WorldWideScience

Sample records for treatment inhibits glycogen

  1. Glycogen Synthase Kinase 3β Inhibition as a Therapeutic Approach in the Treatment of Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2013-08-01

    Full Text Available Alternative strategies beyond current chemotherapy and radiation therapy regimens are needed in the treatment of advanced stage and recurrent endometrial cancers. There is considerable promise for biologic agents targeting the extracellular signal-regulated kinase (ERK pathway for treatment of these cancers. Many downstream substrates of the ERK signaling pathway, such as glycogen synthase kinase 3β (GSK3β, and their roles in endometrial carcinogenesis have not yet been investigated. In this study, we tested the importance of GSK3β inhibition in endometrial cancer cell lines and in vivo models. Inhibition of GSK3β by either lithium chloride (LiCl or specific GSK3β inhibitor VIII showed cytostatic and cytotoxic effects on multiple endometrial cancer cell lines, with little effect on the immortalized normal endometrial cell line. Flow cytometry and immunofluorescence revealed a G2/M cell cycle arrest in both type I (AN3CA, KLE, and RL952 and type II (ARK1 endometrial cancer cell lines. In addition, LiCl pre-treatment sensitized AN3CA cells to the chemotherapy agent paclitaxel. Administration of LiCl to AN3CA tumor-bearing mice resulted in partial or complete regression of some tumors. Thus, GSK3β activity is associated with endometrial cancer tumorigenesis and its pharmacologic inhibition reduces cell proliferation and tumor growth.

  2. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.

    Science.gov (United States)

    Baker, David J; Greenhaff, Paul L; MacInnes, Alan; Timmons, James A

    2006-06-01

    Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell-perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 micromol/l free drug GPi (n=8) or vehicle control (n=7). During 60 min of aerobic contraction, GPi treatment resulted in approximately 35% greater fatigue. Muscle glycogen phosphorylase a form (Pglycogen (121.8 +/- 16.1 vs. 168.3 +/- 8.5 mmol/kg dry muscle, Pglycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.

  3. Dual-action hypoglycemic and hypocholesterolemic agents that inhibit glycogen phosphorylase and lanosterol demethylase.

    Science.gov (United States)

    Harwood, H James; Petras, Stephen F; Hoover, Dennis J; Mankowski, Dayna C; Soliman, Victor F; Sugarman, Eliot D; Hulin, Bernard; Kwon, Younggil; Gibbs, E Michael; Mayne, James T; Treadway, Judith L

    2005-03-01

    Diabetic dyslipidemia requires simultaneous treatment with hypoglycemic agents and lipid-modulating drugs. We recently described glycogen phosphorylase inhibitors that reduce glycogenolysis in cells and lower plasma glucose in ob/ob mice (J. Med. Chem., 41: 2934, 1998). In evaluating the series prototype, CP-320626, in dogs, up to 90% reduction in plasma cholesterol was noted after 2 week treatment. Cholesterol reductions were also noted in ob/ob mice and in rats. In HepG2 cells, CP-320626 acutely and dose-dependently inhibited cholesterolgenesis without affecting fatty acid synthesis. Inhibition occurred together with a dose-dependent increase in the cholesterol precursor, lanosterol, suggesting that cholesterolgenesis inhibition was due to lanosterol 14alpha-demethylase (CYP51) inhibition. In ob/ob mice, acute treatment with CP-320626 resulted in a decrease in hepatic cholesterolgenesis with concomitant lanosterol accumulation, further implicating CYP51 inhibition as the mechanism of cholesterol lowering in these animals. CP-320626 and analogs directly inhibited rhCYP51, and this inhibition was highly correlated with HepG2 cell cholesterolgenesis inhibition (R2 = 0.77). These observations indicate that CP-320626 inhibits cholesterolgenesis via direct inhibition of CYP51, and that this is the mechanism whereby CP-320626 lowers plasma cholesterol in experimental animals. Dual-action glycogenolysis and cholesterolgenesis inhibitors therefore have the potential to favorably affect both the hyperglycemia and the dyslipidemia of type 2 diabetes.

  4. Enzymatically synthesized glycogen inhibits colitis through decreasing oxidative stress.

    Science.gov (United States)

    Mitani, Takakazu; Yoshioka, Yasukiyo; Furuyashiki, Takashi; Yamashita, Yoko; Shirai, Yasuhito; Ashida, Hitoshi

    2017-05-01

    Inflammatory bowel diseases are a group of chronic inflammation conditions of the gastrointestinal tract. Disruption of the mucosal immune response causes accumulation of oxidative stress, resulting in the induction of inflammatory bowel disease. In this study, we investigated the effect of enzymatically synthesized glycogen (ESG), which is produced from starch, on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Oral administration of ESG suppressed DSS- and TNBS-induced shortening of large intestine in female mice and significant decreased DSS-induced oxidative stress and TNBS-induced pro-inflammatory cytokine expression in the large intestine. ESG increase in the expression levels of heme oxygenase-1 (HO-1) and NF-E2-related factor-2 (Nrf2), a transcription factor for HO-1 expressed in the large intestine. Furthermore, ESG-induced HO-1 and Nrf2 were expressed mainly in intestinal macrophages. ESG is considered to be metabolized to resistant glycogen (RG) during digestion with α-amylase in vivo. In mouse macrophage RAW264.7 cells, RG, but not ESG decreased 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced reactive oxygen species (ROS). Knockdown of Nrf2 inhibited RG-induced HO-1 expression and negated the decrease in AAPH-induced ROS brought about by RG. RG up-regulated the protein stability of Nrf2 to decrease the formation of Nrf2-Keap1 complexes. RG-induced phosphorylation of Nrf2 at Ser40 was suppressed by ERK1/2 and JNK inhibitors. Our data indicate that ESG, digested with α-amylase to RG, suppresses DSS- and TNBS-induced colitis by increasing the expression of HO-1 in the large intestine of mice. Furthermore, we demonstrate that RG induces HO-1 expression by promoting phosphorylation of Nrf2 at Ser40 through activation of the ERK1/2 and JNK cascade in macrophages. Copyright © 2017. Published by Elsevier Inc.

  5. Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-C(6)]-d-glucose tracer in mice.

    Science.gov (United States)

    Beger, Richard D; Hansen, Deborah K; Schnackenberg, Laura K; Cross, Brandie M; Fatollahi, Javad J; Lagunero, F Tracy; Sarnyai, Zoltan; Boros, Laszlo G

    2009-09-01

    Previous genetic and proteomic studies identified altered activity of various enzymes such as those of fatty acid metabolism and glycogen synthesis after a single toxic dose of valproic acid (VPA) in rats. In this study, we demonstrate the effect of VPA on metabolite synthesis flux rates and the possible use of abnormal (13)C labeled glucose-derived metabolites in plasma or urine as early markers of toxicity. Female CD-1 mice were injected subcutaneously with saline or 600 mg/kg) VPA. Twelve hours later, the mice were injected with an intraperitoneal load of 1 g/kg [U-(13)C]-d-glucose. (13)C isotopomers of glycogen glucose and RNA ribose in liver, kidney and brain tissue, as well as glucose disposal via cholesterol and glucose in the plasma and urine were determined. The levels of all of the positional (13)C isotopomers of glucose were similar in plasma, suggesting that a single VPA dose does not disturb glucose absorption, uptake or hepatic glucose metabolism. Three-hour urine samples showed an increase in the injected tracer indicating a decreased glucose re-absorption via kidney tubules. (13)C labeled glucose deposited as liver glycogen or as ribose of RNA were decreased by VPA treatment; incorporation of (13)C via acetyl-CoA into plasma cholesterol was significantly lower at 60 min. The severe decreases in glucose-derived carbon flux into plasma and kidney-bound cholesterol, liver glycogen and RNA ribose synthesis, as well as decreased glucose re-absorption and an increased disposal via urine all serve as early flux markers of VPA-induced adverse metabolic effects in the host.

  6. Green Tea Polyphenol Epigallocatechin-3-Gallate Enhance Glycogen Synthesis and Inhibit Lipogenesis in Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jane J. Y. Kim

    2013-01-01

    Full Text Available The beneficial effects of green tea polyphenols (GTP against metabolic syndrome and type 2 diabetes by suppressing appetite and nutrient absorption have been well reported. However the direct effects and mechanisms of GTP on glucose and lipid metabolism remain to be elucidated. Since the liver is an important organ involved in glucose and lipid metabolism, we examined the effects and mechanisms of GTP on glycogen synthesis and lipogenesis in HepG2 cells. Concentrations of GTP containing 68% naturally occurring (−-epigallocatechin-3-gallate (EGCG were incubated in HepG2 cells with high glucose (30 mM under 100 nM of insulin stimulation for 24 h. GTP enhanced glycogen synthesis in a dose-dependent manner. 10 μM of EGCG significantly increased glycogen synthesis by 2fold (P<0.05 compared with insulin alone. Western blotting revealed that phosphorylation of Ser9 glycogen synthase kinase 3β and Ser641 glycogen synthase was significantly increased in GTP-treated HepG2 cells compared with nontreated cells. 10 μM of EGCG also significantly inhibited lipogenesis (P<0.01. We further demonstrated that this mechanism involves enhanced expression of phosphorylated AMP-activated protein kinase α and acetyl-CoA carboxylase in HepG2 cells. Our results showed that GTP is capable of enhancing insulin-mediated glucose and lipid metabolism by regulating enzymes involved in glycogen synthesis and lipogenesis.

  7. Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload.

    Science.gov (United States)

    Omar, Mohamed A; Wang, Lianguo; Clanachan, Alexander S

    2010-06-01

    Glycogen synthase kinase-3 (GSK-3) is a multi-functional kinase that regulates signalling pathways affecting glycogen metabolism, protein synthesis, mitosis, and apoptosis. GSK-3 inhibition limits cardiac ischaemia-reperfusion (IR) injury, but mechanisms are not clearly defined. This study tested the hypothesis that acute GSK-3 inhibition stimulates glycogen synthesis, repartitions glucose away from glycolysis, reduces proton (H+) production from glucose metabolism, and attenuates intracellular Ca2+ (Ca2+(i)) overload. In isolated perfused working rat hearts subjected to global ischaemia and reperfusion, the selective GSK-3 inhibitor, SB-216763 (SB, 3 micromol/L), when added either prior to ischaemia or at the onset of reperfusion, improved recovery of left-ventricular (LV) work. SB increased glycogen synthesis during reperfusion while glycolysis and H+ production were reduced. Rates of glucose and palmitate oxidation were improved by SB. Measurement of Ca2+(i) concentration by rapid acquisition indo-1 fluorescence imaging showed that SB, when added either prior to ischaemia or at the onset of reperfusion, reduced diastolic Ca2+(i) overload during reperfusion. In aerobic hearts depleted of glycogen by substrate-free perfusion to a level similar to that measured at the onset of reperfusion, SB accelerated glycogen synthesis and reduced glycolysis and H+ production independent of changes in LV work. Our study indicates that reduction in H+ production by GSK-3 inhibition is an early and upstream event that lessens Ca2+(i) overload during ischaemia and early reperfusion independent of LV work which enhances the recovery of post-ischaemic LV function and that may ultimately contribute to previously observed reductions in cell death and infarction.

  8. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans.

    Science.gov (United States)

    van Loon, Luc J C; Thomason-Hughes, Michaela; Constantin-Teodosiu, Dumitru; Koopman, René; Greenhaff, Paul L; Hardie, D Grahame; Keizer, Hans A; Saris, Wim H M; Wagenmakers, Anton J M

    2005-09-01

    This study investigates the consequences of inhibition of adipose tissue lipolysis on skeletal muscle substrate use. Ten subjects were studied at rest and during exercise and subsequent recovery under normal, fasting conditions (control trial, CON) and following administration of a nicotinic acid analog (low plasma free fatty acid trial, LFA). Continuous [U-13C]palmitate and [6,6-2H2]glucose infusions were applied to quantify plasma free fatty acid (FFA) and glucose oxidation rates and to estimate intramuscular triacylglycerol (IMTG) and glycogen use. Muscle biopsies were collected to measure 1) fiber type-specific IMTG content; 2) allosteric regulators of hormone-sensitive lipase (HSL), glycogen phosphorylase, and pyruvate dehydrogenase; and 3) the phosphorylation status of HSL at Ser563 and Ser565. Administration of a nicotinic acid analog (acipimox) substantially reduced plasma FFA rate of appearance and subsequent plasma FFA concentrations (P glycogen use. Differential phosphorylation of HSL or relief of its allosteric inhibition by long-chain fatty acyl-CoA could not explain the increase in muscle TG use, but there was evidence to support the contention that regulation may reside at the level of the glucose-fatty acid cycle. This study confirms the hypothesis that plasma FFA availability regulates both intramuscular lipid and glycogen use in vivo in humans.

  9. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes

    NARCIS (Netherlands)

    Sprangers, F.; Sauerwein, H. P.; Romijn, J. A.; van Woerkom, G. M.; Meijer, A. J.

    1998-01-01

    There is increasing evidence for the existence of intrahepatic regulation of glucose metabolism by Kupffer cell products. Nitric oxide (NO) is known to inhibit gluconeogenic flux through pyruvate carboxylase and phosphoenolpyruvate carboxykinase. However, NO may also influence glucose metabolism at

  10. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  11. Redox Switch for the Inhibited State of Yeast Glycogen Synthase Mimics Regulation by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingan, Krishna K.; Baskaran†, Sulochanadevi; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D. (Indiana-Med)

    2017-01-10

    Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.

  12. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period......GSK-3β abundance in collecting duct. The data are compatible with the notion that increased GSK-3β activity in the postnatal kidney medulla is necessary for kidney development.......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...

  13. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  14. Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.

    Science.gov (United States)

    Chowdhury, Helena H; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-10-02

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  15. Pharmacological inhibition of glycogen synthase kinase 3 regulates T cell development in vitro.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    Full Text Available The development of functional T cells requires receptor-mediated transition through multiple checkpoints in the thymus. Double negative 3 (DN3 thymocytes are selected for the presence of a rearranged TCR beta chain in a process termed β-selection which requires signalling via the pre-TCR, Notch1 and CXCL12. Signal integration by these receptors converges on core pathways including the Phosphatidylinositol-3-kinase (PI3K pathway. Glycogen Synthase Kinase 3 (GSK3 is generally thought to be negatively regulated by the PI3K pathway but its role in β-selection has not been characterised. Here we show that developmental progression of DN3 thymocytes is promoted following inhibition of GSK3 by the synthetic compound CHIR99021. CHIR99021 allows differentiation in the absence of pre-TCR-, Notch1- or CXCL12-mediated signalling. It antagonizes IL-7-mediated inhibition of DP thymocyte differentiation and increases IL-7-promoted cell recovery. These data indicate a potentially important role for inactivation of GSK3 during β-selection. They might help to establish an in vitro stromal cell-free culture system of thymocyte development and offer a new platform for screening regulators of proliferation, differentiation and apoptosis.

  16. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  17. Inhibition of glycogen synthase kinase-3β by falcarindiol isolated from Japanese Parsley (Oenanthe javanica).

    Science.gov (United States)

    Yoshida, Jun; Seino, Hiroko; Ito, Yoshiaki; Nakano, Toshimitsu; Satoh, Takumi; Ogane, Yoshiko; Suwa, Saori; Koshino, Hiroyuki; Kimura, Ken-Ichi

    2013-08-07

    A new biological activity of falcarindiol isolated from Japanese parsley (Oenanthe javanica) using the mutant yeast YNS17 strain (zds1Δ erg3Δ pdr1Δ pdr3Δ) was discovered as an inhibitor of glycogen synthase kinase-3β (GSK-3β). Falcarindiol inhibited GSK-3β in an ATP noncompetitive manner with a Ki value of 86.9 μM using a human enzyme and luminescent kinase assay platform. Falcarindiol also both suppressed gene expression of glucose-6-phosphatase (G6Pase) in rat hepatoma H4IIE cells and protected mouse neuroblastoma HT22 cells from glutamate-induced oxidative cell death at 10 μM. During an oral glucose tolerance test (OGTT), the blood glucose level was significantly decreased in the rats treated with oral administration of O. javanica extract containing falcarindiol (15 mg/kg). These findings indicate that Japanese parsley could be a useful food ingredient against type-2 diabetes and Alzheimer's disease.

  18. Insight into "Consensus recommendations for diagnosis and treatment of glycogen storage disease typeⅡ"

    Directory of Open Access Journals (Sweden)

    Hong-zhi GUAN

    2014-05-01

    Full Text Available Glycogen storage disease typeⅡ (GSDⅡ is a rare progressive lysosomal storage disease caused by deficiency of acid α-glucosidase (GAA. The gene is located in 17q25.3. Diagnosis has been classically made by means of muscular biopsy. Nowadays it is more convenient to screen GAA in dried blood sample followed by GAA assessment in lymphocytes or fibroblasts or by the genetic analysis of mutations. Besides non-specific multiprofessional management, there is a specific enzyme replacement therapy (ERT since 2006 which compensates for the missing enzyme by administration of recombinant produced enzyme. "Consensus recommendations for diagnosis and treatment of glycogen storage disease type Ⅱ", published on Natl Med J China in 2013, gives us a novel and compressive insight into this rare disease. doi: 10.3969/j.issn.1672-6731.2014.05.003

  19. Renal Function in Glycogen Storage Disease Type I, Natural Course, and Renopreservative Effects of ACE Inhibition

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Navis, Gerjan; Fidler, Vaclav; van Dael, Catharina M. L.; Smit, G. Peter A.

    2009-01-01

    Background and objectives: Renal failure is a major complication in glycogen storage disease type I (GSD I). We studied the natural course of renal function in GSD I patients. We studied differences between patients in optimal and nonoptimal metabolic control and possible renoprotective effects of

  20. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    Science.gov (United States)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  1. Glycogen Synthase Kinase 3 Inhibitors in the Next Horizon for Alzheimer's Disease Treatment

    Directory of Open Access Journals (Sweden)

    Ana Martinez

    2011-01-01

    Full Text Available Glycogen synthase kinase 3 (GSK-3, a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.

  2. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  3. Incorporation of phosphate into glycogen by glycogen synthase.

    Science.gov (United States)

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Steven M.; Banker, Pierette; Bickett, David M.; Carter, H. Luke; Clancy, Daphne C.; Dickerson, Scott H.; Dwornik, Kate A.; Garrido, Dulce M.; Golden, Pamela L.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Tavares, Francis X.; Thomson, Stephen A.; Wang, Liping; Weiel, James E.; (GSKNC)

    2009-05-15

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  5. Regulation of skeletal muscle plasticity by glycogen synthase kinase-3β: a potential target for the treatment of muscle wasting.

    Science.gov (United States)

    Verhees, Koen J P; Pansters, Nicholas A M; Schols, Annemie M W J; Langen, Ramon C J

    2013-01-01

    Muscle wasting is a prevalent and disabling condition in chronic disease and cancer and has been associated with increased mortality and impaired efficacy of surgical and medical interventions. Pharmacological therapies to combat muscle wasting are currently limited but considered as an important unmet medical need. Muscle wasting has been attributed to increased muscle proteolysis, and in particular ubiquitin 26S-proteasome system (UPS)-dependent protein breakdown. However, rates of muscle protein synthesis are also subject to extensive (patho) physiological regulation, and the balance between synthesis and degradation ultimately determines net muscle protein turnover. As multinucleated muscle fibers accommodate threshold changes in muscle protein content by the accretion and loss of muscle nuclei, myonuclear turnover may additionally determine muscle mass. Current insights in the mechanisms dictating muscle mass plasticity not only reveal intricate interactions and crosstalk between these processes, but imply the existence of signaling molecules that act as molecular switchboards, which coordinate and integrate cellular responses upon conditions that evoke changes in muscle mass. These "master regulators" of skeletal muscle mass plasticity are preferred targets for pharmacological modulation of skeletal muscle wasting. In this review Glycogen synthase kinase-3β (GSK-3β) is highlighted as a master regulator of muscle mass plasticity since, in addition to its role in UPS-mediated muscle protein degradation, it also controls protein synthesis, and influences myonuclear accretion and cell death. Moreover, the regulation of GSK-3β activity as well as currently available pharmacological inhibitors are described and discussed in the context of multimodal treatment strategies aimed at the inhibition of GSK-3β, and optimal exploitation of its potential role as a central regulator of skeletal muscle mass plasticity for the treatment of muscle wasting.

  6. Glycogen synthase kinase-3β inhibition in the medial prefrontal cortex mediates paradoxical amphetamine action in a mouse model of ADHD

    Directory of Open Access Journals (Sweden)

    Yi-Chun eYen

    2015-03-01

    Full Text Available Psychostimulants show therapeutic efficacy in the treatment of attention-deficit hyperactivity disorder (ADHD. It is generally assumed that they ameliorate ADHD symptoms via interfering with monoaminergic signaling. We combined behavioral pharmacology, neurochemistry and molecular analyses to identify mechanisms underlying the paradoxical calming effect of amphetamine in low trait anxiety behavior (LAB mice, a novel multigenetic animal model of ADHD. Amphetamine (1 mg/kg and methylphenidate (10 mg/kg elicited similar dopamine and norepinephrine release in the medial prefrontal cortex (mPFC and in the striatum of LAB mice. In contrast, amphetamine decreased, while methylphenidate increased locomotor activity. This argues against changes in dopamine and/or norepinephrine release as mediators of amphetamine paradoxical effects. Instead, the calming activity of amphetamine corresponded to the inhibition of glycogen synthase kinase3β (GSK3β activity, specifically in the mPFC. Accordingly, not only systemic administration of the GSK3β inhibitor TDZD-8 (20 mg/kg, but also local microinjections of TDZD-8 and amphetamine into the mPFC, but not into the striatum, decreased locomotor activity in LAB mice. Amphetamine effects seem to depend on NMDA receptor signaling, since pre- or co-treatment with MK-801 (0.3 mg/kg abolished the effects of amphetamine (1 mg/kg on the locomotion and on the phosphorylation of GSK3β at the level of the mPFC. Taken together, the paradoxical calming effect of amphetamine in hyperactive LAB mice concurs with a decreased GSK3β activity in the mPFC. This effect appears to be independent of dopamine or norepinephrine release, but contingent on NMDA receptor signaling.

  7. Inadequate Brain Glycogen or Sleep Increases Spreading Depression Susceptibility

    KAUST Repository

    Kilic, Kivilcim

    2017-12-16

    Glycogen in astrocyte endfeet contributes to maintenance of low extracellular glutamate and K+ concentrations around synapses. Sleep deprivation (SD), a common migraine trigger induces transcriptional changes in astrocytes reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches.We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD.DAB caused neuronal pannexin-1 large-pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking-down neuronal lactate transporter, MCT2 with an anti-sense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly given phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, APG-4 disclosed that DAB treatment or SD caused significant rise in extracellular K+ during whisker-stimulation, illustrating the critical role of glycogen in extracellular K+ clearance.Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lowering the CSD threshold. Therefore, conditions that limit energy supply to synapse (e.g. SD) may predispose to migraine attacks as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. This article is protected by copyright. All rights reserved.

  8. Inhibition of Glycogen Synthase Kinase-3ß Enhances Cognitive Recovery after Stroke: The Role of TAK1

    Science.gov (United States)

    Venna, Venugopal Reddy; Benashski, Sharon E.; Chauhan, Anjali; McCullough, Louise D.

