time and costs, and selection of materials as well as maintenance of operating procedures to reduce radiation exposures even further. The BWR 90 design was offered to Finland in the early 1990s, but development work continues. It has been selected by a number of European utilities for assessing its conformance with the European Utility Requirements (EUR), aiming at a specific EUR Volume 3 for the BWR 90. Some characteristics of the ABB BWRs, with emphasis on features of importance for achieving improved economy and enhanced safety, are described below. (author)

  11. Priorities in the design of chemical shops at coke plants

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  12. Architect engineer balance-of-plant radiological design considerations

    International Nuclear Information System (INIS)

    Piccot, A.R.

    1975-01-01

    Methods which are or may be used by Architect Engineers in dealing with the problems of radiological safety in the design of a nuclear power plant are discussed. The bases and basic requirements for a radiation protection program are briefly noted. Requirements in the areas of planning, organization, responsibilities and implementation of radiation protection are discussed. Lists of safety tasks which should be performed during the various design phases are presented

  13. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  14. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  15. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  16. Method for treatment of wastewater of nuclear power plants

    International Nuclear Information System (INIS)

    Ito, Kazutoshi; Suzuki, Katsumi; Suzuki, Mamoru; Minato, Akira.

    1984-01-01

    A method for treatment of wastewater of nuclear power plants is characterized by the fact that concentration and volume reduction are performed after Ca and Mg as components for the formation of an adhering scale is converted to an 8-oxyquinoline complex, which is hardly soluble in water, and does not precipitate out as an adhering scale, by the addition of 8-oxyquinoline into nuclear power plant wastewater

  17. New Clean Air Act complicates power plant operation, design

    International Nuclear Information System (INIS)

    Smock, R.W.

    1991-01-01

    In November the president signed into law the new Clean Air Act, ushering in a new era in the power generation industry. This paper reviews the six important sections of the Clean Air Act and their impact on power plant operation and design

  18. Some engineering considerations when designing centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Edwards, T.T.

    1982-01-01

    A review is given of the three main areas where flexibility is needed in the design of centrifuge enrichment plants. These are: the need to cope with market requirements, the limitations imposed by currently available centrifuges and ever advancing centrifuge technology. Details of BNFL's experience with centrifuge enrichment at Capenhurst are presented. (U.K.)

  19. Design and control of integrated styrene aniline production plant

    NARCIS (Netherlands)

    Partenie, O.; Van der Last, V.; Sorin Bildea, C.; Altimari, P.

    2009-01-01

    This paper illustrates the operational difficulties arising from simultaneously performing exothermic and endothermic reactions, and demonstrates that a plant can be built and safely operated by integrating the design and plantwide control issues. The behaviour of reactor – separation – recycle

  20. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    Choice-Academy

    industry in the country do not have the capacity to manufacture the complete distillation plant system with the required precision for standard quality of oil at affordable cost. Thus, the design and the experiment in the use of a prototype small size distillation unit showed that the technology is appropriate for essential oil ...

  1. Seismic design features of the ACR Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Aziz, T.

    2003-01-01

    Through their worldwide operating records, CANDU Nuclear Power Plants (NPPs) have repeatedly demonstrated safe, reliable and competitive performance. Currently, there are fourteen CANDU 6 single unit reactors operating or under construction worldwide. Atomic Energy of Canada Limited's (AECL) Advanced CANDU Reactor - the ACR. - is the genesis of a new generation of technologically advanced reactors founded on the CANDU reactor concept. The ACR is the next step in the evolution of the CANDU product line. The ACR products (ACR-700 and ACR-1000) are based on CANDU 6 (700 MWe class) and CANDU 9 (900 MWe class) reactors, therefore continuing AECL's successful approach of offering CANDU plants that appeal to a broad segment of the power generation market. The ACR products are based on the proven CANDU technology and incorporate advanced design technologies. The ACR NPP seismic design complies with Canadian standards that were specifically developed for nuclear seismic design and also with relevant International Atomic Energy Agency (IAEA) Safety Design Standards and Guides. However, since the ACR is also being offered to several markets with many potential sites and different regulatory environments, there is a need to develop a comprehensive approach for the seismic design input parameters. These input parameters are used in the design of the standard ACR product that is suitable for many sites while also maintaining its economic competitiveness. For this purpose, the ACR standard plant is conservatively qualified for a Design Basis Earthquake (DBE) with a peak horizontal ground acceleration of 0.3g for a wide range of soil/rock foundation conditions and Ground Response Spectra (GRS). These input parameters also address some of the current technical issues such as high frequency content and near field effects. In this paper, the ACR seismic design philosophy and seismic design approach for meeting the safety design requirements are reviewed. Also the seismic design

  2. Formulation of engineering design principles for the treatment of irradiated fuel and associated radioactive waste

    International Nuclear Information System (INIS)

    Banford, A.W.; Hanson, B.C.; Scully, P.J.; Taylor, R.

    2007-01-01

    The industrial scale treatment of irradiated fuel in the UK has resulted in BNFL developing extensive experience of the process design, build, commissioning, and operation necessary for successful nuclear processing plant. Much of the design experience now resides in Nexia Solutions (formally BNFL Research and Development Division) who have always defined and undertaken the extensive development programmes necessary to underpin the design at all stages of the project life-cycle. Since the 1990's, Nexia Solutions has built up a large portfolio of plant designs for a range of spent fuel applications, from fuel conditioning to partitioning and transmutation. In addition, by investigation of a large and diverse portfolio of technologies Nexia Solutions has developed innovative concepts for plant design that could present significant economic savings on conventional approaches. Using this experience and the lessons learned, we have developed and refined our own engineering design principles necessary for the successful design of commercial spent fuel and waste treatment plant. Our approach is to advocate an integral concept, with both science and engineering designs working in parallel during development. 4 foundation principles for success have been identified: -) understand the strategic objective, -) adopt a risk driven programme, -) engage in engineering activities early, and -) timely application of appropriate engineering methodologies. 2 Case studies presented in this paper: first, the BNFL segregated effluent treatment plant and secondly, the selection of a pyrochemical process for recycle of fast reactor, demonstrate how this approach has been adopted and the benefits that have been gained

  3. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated......Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  4. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...

  5. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  6. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  7. Medicinal plants indications from herbal healers for wound treatment

    Directory of Open Access Journals (Sweden)

    Maria Willianne Alves do Nascimento

    2016-06-01

    Full Text Available The objective was to identify medicinal plants indicated by commercial herbal healers for wound treatment, in street markets. A descriptive study conducted in a capital city in the northeast of Brazil, through interviews. The results indicate that plant commerce by healers of both genders, aged between 37 to 52 years, from those 69.3% learned about their function with family members. Forty-eight plant species were cited for wound treatment, between those, all participants cited Barbatimão and Mastic. From the plants Sambacaitá, Open Nettle, Yellow Uchi, Corona, Xiquexique, Senna and Pindaíba no properties to prove their indication was found for wound treatment. The stem bark was the most indicated part (96.15%, 81.03% of participants informed that plants should be kept dry for conservation. Studies to clarify the biological activities and collateral effects of medicinal plants are needed, beyond training for healers about indications, prepare, storage/conservation, and expiration date.

  8. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  9. Collection and treatment of reliability data for nuclear plants

    International Nuclear Information System (INIS)

    McHugh, B.

    1973-09-01

    This paper describes some of the results achieved with the Argus data bank at the Institution of Thermal Power Engineering at the Chalmers University of Technology. This data bank, or rather data collection system, has been established to cover nuclear activities the world over. The system comprises in essence a number of data files. The prime files are those containing the basic data on the various plants - plant size and type, country and NSSS supplier and an indication of plantstatus. Further files contain plant design data and parameters and all available information on construction as commissioning timetables. To cover the operation of plant two files have been established. One file, which is updated on a monthly basis, contains power production statistics. The other file contains failure data. In this file are recorded the time and duration of plant shutdown together with the primary reason (s) for this. (M.S.)

  10. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  11. Saudi medicinal plants for the treatment of scorpion sting envenomation.

    Science.gov (United States)

    Al-Asmari, Abdulrahman; Manthiri, Rajamohamed Abbas; Abdo, Nasreddien; Al-Duaiji, Fawzi Abdullah; Khan, Haseeb Ahmad

    2017-09-01

    Scorpion sting envenoming poses major public health problems. The treatment modalities include antivenoms, chemical antidotes and phytotherapy, with varying degrees of effectiveness and side effects. In this investigation, we reviewed the use of Saudi medicinal plants for the treatment of scorpion sting patients. The relevant literature was collected using the online search engines including Science Direct, Google and PubMed with the help of specific keywords. We also used the printed and online resources at our institutional library to gather the relevant information on the use of medicinal plants for the treatment of scorpion sting patients. A descriptive statistics was used for data compilation and presentation. The results of this survey showed the use of at least 92 medicinal plants with beneficial effects for treating victims of stings of different scorpion species. These commonly used herbs spanned to 37 families whilst different parts of these plants were employed therapeutically for alleviation of envenomation symptoms. The application of leaves (41%) was preferred followed by roots (19%), whole plant (14%) and seeds (9%). The use of latex (4%), stem (3%), flowers (3%) and bark (3%) was also reported. In some cases, tannin (2%), rhizome (1%) and shoot (1%) were also used. In conclusion, herbal medicines are effectively used for the treatment of patients with scorpion envenomation. This type of medication is free from side effects as observed with chemical antidotes or antivenom therapy. It is important to identify the active ingredients of herbal drugs for improving their therapeutic potential in traditional medicine.

  12. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  13. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure...... is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based...... for the future development of the existing wastewater treatment process....