    2015-01-01

    Memory deficits are common among stroke survivors. Identifying neuroprotective agents that can prevent memory impairment or improve memory recovery is a vital area of research. Glycogen synthase kinase-3ß (GSK-3ß) is involved in several essential intracellular signaling pathways. Unlike many other kinases, GSK-3ß is active only when…

  9. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  10. Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades

    Directory of Open Access Journals (Sweden)

    Chen Wu-Fu

    2010-12-01

    Full Text Available Abstract Background Deciphering the mechanisms that modulate the inflammatory response induced by microglial activation not only improves our insight into neuroinflammation but also provides avenues for designing novel therapies that could halt inflammation-induced neuronal degeneration. Decreasing glycogen synthase kinase-3β (GSK-3β activity has therapeutic benefits in inflammatory diseases. However, the exact molecular mechanisms underlying GSK-3β inactivation-mediated suppression of the inflammatory response induced by microglial activation have not been completely clarified. Tumor necrosis factor-α (TNF-α plays a central role in injury caused by neuroinflammation. We investigated the regulatory effect of GSK-3β on TNF-α production by microglia to discern the molecular mechanisms of this modulation. Methods Lipopolysaccharide (LPS was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Release of TNF-α was measured by ELISA. Signaling molecules were analyzed by western blotting, and activation of NF-κB and AP-1 was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Protein interaction was examined by coimmunoprecipitation. Results Inhibition of GSK-3β by selective GSK-3β inhibitors or by RNA interference attenuated LPS-induced TNF-α production in cultured microglia. Exploration of the mechanisms by which GSK-3β positively regulates inflammatory response showed that LPS-induced IκB-α degradation, NF-κBp65 nuclear translocation, and p65 DNA binding activity were not affected by inhibition of GSK-3β activity. However, GSK-3β inactivation inhibited transactivation activity of p65 by deacetylating p65 at lysine 310. Furthermore, we also demonstrated a functional interaction between mixed lineage kinase 3 (MLK3 and GSK-3β during LPS-induced TNF-α production in microglia. The phosphorylated levels of MLK3, MKK4, and JNK were increased upon LPS treatment

  11. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  12. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    Science.gov (United States)

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. © 2015

  13. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  14. Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates.

    Science.gov (United States)

    Lim, Ee L; Hollingsworth, Kieren G; Smith, Fiona E; Thelwall, Peter E; Taylor, Roy

    2011-08-01

    Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2 ± 0.8 compared with 4.8 ± 0.6 mg·kgffm⁻¹·min⁻¹; Pfree mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 compared with 1.9 ± 1.1 mmol/l; Pglycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.

  15. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, thick ascending limb...... of Henle's loop and collecting ducts in developing and adult human and rat kidney. In rats, the abundance of inactive, phosphorylated GSK-3β (pGSK-3β) protein decreased during postnatal development. After feeding dams with litters lithium (50 mmol Li/kg chow, postnatal (P) day 7-28), the offspring showed......-immunopositive epithelium. The postnatal rat kidney may serve as an experimental model for the study of lithium-induced human kidney injury. The data are compatible with a causal relation between epithelial entry of lithium into cells of the aldosterone-sensitive distal nephron, inactivation of GSK-3β, proliferation...

  16. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  17. Glycogen autophagy in glucose homeostasis.

    Science.gov (United States)

    Kotoulas, O B; Kalamidas, S A; Kondomerkos, D J

    2006-01-01

    Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.

  18. Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase

    DEFF Research Database (Denmark)

    Jakobsen, Emil; Bak, Lasse K; Walls, Anne B

    2017-01-01

    Glycogen is the main storage form of glucose in the brain. In contrast with previous beliefs, brain glycogen has recently been shown to play important roles in several brain functions. A fraction of metabolized glucose molecules are being shunted through glycogen before reentering the glycolytic...... pathway, a phenomenon known as the glycogen shunt. The significance of glycogen in astrocyte energetics is underlined by high activity of the glycogen shunt and the finding that inhibition of glycogen degradation, under some conditions leads to a disproportional increase in glycolytic activity, so......-called glycolytic supercompensation. Glycogen phosphorylase, the key enzyme in glycogen degradation, is expressed in two different isoforms in brain, the muscle and the brain isoform. Recent studies have illustrated how these are differently regulated. In the present study, we investigate the role of the two...

  19. Current status of hepatic glycogen storage disease in Japan: clinical manifestations, treatments and long-term outcomes.

    Science.gov (United States)

    Kido, Jun; Nakamura, Kimitoshi; Matsumoto, Shirou; Mitsubuchi, Hiroshi; Ohura, Toshihiro; Shigematsu, Yosuke; Yorifuji, Tohru; Kasahara, Mureo; Horikawa, Reiko; Endo, Fumio

    2013-05-01

    Many reports have been published on the long-term outcome and treatment of hepatic glycogen storage diseases (GSDs) overseas; however, none have been published from Japan. We investigated the clinical manifestations, treatment, and prognosis of 127 hepatic GSD patients who were evaluated and treated between January 1999 and December 2009. A characteristic genetic pattern was noted in the Japanese GSD patients: most GSD Ia patients had the g727t mutation, and many GSD Ib patients had the W118R mutation. Forty-one percent (14/34) of GSD Ia patients and 18% (2/11) of GSD Ib patients of ages 13 years 4 months had liver adenoma. Among subjects aged 10 years, 19% (7/36) of the GSD Ia patients and none of the GSD Ib patients had renal dysfunction. The mean height of male GSD Ia patients aged 18 years was 160.8±10.6 cm (n=14), and that of their female counterparts was 147.8±3.80 cm (n=9). Patients with hepatic GSDs develop a variety of symptoms but can survive in the long term by diet therapy, corn starch treatment and supportive care. Liver transplantation for hepatic GSDs is an important treatment strategy and can help improve the patients'quality of life.

  20. Inhibition of autophagic proteolysis by inhibitors of phosphoinositide 3-kinase can interfere with the regulation of glycogen synthesis in isolated hepatocytes

    NARCIS (Netherlands)

    Dubbelhuis, Peter F.; van Sluijters, Daphne A.; Blommaart, Edward F. C.; Gustafson, Lori A.; van Woerkom, George M.; Herling, Andreas W.; Burger, Hans-Joerg; Meijer, Alfred J.

    2002-01-01

    Amino acid-induced cell swelling stimulates conversion of glucose into glycogen in isolated hepatocytes. Activation of glycogen synthase (GS) phosphatase, caused by the fall in intracellular chloride accompanying regulatory volume decrease, and activation of phosphoinositide 3-kinase (PI 3-kinase),

  1. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen

    2008-01-01

    . No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P ...CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were...

  2. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  3. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    Science.gov (United States)

    Zhou, Mingjie; Ren, Huanhuan; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dt max) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dt max, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  4. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular......Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...... in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid...

  5. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease

    Science.gov (United States)

    Farah, Benjamin L.; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M.; Young, Sarah P.; Koeberl, Dwight D.

    2014-01-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.—Farah, B. L., Madden, L., Li, S., Nance, S., Bird, A., Bursac, N., Yen, P. M., Young, S. P., Koeberl, D. D. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with

  6. Studying the mechanism that enables paullones to selectively inhibit glycogen synthase kinase 3 rather than cyclin-dependent kinase 5 by molecular dynamics simulations and free-energy calculations.

    Science.gov (United States)

    Chen, Quan; Cui, Wei; Cheng, Yuanhua; Zhang, Fushi; Ji, Mingjuan

    2011-04-01

    Glycogen synthase kinase 3 (GSK-3) is an attractive target for the treatment of diabetes, and paullones have been reported to be effective inhibitors of GSK-3. However, it is still a challenging task to improve selectivity among protein kinases, especially cyclin-dependent kinases (CDKs). Here we investigated the mechanism that enables paullones to selectively inhibit GSK-3 rather than cyclin-dependent kinase 5 (CDK5) using sequence alignment, molecular dynamics simulations, free-energy calculations and free-energy decomposition analysis. The results indicate that the interaction between paullones and Val135 of GSK-3 is obviously stronger than that between paullones and Cys83 of CDK5, suggesting that paullones could be utilized as potent selective inhibitors. Meanwhile, we observed that the decrease in the interaction between paullones and the Asp86 of CDK5 favors their selectivity towards GSK-3 rather than CDK5, as demonstrated using 1-azakenpaullone as an example. Although substitution at position 9 and replacement at position 2 may influence the activity of GSK-3, they only have a minor effect on the selectivity. We expect that the information obtained here could prove useful for developing specific paullone inhibitors of GSK-3.

  7. Inhibition of Glycogen Synthase Kinase or the Apoptotic Protein p53 Lowers the Threshold of Helium Cardioprotection In Vivo: The Role of Mitochondrial Permeability Transition

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Prosurvival signaling kinases inhibit glycogen synthase kinase-3β (GSK-3β) activity and stimulate apoptotic protein p53 degradation. Helium produces cardioprotection by activating prosurvival kinases, but whether GSK and p53 inhibition mediate this process is unknown. We tested the hypothesis that inhibition of GSK or p53 lowers the threshold of helium cardioprotection via a mitochondrial permeability transition pore (mPTP)-dependent mechanism. METHODS Rabbits (n = 85) instrumented for hemodynamic measurement and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion received 0.9% saline (control), or 1, 3, or 5 cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture (fraction of inspired oxygen concentration = 0.30) before LAD occlusion. Other rabbits received the GSK inhibitor SB 216763 (SB21; 0.2 or 0.6 mg/kg), the p53 inhibitor pifithrin-α (PIF; 1.5 or 3.0 mg/kg), or SB21 (0.2 mg/kg) or PIF (1.5 mg/kg) plus helium (1 cycle) before LAD occlusion in the presence or absence of the mPTP opener atractyloside (5 mg/kg). RESULTS Helium reduced (P < 0.05) myocardial infarct size (35 ± 6 [n = 7], 25 ± 4 [n = 7], and 20 ± 3% [n = 6] of area at risk, 1, 3, and 5 cycles, respectively) compared with control (44 ± 6% [n = 7]). SB21 (0.6 [n = 7] but not 0.2 mg/kg [n = 6]) and PIF (3.0 [n = 6] but not 1.5 mg/kg [n = 7]) also reduced necrosis. SB21 (0.2 mg/kg) or 1.5 mg/kg PIF (1.5 mg/kg) plus helium (1 cycle; n = 6 per group) decreased infarct size to an equivalent degree as three cycles of helium alone, and this cardioprotection was blocked by atractyloside (n = 7 per group). CONCLUSIONS Inhibition of GSK or p53 lowers the threshold of helium-induced preconditioning via a mPTP-dependent mechanism in vivo. PMID:18713881

  8. Glycogen metabolism in humans.

    Science.gov (United States)

    Adeva-Andany, María M; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-06-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases.

  9. Free fatty acids increase hepatic glycogen content in obese males.

    Science.gov (United States)

    Allick, G; Sprangers, F; Weverling, G J; Ackermans, M T; Meijer, A J; Romijn, J A; Endert, E; Bisschop, P H; Sauerwein, H P

    2004-07-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose pathways in lean and obese subjects. Six lean and 6 obese males were studied twice during a 16- to 22-hour fast, once with and once without acipimox, an inhibitor of lipolysis. Intrahepatic glucose fluxes were measured by infusion of [2-(13C1)]glycerol, [1-(2H1)]galactose, and [U-(13C6)]glucose. Acetaminophen was administered as a glucuronate probe. In both lean and obese control studies, plasma FFA levels increased progressively, whereas acipimox completely suppressed plasma FFA levels for the whole study period. In lean males glycogenolysis did not change in the acipimox study, but decreased in the control study (P glycogen synthesis, glycogen synthesis retained as glycogen, nor glycogen balance differed between control and acipimox studies. In obese males glycogenolysis did not change in the acipimox study, but decreased in the control study (P Glycogen synthesis did not change in either study. Glycogen synthesis retained as glycogen did not change in acipimox study, but increased in the control study (P = .03). Glycogen balance did not change in the acipimox study, but increased in the control study (P glycogen during short-term fasting by inhibiting breakdown of glycogen and increasing glycogen synthesis retained as glycogen, whereas in lean males this effect was absent due to unaltered glycogen synthesis retained as glycogen.

  10. Glycogen metabolism in humans ? ??

    OpenAIRE

    Adeva-Andany, Mar?a M.; Gonz?lez-Luc?n, Manuel; Donapetry-Garc?a, Crist?bal; Fern?ndez-Fern?ndez, Carlos; Ameneiros-Rodr?guez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through...

  11. [Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-3β inhibition in a mouse model of intracerebral hemorrhage.

    Science.gov (United States)

    Wang, Tao; Huang, Ya; Zhang, Mingyang; Wang, Long; Wang, Yaoqi; Zhang, Lu; Dong, Wenwen; Chang, Pan; Wang, Zufeng; Chen, Xiping; Tao, Luyang

    2013-06-15

    Perihematomal brain edema formation and consequent cell death contribute to second brain injury resulting in severe neurological deficits and sometimes delayed fatality after intracerebral hemorrhage (ICH). [Gly14]-Humanin (HNG), a variant of Humanin (HN) in which the 14th amino acid serine is replaced with glycine, reduced Alzheimer's disease-relevant insults and improved neurological deficits in an ischemia stroke model. In the study, we aimed to evaluate whether HNG posttreatment attenuated early brain injury after ICH and whether the protective effect was associated with regulation of apoptosis via phosphatidylinositol 3-kinase (PI3K)-Akt/GSK-3β signaling. Male ICR mice were subjected to infusion of Type IV collagenase (to induce ICH) of saline (for shams) into the left striatum. ICH animals received vehicle, HNG (1 or 2.5 μg in 100 μl saline) administration intraperitoneally 1h post injury. Compared with vehicle, HNG-2.5 μg treatment improved neurological outcome and reduced brain edema at 24 and 72 h after surgery (P<0.05), but wortmannin (15 μg/kg, 90 min before HNG-2.5 μg, intravenously) obliterated the effect. HNG-2.5 μg also reduced cell insults and injury volume at 24 and 72 h after surgery (P<0.05, vs. vehicle). Furthermore, HNG-2.5 μg treatment increased p-Akt and Bcl-2 and decreased p-GSK-3β, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase expressions in the ipsilateral hemisphere (P<0.05, vs. vehicle), however, the effect was reversed by wortmannin. In conclusion, HNG treatment improved functional and morphological outcomes after experimental ICH in mice and the protective effect was associated with suppressing apoptosis through PI3K-Akt/GSK-3β signaling pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.

    Science.gov (United States)

    Farah, Benjamin L; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M; Young, Sarah P; Koeberl, Dwight D

    2014-05-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.

  13. Structural Injury after Lithium Treatment in Human and Rat Kidney involves Glycogen Synthase Kinase-3β Positive Epithelium

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2011-01-01

    of glycogen synthase kinase-3β (GSK-3β). GSK-3β and pGSK-3β was investigated in a developing series of rat kidney cortex and medulla. Li+ was given to female wistar rats with litters through food pellets at postnatal (P) days 7-28. In human fetal and adult kidney the expression of GSK-3β was examined and also...

  14. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne

    2009-01-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present...... unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA...... in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important...

  15. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    International Nuclear Information System (INIS)

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-01-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3β (GSK-3β) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-α (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity

  16. Endogenous glucose production increases in response to metformin treatment in the glycogen-depleted state in humans

    DEFF Research Database (Denmark)

    Christensen, Mette Marie H; Højlund, Kurt; Hother-Nielsen, Ole

    2015-01-01

    metabolism were assessed using [3-(3)H]glucose, indirect calorimetry and measurement of substrates and counter-regulatory hormones. The primary outcome was endogenous glucose production (EGP). RESULTS: Thirty-seven individuals were randomised. Thirty-four completed the study (12 had none, 13 had one and nine....... CONCLUSIONS/INTERPRETATION: Metformin stimulates glycolytic glucose utilisation and lactate production in the glycogen-depleted state. This may trigger a rise in glucose counter-regulatory hormones and subsequently an increase in EGP, which protects against hypoglycaemia. TRIAL REGISTRATION: Clinical...

  17. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  18. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    Science.gov (United States)

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  19. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  20. Mitochondria, glycogen and lipid droplets in skeletal muscle during testosterone treatment and strength training. A randomized, double blinded, placebo-controlled trial

    DEFF Research Database (Denmark)

    Jensen, Richard Christian; Lehman Christensen, Louise; Nielsen, Joachim

    2018-01-01

    testosterone, LBM, and percent body fat were not followed by significant changes in fractions of mitochondria, glycogen, or lipid in skeletal muscle of aging men with lowered testosterone levels. Six‐month ST or combined three‐month ST+TRT did not change intramyocellular mitochondria, glycogen, and LD......Low testosterone levels in aging men are associated with insulin resistance. Mitochondrial dysfunction, changes in glycogen metabolism, and lipid accumulation are linked to insulin resistance in skeletal muscle. In this randomized, double‐blinded, placebo‐controlled study, we investigated...... the effects of six‐month testosterone replacement therapy (TRT) and strength training (ST) on mitochondrial, glycogen, and lipid droplet (LD) content in skeletal muscle of aging men with subnormal bioavailable testosterone (BioT) levels. Mitochondrial, glycogen, and LD volume fractions in muscle biopsies were...

  1. Probenazole treatment inhibits anthocyanins biosynthesis via ...

    African Journals Online (AJOL)

    It has been found that anthocyanins were accumulated in Arabidopsis under drought or salt stress. In this study, such accumulation was found to be inhibited by external applied probenazole (3-allyloxy-1, 2-benzisothiazole-1,1-dioxide, PBZ), which is the active ingredient in oryzemate used for the protection of rice from ...

  2. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  3. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  4. Pregnancies in glycogen storage disease type Ia

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A.; Merkel, Martin; Sauer, Pieter J. J.; Smit, G. Peter A.

    OBJECTIVE: Reports on pregnancies in women with glycogen storage disease type Ia (GSD-Ia) are scarce. Because of improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies by focusing on dietary treatment, biochemical parameters, and GSD-Ia complications. STUDY

  5. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter.

    Science.gov (United States)

    Brown, Angus M; Sickmann, Helle M; Fosgerau, Keld; Lund, Trine M; Schousboe, Arne; Waagepetersen, Helle S; Ransom, Bruce R

    We tested the hypothesis that inhibiting glycogen degradation accelerates compound action potential (CAP) failure in mouse optic nerve (MON) during aglycemia or high-intensity stimulation. Axon function was assessed as the evoked CAP, and glycogen content was measured biochemically. Isofagomine, a novel inhibitor of central nervous system (CNS) glycogen phosphorylase, significantly increased glycogen content under normoglycemic conditions. When MONs were bathed in artificial cerebrospinal fluid (aCSF) containing 10 mM glucose, the CAP failed 16 min after exposure to glucose-free aCSF. MONs bathed in aCSF plus isofagomine displayed accelerated CAP failure on glucose removal. Similar results were obtained in MONs bathed in 30 mM glucose, which increased baseline glycogen concentration. The ability of isofagomine to increase glycogen content thus was not translated into delayed CAP failure. This is likely due to the inability of the tissue to metabolize glycogen in the presence of isofagomine, highlighting the importance of glycogen in sustaining neural function during aglycemia. The hypothesis that glycogen breakdown supports intense neural activity was tested by blocking glycogen breakdown during periods of high-frequency stimulation. The CAP area declined more rapidly when glycogen metabolism was inhibited by isofagomine, explicitly showing an important physiological role for glycogen metabolism during neural activity. (c) 2004 Wiley-Liss, Inc.

  6. UNUSUAL EUGLYCEMIC PRESENTATION OF GLYCOGEN STORAGE DISEASE TYPE 1B

    Directory of Open Access Journals (Sweden)

    Shivaprakash Sosale

    2015-06-01

    Full Text Available Glycogen storage diseases are infrequently reported metabolic disorder. Diagnosis and treatment of these conditions is a challenge to the clinician given its complexity and life threatening consequences

  7. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Glycogen storage disease type III diagnosis and management guidelines.

    Science.gov (United States)

    Kishnani, Priya S; Austin, Stephanie L; Arn, Pamela; Bali, Deeksha S; Boney, Anne; Case, Laura E; Chung, Wendy K; Desai, Dev M; El-Gharbawy, Areeg; Haller, Ronald; Smit, G Peter A; Smith, Alastair D; Hobson-Webb, Lisa D; Wechsler, Stephanie Burns; Weinstein, David A; Watson, Michael S

    2010-07-01

    Glycogen storage disease type III is a rare disease of variable clinical severity affecting primarily the liver, heart, and skeletal muscle. It is caused by deficient activity of glycogen debranching enzyme, which is a key enzyme in glycogen degradation. Glycogen storage disease type III manifests a wide clinical spectrum. Individuals with glycogen storage disease type III present with hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Those with type IIIa have symptoms related to liver disease and progressive muscle (cardiac and skeletal) involvement that varies in age of onset, rate of disease progression, and severity. Those with type IIIb primarily have symptoms related to liver disease. This guideline for the management of glycogen storage disease type III was developed as an educational resource for health care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. An international group of experts in various aspects of glycogen storage disease type III met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (cardiovascular, gastrointestinal/nutrition, hepatic, musculoskeletal, and neuromuscular) involved in glycogen storage disease type III. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic transplantation, and prenatal diagnosis, are addressed. A guideline that will facilitate the accurate diagnosis and appropriate management of individuals with glycogen storage disease type III was developed. This guideline will help health care providers recognize patients with all forms of

  9. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  10. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

    function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... the sarcoplasmic reticulum (SR). We and others have provided experimental evidence in favour of a direct role of decreased glycogen, localized within the myofibrils, for the reduction in SR Ca2+ release during fatigue. This is consistent with compartmentalized energy turnover and distinctly localized glycogen...

  11. Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs

    Directory of Open Access Journals (Sweden)

    Venkatesh KV

    2005-05-01

    Full Text Available Abstract Background Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state. Results The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase. Conclusion The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different

  12. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... caused a modest inactivation of GS, it stimulated muscle glycogen synthesis that was accompanied by increases in glucose transport and intracellular [G6P]. These effects of AICAR required the catalytic activity of AMPK. Strikingly, AICAR-induced glycogen synthesis was completely abolished in G6P...

  13. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  14. The electrodiagnostic characteristics of Glycogen Storage Disease Type III.

    Science.gov (United States)

    Hobson-Webb, Lisa D; Austin, Stephanie L; Bali, Deeksha S; Kishnani, Priya S

    2010-07-01

    Glycogen Storage Disease Type III, also known as debrancher deficiency or Cori disease, is an autosomal recessive disorder recognized for both its hepatic and muscle manifestations. The neuromuscular manifestations of Glycogen Storage Disease Type III are not well characterized. In this study, we attempt to better define the disorder. The medical records of 40 patients with Glycogen Storage Disease Type III seen at Duke University during 1990-2009 were reviewed. The medical records of all patients with nerve conduction studies and/or electromyography were examined. Twelve patients with Glycogen Storage Disease Type III (aged 5-55 years) had undergone nerve conduction studies +/- electromyography. Three of these cases are presented in detail. Nine patients had Glycogen Storage Disease Type IIIa, two patients had Glycogen Storage Disease Type IIIb, and the clinical subtype of one patient was unknown. All had nerve conduction studies and of those nerves tested, abnormalities in the median motor response were most common, corresponding to previously described, intrinsic hand muscle weakness. Electromyography was performed in eight patients and myopathic findings were present in six individuals. Abnormal electrodiagnostic findings were more common in older patients. The two patients with Glycogen Storage Disease Type IIIb had electrodiagnostic evidence of nerve involvement with minor myopathic findings. The neuromuscular manifestations of Glycogen Storage Disease Type III include myopathy and neuropathy and are more likely to occur with increasing age, even in those diagnosed with Glycogen Storage Disease Type IIIb. Intrinsic hand muscle weakness is likely due to a combination of nerve and muscle dysfunction, a finding that may have implications for treatment.

  15. Type V glycogen storage disease

    Science.gov (United States)

    Type V glycogen storage disease (GSD V) is a rare inherited condition in which the body is not able to break down glycogen. ... can provide more information and resources: Association for ... Disease -- www.agsdus.org National Organization for Rare Disease ...

  16. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  17. Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signalling pathway.

    Science.gov (United States)

    Chen, Zhenhuan; Xie, Jiahe; Hao, Huixin; Lin, Hairuo; Wang, Long; Zhang, Yingxue; Chen, Lin; Cao, Shiping; Huang, Xiaobo; Liao, Wangjun; Bin, Jianping; Liao, Yulin

    2017-05-01

    To resolve the controversy as to whether periostin plays a role in myocardial regeneration after myocardial infarction (MI), we created a neonatal mouse model of MI to investigate the influence of periostin ablation on myocardial regeneration and clarify the underlying mechanisms. Neonatal periostin-knockout mice and their wildtype littermates were subjected to MI or sham surgery. In the wildtype mice after MI, fibrosis was detectable at 3 days and fibrotic tissue was completely replaced by regenerated myocardium at 21 days. In contrast, in the knockout mice, significant fibrosis in the infarcted area was present at even 3 weeks after MI. Levels of phosphorylated-histone 3 and aurora B in the myocardium, detected by immunofluorescence and western blotting, were significantly lower in knockout than in wildtype mice at 7 days after MI. Similarly, angiogenesis was decreased in the knockout mice after MI. Expression of both the endothelial marker CD-31 and α-smooth muscle actin was markedly lower in the knockout than in wildtype mice at 7 days after MI. The knockout MI group had elevated levels of glycogen synthase kinase (GSK) 3β and decreased phosphatidylinositol 3-kinase (PI3K), phosphorylated serine/threonine protein kinase B (p-Akt), and cyclin D1, compared with the wildtype MI group. Similar effects were observed in experiments using cultured cardiomyocytes from neonatal wildtype or periostin knockout mice. Administration of SB216763, a GSK3β inhibitor, to knockout neonatal mice decreased myocardial fibrosis and increased angiogenesis in the infarcted area after MI. Ablation of periostin suppresses post-infarction myocardial regeneration by inhibiting the PI3K/GSK3β/cyclin D1 signalling pathway, indicating that periostin is essential for myocardial regeneration. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology

  18. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  19. Activation of Nrf2/HO-1 Pathway by Glycogen Synthase Kinase-3β Inhibition Attenuates Renal Ischemia/Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiaohua Shen

    2017-06-01

    Full Text Available Background/Aims: Diabetes mellitus can exacerbate renal ischemia-reperfusion (I/R injury (RI/RI. The aim of the present study was to evaluate the protective effect of GSK-3β inhibition (TDZD-8 on I/R-induced renal injury through the Nrf2/HO-1 pathway in a streptozocin (STZ-induced diabetic rat model. Methods: STZ-induced diabetic rats preconditioned with TDZD-8 and ZnPP were subjected to renal I/R. The extent of renal morphologic lesions. Renal function was assessed from blood urea nitrogen (BUN and serum creatinine (Scr, as determined utlizing commercial kits. Oxidative stress and inflammatory activity in the kidney tissue was estimated from levels of malondialdehyde (MDA, interleukin-10 (IL-10, tumor necrosis factor-α (TNF-α, and nitric oxide (NO, as well as the activities of superoxide dismutase (SOD and glutathione (GSH using qRT-PCR and ELISA. The expressions of Nrf2, HO-1, Bcl-2 and NF-κB in the renal tissue were measured by qRT-PCR and western blotting. Results: I/R-induced renal inflammation was reduced significantly by TDZD-8 pretreatment. Preconditioning with TDZD-8 suppressed NF-κB expression and enhanced Bcl-2 expression in the renal tissue. The upregulated level of malondialdehyde (MDA, and reduced activities of superoxide dismutase (SOD and glutathione (GSH in I/R-shocked rats were markedly restored by TDZD-8 pretreatment. Furthermore, pretreatment with TDZD-8 enhanced activation of the Nrf2/HO-1 pathway in the renal tissue of diabetic RI/RI rats. Conclusion: These findings suggest that preconditioning with TDZD-8 may protect the kidney from I/R-induced damage via the activation of the Nrf2/HO-1 pathway in STZ-induced diabetic rats. Further detailed studies are needed to further clarify the underlying mechanisms.

  20. Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin.

    OpenAIRE

    Peak, M; al-Habori, M; Agius, L

    1992-01-01

    The effects of changes in cell volume and pH on glycogen synthesis and glycolysis and their control by insulin were investigated in hepatocyte cultures. 1. Cell acidification, by increasing [CO2] from 2.5% to 5%, inhibited glycolysis and stimulated glycogen synthesis. The inhibition of glycolysis was also observed in Na(+)-free media and when K+ uptake was inhibited, but the stimulation of glycogen synthesis was abolished under these conditions, suggesting that it is secondary to ionic or vol...

  1. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle.

    Science.gov (United States)

    Wojtaszewski, Jørgen F P; Jørgensen, Sebastian B; Hellsten, Ylva; Hardie, D Grahame; Richter, Erik A

    2002-02-01

    5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose transport) by AICA-riboside in resting muscle is not known. Thus, we have altered muscle glycogen levels in rats by a combination of swimming exercise and diet and investigated the effects of AICA-riboside in the perfused rat hindlimb muscle. Two groups of rats, one with super-compensated muscle glycogen content (approximately 200-300% of normal; high glycogen [HG]) and one with moderately lowered muscle glycogen content (approximately 80% of normal; low glycogen [LG]), were generated. In both groups, the degree of activation of the alpha2 isoform of AMPK by AICA-riboside depended on muscle type (white gastrocnemius > red gastrocnemius > soleus). Basal and AICA-riboside-induced alpha2-AMPK activity were markedly lowered in the HG group (approximately 50%) compared with the LG group. Muscle 2-deoxyglucose uptake was also increased and glycogen synthase activity decreased by AICA-riboside. Especially in white gastrocnemius, these effects, as well as the absolute activity levels of AMPK-alpha2, were markedly reduced in the HG group compared with the LG group. The inactivation of glycogen synthase by AICA-riboside was accompanied by decreased gel mobility and was eliminated by protein phosphatase treatment. We conclude that acute AICA-riboside treatment leads to phosphorylation and deactivation of glycogen synthase in skeletal muscle. Although the data do not exclude a role of other kinases/phosphatases, they suggest that glycogen synthase may be a target for AMPK in vivo. Both basal and AICA-riboside-induced AMPK-alpha2 and glycogen synthase activities, as well as glucose transport

  2. Is Glycogenin Essential for Glycogen Synthesis?

    Science.gov (United States)

    Oldfors, Anders

    2017-07-05

    Glycogen synthesis requires a priming oligosaccharide, formed by autoglucosylation of glycogenin, a core protein in glycogen particles. In this edition of Cell Metabolism, Testoni et al. (2017) challenge this generally accepted concept by demonstrating that glycogenin inactivation in mice results in an increased amount of glycogen and not glycogen depletion. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Glycogen Synthesis in Glycogenin 1-Deficient Patients

    DEFF Research Database (Denmark)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-01-01

    Context: Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup...

  4. Genetic and Glycogen Storage Diseases

    Directory of Open Access Journals (Sweden)

    Sara Gholami

    2013-10-01

    Full Text Available Glycogen storage diseases are a group of inborn error of metabolism and characterized by accumulation of glycogen in various tissues. The overall incidence of glycogen storage diseases is estimated 1 per 20,000-43,000 live births. There are twelve distinct diseases that are commonly considered to be glycogen storage diseases and classified based on enzyme deficiency and affected tissue. We searched all review articles and books in the national and international databases which considered as inherited metabolic disorders and the genetic associations of these disorders. A large number of enzymes intervene in the synthesis and degradation of glycogen which is regulated by hormones. Several hormones, including insulin, glucagon and cortisol regulate the relationship between glycolysis, glycogenosis, and glycogen synthesis.These diseases are divided into three major groups: disorders that affected liver, disorders that affected muscle and those which are generalized. Glycogen storage diseases are called by a Roman numerical that reflects the historical sequence of their discovery by an enzyme defect or by the author's name of the first description.

  5. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    Science.gov (United States)

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; pglycogen versus those with low glycogen (median = 0.97 vs. 0.05, pglycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  6. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.

    Science.gov (United States)

    Mirmonsef, Paria; Hotton, Anna L; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T

    2014-01-01

    Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8-11 years. Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; pglycogen versus those with low glycogen (median = 0.97 vs. 0.05, pglycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.

  7. The modulator protein dissociates the catalytic subunit of hepatic protein phosphatase G from glycogen.

    OpenAIRE

    Bollen, M; Stalmans, W

    1988-01-01

    1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase acti...

  8. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... the most common form of glycogen storage disease, accounting for 25% of all cases. It is an ... Links Videos Webinars About ALF OVERVIEW Programs About Liver Disease Ask the Experts People ALF ...

  9. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Glycogen Storage Disease Type ...

  10. Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla.

    Science.gov (United States)

    Heinicke, Katja; Dimitrov, Ivan E; Romain, Nadine; Cheshkov, Sergey; Ren, Jimin; Malloy, Craig R; Haller, Ronald G

    2014-01-01

    Carbon-13 magnetic resonance spectroscopy (13C MRS) offers a noninvasive method to assess glycogen levels in skeletal muscle and to identify excess glycogen accumulation in patients with glycogen storage disease (GSD). Despite the clinical potential of the method, it is currently not widely used for diagnosis or for follow-up of treatment. While it is possible to perform acceptable 13C MRS at lower fields, the low natural abundance of 13C and the inherently low signal-to-noise ratio of 13C MRS makes it desirable to utilize the advantage of increased signal strength offered by ultra-high fields for more accurate measurements. Concomitant with this advantage, however, ultra-high fields present unique technical challenges that need to be addressed when studying glycogen. In particular, the question of measurement reproducibility needs to be answered so as to give investigators insight into meaningful inter-subject glycogen differences. We measured muscle glycogen levels in vivo in the calf muscle in three patients with McArdle disease (MD), one patient with phosphofructokinase deficiency (PFKD) and four healthy controls by performing 13C MRS at 7T. Absolute quantification of the MRS signal was achieved by using a reference phantom with known concentration of metabolites. Muscle glycogen concentration was increased in GSD patients (31.5±2.9 g/kg w. w.) compared with controls (12.4±2.2 g/kg w. w.). In three GSD patients glycogen was also determined biochemically in muscle homogenates from needle biopsies and showed a similar 2.5-fold increase in muscle glycogen concentration in GSD patients compared with controls. Repeated inter-subject glycogen measurements yield a coefficient of variability of 5.18%, while repeated phantom measurements yield a lower 3.2% system variability. We conclude that noninvasive ultra-high field 13C MRS provides a valuable, highly reproducible tool for quantitative assessment of glycogen levels in health and disease.

  11. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.

    Directory of Open Access Journals (Sweden)

    Paria Mirmonsef

    Full Text Available Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH.Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8-11 years.Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4 than those with low glycogen (pH 5.8; p<0.001. The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001. In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners.These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.

  12. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter

    DEFF Research Database (Denmark)

    Brown, Angus M; Sickmann, Helle M; Fosgerau, Keld

    2005-01-01

    We tested the hypothesis that inhibiting glycogen degradation accelerates compound action potential (CAP) failure in mouse optic nerve (MON) during aglycemia or high-intensity stimulation. Axon function was assessed as the evoked CAP, and glycogen content was measured biochemically. Isofagomine, ...

  13. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    Science.gov (United States)

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  14. Glycogen synthase kinase-3β activity and cognitive functioning in patients with bipolar I disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Miskowiak, Kamilla Woznica; Jacoby, Anne Sophie

    2018-01-01

    Cognitive deficits are common in patients with bipolar disorder (BD) in remission and may be associated with glycogen synthase kinase-3 (GSK-3) activity, which is inhibited by lithium. GSK-3 may be a relevant treatment target for interventions tailored at cognitive disturbances in BD...... ratio (serine-9-pGSK-3β /total GSK-3β), was negatively associated with sustained attention (p = 0.009 and p = 0.042, respectively), but not with other cognitive domains or global cognition. A crossover interaction between lithium treatment and the GSK activity was observed, indicating that lower pGSK-3β...... but the relation between GSK-3 activity, cognition and lithium treatment is unknown. We therefore investigated the possible association between GSK-3 activity and cognition and whether lithium treatment moderates this association in patients with BD. In a prospective 6-12 month follow-up study, GSK- 3β activity...

  15. Menorrhagia in patients with type I glycogen storage disease.

    Science.gov (United States)

    Austin, Stephanie L; El-Gharbawy, Areeg H; Kasturi, Vellore G; James, Andra; Kishnani, Priya S

    2013-12-01

    To evaluate menorrhagia in a cohort of women with glycogen storage disease type I because it appears to be an under-recognized problem in females of reproductive age. A retrospective chart review was performed on 13 menstruating patients with glycogen storage disease type I (age 23-48 years) for a diagnosis of menorrhagia. Nine (69%) (confidence interval 0.39-0.91) women had development of menorrhagia. Median hemoglobin values in these patients were generally low (range 9.5-12.85 g/dL) but not different from those of the nonmenorrhagia group (hemoglobin range 9.55-11.0 g/dL) with glycogen storage disease type I. Four patients with menorrhagia required hospitalization or emergency department visits for treatment of menorrhagia. Two of the four patients hospitalized required blood transfusion, with an additional patient requiring a transfusion during pregnancy. Eight patients (89%) either were recommended to have or required medical or surgical treatment of their menorrhagia. Glycogen storage disease type I is associated with menorrhagia. The evaluation should include assessment of coagulation functions and referral to a gynecologist, hematologist, or both, because bleeding diathesis and polycystic ovary syndrome are common in patients with glycogen storage disease type I.

  16. Increasing nerve agent treatment efficacy by P-glycoprotein inhibition.

    Science.gov (United States)

    Joosen, Marloes J A; Vester, Stefanie M; Hamelink, Jouk; Klaassen, Steven D; van den Berg, Roland M

    2016-11-25

    One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp inhibition by tariquidar enhanced the efficacy of nerve agent treatment when administered as a pretreatment. In the present study soman-induced seizures were also substantially prevented when the animals were intravenously treated with tariquidar post-poisoning, in addition to HI-6 and atropine. In these animals, approximately twice as much AChE activity was present in their brain as compared to control rats. The finding that tariquidar did not affect distribution of soman to the brain indicates that the potentiating effects were a result of interactions of Pgp inhibition with drug distribution. In line with this, atropine appeared to be a substrate for Pgp in in vitro studies in a MDR1/MDCK cell model. This indicates that tariquidar might induce brain region specific effects on atropine distribution, which could contribute to the therapeutic efficacy increase found. Furthermore, the therapeutic enhancement by tariquidar was compared to that of the less specific and less potent Pgp inhibitor cyclosporine A. This compound appeared to induce a protective effect similar to tariquidar. In conclusion, treatment with a Pgp inhibitor resulted in enhanced therapeutic efficacy of HI-6 and atropine in a soman-induced seizure model in the rat. The mechanism underlying these effects should be further investigated. To that end, the potentiating effect of nerve agent treatment should be addressed against a broader range of nerve agents, for oximes and atropine separately, and for those at lower doses. In particular when efficacy against more nerve agents is shown, a Pgp inhibitor such as tariquidar might be a valid addition to nerve agent antidotes. Copyright © 2016 Elsevier Ireland

  17. Hexokinase 2, glycogen synthase and phosphorylase play a key role in muscle glycogen supercompensation

    DEFF Research Database (Denmark)

    Irimia, José M; Rovira, Jordi; Nielsen, Jakob N

    2012-01-01

    Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood.......Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood....

  18. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  19. [Effect of insulin on retinal glycogen content].

    Science.gov (United States)

    Lansel, N; Rungger-Brändle, E; Hitz-Kueng, N; Niemeyer, G

    2000-05-01

    The effect of insulin on glucose and glycogen metabolism in peripheral organs is well known. However, information about the action of this peptide in the retina is incomplete. We addressed the questions whether insulin influences glycogen content in the cat retina and whether glycogen breakdown is triggered by lack of glucose. Eyes from adult cats were enucleated under deep barbiturate and fentanylanesthesia. Retinas were snap frozen either before or following arterial in vitro perfusion. Three conditions were studied: a) Perfusion with a glucose- and insulin-free medium; b) perfusion with the addition of physiologic glucose concentration; and c) in combination with insulin. Glycogen content was determined by in vitro measurement of glucose converted from glycogen. The reference value for retinal glycogen after enucleation (10 min of ischemia) is 2.4 micrograms glucose/mg protein. Glucose- and insulin-free perfusion for 80 min following "normoglycemia" reduced the amount of retinal glycogen by one third. Perfusion for 3 h with 5.5 mM glucose led to a small increase of the partly depleted glycogen stores. Insulin, in contrast, markedly augmented the glycogen content. Insulin led to an increase in retinal glycogen content, indicating an influence of this peptide on retinal glucose and glycogen metabolism. However, it appears that glycogen might play a dynamic role in retinal metabolism as a buffer between abrupt changes in focal metabolic demands that occur during normal glucose supply rather than acting solely as an emergency energy reserve for neural function during hypoglycemia.

  20. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    Science.gov (United States)

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  1. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  2. Proglycogen and macroglycogen: artifacts of glycogen extraction?

    Science.gov (United States)

    James, Anthony P; Barnes, Phillip D; Palmer, T Norman; Fournier, Paul A

    2008-04-01

    Most recent studies on the physiology of proglycogen and macroglycogen in skeletal muscles have adopted a homogenization-free acid extraction protocol to separate these 2 pools of glycogen. The purposes of this study were to determine (a) whether this protocol is suitable; (b) if the acid-insoluble glycogen fraction corresponds to proglycogen; and (c) if this fraction accounts for most of the changes in muscle glycogen content, irrespective of muscle fiber types. Using the rat as our experimental model, this study shows that when the conditions of acid extraction are optimized, 52% to 64% of glycogen in rat muscles is found as acid-soluble glycogen as opposed to approximately 16% when glycogen is extracted using a homogenization-free extraction protocol. Moreover, there is no evidence that the acid-insoluble glycogen corresponds to proglycogen because gel chromatography of the acid-insoluble and acid-soluble glycogen fractions shows similar elution profiles of high-molecular weight glycogen. Finally, irrespective of muscle fiber types, the acid-soluble glycogen accounts for most of the changes in total muscle glycogen levels during the fasting-to-fed transition, whereas the levels of the acid-insoluble glycogen remain stable or increase marginally. In conclusion, this study shows that the homogenization-free acid extraction of muscle glycogen underestimates the proportion of acid-soluble glycogen and that the findings of the studies that have adopted such an extraction protocol to examine the physiology of acid-insoluble and acid-soluble glycogens require reexamination.

  3. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...

  4. Inhibiting scrapie neuroinvasion by polyene antibiotic treatment of SCID mice.

    Science.gov (United States)

    Beringue, V; Lasmézas, C I; Adjou, K T; Demaimay, R; Lamoury, F; Deslys, J P; Seman, M; Dormont, D

    1999-07-01

    The polyene antibiotic MS-8209 is currently one of the most effective drugs in the treatment of experimental scrapie. However, its mechanism of action and its site of intervention in the pathogenetical process of scrapie infection are largely unknown. It has been shown previously that the infection of immunodeficient SCID mice by the peripheral route provides a reliable model for direct scrapie neuroinvasion, bypassing the lymphoreticular system. Indeed, a proportion of SCID mice develop scrapie after a similar time to immunocompetent mice, despite their severe immune impairment. This model is now used to clarify the targets of MS-8209. In SCID mice, MS-8209 treatment protected against infection but did not prolong survival time. In SCID mice immunologically reconstituted prior to inoculation, the drug delayed the disease without an effect on the attack rate. These findings strongly suggest that MS-8209 acts by hampering the first step of the neuroinvasion process, i.e. the uptake of the infectious agent by peripheral nerve endings. The mechanism leading to the inhibition of agent propagation to nervous cells is discussed with regard to the properties of polyene antibiotics.

  5. Hexokinase 2, glycogen synthase and phosphorylase play a key role in muscle glycogen supercompensation.

    Directory of Open Access Journals (Sweden)

    José M Irimia

    Full Text Available BACKGROUND: Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. METHODS: Using chronic low-frequency stimulation (CLFS as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. RESULTS: In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5'-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. CONCLUSIONS: Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches.

  6. Corrosion inhibition of powder metallurgy Mg by fluoride treatments.

    Science.gov (United States)

    Pereda, M D; Alonso, C; Burgos-Asperilla, L; del Valle, J A; Ruano, O A; Perez, P; Fernández Lorenzo de Mele, M A

    2010-05-01

    Pure Mg has been proposed as a potential degradable biomaterial to avoid both the disadvantages of non-degradable internal fixation implants and the use of alloying elements that may be toxic. However, it shows excessively high corrosion rate and insufficient yield strength. The effects of reinforcing Mg by a powder metallurgy (PM) route and the application of biocompatible corrosion inhibitors (immersion in 0.1 and 1M KF solution treatments, 0.1M FST and 1M FST, respectively) were analyzed in order to improve Mg mechanical and corrosion resistance, respectively. Open circuit potential measurements, polarization techniques (PT), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS) were performed to evaluate its corrosion behavior. SECM showed that the local current of attacked areas decreased during the F(-) treatments. The corrosion inhibitory action of 0.1M FST and 1M FST in phosphate buffered solution was assessed by PT and EIS. Under the experimental conditions assayed, 0.1M FST revealed better performance. X-ray photoelectron spectroscopy, energy dispersive X-ray and X-ray diffraction analyses of Mg(PM) with 0.1M FST showed the presence of KMgF(3) crystals on the surface while a MgF(2) film was detected for 1M FST. After fluoride inhibition treatments, promising results were observed for Mg(PM) as degradable metallic biomaterial due to its higher yield strength and lower initial corrosion rate than untreated Mg, as well as a progressive loss of the protective characteristics of the F(-)-containing film which ensures the gradual degradation process. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Okovity, Sergey V; Kudryavtsev, Boris N

    2014-03-01

    Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser

    2005-01-01

    Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively...... stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical...

  9. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice

    Directory of Open Access Journals (Sweden)

    Kaushlendra eTripathi

    2012-05-01

    Full Text Available The fungal pathogen Cryptococcus neoformans (Cn is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU and methylmethane sulfonate (MMS, which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of WT Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1-delta cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1-delta cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU.

  10. Brain glycogen in health and disease.

    Science.gov (United States)

    Duran, Jordi; Guinovart, Joan J

    2015-12-01

    Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  12. Glycogen Storage Disease Type IV

    DEFF Research Database (Denmark)

    Bendroth-Asmussen, Lisa; Aksglaede, Lise; Gernow, Anne B

    2016-01-01

    molecular genetic analyses confirmed glycogen storage disease Type IV with the finding of compound heterozygosity for 2 mutations (c.691+2T>C and c.1570C>T, p.R524X) in the GBE1 gene. We conclude that glycogen storage disease Type IV can cause early miscarriage and that diagnosis can initially be made......A 30-yr-old woman presented with 2 consecutive miscarriages within 7 mo. Histopathologic examination of the placental tissue showed intracytoplasmic inclusion vacuoles with a strong reaction in Periodic acid-Schiff staining and a slightly pallor reaction in alcian blue staining. Additional...... on histopathologic examination. Genetic analysis is required to confirm the diagnosis and to offer prenatal genetic testing in future pregnancies....