  14. A Tool to Support Optimal Industrial Wastewater Treatment Design and Analysis

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Pennati, Alessandra; Bozkurt, Hande

    2013-01-01

    may be suboptimal or disregard opportunities for water recycle or resource recovery and reuse. In this contribution, we propose a model-based toolbox developed to help wastewater professionals to screen among a large number of alternatives in order to identify the optimal treatment configuration from......Industrial Wastewater Treatment Plant (IWWTP) design is often based on in-house expert knowledge and experience. Because of time and resources constraints, only a small number of alternative treatment configurations and ideas are evaluated while designing an IWWTP. Consequently, the selected design...... an economic cost-benefit perspective. The toolbox is demonstrated through a case study, dealing with oil refinery wastewater treatment and water recycle....

  15. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    Existing wastewater treatment plants (WWTP) need retrofitting in order to better handle changes in the wastewater flow and composition, reduce operational costs as well as meet newer and stricter regulatory standards on the effluent discharge limits. In this study, we use an optimization based...... technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  16. NOM characterization and removal at six Southern African water treatment plants

    Directory of Open Access Journals (Sweden)

    J. Haarhoff

    2010-04-01

    Full Text Available Organic pollution is a major concern during drinking water treatment. Major challenges attributed to organic pollution include the proliferation of pathogenic micro-organisms, prevalence of toxic and physiologically disruptive organic micro-pollutants, and quality deterioration in water distribution systems. A major component of organic pollution is natural organic matter (NOM. The operational mechanisms of most unit processes are well understood. However, their interaction with NOM is still the subject of scientific research. This paper takes the form of a meta-study to capture some of the experiences with NOM monitoring and analysis at a number of Southern African Water Treatment Plants. It is written from the perspective of practical process selection, to try and coax some pointers from the available data for the design of more detailed pilot work. NOM was tracked at six water treatment plants using dissolved organic carbon (DOC measurements. Fractionation of the DOC based on biodegradability and molecular weight distribution was done at a water treatment plant in Namibia. A third fractionation technique using ion exchange resins was used to assess the impact of ozonation on DOC. DOC measurements alone did not give much insight into NOM evolution through the treatment train. The more detailed characterization techniques showed that different unit processes preferentially remove different NOM fractions. Therefore these techniques provide better information for process design and optimisation than the DOC measurement which is routinely done during full scale operation at these water treatment plants.

  17. Design of zeolite ion-exchange columns for wastewater treatment

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1991-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of wastewater containing parts-per-billion levels of 90 Sr and 137 Cs. Treatability studies indicate that such zeolites can remove trace amounts of 90 Sr and 137 Cs from wastewater containing high concentrations of calcium and magnesium. These studies who that zeolite system efficiency is dependent on column design and operating conditions. Previous results with bench-scale, pilot-scale, and near-full-scale columns indicate that optimized design of full-scale columns could reduce the volume of spent solids generation by one-half. The data indicate that shortcut scale-up methods cannot be used to design columns to minimize secondary waste generation. Since the secondary waste generation rate is a primary influence on process cost effectiveness, a predictive mathematical model for column design is being developed. Equilibrium models and mass-transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange (Ca, Mg, Na, Cs, and Sr). Mathematical models of these data to determine the breakthrough curves for different column configurations and operating conditions will be used to optimize the final design of full-scale treatment plant. 32 refs., 6 figs., 3 tabs

  18. Short-cut design of small hydroelectric plants

    Energy Technology Data Exchange (ETDEWEB)

    Voros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)

    2000-04-01

    The problem of designing small hydroelectric plants has been properly analysed and addressed in terms of maximising the economic benefits of the investment. An appropriate empirical model describing hydroturbine efficiency was developed. An overall plant model was introduced by taking into account their construction characteristics and operational performance. The hydrogeographical characteristics for a wide range of sites have been appropriately analysed and a model that involves significant physical parameters has been developed. The design problem was formulated as a mathematical programming problem, and solved using appropriate programming techniques. The optimisation covered a wide range of site characteristics and three types of commercially available hydroturbines. The methodology introduced an empirical short-cut design equation for the determination of the optimum nominal flowrate of the hydroturbines and the estimation of the expected unit cost of electricity produced, as well as of the potential amount of annually recovered energy. (Author)

  19. Anthropometric data base for power plant design. Special report

    International Nuclear Information System (INIS)

    Parris, H.L.

    1981-07-01

    The primary study objective is to develop anthropometric data based upon the men and women who operate and maintain nuclear power plants. Age, stature, and weight information were obtained by a questionnaire survey of current operator and maintenance personnel, and the data extracted from the questionnaires were analyzed to derive body-size information for a number of anthropometric variables of interest to designers. Body-size information was developed separately for both men and women. Results achieved for the male population can be utilized by designers with a high level of confidence for the design of general workplaces. While the number of women respondents in the sample proved to be too small to derive results to which a similarly high level of reliability could be attached, the data can nevertheless be used as reasonable indicators of the probable body-size variability to be found among female power plant employees

  20. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  1. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  2. Manpower simulation for the power plant design engineering

    International Nuclear Information System (INIS)

    Moon, B.S.; Juhn, P.E.

    1982-01-01

    Some observation from the examination of actual manhour curves for the power design engineering obtained from Sargent and Lundy Engineers and of a few of the model curves proposed by Bechtel, are analyzed in this paper. A model curve representing typical design engineering manhour has been determined as probability density function for the Gamma Distribution. By means of this model curve, we strategically forecast the future engineering manpower requirements to meet the Covernment's long range nuclear power plan. As a sensitivity analysis, the directions for the localization of nuclear power plant design engineering, are studied in terms of the performance factor for the experienced versus inexperienced engineers. (Author)

  3. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    Directory of Open Access Journals (Sweden)

    Alshabab Mary Shick

    2016-01-01

    Full Text Available Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times dosages of reagents (acidifier, coagulant, flocculant in several actual stages of treatment (acidification, separation, coagulation and sedimentation and add stage of dispersed air flotation before coagulation treatment. The modified wastewater treatment technology would reduce COD to the values allowed for irrigation waters by Syrian National Standard.

  4. Genetic algorithms and Monte Carlo simulation for optimal plant design

    International Nuclear Information System (INIS)

    Cantoni, M.; Marseguerra, M.; Zio, E.

    2000-01-01

    We present an approach to the optimal plant design (choice of system layout and components) under conflicting safety and economic constraints, based upon the coupling of a Monte Carlo evaluation of plant operation with a Genetic Algorithms-maximization procedure. The Monte Carlo simulation model provides a flexible tool, which enables one to describe relevant aspects of plant design and operation, such as standby modes and deteriorating repairs, not easily captured by analytical models. The effects of deteriorating repairs are described by means of a modified Brown-Proschan model of imperfect repair which accounts for the possibility of an increased proneness to failure of a component after a repair. The transitions of a component from standby to active, and vice versa, are simulated using a multiplicative correlation model. The genetic algorithms procedure is demanded to optimize a profit function which accounts for the plant safety and economic performance and which is evaluated, for each possible design, by the above Monte Carlo simulation. In order to avoid an overwhelming use of computer time, for each potential solution proposed by the genetic algorithm, we perform only few hundreds Monte Carlo histories and, then, exploit the fact that during the genetic algorithm population evolution, the fit chromosomes appear repeatedly many times, so that the results for the solutions of interest (i.e. the best ones) attain statistical significance

  5. Probability sampling design in ethnobotanical surveys of medicinal plants

    Directory of Open Access Journals (Sweden)

    Mariano Martinez Espinosa

    2012-07-01

    Full Text Available Non-probability sampling design can be used in ethnobotanical surveys of medicinal plants. However, this method does not allow statistical inferences to be made from the data generated. The aim of this paper is to present a probability sampling design that is applicable in ethnobotanical studies of medicinal plants. The sampling design employed in the research titled "Ethnobotanical knowledge of medicinal plants used by traditional communities of Nossa Senhora Aparecida do Chumbo district (NSACD, Poconé, Mato Grosso, Brazil" was used as a case study. Probability sampling methods (simple random and stratified sampling were used in this study. In order to determine the sample size, the following data were considered: population size (N of 1179 families; confidence coefficient, 95%; sample error (d, 0.05; and a proportion (p, 0.5. The application of this sampling method resulted in a sample size (n of at least 290 families in the district. The present study concludes that probability sampling methods necessarily have to be employed in ethnobotanical studies of medicinal plants, particularly where statistical inferences have to be made using data obtained. This can be achieved by applying different existing probability sampling methods, or better still, a combination of such methods.

  6. Process and technological options for odorous emissions control in wastewater treatment plants

    International Nuclear Information System (INIS)

    Cernuschi, S.; Torretta, V.

    1996-01-01

    The emissions of odorous substances together with noise and issues related to proper architectural design within the existing territorial context, have certainly to be considered one of the most significant environmental effects determined by wastewater treatment plants particularly in the most frequent case of their localization in dense urban areas. Following a brief introduction on the chemical properties of odorous compounds and the corresponding methods for representing their concentration levels in air, present work reports on the main qualitative and quantitative characteristics of odorous emissions originating from single unit operations of typical wastewater treatment plants and on the technological and process options available for their control

  7. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  8. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  9. Wind Power Plants Fundamentals, Design, Construction and Operation

    CERN Document Server

    Twele, Jochen

    2012-01-01

    Wind power plants teaches the physical foundations of usage of Wind Power. It includes the areas like Construction of Wind Power Plants, Design, Development of Production Series, Control, and discusses the dynamic forces acting on the systems as well as the power conversion and its connection to the distribution system. The book is written for graduate students, practitioners and inquisitive readers of any kind. It is based on lectures held at several universities. Its German version it already is the standard text book for courses on Wind Energy Engineering but serves also as reference for practising engineers.

  10. Design data and safety features of commerical nuclear power plant

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1976-06-01

    Design data, safety features, and site characteristics are summarized for 34 nuclear power units in 17 power stations in the United States. Six pages of data are presented for each plant, consisting of thermal-hydraulic and nuclear factors, containment features, emergency-core-cooling systems, site features, circulating water system data, and miscellaneous factors. An aerial perspective is also presented for each plant. This volume covers Light Water Reactors (LWRs) with dockets 50-508 through 50-549, four HTGRs--50-171, 50-267, 50-450/451, 50-463/464, the Atlantic Floating Station 50-477/478, and the Clinch River Breeder 50-537

  11. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  12. Nuclear power plant functions: overview, maintenance, design practices, training

    International Nuclear Information System (INIS)

    Gray, J.

    1984-01-01

    The author gives a history of the nuclear industry in the US beginning with the Atoms for Peace Proposal in 1954 and summarizes the nuclear industry's importance in the realm of electric power production today. The primary problems facing the domestic nuclear industry are identified as the lengthening schedules for plant licensing and construction, and the associated uncertainty in plant costs and difficulty in financing, and the erosion of public confidence. Views on technological approaches to the future of nuclear power and the role regulation will play in the future as a fundamental force are discusses in the paper. Also discussed are the importance of standardization of advanced reactor designs and quality assurance

  13. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  14. Engineering report for interim solids removal modifications of the Steam Plant Wastewater Treatment Facility

    International Nuclear Information System (INIS)

    1995-04-01

    The Steam Plant Wastewater Treatment Facility (SPWTF) treats wastewater from the Y-12 Plant coal yard, steam plant, and water demineralizer facility. The facility is required to comply with National Pollutant Discharge Elimination System (NPDES) standards prior to discharge to East Fork Poplar Creek (EFPC). The existing facility was designed to meet Best Available Technology (BAT) standards and has been in operation since 1988. The SPWTF has had intermittent violations of the NPDES permit primarily due to difficulties in complying with the limit for total iron of 1.0 ppM. A FY-1997 Line Item project, SPWTF Upgrades, is planned to improve the capabilities of the SPWTF to eliminate non-compliances with the permit limits. The intent of the Interim Solids Removal Modification project is to improve the SPWTF effluent quality and to provide pilot treatment data to assist in the design and implementation of the SPWTF Upgrades Line Item Project

  15. 40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?

    Science.gov (United States)

    2010-07-01

    ... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...

  16. 40 CFR 63.1582 - What are the characteristics of an industrial POTW treatment plant?

    Science.gov (United States)

    2010-07-01

    ... industrial POTW treatment plant? 63.1582 Section 63.1582 Protection of Environment ENVIRONMENTAL PROTECTION... Works Industrial Potw Treatment Plant Description and Requirements § 63.1582 What are the characteristics of an industrial POTW treatment plant? (a) Your POTW is an industrial POTW treatment plant if an...

  17. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  18. Medicinal Plants for the Treatment of Hypertrophic Scars

    Directory of Open Access Journals (Sweden)

    Qi Ye

    2015-01-01

    Full Text Available Hypertrophic scar is a complication of wound healing and has a high recurrence rate which can lead to significant abnormity in aesthetics and functions. To date, no ideal treatment method has been established. Meanwhile, the underlying mechanism of hypertrophic scarring has not been clearly defined. Although a large amount of scientific research has been reported on the use of medicinal plants as a natural source of treatment for hypertrophic scarring, it is currently scattered across a wide range of publications. Therefore, a systematic summary and knowledge for future prospects are necessary to facilitate further medicinal plant research for their potential use as antihypertrophic scar agents. A bibliographic investigation was accomplished by focusing on medicinal plants which have been scientifically tested in vitro and/or in vivo and proved as potential agents for the treatment of hypertrophic scars. Although the chemical components and mechanisms of action of medicinal plants with antihypertrophic scarring potential have been investigated, many others remain unknown. More investigations and clinical trials are necessary to make use of these medical plants reasonably and phytotherapy is a promising therapeutic approach against hypertrophic scars.

  19. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  20. Effluent treatment plant for pharmaceutical unit at Bahipheru - case study

    International Nuclear Information System (INIS)

    Hayat, A.

    1997-01-01

    This project has been awarded to environ (Pvt) Ltd., on turnkey basis, and is an integrated waste treatment facility for pharmaceuticals companies, manufacturing paracetamole, aspirin and various pharmaceuticals intermediates, from phenol as basic raw material. A highly toxic waste water, containing high concentrations of phenolics and sulfate ions is generated at this plant and has to be treatment before final disposal into an irrigation channel. (author)

  1. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan, E-mail: dhmun@moeri.re.k [Marine Safety and Pollution Response Research Department, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yang, Jeongsam, E-mail: jyang@ajou.ac.k [Division of Industrial and Information Systems Engineering, Ajou University, San 5, Wonchun-dong, Yeongtong-gu, Suwon 443-749 (Korea, Republic of)

    2010-03-15

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  2. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    International Nuclear Information System (INIS)

    Mun, Duhwan; Yang, Jeongsam

    2010-01-01

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  3. Avaliação de 166 ETES em operação no país, compreendendo diversas tecnologias. Parte 2: influência de fatores de projeto e operação Evaluation of 166 treatment plants operating in Brazil, comprising several technologies. Part 2: the influence of design and operational parameters

    Directory of Open Access Journals (Sweden)

    Sílvia M. A. Corrêa Oliveira

    2005-12-01

    Full Text Available O estudo avalia a influência de fatores de projeto e de operação no desempenho de estações de tratamento de esgotos, considerando a concentração efluente e eficiência de remoção de DBO. Apenas quatro das seis tecnologias de tratamento estudadas na Parte 1 forneceram dados suficientes para análise: lagoas facultativas, lagoas anaeróbias seguidas por lagoas facultativas, lodos ativados e reatores UASB operando isoladamente. O objetivo da pesquisa foi verificar a influência das condições de carga (sobrecarga, carga adequada e subcarga, do porte da estação e do envolvimento operacional (tendo como indicador a freqüência de monitoramento no desempenho das estações de tratamento. Os resultados mostraram que não existe uma relação consistente entre a eficiência de remoção e as variáveis operacionais. A contribuição e a influência de cada variável difere de ETE para ETE, e pode ser resultado de projeto, operação ou ambos.The paper analyses the performance of the wastewater treatment plants considering the influence of the design and operational parameters. Four different treatment technologies have been investigated, comprising the following processes: facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors without post treatment. The objective of the research was to verify the influence of the loading conditions, plant's size and the operational quality (indicated by monitoring frequency on the effluent quality. The results showed that a consistent relationship between performance and design and operational parameters does not exist. The contribution and influence of any variable differs for each plant. This situation may be a result of design, operation or both.

  4. Multi-purpose hydrogen isotopes separation plant design

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I. [Atomic Energy of Canada Limited - AECL, Chalk River, ON (Canada)

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  5. Seismic design of nuclear power plants - where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1998-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last 10 years has resulted in a corresponding lull in the basic academic research carried out in this field. Whilst some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. However, research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (orig.)

  6. Seismic design of nuclear power plants. Where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1995-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last ten years has resulted in a corresponding lull in the basic academic research carried out in this field. While some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. Yet research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (author)

  7. Design control for standard U.S. EPRTM plants

    International Nuclear Information System (INIS)

    Mathews, Toney A.; Miller, Matthew P.

    2009-01-01

    The U.S. EPR TM design is being reviewed by the U.S. Nuclear Regulatory Commission (NRC) for reference by utility applicants to build and operate EPR TM nuclear reactors in the United States. While the U.S. EPR TM Design Certification and utility Combined License Applications are being reviewed by the NRC, the AREVA-Bechtel Consortium for Engineering Procurement and Construction is proceeding with developing the detailed design. Multiple, parallel regulatory and engineering activities require carefully prepared documents and rigorous design control processes. This paper will review the design control processes used by the AREVA-Bechtel Consortium. Design control must consider the basic design processes required to achieve an integrated, functional design, as well as design change control. Sources of change and the need to keep design bases and licensing bases consistent must be thoroughly understood. An objective of the U.S. EPR TM reactor deployment program for the United States is to achieve maximum standardization of common features of the plant. Such standardization is necessary for economics, speed-of-construction, and operational efficiencies available from a 'fleet' approach to deployment. (author)

  8. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  9. [Newly Designed Water Treatment Systems for Hospital Effluent].

    Science.gov (United States)

    Azuma, Takashi

    2018-01-01

     Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.

  10. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  11. Design study of fusion Demo plant at JAERI

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Enoeda, M.

    2006-01-01

    Three options of fusion Demo plant are proposed characterized by functions of the center solenoid (Cs). The prime option uses a downsized CS, which does not provide sufficient V-s for plasma current ramp-up but supplies enough coil current for plasma shaping. This option produces a fusion output of 3 GW with a major radius of 5.5 m, aspect ratio of 2.6, normalized beta of 4.3 and maximum field of 16.4 T. The estimated reactor weight is lighter than that of other conventional tokamak reactors, suggesting an economic advantage. The plant uses rather conservative technologies such as Nb 3 Al superconductor, water-cooled solid breeder blanket, low activation ferritic steel as the structural material and tungsten monoblock divertor plate. The design philosophy and key issues related to the constituent technologies of the plant are described in the present paper

  12. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  13. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  14. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  15. Treatment of anxiety and depression: medicinal plants in retrospect.