  13. Diabetes mellitus in a patient with glycogen storage disease type Ia: a case report.

    Science.gov (United States)

    Cohn, Aviva; Ohri, Anupam

    2017-11-12

    Glycogen storage disease type Ia is a genetic disorder that is associated with persistent fasting hypoglycemia and the inability to produce endogenous glucose. The development of diabetes with glycogen storage disease is exceedingly rare. The underlying pathogenesis for developing diabetes in these patients is unclear, and there are no guidelines for treatment. We describe a case of a 34-year-old woman of South Asian descent with glycogen storage disease type Ia, who developed uncontrolled diabetes mellitus as a young adult. Hyperglycemia was noted after childbirth, and worsened years later. Treatment for diabetes was difficult due to risks of hypoglycemia from her underlying glycogen storage disease. With minimal hypoglycemic events, the patient's blood glucose improved with exercise in combination with a sodium-glucose co-transporter 2 inhibitor and an alpha glucosidase inhibitor. We report a rare case of diabetes in the setting of glycogen storage disease-Ia. Based on the literature, there appears to be a relationship between glycogen storage disease and metabolic syndrome, which likely plays a role in the pathogenesis. The management of glycemic control remains a clinical challenge, requiring management of both fasting hypoglycemia from glycogen storage disease, as well as post-prandial hyperglycemia from diabetes mellitus.

  14. Cholesteryl ester transfer protein (cetp) inhibition in the treatment of cancer

    KAUST Repository

    Kaur, Mandeep

    2016-09-01

    In one embodiment, the invention provides methods of treatment which use therapeutically effective amounts of Choleste ryl Ester Transfer Protein (CETP) inhibitors to treat a variety of cancers. In certain embodiments, the inhibitor is a CETP-inhibiting small molecule, CETP-inhibiting antisense oligonucleotide, CETP-inhibiting siRNA or a CETP- inhibiting antibody. Related pharmaceutical compositions, kits, diagnostics and screens are also provided.

  15. Glycogen resynthesis rate following cross-country skiing is closely correlated to skeletal muscle glycogen content

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    INTRODUCTION: In skeletal muscle, glucose is stored as glycogen, which is a major source of energy during most forms of muscle activity. It is now well recognized that muscle glycogen stores are closely related to performance and endurance capacity. Thus, successful competition or training depends...... on an optimal glycogen resynthesis rate before a subsequent exercise session. The purpose of present study was to evaluate the glycogen resynthesis rate in elite cross-country (cc) skiers, following exhaustive exercise, and to examine the role of muscular glycogen content on the resynthesis rate. METHOD: Ten...... as 4h and 22h after the race and analyzed for glycogen content. Figure 1. Correlation between muscle glycogen resynthesis rate and glycogen content after and in the rocery period after exercise. Line indicate best fit of all the data points (r2 = 0.41, p

  16. Determination of the glycogen content in cyanobacteria

    DEFF Research Database (Denmark)

    Porcellinis, Alice De; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-01-01

    of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical......Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement...... complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization...

  17. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ishiura, Yoshihito [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kotani, Norihiro, E-mail: kotani@kochi-u.ac.jp [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); Yamashita, Ryusuke [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamamoto, Harumi [Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Kozutsumi, Yasunori [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Honke, Koichi [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan)

    2010-05-28

    The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.

  18. Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0699 TITLE: Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of Cancer PRINCIPAL...pharmacologic inhibition will prevent the oncogenic effects of FABP5 overexpression in highly relevant breast cancer models that display a high ratio of...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of

  19. Determination of the Glycogen Content in Cyanobacteria.

    Science.gov (United States)

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  20. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  1. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    OpenAIRE

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, compl...

  2. Genetics Home Reference: glycogen storage disease type IV

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type IV Glycogen storage disease type IV Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type IV (GSD IV) is an inherited disorder ...

  3. A case of glycogen storage disease type III

    OpenAIRE

    Kırış, S.; Özdoğan, O.C.; Avşar, E.; Kalaycı, C.; Tözün, N.; Ulusoy, N.B.

    1996-01-01

    Glycogen storage diseases (GSD) are hereditary metabolic disorders leading to the storage in cells of glycogen of normal or abnormal structure.We report a case of glycogen storage disease Type III which was diagnosed in October 1993.

  4. Genetics Home Reference: glycogen storage disease type III

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type III Glycogen storage disease type III Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type III (also known as GSDIII or Cori ...

  5. Genetics Home Reference: glycogen storage disease type I

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type I Glycogen storage disease type I Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type I (also known as GSDI or von ...

  6. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  7. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens

    NARCIS (Netherlands)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-01-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs

  8. No effect of glycogen level on glycogen metabolism during high intensity exercise

    DEFF Research Database (Denmark)

    Vandenberghe, Katleen; Hespel, P.; Eynde, Bart Vanden

    1995-01-01

    This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer...... and blood-lactate, and the fall in blood-pH were similar during N and CHR. In protocol 2, time to exhaustion was identical for N and CHR. It is concluded that during short-term intense exercise during which muscle glycogen availability exceeds glycogen demand, rate of glycogen breakdown, lactate...

  9. Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla.

    Directory of Open Access Journals (Sweden)

    Katja Heinicke

    Full Text Available Carbon-13 magnetic resonance spectroscopy (13C MRS offers a noninvasive method to assess glycogen levels in skeletal muscle and to identify excess glycogen accumulation in patients with glycogen storage disease (GSD. Despite the clinical potential of the method, it is currently not widely used for diagnosis or for follow-up of treatment. While it is possible to perform acceptable 13C MRS at lower fields, the low natural abundance of 13C and the inherently low signal-to-noise ratio of 13C MRS makes it desirable to utilize the advantage of increased signal strength offered by ultra-high fields for more accurate measurements. Concomitant with this advantage, however, ultra-high fields present unique technical challenges that need to be addressed when studying glycogen. In particular, the question of measurement reproducibility needs to be answered so as to give investigators insight into meaningful inter-subject glycogen differences. We measured muscle glycogen levels in vivo in the calf muscle in three patients with McArdle disease (MD, one patient with phosphofructokinase deficiency (PFKD and four healthy controls by performing 13C MRS at 7T. Absolute quantification of the MRS signal was achieved by using a reference phantom with known concentration of metabolites. Muscle glycogen concentration was increased in GSD patients (31.5±2.9 g/kg w. w. compared with controls (12.4±2.2 g/kg w. w.. In three GSD patients glycogen was also determined biochemically in muscle homogenates from needle biopsies and showed a similar 2.5-fold increase in muscle glycogen concentration in GSD patients compared with controls. Repeated inter-subject glycogen measurements yield a coefficient of variability of 5.18%, while repeated phantom measurements yield a lower 3.2% system variability. We conclude that noninvasive ultra-high field 13C MRS provides a valuable, highly reproducible tool for quantitative assessment of glycogen levels in health and disease.

  10. Fine structural properties of natural and synthetic glycogens.

    Science.gov (United States)

    Takata, Hiroki; Kajiura, Hideki; Furuyashiki, Takashi; Kakutani, Ryo; Kuriki, Takashi

    2009-03-31

    Glycogen, highly branched (1-->4)(1-->6)-linked alpha-d-glucan, can be extracted from natural sources such as animal tissues or shellfish (natural source glycogen, NSG). Glycogen can also be synthesized in vitro from glucose-1-phosphate using the cooperative action of alpha-glucan phosphorylase (GP, EC 2.4.1.1) and branching enzyme (BE, EC 2.4.1.18), or from short-chain amylose by the cooperative action of BE and amylomaltase (AM, EC 2.4.1.25). It has been shown that enzymatically synthesized glycogen (ESG) has structural and physicochemical properties similar to those of NSG. In this study, the fine structures of ESG and NSG were analyzed using isoamylase and alpha-amylase. Isoamylase completely hydrolyzed the alpha-1,6 linkages of ESG and NSG. The unit-chain distribution (distribution of degrees of polymerization (DP) of alpha-1,4 linked chains) of ESG was slightly narrower than that of NSG. alpha-Amylase treatment revealed that initial profiles of hydrolyses of ESG and NSG were almost the same: both glycogens were digested slowly, compared with starch. The final products from NSG by alpha-amylase hydrolysis were glucose, maltose, maltotriose, branched oligosaccharides with DP4, and highly branched macrodextrin molecules with molecular weights of up to 10,000. When ESG was digested with excess amounts of alpha-amylase, much larger macrodextrins (molecular weight>10(6)) were detected. In contrast, oligosaccharides with DP 4-7 could not be detected from ESG. These results suggest that the alpha-1,6 linkages in ESG molecules are more regularly distributed than those in NSG molecules.

  11. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    Science.gov (United States)

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.

    Science.gov (United States)

    Zois, Christos E; Harris, Adrian L

    2016-02-01

    Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.

  13. Curcumin Enhances Bortezomib Treatment of Myeloma by Inhibiting ...

    African Journals Online (AJOL)

    Purpose: To investigate whether curcumin augments bortezomib-induced apoptosis in myeloma cells (MM1.R line), and to explore the molecular mechanism with regard to heat shock protein 90 (HSP90) expression. Methods: MTT cell viability assay was used to assess growth inhibition of MM1.R cells at different ...

  14. Curcumin Enhances Bortezomib Treatment of Myeloma by Inhibiting ...

    African Journals Online (AJOL)

    1The Lishui People's Hospital, Lishui 324000, 2Department of Hematology, First Affiliated Hospital, Zhejiang University College ... concentrations of curcumin alone and also combined with 0.01 mM bortezomib. ... effects(viability inhibition and apoptosis induction increased (p < 0.05), whereas bortezomib alone had.

  15. Glycogen is large molecules wherein Glucose residues

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Glycogen is large molecules wherein Glucose residues. Glycogen is large molecules wherein Glucose residues. linked by α-(1- 4) glycosidic bonds into chains and chains. branch via α-(1- 6) linkage. Branching points are about every fourth residue – allows. glucose ...

  16. Supplementation of glycerol or fructose via drinking water to grazing lambs on tissue glycogen level and lipogenesis.

    Science.gov (United States)

    Volpi-Lagreca, G; Duckett, S K

    2017-06-01

    Lambs ( = 18; 40.1 ± 7.4 kg BW) were used to assess supplementation of glycerol or fructose via drinking water on growth, tissue glycogen levels, postmortem glycolysis, and lipogenesis. Lambs were blocked by BW and allocated to alfalfa paddocks (2 lambs/paddock and 3 paddocks/treatment). Each paddock within a block was assigned randomly to drinking water treatments for 30 d: 1) control (CON), 2) 120 g fructose/L of drinking water (FRU), or 3) 120 g glycerol/L of drinking water (GLY). Lambs grazed alfalfa with free access to water treatments for 28 d and then were fasted in indoor pens for a final 2 d with access to only water treatments. Data were analyzed using the MIXED procedure of SAS with water treatment and time (when appropriate) in the model. During the 28-d grazing period, ADG was greater ( glycogen content × postmortem time was significant ( = 0.003) in LM and semitendinosus (ST) muscles. Glycogen content in the LM was greater ( Glycogen content in ST did not differ between treatments ( > 0.05). Liver glycogen content was over 14-fold greater ( glycogen branching enzyme in the liver. Overall, glycerol supplementation improved growth, reduced BW shrink during fasting, increased glycogen content in muscle and the liver, and stimulated de novo lipogenesis.

  17. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    Science.gov (United States)

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  18. Complement inhibition: a promising concept for cancer treatment

    Science.gov (United States)

    Pio, Ruben; Ajona, Daniel; Lambris, John D.

    2013-01-01

    For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively novel and deserves closer attention. In this paper, we will summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer. PMID:23706991

  19. A patient with glycogen storage disease type Ib presenting with acute myeloid leukemia (AML bearing monosomy 7 and translocation t(3;8(q26;q24 after 14 years of treatment with granulocyte colony-stimulating factor (G-CSF: A case report

    Directory of Open Access Journals (Sweden)

    Schroeder Thomas

    2008-09-01

    Full Text Available Abstract Introduction Glycogen storage disease type Ib is an autosomal recessive transmitted disorder of glycogen metabolism caused by mutations in the glucose-6-phosphate translocase gene on chromosome 11q23 and leads to disturbed glycogenolysis as well as gluconeogenesis. Besides hepatomegaly, growth retardation, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia, patients suffer from neutropenia associated with functional defects predisposing for severe infections. In order to attenuate these complications, long-term treatment with granulocyte colony-stimulating factor is common but this is associated with an increased risk for acute myeloid leukemia or myelodysplastic syndromes in patients with inherited bone marrow failures such as severe congenital neutropenia. Onset of these myeloid malignancies is linked to cytogenetic aberrations involving chromosome 7. In addition, granulocyte colony-stimulating factor is known to stimulate proliferation of monosomy 7 cells in vitro. To our knowledge, we report for the first time a case report of a patient with glycogen storage disease type Ib, who developed acute myeloid leukemia with a classical monosomy 7 and acute myeloid leukemia-associated translocation t(3;8(q26;q24 after 14 years of continuous treatment with granulocyte colony-stimulating factor. Case presentation A 28-year-old Turkish man with glycogen storage disease type Ib was admitted to our department because of dyspnea and increasing fatigue. He also presented with gum bleeding, bone pain in his legs, night sweats, recurrent episodes of fever with temperatures up to 39°C and hepatosplenomegaly. A blood count taken on the day of admission showed pancytopenia and a differential count displayed 30% blasts. A bone marrow biopsy was taken which showed a hypercellular marrow with dysplastic features of all three cell lines, while blast count was 20%. Classical cytogenetic analyses as well as fluorescence in situ hybridization

  20. Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice.

    Science.gov (United States)

    Jurczak, Michael J; Danos, Arpad M; Rehrmann, Victoria R; Allison, Margaret B; Greenberg, Cynthia C; Brady, Matthew J

    2007-03-01

    Adipocytes express the rate-limiting enzymes required for glycogen metabolism and increase glycogen synthesis in response to insulin. However, the physiological function of adipocytic glycogen in vivo is unclear, due in part to the low absolute levels and the apparent biophysical constraints of adipocyte morphology on glycogen accumulation. To further study the regulation of glycogen metabolism in adipose tissue, transgenic mice were generated that overexpressed the protein phosphatase-1 (PP1) glycogen-targeting subunit (PTG) driven by the adipocyte fatty acid binding protein (aP2) promoter. Exogenous PTG was detected in gonadal, perirenal, and brown fat depots, but it was not detected in any other tissue examined. PTG overexpression resulted in a modest redistribution of PP1 to glycogen particles, corresponding to a threefold increase in the glycogen synthase activity ratio. Glycogen synthase protein levels were also increased twofold, resulting in a combined greater than sixfold enhancement of basal glycogen synthase specific activity. Adipocytic glycogen levels were increased 200- to 400-fold in transgenic animals, and this increase was maintained to 1 yr of age. In contrast, lipid metabolism in transgenic adipose tissue was not significantly altered, as assessed by lipogenic rates, weight gain on normal or high-fat diets, or circulating free fatty acid levels after a fast. However, circulating and adipocytic leptin levels were doubled in transgenic animals, whereas adiponectin expression was unchanged. Cumulatively, these data indicate that murine adipocytes are capable of storing far higher levels of glycogen than previously reported. Furthermore, these results were obtained by overexpression of an endogenous adipocytic protein, suggesting that mechanisms may exist in vivo to maintain adipocytic glycogen storage at a physiological set point.

  1. Carcass glycogen repletion on carbohydrate re-feeding after starvation.

    OpenAIRE

    Cox, D J; Palmer, T N

    1987-01-01

    In mice, the response of carcass glycogen to glucose re-feeding after starvation is biphasic. The initial repletive phase is followed by partial (greater than 50%) glycogen mobilization. This turnover of carcass glycogen in response to carbohydrate re-feeding may play an important role in the provision of C3 precursors for hepatic glycogen synthesis.

  2. Glycogen metabolism in the rat retina.

    Science.gov (United States)

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.

  3. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  4. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...... description of the data obtained. Second-order kinetics gives a better description of the rate of glycogen degradation. Formation and consumption of glycogen appears to be much faster than for PHB. (C) 2001 John Wiley & Sons, Inc....

  5. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Murat Atmaca

    2015-01-01

    Full Text Available Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly.

  6. Activating the Wnt/β-Catenin Pathway for the Treatment of Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3.

    Directory of Open Access Journals (Sweden)

    Jennifer M Atkinson

    Full Text Available It has previously been observed that a loss of β-catenin expression occurs with melanoma progression and that nuclear β-catenin levels are inversely proportional to cellular proliferation, suggesting that activation of the Wnt/β-catenin pathway may provide benefit for melanoma patients. In order to further probe this concept we tested LY2090314, a potent and selective small-molecule inhibitor with activity against GSK3α and GSK3β isoforms. In a panel of melanoma cell lines, nM concentrations of LY2090314 stimulated TCF/LEF TOPFlash reporter activity, stabilized β-catenin and elevated the expression of Axin2, a Wnt responsive gene and marker of pathway activation. Cytotoxicity assays revealed that melanoma cell lines are very sensitive to LY2090314 in vitro (IC50 ~10 nM after 72hr of treatment in contrast to other solid tumor cell lines (IC50 >10 uM as evidenced by caspase activation and PARP cleavage. Cell lines harboring mutant B-RAF or N-RAS were equally sensitive to LY2090314 as were those with acquired resistance to the BRAF inhibitor Vemurafenib. shRNA studies demonstrated that β-catenin stabilization is required for apoptosis following treatment with the GSK3 inhibitor since the sensitivity of melanoma cell lines to LY290314 could be overcome by β-catenin knockdown. We further demonstrate that in vivo, LY2090314 elevates Axin2 gene expression after a single dose and produces tumor growth delay in A375 melanoma xenografts with repeat dosing. The activity of LY2090314 in preclinical models suggests that the role of Wnt activators for the treatment of melanoma should be further explored.

  7. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  8. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    The influence of supranormal muscle glycogen levels on glycogen breakdown in contracting muscle was investigated. Rats either rested or swam for 3 h and subsequently had their isolated hindquarters perfused after 21 h with access to food. Muscle glycogen concentrations were measured before and af...... by mechanisms exerted within the muscle cells. Intramuscular lipolysis and net protein breakdown are unaffected. There seems to be no close linkage between needs and mobilization of fuel within the working muscle....

  9. Stone forming risk factors in patients with type Ia glycogen storage disease.

    Science.gov (United States)

    Scales, Charles D; Chandrashekar, Aravind S; Robinson, Marnie R; Cantor, David A; Sullivan, Jennifer; Haleblian, George E; Leitao, Victor A; Sur, Roger L; Borawski, Kristy M; Koeberl, Dwight; Kishnani, Priya S; Preminger, Glenn M

    2010-03-01

    Patients with type Ia glycogen storage disease have an increased recurrent nephrolithiasis rate. We identified stone forming risk factors in patients with type Ia glycogen storage disease vs those in stone formers without the disease. Patients with type Ia glycogen storage disease were prospectively enrolled from our metabolic clinic. Patient 24-hour urine parameters were compared to those in age and gender matched stone forming controls. We collected 24-hour urine samples from 13 patients with type Ia glycogen storage disease. Average +/- SD age was 27.0 +/- 13.0 years and 6 patients (46%) were male. Compared to age and gender matched hypocitraturic, stone forming controls patients had profound hypocitraturia (urinary citrate 70 vs 344 mg daily, p = 0.009). When comparing creatinine adjusted urinary values, patients had profound hypocitraturia (0.119 vs 0.291 mg/mg creatinine, p = 0.005) and higher oxalate (0.026 vs 0.021 mg/mg creatinine, p = 0.038) vs other stone formers. Patients with type Ia glycogen storage disease have profound hypocitraturia, as evidenced by 24-hour urine collections, even compared to other stone formers. This may be related to a recurrent nephrolithiasis rate greater than in the overall population. These findings may be used to support different treatment modalities, timing and/or doses to prevent urinary lithiasis in patients with type Ia glycogen storage disease. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Increasing nerve agent treatment efficacy by P-glycoprotein inhibition

    NARCIS (Netherlands)

    Joosen, M.J.A.; Vester, S.M.; Hamelink, J.; Klaassen, S.D.; Berg, R.M. van den

    2016-01-01

    One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp

  11. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  12. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  13. High liver glycogen in hereditary fructose intolerance

    Science.gov (United States)

    Cain, A. R. R.; Ryman, Brenda E.

    1971-01-01

    A case of hereditary fructose intolerance is reported in a girl aged 2 years at the time of her death. She had apparently progressed normally until the age of 14 months. At 19 months she was admitted to hospital with failure to thrive, hepatomegaly, and superficial infections. Investigations revealed hypoglycaemia, persistent acidosis, aminoaciduria, and a high liver glycogen level which suggested that she had glycogen storage disease. There was also some evidence of malabsorption. At necropsy the liver enzyme estimations showed that fructose 1-phosphate aldolase activity was absent and that fructose 1,6-diphosphate aldolase activity was reduced. Hereditary fructose intolerance and glycogen storage disease have been confused in the past on clinical grounds, but a high liver glycogen level has not previously been reported in hereditary fructose intolerance. PMID:5289293

  14. Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines

    Science.gov (United States)

    Carmean, Christopher M.; Bobe, Alexandria M.; Yu, Justin C.; Volden, Paul A.; Brady, Matthew J.

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4–12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  15. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    Science.gov (United States)

    Carmean, Christopher M; Bobe, Alexandria M; Yu, Justin C; Volden, Paul A; Brady, Matthew J

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4-12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.

  16. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    Directory of Open Access Journals (Sweden)

    Christopher M Carmean

    Full Text Available Brown adipose tissue (BAT generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT glycogen levels within 4-12 hours (hr of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT. Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.

  17. Liver cirrhosis in glycogen storage disease Ib.

    Science.gov (United States)

    Baertling, Fabian; Mayatepek, Ertan; Gerner, Patrick; Baba, Hideo A; Franzel, Julia; Schlune, Andrea; Meissner, Thomas

    2013-03-01

    Glycogen storage disease Ib is an inborn error of carbohydrate metabolism leading to impaired glycogenolysis and gluconeogenesis. Cardinal symptoms include fasting hypoglycemia, lactic acidosis and hepatomegaly as well as neutropenia. We report for the first time on the development of liver cirrhosis in a nine-year-old boy in the course of glycogen storage disease Ib and discuss possible underlying pathomechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.

    Science.gov (United States)

    Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2016-01-01

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Mouse model of glycogen storage disease type III.

    Science.gov (United States)

    Liu, Kai-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2014-04-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will

  20. The effect of free nitrous acid on the anabolic and catabolic processes of glycogen accumulating organisms.

    Science.gov (United States)

    Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2010-05-01

    Nitrite/Free Nitrous Acid (FNA) has previously been shown to inhibit aerobic and anoxic phosphate uptake by polyphosphate accumulating organisms (PAOs). The inhibitory effect of FNA on the aerobic metabolism of Glycogen Accumulating Organisms (GAOs) is investigated. A culture highly enriched (92+/-3%) in Candidatus Competibacter phosphatis (hereafter called Competibacter) was used. The experimental data strongly suggest that FNA likely directly inhibits the growth of Competibacter, with 50% inhibition occurring at 1.5 x 10(-3)mgN-HNO(2)/L (equivalent to approximately 6.3 mgN-NO(2)(-)/L at pH 7.0). The inhibition is well described by an exponential function. The organisms ceased to grow at an FNA concentration of 7.1 x 10(-3) mgN-HNO(2)/L. At this FNA level, glycogen production, another anabolic process performed by GAOs in parallel to growth, decreased by 40%, while the consumption of polyhydroxyalkanoates (PHAs), the intracellular carbon and energy sources for GAOs, decreased by approximately 50%. FNA likely inhibited either or both of the PHA oxidation and glycogen production processes, but to a much less extent in comparison to the inhibition on growth. The comparison of these results with those previously reported on PAOs suggest that FNA has much stronger inhibitory effects on the aerobic metabolism of PAOs than on GAOs, and may thus provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal (EBPR) systems. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Treatment with PTEN-Long protein inhibits hepatitis C virus replication.