    Science.gov (United States)

    Fajemiroye, James O; da Silva, Dayane M; de Oliveira, Danillo R; Costa, Elson A

    2016-06-01

    Anxiety and depression are complex heterogeneous psychiatric disorders and leading causes of disability worldwide. This review summarizes reports on the fundamentals, prevalence, diagnosis, neurobiology, advancement in treatment of these diseases and preclinical assessment of botanicals. This review was conducted through bibliographic investigation of scientific journals, books, electronic sources, unpublished theses and electronic medium such as ScienceDirect and PubMed. A number of the first-line drugs (benzodiazepine, azapirone, antidepressant tricyclics, monoamine oxidase inhibitors, serotonin selective reuptake inhibitors, noradrenaline reuptake inhibitors, serotonin and noradrenaline reuptake inhibitors, etc.) for the treatment of these psychiatric disorders are products of serendipitous discoveries. Inspite of the numerous classes of drugs that are available for the treatment of anxiety and depression, full remission has remained elusive. The emerging clinical cases have shown increasing interests among health practitioners and patients in phytomedicine. The development of anxiolytic and antidepressant drugs of plant origin takes advantage of multidisciplinary approach including but not limited to ethnopharmacological survey (careful investigation of folkloric application of medicinal plant), phytochemical and pharmacological studies. The selection of a suitable plant for a pharmacological study is a basic and very important step. Relevant clues to achieving this step include traditional use, chemical composition, toxicity, randomized selection or a combination of several criteria. Medicinal plants have been and continue to be a rich source of biomolecule with therapeutic values for the treatment of anxiety and depression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  16. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  17. Operation of Wastewater Treatment Plants: A Home Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater treatment plant operators to provide a home study course to develop new qualified workers and expand the abilities of existing workers. The objective of this manual is to provide the knowledge and skills necessary for certification. Participants learn the basic operational aspects of treatment…

  18. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  19. Plant-wide Control Strategy for Improving Produced Water Treatment

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2016-01-01

    This work focuses on investigation and development of an innovative Produced Water Treatment (PWT) technology for offshore oil & gas production by employing the model-based plant-wide control strategy. The key contributions lie in two folds: (i) the advanced anti-slug analysis and control...

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  1. Ethnobotanical survey of plants used for the treatment of ...

    African Journals Online (AJOL)

    Constipation is the commonest gastrointestinal complaint in most developed and poor countries including South Africa. An ethnobotanical survey of plants used by herbalists, traditional healers and rural dwellers for the treatment of constipation was conducted in the Nkonkobe Municipality, Eastern Cape Province of South ...

  2. Infrequent use of medicinal plants from India in snakebite treatment

    Directory of Open Access Journals (Sweden)

    Manali Sughosh Upasani

    2018-03-01

    Full Text Available Snakes have fascinated humankind for millennia. Snakebites are a serious medical, social, and economic problem that are experienced worldwide; however, they are most serious in tropical and subtropical countries. The reasons for this are 1 the presence of more species of the most dangerous snakes, 2 the inaccessibility of immediate medical treatment, and 3 poor health care. The goal of this study was to collect information concerning rare, less utilized, and less studied medicinal plants. More than 100 plants were found to have potential to be utilized as anti-snake venom across India. Data accumulated from a variety of literature sources revealed useful plant families, the parts of plants used, and how to utilize them. In India, there are over 520 plant species, belonging to approximately 122 families, which could be useful in the management of snakebites. This study was conducted to encourage researchers to create herbal antidotes, which will counteract snake venom. These may prove to be an inexpensive and easily assessable alternative, which would be of immense importance to society. Plants from families such as Acanthaceae, Arecaceae, Apocynaceae, Caesalpiniaceae, Asteraceae, Cucurbitaceae, Fabaceae, Euphorbiaceae, Lamiaceae, Rubiaceae, and Zingiberaceae are the most useful. In India, experts of folklore are using herbs either single or in combination with others. Keywords: Appraise traditional medicinal plants, Ethnomedicine, India, Snake antivenom

  3. Overview and example application of the Landscape Treatment Designer

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; David E. Owens; Stuart Brittain; Jeff. Hamann

    2012-01-01

    The Landscape Treatment Designer (LTD) is a multicriteria spatial prioritization and optimization system to help design and explore landscape fuel treatment scenarios. The program fills a gap between fire model programs such as FlamMap, and planning systems such as ArcFuels, in the fuel treatment planning process. The LTD uses inputs on spatial treatment objectives,...

  4. Design of the vitrification plant for HLLW generated from the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Vematsu, K.

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is now designing a vitrification plant. This plant is for the solidification of high-level liquid waste (HLLW) which is generated from the Tokai Reprocessing Plant, and for the demonstration of the vitrification technology. The detailed design of the plant which started in 1982 was completed in 1984. At present the design improvement is being made for the reduction of construction cost and for the licensing which is going to be applied in 1986. The construction will be started in autumn 1987. The plant has a large shielded cell with low flow ventilation, and employs rack-mounted module system and high performance two-armed servomanipulator system to accomplish the fully remote operations and maintenance. The vitrification of HLLW is based on the liquid-fed Joule-heated ceramic melter process. The processing capacity is equivalent to the reprocessing of 0.7 ton of heavy metals per day. The glass production rate is about 9 kg/h, and about 300 kg of glass is poured periodically from the bottom of the melter into a canister. Produced glass is stored under the forced air cooling condition

  5. Profitable design of coal fired power plant and reduction of CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.K.

    2008-07-01

    Capital cost and plant operating cost will be drastically reduced when CO{sub 2} scrubber, flue gas desulphurisation plant are integrated into the natural draught cooling tower, when reducing the size of effluent treatment plant, improving flexibility of the ash handling plant, introducing energy efficiency plant and non plant buildings, and other improvements are made. 4 tabs.

  6. Conceptual design of small-sized HTGR system (4). Plant design and technical feasibility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing L.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

    2013-09-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2020s. HTR50S was designed for steam supply and electricity generation by the steam turbine with the reactor outlet temperature of 750degC as a reference plant configuration. On the other hand, the intermediate heat exchanger (IHX) will be installed in the primary loop to demonstrate the electricity generation by the helium gas turbine and hydrogen production by thermochemical water splitting by utilizing the secondary helium loop with the reactor outlet temperature of 900degC as a future plant configuration. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750degC to 900degC and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems (i.e., reactor internal components, reactor pressure vessel, vessel cooling system, shutdown cooling system, steam generator (SG), gas circulator, SG isolation and drainage system, reactor containment vessel, steam turbine and heat supply system) satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S. (author)

  7. Future CANDU nuclear power plant design requirements document executive summary

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  8. Status of project design work for a German reprocessing plant

    International Nuclear Information System (INIS)

    Lang, K.; Zuehlke, P.

    1976-01-01

    A reprocessing plant will be built within the framework of a comprehensive waste management center planned by the Federal Government to treat the fuel elements unloaded from German nuclear power stations. On the basis of an annual throughput of 1,400 te of uranium averaged over the life of the plant, the center will be able to serve between 45,000 and 50,000 MWe of installed nuclear generating capacity. A comprehensive conceptual design study of the reprocessing plant to be built has been completed on the basis of the operating experience accumulated at the Karlsruhe reprocessing plant and the development work carried out by the Karlsruhe Nuclear Research Center and in the light also of an intensive exchange of experience with British and French reprocessing companies within the framework of United Reprocessors GmbH. This conceptual design study is the foundation for the preliminary project to be carried out on a collaborative basis by KEWA and PWK. (orig.) [de

  9. An ecological interface design for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Monta, K.; Itoh, J.

    1992-01-01

    An ecological interface design was applied to realize the support function for the operator's direct perception and analytical reasoning in the development of an intelligent man-machine system for BWR nuclear power plants. The abstraction-aggregation functional hierarchy representation of the work domain is a base of the ecological interface design. Another base is the concept of the level of cognitive control. The former was mapped into the interface to externalize the operator's normative mental model of the plants, which will reduce his/her cognitive work load and support knowledge-based problem solving. In addition, the same framework can be used for the analytical evaluation of man-machine interfaces. The information content and structure of a prototype interface were evaluated. This approach seems promising from these experiences. (author)

  10. Steam generator design considerations for modular HTGR plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; DeFur, D.D.

    1986-01-01

    Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the U.S

  11. Simple plant-based design strategies for volatile organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M.; Erickson, L.E.; Davis, L.C.

    1999-12-31

    Vegetation which enhances in-situ biodegradation of organic compounds can play a key role in the bioremediation of such contaminants in polluted soils and groundwater. Plants may act directly on some contaminants by degrading them, but their main effect is to enhance microbial populations in the thizosphere. Microbially mediated transformations are thus indirectly facilitated by root exudates which nourish the indigenous microorganisms. Plants may also be viewed as a solar driven pump-and-treat system which can contain a plume and reduce the spread of contaminated water. Laboratory investigations carried out in a growth chamber with alfalfa plants provide evidence for the (microbially mediated) biodegradation of organic compounds such as toluene, phenol and TCE. Alfalfa plants tolerate concentrations of these organics in contaminated water up to 100 mg/L. They facilitate transfer of the contaminants from the saturated to the vadose zone. For volatile organic compounds such as TCE, vegetation provides a controlled release of compounds and hence assures dilution of the TCE evapotranspired into the atmosphere from contaminated soils. Using a range of calculated plausible scenarios, it is shown that intermedia transfer caused by volatilization associated with plants is most unlikely to lead to exceedance of standards for gas phase contamination, for most volatile contaminants. Possible action level exceedances might occur with highly toxic substances including vinyl chloride and carbon tetrachloride, if they re present in ground water at levels above kilogram amounts in a single plume of a few hectares, and released by vigorously growing plants under hot dry conditions. Information needed for the calculation and design of plant-based bioremediation systems for typical sites is discussed in this paper.

  12. Balance of plant design issues for small reactors in Canada

    International Nuclear Information System (INIS)

    Harvel, G.; Meneley, D.