    Science.gov (United States)

    Wu, Qi; Li, Zhubing; Liu, Qiang

    2017-11-01

    Hepatitis C virus (HCV) infection is a confirmed risk factor for hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) possesses tumor suppression function that is frequently defective in HCC tumors. PTEN-Long, a translation isoform of PTEN, functions in a cell non-autonomous manner. In this study, we demonstrated that intracellular overexpression of PTEN-Long inhibits HCV replication. More importantly, we showed that treatment with extracellular PTEN-Long protein inhibits HCV replication in a dose-dependent manner. Furthermore, we showed that PTEN-Long interacts with HCV core protein and this interaction is required for HCV replication inhibition by PTEN-Long. In summary, we demonstrated, for the first time, that PTEN-Long protein, an isoform of the canonical PTEN and in the form of extracellular protein treatment, inhibits HCV replication. Our study offers an opportunity for developing additional anti-HCV agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Glycogen Synthase Kinase-3β as a Putative Therapeutic Target for Bipolar Disorder.

    Science.gov (United States)

    Dandekar, Manoj P; Valvassori, Samira S; Dal-Pont, Gustavo Colombo; Quevedo, Joao

    2017-12-27

    Bipolar disorder (BD) is a debilitating mental ailment characterized by recurrent episodes of mania and depression. Primary mood-stabilizing drugs like lithium and valproate alleviate the hypomanic or mild to moderate manic episodes in patients with BD. One of the extensively studied underlying mechanisms for these pharmacological interventions is inhibition of intracellular signaling cascades associated with glycogen synthase kinase-3 beta (GSK-3β), a multi-functional serine-threonine kinase. To summarize the different mechanistic aspects associated with GSK-3β signaling involved in the pathophysiology of BD and highlights drug discovery approaches pursued for the development of GSK-3β inhibition with detailed strength, weakness, opportunity, and threat (SWOT) analysis. In this review, we endeavor to establish the correlation between neuronal GSK-3β inhibition and anti-manic response of different therapeutics used for the treatment of patients with BD. The gene depletion or pharmacological inhibition of GSK-3β reproduces some of the behavioral effects of lithium including reduction of depression- and manic-like behaviors in rodents, which attested the intracellular GSK-3β inhibition as one of the critical steps in mediating behavioral effect of mood-stabilizers. Furthermore, converging evidence supported the participation of GSK-3β in the regulation of various neurobehavioral functions governed by neurotransmitters dopamine and serotonin. Apart from its crucial involvement in the mechanism of action of mood stabilizers, GSK-3β signaling pathways have also received attention for their role in the effects of psychoactive therapies like antidepressants, antipsychotics, and neurotrophic factors. We anticipate that the GSK-3β could be a druggable target for several incurable neuropsychiatric disorders including BD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition.

    Science.gov (United States)

    Bone, Julia L; Ross, Megan L; Tomcik, Kristyen A; Jeacocke, Nikki A; Hopkins, Will G; Burke, Louise M

    2017-05-01

    Standardizing a dual x-ray absorptiometry (DXA) protocol is thought to provide a reliable measurement of body composition. We investigated the effects of manipulating muscle glycogen and creatine content independently and additively on DXA estimates of lean mass. Eighteen well-trained male cyclists undertook a parallel group application of creatine loading (n = 9) (20 g·d for 5 d loading; 3 g·d maintenance) or placebo (n = 9) with crossover application of glycogen loading (12 v 6 g·kg BM per day for 48 h) as part of a larger study involving a glycogen-depleting exercise protocol. Body composition, total body water, muscle glycogen and creatine content were assessed via DXA, bioelectrical impedance spectroscopy and standard biopsy techniques. Changes in the mean were assessed using the following effect-size scale: >0.2 small, >0.6, moderate, >1.2 large and compared with the threshold for the smallest worthwhile effect of the treatment. Glycogen loading, both with and without creatine loading, resulted in substantial increases in estimates of lean body mass (mean ± SD; 3.0% ± 0.7% and 2.0% ± 0.9%) and leg lean mass (3.1% ± 1.8% and 2.6% ± 1.0%) respectively. A substantial decrease in leg lean mass was observed after the glycogen depleting condition (-1.4% ± 1.6%). Total body water showed substantial increases after glycogen loading (2.3% ± 2.3%), creatine loading (1.4% ± 1.9%) and the combined treatment (2.3% ± 1.1%). Changes in muscle metabolites and water content alter DXA estimates of lean mass during periods in which minimal change in muscle protein mass is likely. This information needs to be considered in interpreting the results of DXA-derived estimates of body composition in athletes.

  4. Characterization of a canine model of glycogen storage disease type IIIa

    Directory of Open Access Journals (Sweden)

    Haiqing Yi

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR. The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT, aspartate transaminase (AST and alkaline phosphatase (ALP activities; serum creatine phosphokinase (CPK activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.

  5. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    Science.gov (United States)

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  6. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  7. No effect of glycogen level on glycogen metabolism during high intensity exercise

    DEFF Research Database (Denmark)

    Vandenberghe, Katleen; Hespel, P.; Eynde, Bart Vanden

    1995-01-01

    This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer......, either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1......, preexercise muscle glycogen concentrations were 364 +/- 23 and 568 +/- 35 mumol.g-1 d.w. in the N and CHR condition, respectively (P glycogen concentration in the M. quadriceps decreased to the same extent in both groups. Accordingly, the exercise-induced increases in muscle...

  8. Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1

    NARCIS (Netherlands)

    Visser, G.; Rake, J.P.; Labrune, P.; Leonard, J.V.; Moses, S.; Ullrich, K.; Wendel, U.; Groenier, K.H.; Smit, G.P.

    2002-01-01

    Patients with glycogen storage disease type 1b (GSD-1b) have neutropenia and neutrophil dysfunction that predispose to frequent infections and inflammatory bowel disease (IBD), for which granulocyte colony-stimulating factor (GCSF) is given. To investigate the use and the value of GCSF treatment in

  9. Neuronal glycogen synthesis contributes to physiological aging.

    Science.gov (United States)

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism.

    Science.gov (United States)

    Fong, N M; Jensen, T C; Shah, A S; Parekh, N N; Saltiel, A R; Brady, M J

    2000-11-10

    The activation of protein phosphastase-1 (PP1) by insulin plays a critical role in the regulation of glycogen metabolism. PTG is a PP1 glycogen-targeting protein, which also binds the PP1 substrates glycogen synthase, glycogen phosphorylase, and phosphorylase kinase (Printen, J. A., Brady, M. J., and Saltiel, A. R. (1997) Science 275, 1475-1478). Through a combination of deletion analysis and site-directed mutagenesis, the regions on PTG responsible for binding PP1 and its substrates have been delineated. Mutagenesis of Val-62 and Phe-64 in the highly conserved (K/R)VXF PP1-binding motif to alanine was sufficient to ablate PP1 binding to PTG. Phosphorylase kinase, glycogen synthase, and phosphorylase binding all mapped to the same C-terminal region of PTG. Mutagenesis of Asp-225 and Glu-228 to alanine completely blocked the interaction between PTG and these three enzymes, without affecting PP1 binding. Disruption of either PP1 or substrate binding to PTG blocked the stimulation of PP1 activity in vitro against phosphorylase, indicating that both binding sites may be important in PTG action. Transient overexpression of wild-type PTG in Chinese hamster ovary cells overexpressing the insulin receptor caused a 50-fold increase in glycogen levels. Expression of PTG mutants that do not bind PP1 had no effect on glycogen accumulation, indicating that PP1 targeting is essential for PTG function. Likewise, expression of the PTG mutants that do not bind PP1 substrates did not increase glycogen levels, indicating that PP1 targeting glycogen is not sufficient for the metabolic effects of PTG. These results cumulatively demonstrate that PTG serves as a molecular scaffold, allowing PP1 to recognize its substrates at the glycogen particle.

  11. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum-sensing sys......Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum...

  12. Essential role of Toll-like receptor 2 in macrophage activation by glycogen.

    Science.gov (United States)

    Kakutani, Ryo; Adachi, Yoshiyuki; Takata, Hiroki; Kuriki, Takashi; Ohno, Naohito

    2012-01-01

    We prepared enzymatically synthesized glycogen (ESG) with the same characteristics as natural glycogen and investigated whether the macrophage-stimulating activity of glycogen was related to Toll-like receptors (TLRs), which are important receptors for innate immunity. ESG induced no nuclear factor-kappa B (NF-κB) activity in TLR4/MD-2/CD14-expressed human embryonic kidney 293 (HEK293) reporter cells, whereas this polysaccharide did activate peritoneal exude cells (PECs) derived from TLR4-deficient mice at the same level as those from wild-type (WT) mice. Similarly, ESG did not activate HEK293 cells expressing TLR3, 5, 7, 8 or 9, suggesting that these TLRs were irrelevant to the activity of ESG. In contrast, ESG enhanced the NF-κB activity of TLR2-expressed HEK293 reporter cells in a concentration-dependent manner. Furthermore, the cell-stimulating activity of ESG was remarkably lower for PECs from TLR2-deficient mice compared with those from WT mice. The activity of ESG completely disappeared after treatment with a glycogen-degrading enzyme, indicating that the activity derived from ESG itself and not from contamination with canonical TLR2 ligands such as bacterial lipopeptides. Moreover, it was clarified by ELISA that ESG was directly bound to TLR2. Taken together, these results demonstrated that TLR2 directly recognizes glycogen and that the recognition activates immunocytes such as macrophages to enhance the production of nitric oxide and inflammatory cytokines. In addition, it was suggested that TLR2 could be involved in the glycogen activity in vivo. We propose that glycogen act as an activator to potentiate the host defense through TLR2 on the macrophage.

  13. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice.

    Science.gov (United States)

    Irimia, Jose M; Tagliabracci, Vincent S; Meyer, Catalina M; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2015-09-11

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Muscle Glycogen Remodeling and Glycogen Phosphate Metabolism following Exhaustive Exercise of Wild Type and Laforin Knockout Mice*

    Science.gov (United States)

    Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2015-01-01

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881

  15. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  16. Hypertension and renal toxicity during angiogenesis inhibition : Salt dependency and treatment options

    NARCIS (Netherlands)

    S. Lankhorst (Stephanie)

    2016-01-01

    markdownabstractAbstract Angiogenesis inhibition, by targeting VEGF or its receptors, has become an established treatment for various tumor types but is associated with adverse effects including hypertension, proteinuria and renal injury with activation of the endothelin-1 system. Sunitinib is

  17. Glycogen storage in tissue-engineered cartilage.

    Science.gov (United States)

    Suits, Jocelyne M T; Khan, Aasma A; Waldman, Stephen D

    2008-08-01

    Recent focus in cartilage tissue engineering has been to develop functional tissue that can survive after implantation. One such determinant is the ability of the engineered tissue to be able to sustain its metabolic activity post-implantation. In vivo, chondrocytes contain stores of intracellular glycogen to support metabolism and it is unknown whether these cells can store glycogen during tissue growth in vitro. Thus, the purpose of this study was to determine the appropriate nutrient conditions to elicit glycogen storage in tissue-engineered cartilage. Isolated bovine articular chondrocytes were seeded in scaffold-free, 3D culture and grown under different nutrient conditions (glucose concentrations and media volumes) for 4 weeks. Intracellular glycogen storage, glucose utilization and extracellular matrix (ECM) accumulation of the engineered tissues were then evaluated. Glucose concentration (5-10 mM) and media volume (1-4 ml) had no apparent effect on cartilaginous tissue formation. However, glucose consumption by the cells increased in proportion to the volume of medium provided. Lactate production was similarly affected but in direct proportion to the glucose consumed, indicating a change in glucose utilization. Similarly, under elevated medium volume, engineered tissues stained positive for intracellular glycogen, which was also confirmed biochemically (1 ml, 1 +/- 2; 2 ml, 13 +/- 4; 4 ml, 13 +/- 3 microg/construct). The storage of intracellular glycogen in engineered cartilage can be elicited by culturing the constructs in elevated volumes of medium (>or=1 ml medium/million cells), which might help to ensure appropriate metabolic function after implantation. (c) 2008 John Wiley & Sons, Ltd.

  18. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  19. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  20. Genetics Home Reference: glycogen storage disease type V

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type V Glycogen storage disease type V Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type V (also known as GSDV or McArdle ...

  1. Regulation of glucose and glycogen metabolism during and after exercise

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Richter, Erik

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport...... in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation)....

  2. Effect of diabetes on glycogen metabolism in rat retina.

    Science.gov (United States)

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

  3. Glabridin from Chinese herb licorice inhibits fatigue in mice | Shang ...

    African Journals Online (AJOL)

    Body mass, blood lactic acid (BLA), serum blood urea nitrogen (BUN), liver glycogen and muscle glycogen concentrations in mice were determined. Results showed that glabridin significantly inhibited fatigue, which extended the exhaustive exercise time of mice, effectively delayed the elevation of blood lactic acid and ...

  4. Glycogen storage disease type II (Pompe disease in children

    Directory of Open Access Journals (Sweden)

    A. N. Semyachkina

    2014-01-01

    Full Text Available The paper gives the data available in the literature, which reflect the manifestations, diagnosis, and current treatments of the rare (orphan inherited disease glycogen storage disease type II or Pomp disease in children, as well as its classification. The infant form is shown to be most severe, resulting in death from cardiovascular or pulmonary failure generally within the first year of a child’s life. Emphasis is laid on major difficulties in the differential and true diagnosis of this severe disease. Much attention is given to the new pathogenetic treatment — genetically engineered enzyme replacement drug Myozyme®. The authors describe their clinical case of a child with the juvenile form of glycogen storage disease type II (late-onset Pompe disease. Particular emphasis is laid on the clinical symptoms of the disease and its diagnostic methods, among which the morphological analysis of a muscle biopsy specimen by light and electron microscopies, and enzyme and DNA diagnoses are of most importance. The proband was found to have significant lysosomal glycogen accumulation in the muscle biopsy specimen, reduced lymphocyte acid α-1,4-glucosidase activity to 4,2 nM/mg/h (normal value, 13,0—53,6 nM/mg/h, described in the HGMD missense mutation database from 1000 G>A p.Gly334er of the GAA in homozygous state, which verified the diagnosis of Pompe disease. 

  5. Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles.

    Science.gov (United States)

    Lai, Y-C; Lin, F-C; Jensen, J

    2009-10-01

    The aim of this study was to investigate the effect of glycogen content on glycogen synthase (GS) activation and phosphorylation in the slow-twitch soleus muscles after contraction, during insulin stimulation and when these two stimuli were combined. Glycogen content was manipulated in vivo with 24 h fasting and fasting followed by 24 h refeeding. Soleus strips were electrically stimulated for 30 min in vitro, and GS activation and phosphorylation were investigated after an additional 30 min incubation with or without insulin. Fasting reduced glycogen content in soleus muscle by 40% and refeeding enhanced by 40%, compared to rats with free access to chow. Insulin-stimulated GS fractional activity was inversely correlated with glycogen content (R = -0.95, P glycogen synthesis was also inversely correlated with glycogen content (R = -0.70, P glycogen content; rate of glycogen synthesis after contraction was also similar. After contraction, insulin additively increased GS activation at all glycogen contents. Group means of GS fractional activity was inversely correlated with GS Ser(641) (R = -0.93, P Glycogen content regulates insulin- but not contraction-stimulated GS activation and glycogen synthesis in soleus muscles. Furthermore, phosphorylation of GS Ser(641) and Ser(645,649,653,657) seems to regulate GS activity in soleus.

  6. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K

    2017-01-01

    BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical and reco...

  7. Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions

    DEFF Research Database (Denmark)

    Boissy, P; Levin Andersen, Thomas; Lund, T

    2008-01-01

    Myeloma bone disease is due to bone degradation by osteoclasts, and absence of repair by bone forming osteoblasts. Recent observations suggest that the anti-myeloma drug bortezomib, a proteasome inhibitor, stimulates bone formation and may inhibit bone resorption. Here, we tested bortezomib...... on cultured osteoclasts in conditions mimicking the pulse treatment used in the clinic, thereby avoiding continuous proteasome inhibition and unselective toxicity. A 3h pulse with 25nM bortezomib followed by a 3-day culture in its absence markedly inhibited osteoclast activity as evaluated through bone...... cells drastically reduced their survival. We measured next the levels of two bone resorption markers in patients during the 3 days following five and seven therapeutic bortezomib administrations, respectively. These levels decreased significantly already 1-2 days after injection, and then increased...

  8. Isotrichid protozoa influence conversion of glucose to glycogen and other microbial products

    Science.gov (United States)

    The goal of this in vitro study was to determine the influence of isotrichid protozoa (IP) on the conversion of glucose (Glc) to glycogen (Glyc) and transformation of Glc into fermentation products. Treatments were ruminal inoculum mechanically processed to destroy IP (B+, verified microscopically) ...

  9. Reduced Protein Responses to Sugar Feeding May Be Due to Microbial Glycogen Production

    Science.gov (United States)

    The goal of this in vitro study was to determine the influence of Isotrich spp. protozoa on the conversion of glucose (Glc) to glycogen (Glyc). In a 2 x 2 factorial, treatments were 1) ruminal inoculum mechanically processed to destroy Isotrich spp. (M+, verified microscopically) or not mechanically...

  10. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck

    2003-01-01

    -hyperinsulinemic clamps. Analysis using phospho-specific antibodies revealed that insulin decreases phosphorylation of sites 3a + 3b in human muscle, and this was accompanied by activation of Akt and inhibition of glycogen synthase kinase-3alpha. In type 2 diabetic subjects these effects of insulin were fully intact...

  11. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  12. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs.

    Science.gov (United States)

    Ramnanan, Christopher J; Saraswathi, Viswanathan; Smith, Marta S; Donahue, E Patrick; Farmer, Ben; Farmer, Tiffany D; Neal, Doss; Williams, Philip E; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D; Edgerton, Dale S

    2011-09-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.

  13. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles.

    Science.gov (United States)

    Kolnes, Anders J; Birk, Jesper B; Eilertsen, Einar; Stuenæs, Jorid T; Wojtaszewski, Jørgen F P; Jensen, Jørgen

    2015-02-01

    Epinephrine increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown, and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated in condition with decreased GS activation. Saline or epinephrine (0.02 mg/100 g rat) was injected subcutaneously in Wistar rats (∼130 g) with low (24-h-fasted), normal (normal diet), and high glycogen content (fasted-refed), and epitrochlearis muscles were removed after 3 h and incubated ex vivo, eliminating epinephrine action. Epinephrine injection reduced glycogen content in epitrochlearis muscles with high (120.7 ± 17.8 vs. 204.6 ± 14.5 mmol/kg, P muscles with low glycogen (90.0 ± 5.0 vs. 102.8 ± 7.8 mmol/kg, P = 0.17). In saline-injected rats, GS phosphorylation at sites 2+2a, 3a+3b, and 1b was higher and GS activity lower in muscles with high compared with low glycogen. GS sites 2+2a and 3a+3b phosphorylation decreased and GS activity increased in muscles where epinephrine decreased glycogen content; these parameters were unchanged in epitrochlearis from fasted rats where epinephrine injection did not decrease glycogen content. Incubation with insulin decreased GS site 3a+3b phosphorylation independently of glycogen content. Insulin-stimulated glucose uptake was increased in muscles where epinephrine injection decreased glycogen content. In conclusion, epinephrine stimulates glycogenolysis in epitrochlearis muscles with normal and high, but not low, glycogen content. Epinephrine-stimulated glycogenolysis decreased GS phosphorylation and increased GS activity. These data for the first time document direct regulation of GS phosphorylation by glycogen content. Copyright © 2015 the American Physiological Society.

  14. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  15. Glycogen and its metabolism: some new developments and old themes

    Science.gov (United States)

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  16. Glycogen dynamics of crucian carp (Carassius carassius) in prolonged anoxia.

    Science.gov (United States)

    Vornanen, Matti; Haverinen, Jaakko

    2016-12-01

    Mobilization of glycogen stores was examined in the anoxic crucian carp (Carassius carassius Linnaeus). Winter-acclimatized fish were exposed to anoxia for 1, 3, or 6 weeks at 2 °C, and changes in the size of glycogen deposits were followed. After 1 week of anoxia, a major part of the glycogen stores was mobilized in liver (79.5 %) and heart (75.6 %), and large decreases occurred in gill (46.7 %) and muscle (45.1 %). Brain was an exception in that its glycogen content remained unchanged. The amount of glycogen degraded during the first anoxic week was sufficient for the anaerobic ethanol production for more than 6 weeks of anoxia. After 3 and 6 weeks of anoxia, there was little further degradation of glycogen in other tissues except the brain where the stores were reduced by 30.1 and 49.9 % after 3 and 6 weeks of anoxia, respectively. One week of normoxic recovery following the 6-week anoxia was associated with a complete replenishment of the brain glycogen and partial recovery of liver, heart, and gill glycogen stores. Notably, the resynthesis of glycogen occurred at the expense of the existing energy reserves of the body in fasting fish. These findings indicate that in crucian carp, glycogen stores are quickly mobilized after the onset of anoxia, with the exception of the brain whose glycogen stores may be saved for putative emergency situations.

  17. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis.

    Science.gov (United States)

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis.

  19. Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis.

    Directory of Open Access Journals (Sweden)

    Felix Grases

    Full Text Available To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis.The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM. The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL was evaluated using a flow system.The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments.Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis.

  20. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    Science.gov (United States)

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  1. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  2. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    Science.gov (United States)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    OpenAIRE

    G Sibi

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). L...

  4. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  5. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); p

  6. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, H.

    1996-01-01

    In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests......, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes...

  7. Difference in glycogen metabolism (glycogen synthesis and glycolysis) between normal and dysplastic/malignant oral epithelium.

    Science.gov (United States)

    Aizawa, Hitoshi; Yamada, Shin-Ichi; Xiao, Tiepeng; Shimane, Tetsu; Hayashi, Kiyonori; Qi, Fangfang; Tanaka, Hirokazu; Kurita, Hiroshi

    2017-11-01

    The purpose of this study was to investigate a difference in glycogen metabolism (glycogen synthesis and glycolysis) between the iodine stained (normal non-keartinized) and the unstained (dysplasctic/malignant) oral epithelium. Twenty-one frozen tissue samples of iodine-stained and unstained mucosal tissue were obtained from 21 OSCC patients. Serial frozen sections were cut and examined with the hematoxylin-eosin and periodic acid-Schiff methods and immunohistochemical (IHC) staining for Ki67, P53, molecules associated with glycogenesis (i.e., glycogen synthase (GS) and phospho-glycogen synthase (PGS)), and molecules associated with glycogenolysis (i.e., glycogen phosphorylase isoenzyme BB (GPBB) examine the glycogen metabolism in OSCC. Additionally, in vitro study, the expression levels of GS and GPBB in the cultured cells were analyzed by immunofluorescent staining, Western blot analysis, and the real-time quantitative polymerase chain reaction (PCR). There was no significant difference in GS and PGS immunoactivity between iodine stained and unstained area. On the other hand, significantly greater GPBB immunoreactivity was observed in the basal and parabasal layers of iodine-unstained epithelium, where higher positivity for p53 and Ki67 was also showed. Additionally, western blot analysis, immunofluorescent staining, and real-time quantitative PCR revealed that the oral squamous cancer cells exhibited greater expression of GPBB than normal epithelial cells. The results of this study showed that GPBB expression, which resulted in up-regulation of glycogenolysis, is enhanced in oral dysplastic/malignant epithelium compared with non-keartinized normal epithelium, in spite of the fact that glycogenesis continues in both of them. Premalignant and malignant epithelial cells consume greater quantities of energy due to their increased proliferation, and hence, exhaust their glycogen stores, which resulting in negative stain reaction with iodine solution. Copyright

  8. Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice.

    Science.gov (United States)

    Lavoie, Joëlle; Hébert, Marc; Beaulieu, Jean-Martin

    2013-09-15

    The mood stabiliser drug lithium has been reported to impact circadian rhythms in vertebrates. Among several putative therapeutic molecular targets, direct inhibition of glycogen synthase kinase-3 beta (GSK3β) by lithium has been proposed to underlie its effects on circadian physiology. Here we study the effect of GSK3β haploinsufficiency on the circadian locomotor activity in mice during a free-running period in comparison to wildtype littermates (WT). Mice were housed individually to record their circadian wheel running activity and were entrained to a 12h light/12h dark cycle for 14 days and then placed under constant darkness for 14 days to allow free-running. During the free-running phase, the circadian locomotor activity period of GSK3β(+/-) was significantly lengthened (23.83±0.05h) when compared to the WT mice (23.54±0.10h; p=0.0374). No significant difference in locomotor activity was observed. Knowing that GSK3β interacts with most of the core clock components, these data suggest that GSK3β acts as a critical intrinsic regulator of the circadian clock and plays an important role in regulating its period in response to lithium treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... treatment. Ten obese patients with NIDDM were studied before and after 8 weeks of treatment with a weight-maintaining diet in combination with the sulphonylurea gliclazide. Gliclazide treatment was associated with significant reductions in HbA1C (p=0.001) and fasting plasma glucose (p=0.005) as well...... metabolism (p=0.02) was demonstrated in teh gliclazide-treated patients when compared to pre-treatment values. In biopsies obtained from vastus lateralis muscle during insulin infusion, the half-maximal activation of glycogen synthase was achieved at a significantly lower concentration of the allosteric...

  10. Additivity versus repair inhibition in fractionated treatments combining drugs and X rays: a theoretical analysis

    International Nuclear Information System (INIS)

    Begg, A.C.

    1987-01-01

    Drugs which inhibit the repair of radiation damage could potentially be useful for enhancing the effects of radiotherapy. In pre-clinical combined modality studies, however, it is often difficult to state with certainty whether or not a drug has inhibited radiation damage repair. This paper shows that several commonly used parameters for assessing repair can give the wrong answer regarding the presence of drug-induced repair inhibition. These parameters are; the difference in radiation dose between 1 and n fractions to give the same effect, the fractional recovered dose per fraction interval, FR, and the related parameter FREC. A further parameter used for treatment comparisons is the enhancement ratio for the drug (D.E.R.; ratio of radiation doses, with and without drug, to cause a given effect). An increasing D.E.R. with increasing number of radiation fractions has been taken as an indication that the drug inhibited repair. The present report demonstrates that this, too, can be misleading. From an analysis based on a linear-quadratic survival curve for X rays, it is suggested that deriving and comparing alpha/beta ratios (ratio of the linea to quadratic coefficients) gives the best indication of drug-induced changes in survival curve shape which may reflect underlying changes in repair capacity

  11. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  12. Aggressive therapy improves cirrhosis in glycogen storage disease type IX.

    Science.gov (United States)

    Tsilianidis, Laurie A; Fiske, Laurie M; Siegel, Sara; Lumpkin, Chris; Hoyt, Kate; Wasserstein, Melissa; Weinstein, David A

    2013-06-01

    Glycogen storage disease type IX (GSD IX) is described as a benign condition that often does not require treatment. Most patients with the disease are thought to outgrow the childhood manifestations, which include hepatomegaly, poor growth, and ketosis with or without hypoglycemia. Long term complications including fibrosis and cirrhosis have seldom been reported in the most common subtype, GSD IXα. We present two cases of children with GSD IXα who had fibrosis at the time of diagnosis in addition to the commonly reported disease manifestations. Structured therapy with frequent doses of uncooked cornstarch and protein supplementation was initiated, and both children responded with improved growth velocity, increased energy, decreased hepatomegaly and improved well-being. Additionally, radiographic features of fibrosis improved. We propose that GSD IXα is not a benign condition. Even in patients with a less severe presentation, consideration of a structured treatment regimen to improve quality of life appears warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Evaluation of pre-treatments for inhibiting bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus

    2011-01-01

    This study compared several pre-treatment methods for inhibiting BrO3- formation during ozonation of tap water, from the DTU campus, including H2O2 addition (perozone), pH-depression, NH4+ and Cl2/NH4+ addition. At the same time, the inhibition of atrazine and carbamazepine removal was evaluated...... for each pre-treatment. The required delivered O3 dose to achieve 90% removal of atrazine in the tap water from the DTU-campus was 3.5 mg/L which produced 130-170 µg/L BrO3-. Perozone did not reduce the required O3 dose for contaminant removal, however it limited BrO3- formation below the drinking water...... limit of 10 μg/L. Depression of solution pH to 6.0, reduced BrO3- formation to half, but it was still well above the water limit. Pre-treatment with NH4+ also reduced BrO3- formation by approximately 50%, though it reduced atrazine degradation to 65%. Pre-treatment with Cl2/NH4+ reduced BrO3- formation...

  14. Treatment with Antibiotics that Interfere with Peptidoglycan Biosynthesis Inhibits Chloroplast Division in the Desmid Closterium

    Science.gov (United States)

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum–strigosum–littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death. PMID:22815801

  15. Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Shah AD

    2015-06-01

    Full Text Available Arti D Shah,1 Dolores Shoback,1,2 E Michael Lewiecki3,4 1Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA; 2Endocrine Research Unit, Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA, USA; 3University of New Mexico School of Medicine, Albuquerque, NM, USA; 4New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA Abstract: Osteoporosis and osteoporosis-related fractures are growing problems with the aging population and are associated with significant morbidity and mortality. At this time, other than parathyroid hormone analogs, all therapies for osteoporosis are antiresorptive. Therefore, researchers have focused efforts on development of more anabolic therapies. Understanding of the Wnt signaling pathway, which is critical for skeletal development, and the role of sclerostin in inhibition of Wnt signaling has led to the discovery of a novel therapeutic approach in the treatment of osteoporosis – sclerostin inhibition. In this review, we discuss the biology of Wnt signaling and sclerostin inhibition. We then discuss human disorders of decreased sclerostin function and animal models of sclerostin inhibition. Both have served to elucidate the effects of decreased sclerostin levels and function – increased bone mass and strength and fewer fractures. In addition, we review data from Phase I and II studies of the two humanized sclerostin monoclonal antibodies, romosozumab and blosozumab, both of which have had positive effects on bone mineral density. We conclude with a discussion of the ongoing Phase III studies of romosozumab. The available data support the potential for neutralizing sclerostin monoclonal antibodies to serve as anabolic agents in the treatment of osteoporosis. Keywords: osteoporosis, sclerostin, Wnt signaling, anabolic therapies, romosozumab 

  16. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    Directory of Open Access Journals (Sweden)

    G Sibi

    2015-01-01

    Full Text Available Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS production, cytokine production using P. acnes (Microbial Type Culture Collection 1951. Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5′- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31% and Chlorella protothecoides (58.9%. Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml. FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused

  17. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Science.gov (United States)

    Sibi, G

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  18. High glycogen levels in the hippocampus of patients with epilepsy

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Madsen, Flemming F; Secher, Niels H

    2006-01-01

    During intense cerebral activation approximately half of the glucose plus lactate taken up by the human brain is not oxidized and could replenish glycogen deposits, but the human brain glycogen concentration is unknown. In patients with temporal lobe epilepsy, undergoing curative surgery, brain...... biopsies were obtained from pathologic hippocampus (n=19) and from apparently 'normal' cortical grey and white matter. We determined the in vivo brain glycogen level and the activity of glycogen phosphorylase and synthase. Regional differences in glycogen concentration were examined similarly in healthy...... pigs (n=5). In the patients, the glycogen concentration in 'normal' grey and white matter was 5 to 6 mmol/L, but much higher in the hippocampus, 13.1+/-4.3 mmol/L (mean+/-s.d.; Pglycogen phosphorylase and synthase displayed the same pattern. In normal hippocampus from pigs...

  19. Qualitative and Quantitative Analyses of Glycogen in Human Milk.

    Science.gov (United States)

    Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi

    2017-02-22

    Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.

  20. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The structure of cardiac glycogen in healthy mice.

    Science.gov (United States)

    Besford, Quinn A; Sullivan, Mitchell A; Zheng, Ling; Gilbert, Robert G; Stapleton, David; Gray-Weale, Angus

    2012-12-01

    Transmission electron micrographs of glycogen extracted from healthy mouse hearts reveal aggregate structures around 133 nm in diameter. These structures are similar to, but on average somewhat smaller than, the α-particles of glycogen found in mammalian liver. Like the larger liver glycogens, these new particles in cardiac tissue appear to be aggregates of β-particles. Free β-particles are also present in liver, and are the only type of particle seen in skeletal muscle. They have diameters from 20 to 50 nm. We discuss the number distributions of glycogen particle diameters and the implications for the structure-function relationship of glycogens in these tissues. We point out the possible implications for the study of glycogen storage diseases, and of non-insulin dependent diabetes mellitus. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Role of VEGF Inhibition in the Treatment of Retinopathy of Prematurity.

    Science.gov (United States)

    Eldweik, Luai; Mantagos, Iason S

    2016-01-01

    Retinopathy of prematurity (ROP) is a potentially blinding disease characterized by retinal neovascularization, which eventually can lead to tractional retinal detachment. Improvements have been made regarding the management of retinopathy of prematurity (ROP) since it was described in the Cryotherapy for Retinopathy of Prematurity study. A more appropriate time for therapeutic intervention was defined by the Early Treatment for Retinopathy of Prematurity (ETROP) trial. Advances in screening strategies with the use of digital imaging systems are now available. All of this and the use of laser photocoagulation and vitreoretinal surgery have contributed to significant increases in favorable outcomes and decreases in child blindness secondary to ROP. Recently the use of vascular endothelial growth factor (VEGF) inhibitors has been introduced to the armamentarium for the treatment of ROP. The purpose of this review article is to evaluate the role of VEGF inhibition in the treatment of ROP.

  3. Balancing Potency of Platelet Inhibition with Bleeding Risk in the Early Treatment of Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Slattery, David E

    2009-08-01

    Full Text Available Objective: To review available evidence and examine issues surrounding the use of advanced antiplatelet therapy in an effort to provide a practical guide for emergency physicians caring for patients with acute coronary syndromes (ACS.Data Sources: American College of Cardiology/American Heart Association (ACC/AHA 2007 guidelines for the management of patients with unstable angina (UA and non-ST-segment elevation myocardial infarction (NSTEMI, AHA/ACC 2007 focused update for the management of patients with STEMI, selected clinical articles identified through the PubMed database (1965-February 2008, and manual searches for relevant articles identified from those retrieved.Study Selection: English-language controlled studies and randomized clinical trials that assessed the efficacy and safety of antiplatelet therapy in treating patients with all ACS manifestations.Data Extraction and Synthesis: Clinical data, including treatment regimens and patient demographics and outcomes, were extracted and critically analyzed from the selected studies and clinical trials. Pertinent data from relevant patient registries were also evaluated to assess current clinical practice.Conclusions: As platelet activation and aggregation are central to ACS pathology, antiplatelet agents are critical to early treatment. A widely accepted first-line treatment is aspirin, which acts to decrease platelet activation via inhibition of thromboxane A2 synthesis. Thienopyridines, which inhibit ADP-induced platelet activation, and glycoprotein (GP receptor antagonists, which bind to platelet GP IIb/IIIa receptors and hinder their role in platelet aggregation and thrombus formation, provide complementary mechanisms of platelet inhibition and are often employed in combination with aspirin. While the higher levels of platelet inhibition that accompany combination therapy improve protection against ischemic and peri-procedural events, the risk of bleeding is also increased. Thus, the

  4. Possible Role of the Glycogen Synthase Kinase-3 Signaling Pathway in Trimethyltin-Induced Hippocampal Neurodegeneration in Mice

    Science.gov (United States)

    Kim, Sung-Ho; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2013-01-01

    Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction. PMID:23940567

  5. Novel method for detection of glycogen in cells.

    Science.gov (United States)

    Skurat, Alexander V; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2017-05-01

    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Cytochemical localization of glycogen in Chlamydia trachomatis inclusions.

    OpenAIRE

    Chiappino, M L; Dawson, C; Schachter, J; Nichols, B A

    1995-01-01

    The origin and distribution of glycogen in inclusions of Chlamydia trachomatis were demonstrated with silver proteinate stain for electron microscopy. Glycogen particles were detected in all developmental stages of C. trachomatis, as well as free in the inclusions. Intrachlamydial glycogen was most common in elementary bodies but was also detected in intermediate forms and reticulate bodies (RBs). Abnormal divisions and breakdown of cytoplasmic membranes were common in RBs. Cytoplasmic conten...

  7. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  8. Inhibition of breast cancer cell proliferation in repeated and non-repeated treatment with zoledronic acid

    Directory of Open Access Journals (Sweden)

    Ibrahim Toni

    2012-11-01

    Full Text Available Abstract Background Zoledronic acid is used to treat bone metastases and has been shown to reduce skeletal-related events and exert antitumor activity. The present in vitro study investigates the mechanism of action of Zoledronic Acid on breast cancer cell lines with different hormonal and HER2 patterns. Furthermore, we investigated the efficacy of repeated versus non-repeated treatments. Methods The study was performed on 4 breast cancer cell lines (BRC-230, SkBr3, MCF-7 and MDA-MB-231. Non-repeated treatment (single exposure of 168 hrs’ duration with zoledronic acid was compared with repeated treatment (separate exposures, each of 48 hrs’ duration, for a total of 168 hrs at different dosages. A dose–response profile was generated using sulforhodamine B assay. Apoptosis was evaluated by TUNEL assay and biomolecular characteristics were analyzed by western blot. Results Zoledronic acid produced a dose-dependent inhibition of proliferation in all cell lines. Anti-proliferative activity was enhanced with the repeated treatment, proving to be statistically significant in the triple-negative lines. In these lines repeated treatment showed a cytocidal effect, with apoptotic cell death caused by caspase 3, 8 and 9 activation and decreased RAS and pMAPK expression. Apoptosis was not observed in estrogen receptor-positive line: p21 overexpression suggested a slowing down of cell cycle. A decrease in RAS and pMAPK expression was seen in HER2-overexpressing line after treatment. Conclusions The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Repeated treatment has a killing effect on triple-negative lines due to apoptosis activation. Further research is warranted especially in the treatment of triple-negative breast cancer.

  9. Drug induced exocytosis of glycogen in Pompe disease.

    Science.gov (United States)

    Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

    2016-10-28

    Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

  10. Extraction of glycogen on mild condition lacks AIG fraction.

    Science.gov (United States)

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  11. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  12. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    Science.gov (United States)

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2017-03-01

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.

  13. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  14. Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections.

    Science.gov (United States)

    Sobota, A E

    1984-05-01

    Cranberry juice has been widely used for the treatment and prevention of urinary tract infections and is reputed to give symptomatic relief from these infections. Attempts to account for the potential benefit derived from the juice have focused on urine acidification and bacteriostasis. In this investigation it is demonstrated that cranberry juice is a potent inhibitor of bacterial adherence. A total of 77 clinical isolates of Escherichia coli were tested. Cranberry juice inhibited adherence by 75 per cent or more in over 60 per cent of the clinical isolates. Cranberry cocktail was also given to mice in the place of their normal water supply for a period of 14 days. Urine collected from these mice inhibited adherence of E. coli to uroepithelial cells by approximately 80 per cent. Antiadherence activity could also be detected in human urine. Fifteen of 22 subjects showed significant antiadherence activity in the urine 1 to 3 hours after drinking 15 ounces of cranberry cocktail. It is concluded that the reported benefits derived from the use of cranberry juice may be related to its ability to inhibit bacterial adherence.

  15. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.

    Science.gov (United States)

    Gonzalez, Javier T; Fuchs, Cas J; Smith, Fiona E; Thelwall, Pete E; Taylor, Roy; Stevenson, Emma J; Trenell, Michael I; Cermak, Naomi M; van Loon, Luc J C

    2015-12-15

    The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836. Copyright © 2015 the American Physiological Society.

  16. Deficiency of a glycogen synthase-associated protein, Epm2aip1, causes decreased glycogen synthesis and hepatic insulin resistance.

    Science.gov (United States)

    Turnbull, Julie; Tiberia, Erica; Pereira, Sandra; Zhao, Xiaochu; Pencea, Nela; Wheeler, Anne L; Yu, Wen Qin; Ivovic, Alexander; Naranian, Taline; Israelian, Nyrie; Draginov, Arman; Piliguian, Mark; Frankland, Paul W; Wang, Peixiang; Ackerley, Cameron A; Giacca, Adria; Minassian, Berge A

    2013-11-29

    Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.

  17. Key role of glycogen storage in high K+-induced contraction of the smooth muscles of the bovine trachea.

    Science.gov (United States)

    Kaneda, Takeharu; Fujieda, Tomoe; Eto, Yuta; Nagai, Yuta; Sasaki, Noriyasu; Tajima, Tsuyoshi; Urakawa, Norimoto; Shimizu, Kazumasa

    2012-10-01

    To elucidate the role of glycogen in the contraction of tracheal smooth muscle, we investigated the changes in the glycogen contents of the bovine trachea during contractions induced by high K(+) and hypoxia (achieved by bubbling N(2) instead of O(2)), either in a glucose-free condition or in the presence of iodoacetic acid (IAA), an inhibitor of glycolysis. Hyperosmotic addition of 65 mM KCl (H-65 K(+)) induced a sustained contraction. A glucose-free condition did not affect H-65 K(+)-induced contraction. However, hypoxia slightly inhibited the contraction, and glucose-free PSS with hypoxia or IAA remarkably inhibited the H-65 K(+)-induced contraction. H-65 K(+) induced a sustained increase in reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity. Hypoxia alone slightly enhanced PNred fluorescence, and when combined with a glucose-free condition, it remarkably enhanced the H-65 K(+)-induced PNred fluorescence. IAA inhibited PNred fluorescence. In the presence of H-65 K(+), a glucose-free condition, hypoxia and the combination of glucose-free PSS and hypoxia decreased the glycogen contents. However, IAA had no effect on glycogen contents. Although hypoxia or glucose-free PSS did not affect PCr and ATP contents, the combination of hypoxia and glucose-free PSS or IAA induced a gradual decrease of PCr content. In conclusion, we suggest that endogenous glycogen was utilized to increase the activity of glycolysis for maintaining high K(+)-induced contraction of the bovine trachea in the glucose -free and/or hypoxic condition.

  18. THE EFFECT OF INSULIN AND CARBOHYDRATE SUPPLEMENTATION ON GLYCOGEN REPLENISHMENT AMONG DIFFERENT HINDLIMB MUSCLES IN RATS FOLLOWING PROLONGED SWIMMING

    Directory of Open Access Journals (Sweden)

    Mei-Chich Hsu

    2012-04-01

    Full Text Available In the present study we investigated the interactive effects of insulin and carbohydrate on glycogen replenishment in different rat hindlimb muscles. Forty male Sprague Dawley rats were assigned to 5 groups, including 1 sedentary control with carbohydrate supplement (2 g glucose · kg body wt-1, 2 sedentary rats with 16 hours recovery, carbohydrate and insulin (0.5 U · kg body wt-1, 3 swimming without recovery, 4 swimming with 16 hours recovery and carbohydrate supplement, and 5 swimming with 16 hours recovery, carbohydrate and insulin. The swimming protocol consisted of two 3 h swimming sections, which were separated by a 45 min rest. The insulin and carbohydrate were administered to the rats immediately after exercise. At the end of the experiment, the soleus (S, plantaris (P, quadriceps (Q and gastrocnemius (G were surgically excised to evaluate glycogen utilization and replenishment. We observed that glycogen utilization was significantly lower in G and Q than S and P during swimming (p <0.05, and S showed the greatest capacity of glycogen resynthesis after post-exercise recovery (p <0.05. In the sedentary state, the glycogen synthesis did not differ among hindlimb muscles during insulin and carbohydrate treatments. Interestingly, with insulin and carbohydrate, the glycogen resynthesis in S and P were significantly greater than in Q and G following post-exercise recovery (p <0.05. We therefore concluded that the soleus and plantaris are the primary working muscles during swimming, and the greatest glycogen replenishment capacity of the soleus during post-exercise recovery is likely due to its highest insulin sensitivity.

  19. Targeting the Cellular Signaling: BRAF Inhibition and Beyond for the Treatment of Metastatic Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Felipe Ades

    2012-01-01

    Full Text Available Although advances in cytotoxic treatments have been obtained in several neoplasias, in metastatic melanoma there was no drug able to significantly change the natural history of the disease in the last 30 years. In the last decade, translational research identified important mechanisms in malignant transformation, invasion, and progression. Signaling pathways can be abnormally activated by oncogenes. The identification of oncogenic mutated kinases implicated in this process provides an opportunity for new target therapies. The melanoma dependence on BRAF-mutated kinase allowed the development of inhibitors that produced major responses in clinical trials. This is the beginning of a novel class of drugs in metastatic melanoma; the identification of the transduction signaling networking and other “druggable” kinases is in active research. In this paper, we discuss the ongoing research on cellular signaling inhibition, resistance mechanisms, and strategies to overcome treatment failure.

  20. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  1. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis.

    Science.gov (United States)

    Masouris, Ilias; Klein, Matthias; Dyckhoff, Susanne; Angele, Barbara; Pfister, H W; Koedel, Uwe

    2017-11-02

    Pneumococcal meningitis remains a potentially lethal and debilitating disease, mainly due to brain damage from sustained inflammation. The release of danger-associated molecular patterns (DAMPs), like myeloid-related protein 14 (MRP14) and high mobility group box 1 protein (HMGB1), plays a major role in persistence of inflammation. In this study, we evaluated if paquinimod, an MRP14-inhibitor, and an anti-HMGB1 antibody can improve clinical outcome as adjunctive therapeutics in pneumococcal meningitis. We tested the adjuvant administration of paquinimod and the anti-HMGB1 antibody in our pneumococcal meningitis mouse model assessing clinical (clinical score, open-field-test, temperature) and pathophysiological parameters (intracranial pressure, white blood cell count in CSF, bleeding area) as well as bacterial titers in blood and brain 24 h after administration and 48 h after infection. Furthermore, we explored the interactions of these two agents with dexamethasone, the standard adjuvant treatment in pneumococcal meningitis (PM), and daptomycin, a non-bacteriolytic antibiotic preventing pathogen-associated molecular pattern (PAMP) release. Adjunctive inhibition of MRP14 or HMGB1 reduced mortality in mice with PM. This effect was lost when the two anti-DAMP agents were given simultaneously, possibly due to excessive immunosuppression. Combining anti-PAMP (daptomycin) and anti-DAMP treatments did not produce synergistic results; instead, the anti-DAMP treatment alone was sufficient and superior. The combination of anti-HMGB1 with dexamethasone did not diminish the effect of the former. DAMP inhibition possesses good potential as an adjuvant treatment approach in PM, as it improves clinical outcome and can be given together with the standard adjuvant dexamethasone without drug effect loss in experimental PM.

  2. Muscular glycogen storage diseases without increased glycogen content on histoplathological examination

    NARCIS (Netherlands)

    Hoeksma, M.; den Dunnen, W. F. A.; Niezen-Koning, K. E.; van Diggelen, O. P.; van Spronsen, F. J.

    Histopathological findings of muscle biopsies from five patients with two different muscular glycogen storage diseases (mGSD) were presented. From these investigations it emerged that the yield of histopathology in mGSD is low. In only one of five patients histopathological findings gave a clue

  3. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  4. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  5. A novel Sry-downstream cellular event which preserves the readily available energy source of glycogen in mouse sex differentiation.