    2014-01-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  13. Design Provisions for Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duchac, Alexander

    2015-01-01

    A station blackout (SBO) is generally known as 'a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and un-interruptible AC power supplies may be available as long as batteries can supply the loads. Alternate AC power supplies are available'. A draft Safety Guide DS 430 'Design of Electrical Power Systems for Nuclear Power Plants' provides recommendations regarding the implementation of Specific Safety Requirements: Design: Requirement 68 for emergency power systems. The Safety Guide outlines several design measures which are possible as a means of increasing the capability of the electrical power systems to cope with a station blackout, without providing detailed implementation guidance. A committee of international experts and advisors from numerous countries is currently working on an IAEA Technical Document (TECDOC) whose objective is to provide a common international technical basis from which the various criteria for SBO events need to be established, to support operation under design basis and design extension conditions (DEC) at nuclear power plants, to document in a comprehensive manner, all relevant aspects of SBO events at NPPs, and to outline critical issues which reflect the lessons learned from the Fukushima Dai-ichi accident. This paper discusses the commonly encountered difficulties associated with establishing the SBO criteria, shares the best practices, and current strategies used in the design and implementation of SBO provisions and outline the structure of the IAEA's SBO TECDOC under development. (author)

  14. Balance of plant design issues for small reactors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.; Meneley, D., E-mail: Glenn.Harvel@uoit.ca, E-mail: dan.meneley@sympatico.ca [Univ. of Ontario Inst. of Tech.y, Oshawa, ON (Canada)

    2014-07-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  15. Regulatory issues resolved through design certification on the System 80+trademark standard plant design

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.; Brinkman, C.B.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) has completed its review of the System 80+trademark Standard Plant Design, approving advanced design features and closing severe accident licensing issues. Final Design Approval was granted in July 1994. The NRC review was extensive, requiring written responses to over 4,950 questions and formal printing of over 50,000 Safety Analysis Report pages. New safety issues never before addressed in a regulatory atmosphere had to be resolved with detailed analysis and evaluation of design features. the System 80+ review demonstrated that regulatory issues can be firmly resolved only through presentation of a detailed design and completion of a comprehensive regulatory review

  16. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  17. Spent solvent treatment process at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Akihiro; Saka, Munenori; Araya, Toshiyuki; Kitamura, Tomohiro; Wakamatsu, Toshiyuki

    2005-01-01

    In order to dispose of spent organic solvent and diluent produced by the PUREX method, it is desirable that it should be in stable form for easy handling. For this reason, spent solvent is reduced to powder form and further molded so that it becomes easier to handle for temporary storage at Rokkasho Reprocessing Plant (RRP). In this paper, the treatment unit for reducing spent solvent to powder form and the treatment unit for modeling the powder are introduced as well as their treatment results during Chemical Test. (author)

  18. RESPONSE OF TOMATO PLANTS EXPOSED TO TREATMENT WITH NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Tommaso Giordani

    2012-07-01

    Full Text Available In this work the response of Tomato plants cv. Micro-Tom to nanoparticles (NPs treatment was investigated. Tomato seedlings were grown in hydroponic condition and NPs treatments were carried out by adding Fe3O4 or TiO2 NPs to nutrient solution. At the end of treatments, NPs root uptake and tissue deposition were investigated using Environmental Scanning Electron Microscope, equipped with energy dispersive spectroscopy for chemical identification. At morphological level, one week after the beginning of NP treatment, seedlings grown with high concentration of TiO2 NPs showed an abnormal proliferation of root hairs, as compared to the control seedlings and to the seedlings exposed to Fe3O4 NPs, Shoot morphology did not differ in tomato seedlings grown under different conditions and no symptoms of toxicity were observed in NP-treated plants. In order to analyse genetic effects of NPs treatments, RNA transcription was studied in roots of NP-exposed and control plants by Illumina RNA sequencing, evidencing the induction of transposable elements.

  19. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  20. Control system design considerations in a modern nuclear power plant

    International Nuclear Information System (INIS)

    Foster, P.; Raiskums, G.; Harber, J.; Tikku, S.

    2010-01-01

    Applying new technologies is a challenge for instrumentation and control (I and C) designers to ensure that the overall principles of defence-in-depth, the independence of safety functions (credited in the safety case), and modern human factors engineering principles are maintained. This paper describes the Advanced CANDU Reactor (ACR-1000) I and C architecture, including the display/control systems and the design approaches employed to ensure that the fundamental premise of independence between safety and process control is not compromised and that the reliability targets for each layer of protection are fulfilled to meet the overall plant safety goals. (author)

  1. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  2. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  3. Nuclear challenges and progress in designing stellarator fusion power plants

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Wilson, P.; Henderson, D.; Sawan, M.; Sviatoslavsky, G.; Tautges, T.; Slaybaugh, R.; Kiedrowski, B.; Ibrahim, A.

    2008-01-01

    Over the past 5-6 decades, stellarator power plants have been studied in the US, Europe, and Japan as an alternate to the mainline magnetic fusion tokamaks, offering steady-state operation and eliminating the risk of plasma disruptions. The earlier 1980s studies suggested large-scale stellarator power plants with an average major radius exceeding 20 m. The most recent development of the compact stellarator concept delivered ARIES-CS - a compact stellarator with 7.75 m average major radius, approaching that of tokamaks. For stellarators, the most important engineering parameter that determines the machine size and cost is the minimum distance between the plasma boundary and mid-coil. Accommodating the breeding blanket and necessary shield within this distance to protect the ARIES-CS superconducting magnet represents a challenging task. Selecting the ARIES-CS nuclear and engineering parameters to produce an economic optimum, modeling the complex geometry for 3D nuclear analysis to confirm the key parameters, and minimizing the radwaste stream received considerable attention during the design process. These engineering design elements combined with advanced physics helped enable the compact stellarator to be a viable concept. This paper provides a brief historical overview of the progress in designing stellarator power plants and a perspective on the successful integration of the nuclear activity into the final ARIES-CS configuration

  4. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  5. The design of operating procedures manuals for nuclear power plants

    International Nuclear Information System (INIS)

    Bohr, E.; Preuss, W.; Reinartz, G.; Thau, G.

    1977-03-01

    This report describes the findings of a research on the desirable design of operating procedures manuals for nuclear power plants. The work was supported by a grant of the Federal Department of the Interior. Information was acquired from different sources. Interviews and discussions on manual design were carried out with manual users in nuclear power plants. Moreover, tasks carried out using procedures were either observed or, alternatively, the manner of using procedures was elicited by interviews. In addition, manual writers, managers from manufacturers and utilities, nuclear experts, and individuals involved in manual specification activities were interviewed. A major source of information has been the pertinent scientific and technical findings scattered in the literature on topics such as instructional technology, engineering psychology, psycholinguistics, and typography. A comprehensive bibliography is included. General rules are established on designing instructional material for use on the job, aiming at increasing their legability, comprehensibility, and suitability to guide human performance. The application of these rules to the design of individual operating procedures is demonstrated. Recommendations are given on the design, layout, development and implementation of manuals. (orig.) [de

  6. Seismic design and qualification for nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    This safety guide, which supplements the IAEA Code on the Safety of Nuclear Power Plants (NPP); Design (IAEA Safety Series No.50-C-D (Rev.1)), forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes and Guides relating to land based stationary thermal neutron power plants. The present Guide was originally issued in 1979 as Safety Guide 50-SG-S2 within the series of NUSS guides for the siting of NPP, extending seismic considerations from Safety Guide 50-SG-S1 into the design and verification field. During the revision phase in 1988-1990, this emphasis on design aspects was confirmed and consequently the Guides have been reclassified as a design Guide with the corresponding identification number 50-SG-D15. The general character of the Guide has not been changed an it still relates strongly to 50-SG-S1, which gives guidance on how to determine design basis ground motion for a NPP at a given site

  7. New designs of medium power WWER reactor plants

    International Nuclear Information System (INIS)

    Ryzhov, S.B.; Mokhov, V.A.; Nikitenko, M.P.; Chetverikov, A.E.; Veselov, D.O.; Shchekin, I.G.; Petrov, V.V.

    2010-01-01

    The task of constructing NPPs as the objects of regional power industry is included into the Federal Target Program on nuclear power technologies of new generation for the period till 2020. Such NPPs are considered as perspective sources of energy for solution of the problems concerning provision of electric energy, household and industrial heat to the regions with limited capabilities of the power grid. OKB 'GIDROPRESS' present the conceptual study of RP design for the Unit of 600 MW (el.) power, taking into account their long-term experience in the field of development and operation of WWER reactor plants. Practical implementation of WWER-600 and WWER-300 RP designs seems to be feasible: practice in manufacturing the main equipment is available; cooperation of design, scientific organizations and manufacturers of equipment; is established; basic design solutions for equipment are of reference character

  8. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan

    2015-01-01

    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non-standard equipments providing an isolated room to operate radioactive material inside, while the operator outside with essential biological shield and protection. The hot cell is a typical one, which could handle high radioactive material with various operating means and tight enclosure. The dissertation is based on Vitrification Plant China, a cooperation project between China and Germany. For the sino-western difference in design philosophy, it was presented how to draft an acceptable design proposal of applicable huge hot cells by analysing the design requirements, such as radioprotection, observation, illumination, remote handling, transportation, maintenance and decontamination. The construction feasibility of hot cells was also approved. Thanks to 3D software Autodesk Inventor, digital hot cell was built to integrate all the interfaces inside, which validated the design by checking the mechanical interference. (author)

  9. Design and construction of an inexpensive homemade plant growth chamber.

    Science.gov (United States)

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  10. Design and construction of an inexpensive homemade plant growth chamber.

    Directory of Open Access Journals (Sweden)

    Fumiaki Katagiri

    Full Text Available Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W x 1.8 m (D x 2 m (H, providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant

  11. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  12. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  13. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  14. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  15. Energy supply waste water treatment plant West Brabant

    Energy Technology Data Exchange (ETDEWEB)

    Poldervaart, A; Schouten, G J

    1983-09-01

    For the energy supply for the waste water treatment plant (rwzi-Bath) of the Hoogheemraadschap West-Brabant three energy sources are used: biogas of the digesters, natural gas and electricity delivered by the PZEM. For a good balance between heat/power demand and production a heat/power plant is installed. By using this system a high efficiency for the use of energy will be obtained. To save energy the oxygen concentration in the aerationtanks is automatically controlled by means of regulating the position of the air supply control valves and the capacity and number of the turbocompressors. For the oxygen controlsystem a Siemens PLC is used.

  16. Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

    Directory of Open Access Journals (Sweden)

    Jorge Avelino Rodriguez Lozada

    Full Text Available ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P. The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

  17. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  18. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    Science.gov (United States)

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  19. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Drake [Abengoa Solar LLC, Lakewood, CO (United States); Kelly, Bruce [Abengoa Solar LLC, Lakewood, CO (United States); Burkholder, Frank [Abengoa Solar LLC, Lakewood, CO (United States)

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  20. Evaluation and improvement of wastewater treatment plant performance using BioWin

    Science.gov (United States)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  1. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  2. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  3. Experience of upgrading existing Russian designed nuclear plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Facer, R.I.

    1993-01-01

    From the reviewed experiences of upgrading existing Russian designed nuclear plants both of WWER and RBMK type the conclusions drawn are as follows. For the countries operating Russian designed plants it is necessary to adopt a pragmatic approach where all changes must be demonstrated to improve the safety of the plant and safety must be demonstrably improving. Care must be taken to avoid the pitfalls of excessive regulatory demands which are not satisfied and the development of an attitude of disregarding requirements on the basis that they are not enforced. For the lending countries and organizations, it is necessary to ensure that assistance is given to the operating organizations so that the most effective use of funds can be achieved. The experience in the West is that over-regulation and excessive expenditure do not necessarily lead to improved safety. They can lead to significant waste of resources. The use of western technology is recommended but where it is necessary and where it provides the greatest benefit

  4. Seismic design of a uranium conversion plant building

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.; Botelho, C.L.A.; Braganca, A. Jr.; C. Santos, S.H. de.

    1992-01-01

    The design of facilities with small radioactive inventory has been traditionally performed following the usual criteria for industrial buildings. In the last few years, more stringent criteria have been adopted in new nuclear facilities in order to achieve higher standards for environmental protection. In uranium conversion plants, the UF 6 (uranium hexafluoride) production step is the part of the process with the highest potential for radioactivity release to the environment because of the operations performed in the UF 6 desublimers and cylinder filling areas as well as UF 6 distillation facilities, when they are also required in the process. This paper presents the design guidelines and some details of the seismic resistance design of a UF 6 production building to be constructed in Brazil

  5. Design concepts to enhance nuclear power plant protection

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Varnado, G.B.

    1980-01-01

    Using a modern design for a nuclear power plant as a point of departure, this study examines the enhancement of protection which may be achieved by changes to the design. These changes include concepts such as complete physical separation of redundant trains of safety equipment, hardened enclosures for water storage tanks, and hardened shutdown heat removal systems. The degree of enhancement (value) is examined in terms such as the potential reduction in the number of vital areas and the increase in probability of adversary sequence interruption. The impacts considered include constraints imposed upon operations and maintenance personnel and increased capital and operating costs. The study concludes that structural design changes alone do not provide significant increases in protection

  6. Artificial earthquake generation for nuclear power plant design

    International Nuclear Information System (INIS)

    King, A.C.Y.; Chen, C.

    1977-01-01

    The time history method has been one of the analytical tools applied in the seismic resistant design of nuclear power plants. The time histories used are required to be consistent with the specified design Spectra. Since the spectra of recorded strong motion earthquake or conventionally generated artificial time history have local peaks and valleys, iteration procedures must be applied to generate the artificial time history with desired spectra. The paper describes a detailed method for generating a time history which is consistent with a specified design spectra. There are several advantages of this method described herein. First of all, frequency content of the time history is well under control. Secondly, if one wishes to generate the three components of an earthquake at one site, the inherent nature of this method will make the correlations among these three components to simulate closely the actual recorded time histories. Thirdly, a single time history can be generated to match a spectra for different damping values. (auth.)

  7. DISEÑO CONCEPTUAL DE UNA ESTACIÓN EXPERIMENTAL DE TRATAMIENTO DE AGUAS RESIDUALES DOMÉSTICAS ORIENTADA A MUNICIPIOS CON POBLACIÓN MENOR A 30.000 HABITANTES CONCEPTUAL DESIGN OF AN EXPERIMENTAL HOUSEHOLD WASTE WATER TREATMENT PLANT ADDRESSED TO MUNICIPALITIES WITH A POPULATION LOWER THAN 30,000 INHABITANTS

    Directory of Open Access Journals (Sweden)

    José Luis González Manosalva

    2012-12-01

    Full Text Available Se presenta el diseño conceptual de una planta experimental de tratamiento de aguas residuales para poblaciones menores de 30.000 habitantes. El diseño integra seis esquemas de tratamiento interconectados, incluyendo sistemas convencionales y no convencionales, con disposición final del efluente a un cuerpo de agua o infiltración lenta en el terreno, cumpliendo con la norma vigente en Colombia. El proceso incluyó una revisión del estado del arte, el diseño de plantas de este tipo como la planta de Carrión de los Céspedes (Andalucía-España, la planta UFMG/COPASA (Minas Gerais-Brasil, los trabajos realizados en Colombia del IDEAM-CINARA-UTP y los ensayos realizados por Madera, Silva y Peña del CINARA en planta piloto. El área estimada para la construcción de los esquemas propuestos es de 18.000 m² y los costos fijos de construcción de la planta se estiman en 850 millones de pesos para tratar un caudal de 1,5 l/s de agua residual doméstica.Conceptual design of an experimental waste water treatment plant for populations lower than 30,000 inhabitants is presented. The design integrates six interconnected treatment systems, including conventional and non-conventional systems with final disposal of the effluent to a water body or slow infiltration in the soil, complying with Colombian norms in force. The process included a state-of-the-art revision, design of this kind of plants (such as Carrión de los Céspedes in Andalucía, Spain; UFMG/COPASA plant in Minas Gerais-Brazil, works conducted in Colombia (IDEAM-CINARA-UTP, and tests performed by Madera, Silva, and Peña from CINARA in a pilot plant. Area estimated for construction of systems proposed reaches 18,000 m² and fixed costs for construction of the plant is estimated in 850 million Colombian pesos for treating a 1.5 l/s flow of household waste water.

  8. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies.

  9. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    International Nuclear Information System (INIS)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies

  10. Design considerations for wastewater treatment by reverse osmosis.

    Science.gov (United States)

    Bartels, C R; Wilf, M; Andes, K; Iong, J

    2005-01-01

    Reverse Osmosis is finding increasing use for the treatment of municipal and industrial wastewaters due to the growing demand for high quality water in large urban areas. The growing success of membranes in this application is related to improved process designs and improved membrane products. Key factors which have been determined to result in successful operation of large-scale plants will be discussed. Factors which play a key role in the use of RO membranes include ultra or microfiltration pretreatment, low fouling membranes, flux rate, recovery and control of fouling and scaling. In particular, high flux rates can be used when UF or MF pretreatment is used. These technologies remove most of the suspended particles that would normally cause heavy fouling of lead elements. Typically, fluxes in the range of 17-21 lmh lead to cleaning frequencies in the range of 3-4 months. By combining the use of membrane pretreatment and chloramination of the feed water through chlorine addition, two of the primary sources of RO membrane fouling can be controlled. The use of chloramine has become a proven means to control biofouling in a membrane for wastewater applications. The other significant problems for RO membranes result from organics fouling by dissolved organics and scaling due to saturation of marginally soluble salts. The former can be a significant problem for membranes, due to the strong attraction forces. To some extent, these can be mitigated by making the membrane surface more hydrophilic or changing the charge of the membrane surface. To minimize fouling, many plants are turning to low fouling membranes. Extensive studies have demonstrated that the membrane surface is hydrophilic, neutrally charged over a broad pH range, and more resistant to organic adsorption. Also, an analysis of the potential scaling issues will be reviewed. In particular, calcium phosphate has been found to be one of the key scalants that will limit RO system recovery rate. Calcium

  11. Design of wireless communication systems for nuclear power plant environments

    International Nuclear Information System (INIS)

    Kadri, A.

    2007-01-01

    The problem of low-SNR (Signal-to-Noise ratio) digital communication system design in man-made electromagnetic environment within a nuclear power plant is addressed. A canonical structure of the low-SNR receiver is derived and analyzed for its bit error rate performance. The parameters that affect the error rate performance are identified and illustrated. Several well-known digital modulations are considered. It is shown that the receiver structure is dependent on the first-order probability density function of the noise environment. Thus, we offer comments for its robust implementation and its effect on bit error rate performance. We model the EM environment within the nuclear power plant to be e - mixture model, the parameters of which can be estimated to fit the environment. (author)

  12. Job training planning and design for process plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Wirstad, J.

    1983-01-01

    A method is presented by which process plant operators for nuclear power plants are trained in Sweden. It works by a top-down method of systems analysis which can be integrated into the analysis, specification, and design of the process automation system. The training methods can also be adapted to existing automation systems and operating schedules. The author's method is based on the principle that training programs should be based on job requirements, e.g. operator tasks in common, less frequent, and rare operating conditions. Procedures have been tested for the following steps: Job analysis, analysis of knowledge and experience required, analysis of operator training requirements, set-up and organisation of the training programme, achievement control, evaluation of the training programme.

  13. Job training planning and design for process plant operators

    International Nuclear Information System (INIS)

    Wirstad, J.