    Science.gov (United States)

    Matoba, Shogo; Kanai, Yoshiakira; Kidokoro, Tomohide; Kanai-Azuma, Masami; Kawakami, Hayato; Hayashi, Yoshihiro; Kurohmaru, Masamichi

    2005-04-01

    Sry is transiently activated in pre-Sertoli cells of the gonadal ridge to initiate testis differentiation in mice. In pre-Sertoli cells, however, the cellular events induced immediately after the onset of Sry expression remain largely unknown. Here we show that testis-specific glycogen accumulation in pre-Sertoli cells is one of the earliest cellular events downstream of Sry action. In developing XY gonads, glycogen accumulation starts to occur in pre-Sertoli cells from around 11.15 dpc (tail somite 14 stage) in a center-to-pole pattern similar to the initial Sry expression profile. Glycogen accumulation was also found in XX male gonads of Sry-transgenic embryos, but not in XX female gonads of wildtype embryos at any developmental stage. In vitro analyses using various culture conditions suggest that testis-specific glycogen deposition is a tissue-autonomous event that can be induced even in serum-free conditions and in a culture of gonadal explants without adjacent mesonephros. Moreover, glycogen accumulation in pre-Sertoli cells was significantly inhibited in vitro by the PI3K inhibitor LY294002, but not by the MEK inhibitor PD98059. Active phospho-AKT (PI3K effector) showed a high degree of accumulation in gonadal somatic cells of genital ridges in a testis-specific manner, both in vitro and in vivo. Therefore, these findings suggest that immediately after the onset of Sry expression, activation of the PI3K-AKT pathway promotes testis-specific glycogen storage in pre-Sertoli cells. To the best of our knowledge, this is a novel Sry-downstream cellular event which preserves this readily available energy source in Sertoli cells for testis-specific morphogenesis and hormone production.

  6. Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia.

    Science.gov (United States)

    Hijmans, Brenda S; Boss, Andreas; van Dijk, Theo H; Soty, Maud; Wolters, Henk; Mutel, Elodie; Groen, Albert K; Derks, Terry G J; Mithieux, Gilles; Heerschap, Arend; Reijngoud, Dirk-Jan; Rajas, Fabienne; Oosterveer, Maaike H

    2017-12-01

    It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc -/- mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc -/- mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc -/- mice. It also showed increased glycogen phosphorylase flux in L-G6pc -/- mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc -/- mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology

  7. Molecular analysis of glycogen storage disease type Ia in Iranian ...

    Indian Academy of Sciences (India)

    [Mahmoud S. K., Khorrami A., Rafeey M., Ghergherehchi R. and Sima M. D. 2017 Molecular analysis of glycogen storage disease type Ia in Iranian Azeri ... G6PC gene; Azeri Turkish; glycogen storage disease type Ia; novel mutation; Azeri Turkish sequencing. ... Approximately 5 ml of intravenous blood samples were col-.

  8. RENAL COMPLICATIONS IN GLYCOGEN-STORAGE-DISEASE TYPE-I

    NARCIS (Netherlands)

    REITSMABIERENS, WCC

    1993-01-01

    Deficiency of the enzyme glucose-6-phosphatase is the biochemical defect in glycogen storage disease type I (GSD I). Normally this enzyme is present in the liver, intestine and kidneys. The lack of the enzyme in the kidney makes it obvious that glycogen storage will not be restricted to the liver

  9. Examination of liver and muscle glycogen and blood glucose levels ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... consist 1% of the total body weight. This source is sufficient to provide the energy need for a .... Atlantic salmon consists 0.5 to 9.5% of the liver weight. Ali and Jauncey (2005) stated that liver glycogen ..... Plasma glucose and liver glycogen of. African catfish (Clarias gariepinus) exposed to petrol. J. Fish. Int.

  10. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  11. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  13. Structural basis for the recruitment of glycogen synthase by glycogenin.

    Science.gov (United States)

    Zeqiraj, Elton; Tang, Xiaojing; Hunter, Roger W; García-Rocha, Mar; Judd, Andrew; Deak, Maria; von Wilamowitz-Moellendorff, Alexander; Kurinov, Igor; Guinovart, Joan J; Tyers, Mike; Sakamoto, Kei; Sicheri, Frank

    2014-07-15

    Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS-GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism.

  14. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    -adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...

  15. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...

  16. Hepatocellular carcinoma in glycogen storage disease type IV

    OpenAIRE

    de Moor, R A; Schweizer, J; van Hoek, B; Wasser, M; Vink, R; Maaswinkel-Mooy, P

    2000-01-01

    A 13 year old patient with juvenile type IV glycogen storage disease died of the complications of hepatocellular carcinoma. To our knowledge this is the first reported case of hepatocellular carcinoma in association with type IV glycogen storage disease.



  17. Genetics Home Reference: glycogen storage disease type IX

    Science.gov (United States)

    ... by the inability to break down a complex sugar called glycogen. The different forms of the condition can affect glycogen breakdown ... main source of cellular energy is a simple sugar called glucose. Glucose is stored in ... the effects of gene mutations on the respective protein subunits ...

  18. Angiotensin-converting Enzyme Inhibition Improves the Effectiveness of Transcutaneous Carbon Dioxide Treatment.

    Science.gov (United States)

    Nemeth, Balazs; Kiss, Istvan; Jencsik, Timea; Peter, Ivan; Kreska, Zita; Koszegi, Tamas; Miseta, Attila; Kustan, Peter; Boncz, Imre; Laczo, Andrea; Ajtay, Zeno

    2017-01-01

    To study the effect of carbon dioxide (CO 2 ) therapy on the nitric oxide (NO) pathway by monitoring plasma asymmetric dimethylarginine (ADMA) concentrations. Forty-seven hypertensive patients who underwent transcutaneous CO 2 therapy were enrolled. Thirty healthy individuals were recruited for the control group. Blood samples were taken one hour before, as well as one hour, 24 hours and 3 weeks after the first CO 2 treatment. Controls did not undergo CO 2 treatment. Plasma ADMA levels were measured by ELISA. ADMA levels decreased significantly one hour after the first CO2 treatment compared to the baseline concentrations (p=0.003). Significantly greater reduction was found among patients in whom angiotensin converting enzyme inhibitors (ACEIs) were administered (p=0.019). The short- and long-term decrease of ADMA levels suggests that CO 2 is not only a vasodilator, but also has a beneficial effect on the NO pathway. ACE inhibition seems to enhance the effect of CO 2 treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Directory of Open Access Journals (Sweden)

    Giallongo Cesarina

    2013-02-01

    Full Text Available Abstract Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM, in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.

  20. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  1. An intermittent exhaustion of the pool of glycogen in the human organism as a simple universal health promoting mechanism.

    Science.gov (United States)

    Cherkas, Andriy; Golota, Sergii

    2014-03-01

    Glycogen storage in human organism is providing reserve source of glucose which is critical for normal functioning of the nervous system during periods between meals and is also important for many other tissues. Overwhelming excessive consumption of carbohydrates and decreasing physical activity among the world population lead to dramatic increase in incidence and mortality related to cardiovascular diseases, metabolic syndrome and diabetes mellitus type 2. There is an observation that many interventions with proved clinical efficiency like physical activity, intermittent fasting, caloric restriction and some pharmacological treatments have in common the ability to decrease content of glycogen in the liver and skeletal muscles. This effect leads to increased ability of these organs to uptake the next dose of glucose and store it in the form of glycogen. Moreover these interventions lead to significant life span extension, provide better body fitness and prevent development of multiple age-related diseases. In contrast excessive glucose load and saturation of tissues with glycogen provide a metabolic shift toward synthesis of fatty acids by liver. In advanced stages decreased glucose tolerance, insulin resistance, hyperinsulinemia, fatty liver disease, impairment of liver function and derangements of cholesterol metabolism are observed. It is suggested that noninvasive measurement of glycogen content in tissues could serve as important diagnostic and follow-up parameter for clinical practice and healthy lifestyle in wide population groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment

    Directory of Open Access Journals (Sweden)

    Radosław Świercz

    2013-08-01

    Full Text Available Background: Organophosphates are cholinesterase (ChE inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP poisoning symptomatology. In rodents, corticosterone (CORT is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentraion (the CORT response and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET [2-methyl-1,2-di(pyridin-3-ylpropan-1-one] blocks CORT synthesis by inhibiting steoid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP [2-chloro-1-(2,4-dichlorophenyl ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. Material and Methods: The purose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. Conclusion: The following was observed in the MET-treated rats: i no rise in plasma CORT concentration after the CVP administration, ii a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  3. Addition of Everolimus Post VEGFR Inhibition Treatment Failure in Advanced Sarcoma Patients Who Previously Benefited from VEGFR Inhibition: A Case Series

    OpenAIRE

    ElNaggar, Adam C.; Hays, John L.; Chen, James L.

    2016-01-01

    Background Patients with metastatic sarcoma who progress on vascular endothelial growth factor receptor inhibitors (VEGFRi) have limited treatment options. Upregulation of the mTOR pathway has been demonstrated to be a means of resistance to targeted VEGFRi in metastatic sarcoma. Patients and methods Retrospective cohort study to evaluate the clinical benefit at four months of combining mTOR inhibition (mTORi) via everolimus with VEGFRi in patients who have derived benefit from single-agent V...

  4. Glycogen-gold nanohybrid escalates the potency of silymarin.

    Science.gov (United States)

    Kandimalla, Raghuram; Dash, Suvakanta; Bhowal, Ashim Chandra; Kalita, Sanjeeb; Talukdar, Narayan Chandra; Kundu, Sarathi; Kotoky, Jibon

    2017-01-01

    In this study, a glycogen-gold nanohybrid was fabricated to enhance the potency of a promising hepatoprotective agent silymarin (Sly) by improving its solubility and gut permeation. By utilizing a facile green chemistry approach, biogenic gold nanoparticles were synthesized from Annona reticulata leaf phytoconstituents in combination with Sly (SGNPs). Further, the SGNPs were aggregated in glycogen biopolymer to yield the therapeutic nanohybrids (GSGNPs). Transmission electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis confirmed the successful formation and conjugation of both SGNPs and GSGNPs. The fabricated nanohybrids showed significant protection against CCl 4 -induced hepatic injury in Wistar rats and maintained natural antioxidant (superoxide dismutase and catalase) levels. Animals treated with GSGNPs (10 mg/kg) and SGNPs (20 mg/kg) retained usual hepatic functions with routine levels of hepatobiliary enzymes (aspartate transferase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase) and inflammatory markers (interleukin-1β and tumor necrosis factor-α) with minimal lipid peroxidation, whereas those treated with 100 mg/kg of Sly showed the similar effect. These results were also supported by histopathology of the livers where pronounced hepatoprotection with normal hepatic physiology and negligible inflammatory infiltrate were observed. Significant higher plasma C max supported the enhanced bioavailability of Sly upon GSGNPs treatment compared to SGNPs and free Sly. Graphite furnace atomic absorption spectrophotometry analysis also substantiated the efficient delivery of GSGNPs over SGNPs. The fabricated therapeutic nanohybrids were also found to be biocompatible toward human erythrocytes and L929 mouse fibroblast cells. Overall, due to increased solubility, bioavailability and profuse gut absorption; GSGNPs demonstrated tenfold enhanced potency compared to free Sly.

  5. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Nancy Martínez-Montiel

    2016-01-01

    Full Text Available In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.

  6. Inhibition of Daphnia magna's occurrence in drinking water treatment process by controlling its phototactic behavior.

    Science.gov (United States)

    Lin, Tao; Tan, Yiwen; Chen, Wei

    2018-02-01

    Cladocera zooplankton as carriers of bacteria result in biological risk due to their occurrence in drinking water treatment systems. In this paper, bench-scale experiments were performed to investigate the inhibition effect on Daphnia magna (D. magna) by controlling its phototactic behavior. The results showed that UVA had a negative effect on the phototaxis of D. magna, indicating an active movement away from light source, while blue light was positive in inducing phototactic behavior. The water quality could influence the phototactic behavior of D. magna. When the turbidity value was higher than 10 NTU or total organic carbon (TOC) concentration was beyond 4 mg/L, the phototaxis of D. magna to UVA (25 μw/cm 2 intensity) or blue light (1,000 Lux intensity) was significantly weakened. It was difficult for D. magna to offset the effect of water flow by its phototactic movement when the flow rate was higher than 10 mm/s. According to the above results, with suitable process parameters in full-scale experiments, the occurrence of D. magna in the effluent of sedimentation tank and activated carbon filter was obviously inhibited by the UVA irradiation and blue light induction, respectively.

  7. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  8. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  9. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  10. Inhibition of the nitrification process in municipal wastewater treatment plants by industrial discharges

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Winther-Nielsen, M.; Jorgensen, L.

    1994-01-01

    to nitrification was initiated. Since the number of substances potentially inhibitory to nitrification is very high, the investigations used direct testing of inhibitory effects on nitrification as a tool for the mapping operations. The overall purpose of the investigation was to determine the types of sources......More than three years of pilot-plant operation has documented that inhibition of nitrification was found to influence the dimensioning of the largest Danish wastewater treatment plant, which serves a major part of Copenhagen. Hence, a program for investigating the sources of substances inhibitory...... of inhibitory substances and to suggest a program for source control to be implemented by the individual municipalities in the catchment area. This paper describes the strategy for sampling and the results of the first two years of activity. Major conclusions have been that the most important sources...

  11. MTP inhibition as a treatment for dyslipidaemias: time to deliver or empty promises?

    Science.gov (United States)

    Burnett, John R; Watts, Gerald F

    2007-02-01

    The development of cholesterol-lowering drugs, including a statins, bile acid sequestrants and cholesterol absorption inhibitors has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined lipid targets. Combination therapy with drugs that have different and complementary mechanisms of action is often needed to achieve these goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to, or intolerant of, conventional pharmacotherapy and remain at high-risk of atherosclerotic cardiovascular disease, so that alternative approaches are needed. New agents, including inhibitors of microsomal triglyceride transfer protein (MTP), may play a future role, either alone or in combination, in the treatment of hyperlipidaemias. This review focuses on novel approaches to treat dyslipidaemias via the inhibition of MTP. Patients most suitable for use of MTP inhibitors include those with hepatic hypersecretion of apoB, including the metabolic syndrome, Type 2 diabetes mellitus and familial combined hyperlipidaemia, as well as homozygous and heterozygous familial hypercholesterolaemia. However, certain safety issues with these agents need resolving, particularly fatty liver disease.

  12. The role of rank-ligand inhibition in the treatment of postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    M. Varenna

    2011-06-01

    Full Text Available Osteoporosis is a skeletal disease affecting millions of people worldwide in which a decreased bone mass and a microarchitectural deterioration compromise bone strength leading to bone fragility and increased susceptibility to fracture. Bone turnover increases at menopause, with osteoclast-mediated bone resorption exceeding bone formation. Recent discoveries in bone biology have demonstrated that RANKL, a cytokine member of the tumor necrosis factor superfamily, is an essential mediator of osteoclast formation, function and survival. Denosumab is a fully human monoclonal antibody with a high affinity and specificity for human RANKL. By binding to its target, denosumab prevents the interaction of RANKL with its receptor RANK on osteoclasts and their precursors and inhibits osteoclast-mediated bone resorption. Administered as a subcutaneous injection every six months, denosumab has been shown to decrease bone turnover and to increase bone mineral density in postmenopausal women with low bone mass and osteoporosis. In these patients denosumab significantly reduced the risk of vertebral fractures, hip fractures and nonvertebral fractures. In all clinical trials published to date, denosumab was well tolerated with an incidence of adverse events, including infections and malignancy, generally similar to subjects receiving placebo or alendronate. The denosumab therapeutic regimen consisting in a subcutaneous injection every 6 months may increase patient compliance and persistence with a further benefit from treatment. By providing a new molecular target for osteoporosis treatment, denosumab is a promising drug for the treatment of postmenopausal osteoporosis and the prevention of fragility fractures.

  13. Low birth weight and zygosity status is associated with defective muscle glycogen and glycogen synthase regulation in elderly twins

    DEFF Research Database (Denmark)

    Poulsen, Pernille; Wojtaszewski, Jørgen; Richter, Erik

    2007-01-01

    OBJECTIVE: An adverse intrauterine environment indicated by both low birth weight and monozygosity is associated with an age- or time-dependent reduction in glucose disposal and nonoxidative glucose metabolism in twins, suggesting impaired regulation of muscle glycogen synthesis. RESEARCH DESIGN...... AND METHODS: We measured the activities of glycogen synthase (GS), GS kinase (GSK)3 alpha, GS phosphorylation, and glycogen levels in muscle biopsies obtained from 184 young and elderly twins before and after a euglycemic-hyperinsulinemic clamp. RESULTS: Elderly monozygotic twins had significantly lower...... fractional GS activity amidst higher glycogen and GS protein levels compared with dizygotic twins. In addition, we demonstrated strong nongenetic associations between birth weight and defect muscle glycogen metabolism in elderly--but not in younger--twins. Thus, for every 100 g increase in birth weight...

  14. Inhibition of caries in vital teeth by CO2 laser treatment

    Science.gov (United States)

    Rechmann, Peter; Fried, Daniel; Le, Charles Q.; Nelson, Gerald; Rapozo-Hilo, Marcia; Rechmann, Beate M. T.; Featherstone, John D. B.

    2008-02-01

    In multiple well-controlled laboratory studies enhancing caries resistance of enamel has been successfully reported using short-pulsed 9.6 µm CO2 laser irradiation. The aim of this study was to prove in a short term clinical pilot trial that the use of the CO2 laser will significantly inhibit the formation of carious lesions around orthodontic brackets in vivo in comparison to a non-irradiated control area. Twelve subjects scheduled for extraction of premolars for orthodontic treatment reasons with an average age of 14.6 years were recruited for the 4-week study. Orthodontic brackets were placed on those premolars with a conventional composite resin (Transbond XT, 3M Unitek, REF 712-035) and a defined area next to the bracket was irradiated with a CO2 laser, Pulse System, Inc (PSI) (Model #LPS-500, Los Alamos, New Mexico), wavelength 9.6 μm, pulse duration 20 μs, pulse repetition rate 20 Hz, beam diameter 1,100 μm, average fluence 4.31 +/- 0.11 J/cm2, 20 laser pulses per spot. Premolars were extracted after four weeks for a quantitative assessment of demineralization by cross sectional microhardness testing. The relative mineral loss ΔZ (vol% x µm) for the laser treated enamel was 402 +/- 85 (SE) while the control area showed a significantly higher mineral loss (mean ΔZ 738 +/- 131; P=0.04, unpaired t-test). The laser treatment produced a 46% demineralization inhibition around the orthodontic brackets in comparison to the non-laser treated areas. This study showed, for the first time that a pulsed 9.6 µm CO2 laser works for the prevention of dental caries in the enamel in vital teeth in human mouths.

  15. New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase.

    Science.gov (United States)

    Kun, Sándor; Bokor, Éva; Varga, Gergely; Szőcs, Béla; Páhi, András; Czifrák, Katalin; Tóth, Marietta; Juhász, László; Docsa, Tibor; Gergely, Pál; Somsák, László

    2014-04-09

    O-Perbenzoylated 5-(β-D-glucopyranosyl)tetrazole was reacted with N-benzyl carboximidoyl chlorides to give the corresponding 4-benzyl-3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles. Removal of the O-benzoyl and N-benzyl protecting groups by base catalysed transesterification and catalytic hydrogenation, respectively, furnished a series of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles with aliphatic, mono- and bicyclic aromatic, and heterocyclic substituents in the 5-position. Enzyme kinetic studies revealed these compounds to inhibit rabbit muscle glycogen phosphorylase b: best inhibitors were the 5-(4-aminophenyl)- (Ki 0.67 μM) and the 5-(2-naphthyl)-substituted (Ki 0.41 μM) derivatives. This study uncovered the C-glucopyranosyl-1,2,4-triazoles as a novel skeleton for nanomolar inhibition of glycogen phosphorylase. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis.

    Directory of Open Access Journals (Sweden)

    Sang-Ho Yoo

    Full Text Available Synechocystis sp. PCC6803 belongs to cyanobacteria which carry out photosynthesis and has recently become of interest due to the evolutionary link between bacteria and plant species. Similar to other bacteria, the primary carbohydrate storage source of Synechocystis sp. PCC6803 is glycogen. While most bacteria are not known to have any isoforms of glycogen synthase, analysis of the genomic DNA sequence of Synechocystis sp. PCC6803 predicts that this strain encodes two isoforms of glycogen synthase (GS for synthesizing glycogen structure. To examine the functions of the putative GS genes, each gene (sll1393 or sll0945 was disrupted by double cross-over homologous recombination. Zymogram analysis of the two GS disruption mutants allowed the identification of a protein band corresponding to each GS isoform. Results showed that two GS isoforms (GSI and GSII are present in Synechocystis sp. PCC6803, and both are involved in glycogen biosynthesis with different elongation properties: GSI is processive and GSII is distributive. Total GS activities in the mutant strains were not affected and were compensated by the remaining isoform. Analysis of the branch-structure of glycogen revealed that the sll1393- mutant (GSI- produced glycogen containing more intermediate-length chains (DP 8-18 at the expense of shorter and longer chains compared with the wild-type strain. The sll0945- mutant (GSII- produced glycogen similar to the wild-type, with only a slightly higher proportion of short chains (DP 4-11. The current study suggests that GS isoforms in Synechocystis sp. PCC6803 have different elongation specificities in the biosynthesis of glycogen, combined with ADP-glucose pyrophosphorylase and glycogen branching enzyme.

  18. Field evaluation of corrosion inhibitors for concrete : interim report 2, evaluation of installation and initial condition of bridge repairs done with corrosion-inhibiting admixtures and topical treatments.

    Science.gov (United States)

    1999-06-01

    Four bridge decks were overlayed and patched and one bridge pier was patched using concrete with and without corrosion inhibiting admixtures. Some concrete surfaces received topically applied corrosion-inhibiting treatments prior to placement of the ...

  19. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated ...

  20. Glycogen Storage Disease Type Ia: Linkage of Glucose, Glycogen, Lactic Acid, Triglyceride, and Uric Acid Metabolism

    Science.gov (United States)

    Sever, Sakine; Weinstein, David A.; Wolfsdorf, Joseph I.; Gedik, Reyhan; Schaefer, Ernst J.

    2013-01-01

    Case Summary A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides > 5,000 mg/dl. The diagnosis of type 1A glycogen storage disease (GSD) was made by liver biopsy that showed increased glycogen and absent glucose-6-phosphatase enzyme activity. She was treated with dextrose feeding, which was replaced by frequent cornstarch feeding, with improvement of her metabolic parameters. At age 18 years she had marked hypertriglyceridemia (3,860 mg/dl) and eruptive xanthomas, and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels > 75 mg/dl and lactate levels 75 mg/dl is critical in the management of this disease. PMID:23312056

  1. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie

    2014-11-16

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named “glycogenetic” hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  2. Protein-bound glycogen is linked to tyrosine residues.

    OpenAIRE

    Aon, M A; Curtino, J A

    1985-01-01

    Tyrosine-glycogen obtained from retina proteoglycogen by exhaustive proteolytic digestion was radiolabelled with 125I. The 125I-labelled tyrosine-glycogen was degraded by amylolytic digestion to a very small radioactive product, which was identified as iodotyrosine by h.p.l.c. The amylolytic mixture used released glucose and maltose that were alpha-linked to the phenolic hydroxy group of p-nitrophenol. No free iodotyrosine was found before or after the intact [125I]iodotyrosine-glycogen was s...

  3. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....