    1983-01-01

    A method is presented by which process plant operators for nuclear power plants are trained in Sweden. It works by a top-down method of systems analysis which can be integrated into the analysis, specification, and design of the process automation system. The training methods can also be adapted to existing automation systems and operating schedules. The author's method is based on the principle that training programs should be based on job requirements, e.g. operator tasks in common, less frequent, and rare operating conditions. Procedures have been tested for the following steps: Job analysis, analysis of knowledge and experience required, analysis of operator training requirements, set-up and organisation of the training programme, achievement control, evaluation of the training programme. (orig./HP) [de

  14. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  15. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  16. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  17. Limited dissemination of the wastewater treatment plant core resistome

    OpenAIRE

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa M Hashim; Nielsen, Per Halkjær; Sommer, Morten Otto Alexander

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of...

  18. Health effects on nearby residents of a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Thornton, John; Anderson-Mahoney, P.M.; Takhar, Harpreet

    2003-01-01

    Objectives: The aim of the study was to evaluate the health status of nearby residents of a wood treatment plant who had sustained prolonged low-level environmental exposure to wood processing waste chemicals. Methods: A population of 1269 exposed residents who were plaintiffs or potential plaintiffs in a lawsuit against the wood treatment plant were evaluated by questionnaire for a health history and symptoms. A representative sample of 214 exposed subjects was included in the analysis. One hundred thirty-nine controls were selected from 479 unexposed volunteers and matched to the exposed subjects as closely as possible by gender and age. Subjects and controls completed additional questionnaires and were evaluated by a physician for medical history and physical examination, blood and urine testing, neurophysiological and neuropsychological studies, and respiratory testing. Environmental sampling for wood processing waste chemicals was carried out on soil and drainage ditch sediment in the exposed neighborhood. Results: The exposed subjects had significantly more cancer, respiratory, skin, and neurological health problems than the controls. The subjective responses on questionnaires and by physician histories revealed that the residents had a significantly greater prevalence of mucous membrane irritation, and skin and neurological symptoms, as well as cancer. (Exposed versus unexposed, cancer 10.0% versus 2.08%, bronchitis 17.8% versus 5.8%, and asthma by history 40.5% versus 11.0%) There were significantly more neurophysiologic abnormalities in adults of reaction time, trails A and B, and visual field defects. Conclusions: Adverse health effects were significantly more prevalent in long-term residents near a wood treatment plant than in controls. The results of this study suggest that plant emissions from wood treatment facilities should be reduced

  19. Treatment of pond sludge at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Wienand, J.; Tyler, R.; Baldwin, C.

    1992-01-01

    The treatment of low-level radioactive/hazardous materials sludges from five inactive solar evaporation settling ponds at the Rocky Flats Plant is discussed. The paper presents information on the following topics: history of the ponds; previous pond cleanout activities; current approach to the problem with respect to water management, sludge management, regulatory actions, and disposal; and future processing technology needs in the areas of polymer solidification, microwave solidification, joule-heated glass melters, and advanced technology incineration

  20. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  1. Complete physico-chemical treatment for coke plant effluents.

    Science.gov (United States)

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  2. WIPP conceptual design report. Addendum A. Design calculations for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations

  3. Design of 100 MW LNG Floating Barge Power Plant

    Directory of Open Access Journals (Sweden)

    I Made Ariana

    2017-06-01

    Full Text Available Floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  4. Study of wastewater treatment plants efficiency using radiotracers

    International Nuclear Information System (INIS)

    Dawi, W. D. A.

    2010-11-01

    This study was performed to investigate and diagnose hydrodynamic behavior of the Military Hospital wastewater treatment plant. The plant comprises two units of treatment, each of them has a separate system. The investigation was carried out using ''1''3''1I as a radiotracer. The concept of residence time distribution (RTD) was used to investigate the efficiency of the aeration tanks, secondary clarifiers and chlorine tanks. Preliminary treatment and modeling of the trace data was performed using two software package applied by the International Atomic Energy Agency (IAEA) namely 4621 counter version 1.0.0 and RTD software. Plug flow pattern (parallel flow) was detected in the aeration tank and secondary clarifier of system 1 in one unit, while no homogeneous mixing was observed in the chlorine tank. Short - circuiting (by - passing) was evident in the aeration tank of system 2 in the other unit, which significantly reduced the operating efficiency. The percentage of dead volumes clearly suggests that the aeration tank and secondary clarifier were well utilized in the whole plant. (Author)

  5. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  6. Optimal design of an activated sludge plant: theoretical analysis

    Science.gov (United States)

    Islam, M. A.; Amin, M. S. A.; Hoinkis, J.

    2013-06-01

    The design procedure of an activated sludge plant consisting of an activated sludge reactor and settling tank has been theoretically analyzed assuming that (1) the Monod equation completely describes the growth kinetics of microorganisms causing the degradation of biodegradable pollutants and (2) the settling characteristics are fully described by a power law. For a given reactor height, the design parameter of the reactor (reactor volume) is reduced to the reactor area. Then the sum total area of the reactor and the settling tank is expressed as a function of activated sludge concentration X and the recycled ratio α. A procedure has been developed to calculate X opt, for which the total required area of the plant is minimum for given microbiological system and recycled ratio. Mathematical relations have been derived to calculate the α-range in which X opt meets the requirements of F/ M ratio. Results of the analysis have been illustrated for varying X and α. Mathematical formulae have been proposed to recalculate the recycled ratio in the events, when the influent parameters differ from those assumed in the design.

  7. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  8. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  9. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    Science.gov (United States)

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  10. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  11. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  12. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  13. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. GCFR demonstration plant: conceptual design and status report

    International Nuclear Information System (INIS)

    1980-12-01

    Helium Breeder Associates (HBA), a non-profit corporation, has been the program manager and technical integrator of the Gas-Cooled Fast Reactor (GCFR) development effort since 1977. When DOE discontinued support of the GCFR in 1980, the HBA members undertook the task of providing for an orderly termination and documentation of the program. HBA does not agree with the government's rational for withdrawing support for this promising technology and has directed its termination and documentation toward preserving the current state of its development. Toward that end, HBA has compiled the following report which is a summary of the conceptual design of the demonstration plant and status of the program as of the end of 1980. It includes summaries of tasks that have not evolved to a final conclusion. Although the report has not been subjected to formal review and approval by the designers, it is intended to provide the reader with the design considerations that were current at the time of program termination. It is hoped that the report will be useful in restarting the program in the future by establishing the basis of the completed conceptual design and indicating a logical path for new design and development

  15. OLP embedment design method research for AP1000 nuclear plant

    International Nuclear Information System (INIS)

    Li Cheng; Li Shaoping; Liu Jianwei

    2013-01-01

    Background: One of the most advanced nuclear power technology, the first AP1000 reactor is under construction in China. Modularization is one of the main characteristics for AP1000 nuclear plant building. Module wall with steel face plate is used instead of reinforced concrete structure wall. A number of OLP embedments need to be installed into the module wall to connect other structures such as pipes, equipment, operation platforms and any other component attached to the module wall. Therefore, the design of embedment is very important in AP1000 structural design. Purpose: A finite element analysis method and tool for embedment design is needed for convenience. Methods: This paper applies the self-developed GTStrudl command template and VBA macro program for embedment capacity calculation and evaluation based on Microsoft Excel to the embedment design. Results: A Microsoft Excel template for embedment design is developed. Conclusions: The analysis method and template brings reasonable results and may provide some help and use for reference for the engineering practice. (authors)

  16. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-01-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly

  17. Design and analysis of aquatic monitoring programs at nuclear power plants

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Kannberg, L.D.; Gore, K.L.; Arnold, E.M.; Watson, D.G.

    1977-11-01

    This report addresses some of the problems of designing, conducting, and analyzing aquatic environmental monitoring programs for impact assessment of nuclear power plants. The concepts discussed are applicable to monitoring the effects of chemical, radioactive, or thermal effluents. The concept of control and treatment station pairs is the fundamental basis for the experimental method proposed. This concept is based on the hypothesis that the relationship between the two stations forming the pair can be estimated from the preoperational period and that this relationship holds during the operational period. Any changes observed in this relationship during the operational period are assumed to be the result of the power plant impacts. Thus, it is important that station pairs are selected so it can be assumed that they respond to natural environmental changes in a manner that maintains that relationship. The major problem in establishing the station pairs will be the location of the control station. The universal heterogeneity in the environment will prevent the establishment of identical station pairs. The requirement that the control station remain unaffected by the operation of the power plant dictates a spacial separation with its associated differences in habitat. Thus, selection of the control station will be based upon balancing the following two criteria: (1) far enough away from the plant site to be beyond the plant influence, and (2) close enough to the treatment station that the biological communities will respond to natural environmental changes consistently in the same manner

  18. Design parameters for waste effluent treatment unit from beverages production

    OpenAIRE

    Mona A. Abdel-Fatah; H.O. Sherif; S.I. Hawash

    2017-01-01

    Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been con...

  19. Design of a new flotation system for industrial waters treatment

    International Nuclear Information System (INIS)

    Forero, J E; Diaz, J; Blandon V R

    1999-01-01

    The air flotation is a process of physical separation for the industrial wastewater treatment that removes oils and suspended solids. Although methods different from flotation have been used in petroleum industry, their application is subjected to numerous operational and economic limitations. In this work some comparisons of these flotation techniques are discussed and, a new system for the treatment of residual waters by flotation is the developed. This system is the result of several years of research both in laboratory and in pilot plants. The new design uses characteristics from other techniques, it is based on a modification of a system of induced air flotation as to operate like a system of dissolved air flotation, which improves its performance at lower costs and reduces operational problems associated with equipment maintenance. The developed system has several characteristics that improve its operation, including the use of nozzles for gas injection and dispersion in the liquid phase. As opposed to conventional systems, there is no need to use motorized bubble generating equipment for each flotation cell, diminishing therefore power requirements

  20. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  1. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  2. Regulation of wastewater treatment plants in the Ba-Phalaborwa municipality / Q.N. Gopo

    OpenAIRE

    Gopo, Nothando Lilian Queen

    2013-01-01

    South Africa is a water-scarce country and over the years, the quality of water resources has deteriorated due to poor effluent discharge, agricultural, industrial, mining and human activities. The major contributing factors of poorly-treated or inadequately treated wastewater may be attributed to: (a) the poor design and construction of wastewater treatment plants; (b) lack of qualified process controllers; (c) non-compliance with applicable legislation; (d) lack of proper monitoring; and (e...

  3. Fate of antibiotic resistance genes within the microbial communities of three waste water treatment plants

    OpenAIRE

    Di Cesare, Andrea; Eckert, Ester; D'Urso, Silvia; Doppelbauer, Julia; Corno, Gianluca

    2016-01-01

    Although Waste Water Treatment Plant (WWTP) are designed to reduce the biological pollution of urban waters, they lack a specific action against antibiotic resistance bacteria (ARB) or antibiotic resistance genes (ARGs). Nowadays, it is well documented that WWTPs constitute a reservoir of antibiotic resistances and, in some cases, they can be a favorable environment for the selection of ARB. This represent a serious concern for the public health, because the effluents of the WWTPs can be reus...

  4. Monitoring of ph, redox and turbidity in a water treatment plant using WSN with ZIGBEE technology

    Directory of Open Access Journals (Sweden)

    Gerson Fonseca-Gonzaléz

    2014-05-01

    Full Text Available This paper presents the design of a WSN using Zigbee technology (Standart IEEE 802.15.4, With the help of the XBee of Maxtream modules the communication is carried out between a remote water treatment plant towards a ccordinator node. The acqired data are entered to a microcontroller which takes care of the processing to be able to transmit and visualized under a graphical user interface in Matlab

  5. Helium turbomachine design for GT-MHR power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Orlando, R.J.

    1994-07-01

    The power conversion system in the gas turbine modular helium reactor (GT-MHR) power plant is based on a highly recuperated closed Brayton cycle. The major component in the direct cycle system is a helium closed-cycle gas turbine rated at 286 MW(e). The rotating group consists of an intercooled helium turbocompressor coupled to a synchronous generator. The vertical rotating assembly is installed in a steel vessel, together with the other major components (i.e., recuperator, precooler, intercooler, and connecting ducts and support structures). The rotor is supported on an active magnetic bearing system. The turbine operates directly on the reactor helium coolant, and with a temperature of 850 degree C (1562 degree F) the plant efficiency is over 47%. This paper addresses the design and development planning of the helium turbomachine, and emphasizes that with the utilization of proven technology, this second generation nuclear power plant could be in service in the first decade of the 21st century

  6. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  7. Waste receiving and processing plant control system; system design description

    International Nuclear Information System (INIS)

    LANE, M.P.

    1999-01-01

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1

  8. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  9. RO-75, Reverse Osmosis Plant Design Optimization and Cost Optimization

    International Nuclear Information System (INIS)

    Glueckstern, P.; Reed, S.A.; Wilson, J.V.

    1999-01-01

    1 - Description of problem or function: RO75 is a program for the optimization of the design and economics of one- or two-stage seawater reverse osmosis plants. 2 - Method of solution: RO75 evaluates the performance of the applied membrane module (productivity and salt rejection) at assumed operating conditions. These conditions include the site parameters - seawater salinity and temperature, the membrane module operating parameters - pressure and product recovery, and the membrane module predicted long-term performance parameters - lifetime and long flux decline. RO75 calculates the number of first and second stage (if applied) membrane modules needed to obtain the required product capacity and quality and evaluates the required pumping units and the power recovery turbine (if applied). 3 - Restrictions on the complexity of the problem: The program does not optimize or design the membrane properties and the internal structure and flow characteristics of the membrane modules; it assumes operating characteristics defined by the membrane manufacturers

  10. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  11. Designing new nuclear chemical processing plants for safeguards accountability

    International Nuclear Information System (INIS)

    Sprouse, K.M.

    1987-01-01

    New nuclear chemical processing plants will be required to develop material accountability control limits from measurement error propagation analysis rather than historical inventory difference data as performed in the past. In order for measurement error propagation methods to be viable alternatives, process designers must ensure that two nondimensional accountability parameters are maintained below 0.1. These parameters are ratios between the material holdup increase and the variance in inventory difference measurement uncertainty. Measurement uncertainty data for use in error propagation analysis is generally available in the open literature or readily derived from instrument calibration data. However, nuclear material holdup data has not been adequately developed for use in the material accountability design process. Long duration development testing on isolated unit operations is required to generate this necessary information

  12. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    .... The contents have been updated to cover changes to regulatory requirements, testing methodology, and design approaches, as well as the emergent topics of pharmacological agents in the water supply...

  13. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Comparison of design and probabilistic analyses of nuclear power plants

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Johnson, J.J.; Campbell, R.D.

    1995-01-01

    A study was made to evaluate the margin of conservatism introduced into design in-structures response spectra by following standard design analysis procedures according to the U.S.Nuclear Regulatory Commission (NRC) Standard Review Plan and Regulatory Guides for comparing spectra produced by such a design analysis to response from median-centered probabilistic analyses. Three typical nuclear plant structures were studied: PWR reactor building, PWR auxiliary building and BWR reactor building. Each building was assumed to be situated on three idealized sites: a rock site, a medium and a soft soil site. All buildings were assumed to have embedded foundations. The PWR reactor building was also assumed to have a surface foundation. Each design analysis was performed inn accordance with the current SRP criteria. Each probabilistic analysis consisted of 30 earthquake simulations for which the free-field motions and soil and structural properties were varied; the simulated earthquakes were generated such that their mean-plus-one-standard-deviation free-field spectra approximated the Regulatory Guide (RG) 1.60 design spectra. In-structure response spectra from the design analyses were compared with the 84% non-exceedance probability (NEP) spectra from the probabilistic analyses. The comparisons showed that the design method produced conservative results for all cases. The smallest margin was about 10% for buildings on rock sites. Softer sides had larger margins of conservatism; the reactor buildings on the soft soil site had margins of as much as 100% (factor of 2),. The shorter structures and lower locations in all buildings had smaller margins. The margin of conservatism for the surface founded reactor building was about 20% more than for the embedded reactor building. (author). 3 refs., 5 figs., 1 tab

  17. Evaluation of divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Ferrari, M.; Giancarli, L.; Kleefeldt, K.; Nardi, C.; Roedig, M.; Reimann, J.; Salavy, J.F.

    2001-01-01

    In the frame of the preliminary study of plants suitable for the energy production from the fusion power, particular emphasis has been given on the divertor studies. Since a significant percentage of the power generated from the fusion process is absorbed in the divertor, the thermal efficiency of the power conversion cycle requires a high coolant outlet temperature of the divertor, leading to solutions that are different from those adopted for the present experimental fusion plants. Therefore, copper alloys having extremely high thermal conductivity, cannot be used as structural material for this kind of devices. The most suitable coolants to be used in the divertor are water, helium and liquid metals. A conceptual design study has been developed for each of these three fluids, with the aim to evaluate the maximum allowable thermal flux at the divertor target plate and the R and D requirements for each solution. While a water-cooled divertor can be designed with a limited R and D effort, the development of helium or liquid metal cooled divertors requires a more engaging R and D program

  18. Integrating availability and maintenance objectives in plant design. EDF approach

    International Nuclear Information System (INIS)

    Degrave, Claude; Martin-Onraet, Michel

    1995-01-01

    Energy self sufficiency is a major strategic necessity for France. Regarding the fossil fuels power, competitiveness of nuclear energy is a key goal for Electricite de France. Accordingly, for future nuclear power plants to remain competitive, it is necessary to maintain the kWh production costs of the future units at a level close to those of the latest units under construction (N4 series), while raising the safety level. EDF therefore decided to implement an analytical and systematic process for study of the new projects to optimize the design by integration of the maintenance (durations, costs), availability and radiation exposure goals from the related operating experience. This approach, CIDEM (French acronym for Design Integrating Availability, operating Experience and Maintenance) aims at a single goal: to minimize the kWh production cost incorporating investment, operation and fuel costs, allowing for the operating experience from French and foreign units. The implementation of the CIDEM process constitutes for EDF a new approach to the study of the new Nuclear Power Plant projects. The competitivity of nuclear energy greatly depends on the success of such an approach. The studies conducted in the availability field have already highlighted a number of critical points and have made it possible to define the corresponding goal allocations and to establish a first series of structuring specifications for the project. (J.P.N.)

  19. Raffinate treatment at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Acox, T.A.

    1983-01-01

    Raffinate solutions, which contain uranium, technetium, nitrates, and lesser amounts of heavy metals, are produced in the decontamination and uranium recovery operations at the Portsmouth Gaseous Diffusion Plant. These solutions are presently being placed in temporary storage until three treatment facilities are constructed which will produce an environmentally acceptable effluent from the raffinate. These facilities are: (1) The Heavy Metals Precipitation Facility; (2) The Technetium Ion Exchange Facility; and (3) The Biodenitrification Pilot Plant. When the facilities are completed, the raffinate will be treated in 500 gallon batches. The first treatment is the heavy metals precipitation by caustic addition and filtering. The effluent proceeds to the ion exchange columns where the technetium is removed by adsorption onto a strongly basic, anion exchange resin which has been converted to the hydroxyl form. Following ion exchange, the solution is transported to the biodenitrification pilot plant. The biodenitrification column is a fluidized-bed using bacteria-laden coal particles as the denitrifying media. The resulting effluent should meet the limits established by the US EPA for all metals and nitrate. Technetium will be 98+% removed and the uranium concentration will be less than one milligram per liter. 13 references

  20. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this