  4. Inhibition of renal glucose reabsorption as a novel treatment for diabetes patients

    Directory of Open Access Journals (Sweden)

    Eugenio Cersosimo

    2014-03-01

    Full Text Available The importance of the kidney in glucose homeostasis has been recognized for many years. Recent observations indicating a greater role of renal glucose metabolism in various physiologic and pathologic conditions have rekindled the interest in renal glucose handling as a potential target for the treatment of diabetes. The enormous capacity of the proximal tubular cells to reabsorb the filtered glucose load entirely, utilizing the sodium-glucose co-transporter system (primarily SGLT-2, became the focus of attention. Original studies conducted in experimental animals with the nonspecific SGLT inhibitor phlorizin showed that hyperglycemia after pancreatectomy decreased as a result of forced glycosuria. Subsequently, several compounds with more selective SGLT-2 inhibition properties (“second-generation” were developed. Some agents made it into pre-clinical and clinical trials and a few have already been approved for commercial use in the treatment of type 2 diabetes. In general, a 6-month period of therapy with SGLT-2 inhibitors is followed by a mean urinary glucose excretion rate of ~80 g/day accompanied by a decline in fasting and postprandial glucose with average decreases in HgA1C ~1.0%. Concomitant body weight loss and a mild but consistent drop in blood pressure also have been reported. In contrast, transient polyuria, thirst with dehydration and occasional hypotension have been described early in the treatment. In addition, a significant increase in the occurrence of uro-genital infections, particularly in women has been documented with the use of SGLT-2 inhibitors. Conclusion: Although long-term cardiovascular, renal and bone/mineral effects are unknown SGLT-2 inhibitors, if used with caution and in the proper patient provide a unique insulin-independent therapeutic option in the management of obese type 2 diabetes patients.

  5. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. © 2016 Authors; published by Portland Press Limited.

  6. Deleterious effects of neuronal accumulation of glycogen in flies and mice

    OpenAIRE

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-01-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form...

  7. Pre- and post-treatment effect of physostigmine on soman-inhibited human erythrocyte and muscle acetylcholinesterase in vitro

    International Nuclear Information System (INIS)

    Herkert, N.M.; Schulz, S.; Wille, T.; Thiermann, H.; Hatz, R.A.; Worek, F.

    2011-01-01

    Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before or after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.

  8. Inhibition of replicon initiation and DNA elongation in Chinese hamster ovary cells by treatment at 45.5 degrees C

    International Nuclear Information System (INIS)

    Wong, R.S.; Dewey, W.C.

    1982-01-01

    Heat treatment of Chinese hamster ovary cells at 45.5 degrees C for 15 minutes resulted in the inhibition of both the replicon initiation and the DNA elongation processes. Analysis of the DNA made after treatment showed that for up to 30 minutes after hyperthermia, there was a significant increase (45-80% above control level) in the amount of labeled DNA less than or equal to 40S in size and having a distinct peak of 20S. Therefore, elongation of 20S molecules into larger molecules was inhibited or slowed down. These small molecules did not accumulate when recovery times were longer than 30 minutes. The DNA made after 120 and 240 minutes postheat incubation was larger than control size and indicated that, although replicon initiation was still inhibited, elongation between replicons into 120S molecules could take place. However, their subsequent elongation into parental-size molecules was inhibited. The same delay in DNA elongation seen in cells examined immediately after treatment was still observed in cells heated and allowed to recover for 30 minutes. Also, after 30 minutes of recovery, heated cells still had more newly synthesized DNA in the single-stranded fraction than did control cells, which indicates that DNA elongation within a replicon is delayed for at least 30 minutes after heating. Furthermore, at 4 hours after heating, the inhibition of elongation of clusters of replicons into parental molecules prevailed

  9. Inhibition of human chronic myelogenous leukemia K562 cell growth following combination treatment with resveratrol and imatinib mesylate.

    Science.gov (United States)

    Wang, X J; Li, Y H

    2015-06-11

    To investigate the effect of treatment with resveratrol combined with imatinib mesylate on human chronic myelogenous leukemia K562 cell growth inhibition and apoptosis, in vitro cultured human chronic myelogenous leukemia K562 cells were incubated with different concentrations of resveratrol and imatinib mesylate when the cells were in the logarithmic phase. Next, the cell growth inhibition was evaluated using the MTT assay and cellular morphology observation. Apoptosis was determined using Annexin V fluorescein isothiocyanate/propidium iodide double staining. The results demonstrated that treatment with resveratrol (concentration-dependent) and imatinib mesylate showed significantly greater inhibition of K562 cell growth and a higher apoptosis rate of K562 cells than imatinib mesylate medication alone and the control group (P imatinib mesylate medication alone group showed significant inhibition of K562 cell growth and apoptosis rate of K562 cells compared to the control group (P imatinib mesylate and resveratrol are potent drug treatments for human chronic myelogenous leukemia, offering a promising means of inhibiting cell growth and apoptosis.

  10. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  11. Genetics Home Reference: glycogen storage disease type 0

    Science.gov (United States)

    ... skeletal muscle, glycogen stored in muscle cells is broken down to supply the cells with energy. The ... that is stored in the liver can be broken down rapidly when glucose is needed to maintain ...

  12. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  13. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei-Chang Huang

    Full Text Available Myocardial injury, such as myocardial infarction (MI, can lead to drastic heart damage. Zebrafish have the extraordinary ability to regenerate their heart after a severe injury. Upon ventricle resection, fibrin clots seal the wound and serve as a matrix for recruiting myeloid-derived phagocytes. Accumulated neutrophils and macrophages not only reduce the risk of infection but also secrete cytokines and growth factors to promote tissue repair. However, the underlying cellular and molecular mechanisms for how immune responses are regulated during the early stages of cardiac repair are still unclear. We investigated the role and programming of early immune responses during zebrafish heart regeneration. We found that zebrafish treated with an anti-inflammatory glucocorticoid had significantly reduced heart regenerative capacities, consistent with findings in other higher vertebrates. Moreover, inhibiting the inflammatory response led to excessive collagen deposition. A microarray approach was used to assess the differential expression profiles between zebrafish hearts with normal or impaired healing. Combining cytokine profiling and immune-staining, our data revealed that impaired heart regeneration could be due to reduced phagocyte recruitment, leading to diminished angiogenesis and cell proliferation post-cardiac injury. Despite their robust regenerative ability, our study revealed that glucocorticoid treatment could effectively hinder cardiac repair in adult zebrafish by interfering with the inflammatory response. Our findings may help to clarify the initiation of cardiac repair, which could be used to develop a therapeutic intervention that may enhance cardiac repair in humans to compensate for the loss of cardiomyocytes after an MI.

  15. Inhibition of histone deacetylase for the treatment of biliary tract cancer: A new effective pharmacological approach

    Science.gov (United States)

    Bluethner, Thilo; Niederhagen, Manuel; Caca, Karel; Serr, Frederik; Witzigmann, Helmut; Moebius, Christian; Mossner, Joachim; Wiedmann, Marcus

    2007-01-01

    AIM: To investigate in vitro and in vivo therapeutic effects of histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 on biliary tract cancer. METHODS: Cell growth inhibition by NVP-LAQ824 and NVP-LBH589 was studied in vitro in 7 human biliary tract cancer cell lines by MTT assay. In addition, the anti-tumoral effect of NVP-LBH589 was studied in a chimeric mouse model. Anti-tumoral drug mechanism was assessed by immunoblotting for acH4 and p21WAF-1/CIP-1, PARP assay, cell cycle analysis, TUNEL assay, and immunhistochemistry for MIB-1. RESULTS: In vitro treatment with both compounds significantly suppressed the growth of all cancer cell lines [mean IC50 (3 d) 0.11 and 0.05 μmol/L, respectively], and was associated with hyperacetylation of nucleosomal histone H4, increased expression of p21WAF-1/CIP-1, induction of apoptosis (PARP cleavage), and cell cycle arrest at G2/M checkpoint. After 28 d, NVP-LBH589 significantly reduced tumor mass by 66% (bile duct cancer) and 87% (gallbladder cancer) in vivo in comparison to placebo, and potentiated the efficacy of gemcitabine. Further analysis of the tumor specimens revealed increased apoptosis by TUNEL assay and reduced cell proliferation (MIB-1). CONCLUSION: Our findings suggest that NVP-LBH589 and NVP-LAQ824 are active against human biliary tract cancer in vitro. In addition, NVP-LBH589 demonstrated significant in vivo activity and potentiated the efficacy of gemcitabine. Therefore, further clinical evaluation of this new drug for the treatment of biliary tract cancer is recommended. PMID:17729398

  16. Lactate elimination and glycogen resynthesis after intense bicycling.

    Science.gov (United States)

    Medbø, J I; Jebens, E; Noddeland, H; Hanem, S; Toska, K

    2006-01-01

    Muscles break down glycogen to lactate during intense exercise, and in the recovery period, glycogen reappears while lactate disappears. The purpose of this study was to examine to what extent lactate is resynthesized to glycogen within the formerly active muscles themselves in man. Fifteen healthy young men cycled for 2 min to exhaustion. Muscle biopsies were taken from the knee extensor muscle before the exercise, just after the ride, and again after 45 min of recovery. In addition, blood samples were taken from the femoral artery and vein, and the leg blood flow was measured using the ultrasound Doppler technique. The muscle biopsies were analysed for glycogen, lactate and other metabolites, and the blood samples were analysed for lactate and glucose. The exchanges of lactate and glucose of the leg were assessed by multiplying the measured arterio-venous (a-v) differences by the blood flow. During the exercise the muscles broke down 20+/-4 mmol glycogen kg(-1) wet muscle mass and produced 26+/-1 mmol lactate kg(-1). In the recovery period after 24+/-1 mmol lactate kg(-1) had disappeared, of which 48 % was released to the blood, 52 % disappeared within the muscle. An R-value of 0.62 across the leg suggests that none of the lactate was oxidized. Altogether, 10+/-3 mmol glycogen kg(-1) reappeared during recovery. Glucose uptake accounted for 2 mmol kg(-1) and glycolytic intermediates (G-6-P and free glucose) accounted for 4 mmol kg(-1); 4 mmol glycogen kg(-1) (42 %) reappeared from unknown sources. The present data are compatible with the idea that around half of the lactate produced during intense bicycling is resynthesized to glycogen within the working muscles themselves in the recovery period after the bicycling.

  17. Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance.

    Science.gov (United States)

    Lunn, William R; Pasiakos, Stefan M; Colletto, Megan R; Karfonta, Kirstin E; Carbone, John W; Anderson, Jeffrey M; Rodriguez, Nancy R

    2012-04-01

    This study examined effects of fat-free chocolate milk (MILK) consumption on kinetic and cellular markers of protein turnover, muscle glycogen, and performance during recovery from endurance exercise. Male runners participated in two trials separated by 1 wk and consumed either MILK or a nonnitrogenous isocaloric carbohydrate (CHO) control beverage (CON) after a 45-min run at 65% of V˙O(2peak). Postexercise muscle protein fractional synthetic rate (FSR) and whole-body protein turnover were determined during 3 h of recovery using muscle biopsies and primed constant infusions of L-[ring-²H₅]phenylalanine and L-[1-¹³C]leucine, respectively. Phosphorylation of translational signaling proteins and activity of proteolytic molecules were determined using Western blotting and enzymatic activity assays. Muscle glycogen was quantified, and treadmill time to exhaustion was determined after the recovery period. Consuming MILK after exercise resulted in higher mixed muscle FSR with lower whole-body proteolysis and synthesis compared with CON (P ≤ 0.05). Phosphorylation of eIF4E-BP1 and FOXO3a was higher for MILK (P glycogen was not affected by either dietary treatment; however, time to exhaustion was greater for MILK than for CON (P < 0.05). The effects of consumption of MILK after endurance exercise on FSR, signaling molecules of skeletal muscle protein turnover, leucine kinetics, and performance measures suggest unique benefits of milk compared with a CHO-only beverage.

  18. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa).

    Science.gov (United States)

    Farah, Benjamin L; Sinha, Rohit A; Wu, Yajun; Singh, Brijesh K; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J; Bay, Boon Huat; Koeberl, Dwight D; Yen, Paul M

    2017-03-20

    Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease.

  19. Cardioprotection by L-glutamate during postischaemic reperfusion: reduced infarct size and enhanced glycogen resynthesis in a rat insulin-free heart model.

    Science.gov (United States)

    Kristiansen, Steen B; Løfgren, Bo; Støttrup, Nicolaj B; Kimose, Hans-Henrik; Nielsen-Kudsk, Jens E; Bøtker, Hans E; Nielsen, Torsten T

    2008-08-01

    1. Previously, we found that administration of high-dose L-glutamate during postischaemic reperfusion improves haemodynamic recovery and enhances glycogen resynthesis. In the present study, we investigated whether the same effect occurs in an insulin-free model and whether glutamate administration reduces infarct size. Further, we studied whether the cardioprotective effect of glutamate depends on preserved glutamate transamination and K(ATP) channel activity. 2. In a rat isolated, insulin-free, perfused heart model, we compared the effects of administration of L-glutamate (10 mmol/L) during either 45 min no-flow regional ischaemia plus 120 min reperfusion or reperfusion alone on infarct size and left ventricular (LV) recovery. The effect of glutamate on glycogen metabolism was studied in a model of 30 min global no-flow ischaemia and 60 min reperfusion. In both models, the effects of inhibition of glutamate transamination and K(ATP) channel activity were examined by adding amino-oxyacetate (an aminotransferase inhibitor; 0.1 mmol/L) and glibenclamide (a K(ATP) blocker; 10 mmol/L), respectively. 3. Administration of L-glutamate reduced infarct size by 60% (P glycogen content after 60 min reperfusion by 65% (P glycogen resynthesis during reperfusion. 4. In conclusion, L-glutamate administration from the start of postischaemic reperfusion exerts cardioprotective effects, including reduced infarct size, improved haemodynamic recovery and enhanced glycogen resynthesis. These effects depend on preserved transamination of glutamate and K(ATP) channel activity, but not on insulin administration.

  20. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Structure and solution properties of enzymatically synthesized glycogen.

    Science.gov (United States)

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. The effects of methadone maintenance treatment on heroin addicts with response inhibition function impairments: Evidence from event-related potentials

    Directory of Open Access Journals (Sweden)

    Ling Yang

    2015-06-01

    Full Text Available Response inhibition has been a core issue in addictive behavior. Many previous studies have found that response inhibition abilities are damaged in those with drug dependence. However, whether heroin addicts who are treated with methadone maintenance have an abnormal response inhibition ability is not clear. In order to investigate the response inhibition functions in heroin addicts who were treated with methadone maintenance, electroencephalography (EEG was used to examine 14 heroin addicts treated with methadone maintenance (HDM, 17 heroin addicts (HD, and 18 healthy controls (HC in an equiprobability Go∖NoGo task. The reaction times (RTs for the Go stimuli in the HD group were slower than those in the HDM and HC groups. Event-related potential (ERP measurements showed that NoGo stimuli elicited larger N2 amplitudes than Go stimuli in the HDM and HC groups. However, for the HD group, the N2 amplitudes were similar for the two conditions. In addition, the HDM and HD groups were associated with longer P3 latencies. Our results demonstrated that methadone maintenance treatment might ease the deficits in response inhibition that result from long-term drug abuse. However, compared to normal people, HDM patients have serious problems evaluating and inhibiting inappropriate behaviors.

  3. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    International Nuclear Information System (INIS)

    De Lean, A.; Cantin, M.

    1986-01-01

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levels of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with [ 32 P] NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production

  4. In vivo effects of diabetes, insulin and oleanolic acid on enzymes of glycogen metabolism in the skin of streptozotocin-induced diabetic male Sprague-Dawley rats.

    Science.gov (United States)

    Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya

    2016-03-04

    The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  6. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  7. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  8. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  9. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Lum, JJ [BC Cancer Agency — Vancouver Island Centre (Canada); Isabelle, M; Harder, S; Jirasek, A [Physics and Astronomy, University of Victoria (Australia); Brolo, AG [Chemistry, University of Victoria (Australia)

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  10. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  11. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  12. 3-Glucosylated 5-amino-1,2,4-oxadiazoles: synthesis and evaluation as glycogen phosphorylase inhibitors

    Directory of Open Access Journals (Sweden)

    Marion Donnier-Maréchal

    2015-04-01

    Full Text Available Glycogen phosporylase (GP is a promising target for the control of glycaemia. The design of inhibitors binding at the catalytic site has been accomplished through various families of glucose-based derivatives such as oxadiazoles. Further elaboration of the oxadiazole aromatic aglycon moiety is now reported with 3-glucosyl-5-amino-1,2,4-oxadiazoles synthesized by condensation of a C-glucosyl amidoxime with N,N’-dialkylcarbodiimides or Vilsmeier salts. The 5-amino group introduced on the oxadiazole scaffold was expected to provide better inhibition of GP through potential additional interactions with the enzyme’s catalytic site; however, no inhibition was observed at 625 µM.

  13. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases

    Directory of Open Access Journals (Sweden)

    Gabriele Fenini

    2017-05-01

    Full Text Available In 2002, intracellular protein complexes known as the inflammasomes were discovered and were shown to have a crucial role in the sensing of intracellular pathogen- and danger-associated molecular patterns (PAMPs and DAMPs. Activation of the inflammasomes results in the processing and subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Several autoinflammatory disorders such as cryopyrin-associated periodic syndromes and Familial Mediterranean Fever have been associated with mutations of genes encoding inflammasome components. Moreover, the importance of IL-1 has been reported for an increasing number of autoinflammatory skin diseases including but not limited to deficiency of IL-1 receptor antagonist, mevalonate kinase deficiency and PAPA syndrome. Recent findings have revealed that excessive IL-1 release induced by harmful stimuli likely contributes to the pathogenesis of common dermatological diseases such as acne vulgaris or seborrheic dermatitis. A key pathogenic feature of these diseases is IL-1β-induced neutrophil recruitment to the skin. IL-1β blockade may therefore represent a promising therapeutic approach. Several case reports and clinical trials have demonstrated the efficacy of IL-1 inhibition in the treatment of these skin disorders. Next to the recombinant IL-1 receptor antagonist (IL-1Ra Anakinra and the soluble decoy Rilonacept, the anti-IL-1α monoclonal antibody MABp1 and anti-IL-1β Canakinumab but also Gevokizumab, LY2189102 and P2D7KK, offer valid alternatives to target IL-1. Although less thoroughly investigated, an involvement of IL-18 in the development of cutaneous inflammatory disorders is also suspected. The present review describes the role of IL-1 in diseases with skin involvement and gives an overview of the relevant studies discussing the therapeutic potential of modulating the secretion and activity of IL-1 and IL-18 in such diseases.

  14. Preclinical Development of New Therapy for Glycogen Storage Diseases

    Science.gov (United States)

    Sun, Baodong; Brooks, Elizabeth D.; Koeberl, Dwight D.

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available. PMID:26122079

  15. Preclinical Development of New Therapy for Glycogen Storage Diseases.

    Science.gov (United States)

    Sun, Baodong; Brooks, Elizabeth D; Koeberl, Dwight D

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.

  16. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry.

    Science.gov (United States)

    Sawada, Yoshikazu; Izumida, Yoshihiko; Takeuchi, Yoshinori; Aita, Yuichi; Wada, Nobuhiro; Li, EnXu; Murayama, Yuki; Piao, Xianying; Shikama, Akito; Masuda, Yukari; Nishi-Tatsumi, Makiko; Kubota, Midori; Sekiya, Motohiro; Matsuzaka, Takashi; Nakagawa, Yoshimi; Sugano, Yoko; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yatoh, Shigeru; Suzuki, Hiroaki; Yagyu, Hiroaki; Kawakami, Yasushi; Kadowaki, Takashi; Shimano, Hitoshi; Yahagi, Naoya

    2017-11-04

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors have both anti-diabetic and anti-obesity effects. However, the precise mechanism of the anti-obesity effect remains unclear. We previously demonstrated that the glycogen depletion signal triggers lipolysis in adipose tissue via liver-brain-adipose neurocircuitry. In this study, therefore, we investigated whether the anti-obesity mechanism of SGLT2 inhibitor is mediated by this mechanism. Diet-induced obese mice were subjected to hepatic vagotomy (HVx) or sham operation and loaded with high fat diet containing 0.015% tofogliflozin (TOFO), a highly selective SGLT2 inhibitor, for 3 weeks. TOFO-treated mice showed a decrease in fat mass and the effect of TOFO was attenuated in HVx group. Although both HVx and sham mice showed a similar level of reduction in hepatic glycogen by TOFO treatment, HVx mice exhibited an attenuated response in protein phosphorylation by protein kinase A (PKA) in white adipose tissue compared with the sham group. As PKA pathway is known to act as an effector of the liver-brain-adipose axis and activate triglyceride lipases in adipocytes, these results indicated that SGLT2 inhibition triggered glycogen depletion signal and actuated liver-brain-adipose axis, resulting in PKA activation in adipocytes. Taken together, it was concluded that the effect of SGLT2 inhibition on weight loss is in part mediated via the liver-brain-adipose neurocircuitry. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes

    DEFF Research Database (Denmark)

    Madsen, K; Pedersen, P K; Rose, P

    1990-01-01

    glycogen stores were decreased by about 25%. Periodic acid-Schiff staining for semi-quantitative glycogen determination in individual fibres confirmed that none of the fibres appeared to be glycogen-empty after exhaustive running. The steady-state respiratory exchange ratio was higher in Carb than in Norm...... (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion...

  18. Late-Onset Glycogen Storage Disease Type II (Pompe’s Disease with a Novel Mutation: A Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Hiew Fu Liong

    2014-01-01

    Full Text Available Pompe’s disease (acid maltase deficiency, glycogen storage disease type II is an autosomal recessive disorder caused by a deficiency of lysosomal acid α-1,4-glucosidase, resulting in excessive accumulation of glycogen in the lysosomes and cytoplasm of all tissues, most notably in skeletal muscles. We present a case of adult-onset Pompe’s disease with progressive proximal muscles weakness over 5 years and respiratory failure on admission, requiring prolonged mechanical ventilation. Electromyography showed evidence of myopathic process with small amplitudes, polyphasic motor unit action potentials, and presence of pseudomyotonic discharges. Muscle biopsy showed glycogen-containing vacuoles in the muscle fibers consistent with glycogen storage disease. Genetic analysis revealed two compound heterozygous mutations at c.444C>G (p.Tyr148* in exon 2 and c.2238G>C (p.Trp746Cys in exon 16, with the former being a novel mutation. This mutation has not been reported before, to our knowledge. The patient was treated with high protein diet during the admission and subsequently showed good clinical response to enzyme replacement therapy with survival now to the eighth year. Conclusion. In patients with late-onset adult Pompe’s disease, careful evaluation and early identification of the disease and its treatment with high protein diet and enzyme replacement therapy improve muscle function and have beneficial impact on long term survival.

  19. Distinct Molecular Regulation of Glycogen Synthase Kinase-3α Isozyme Controlled by Its N-terminal Region

    Science.gov (United States)

    Azoulay-Alfaguter, Inbar; Yaffe, Yakey; Licht-Murava, Avital; Urbanska, Malgorzata; Jaworski, Jacek; Pietrokovski, Shmuel; Hirschberg, Koret; Eldar-Finkelman, Hagit

    2011-01-01

    Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway. PMID:21266584

  20. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  1. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    Science.gov (United States)

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E 2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P 4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E 2 , P 4 or vehicle (controls) for 3 days and uteri collected 24 h (E 2 , P 4 and vehicle) and 96 h (E 2 ) later. To evaluate E 2 priming, mink were treated with E 2 for 3 days, then P 4 for an additional 3 days (E 2 →P 4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E 2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E 2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E 2 →P 4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E 2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P 4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation. © 2016 Japanese Society of Animal Science.

  2. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    Directory of Open Access Journals (Sweden)

    Jason Karslake

    2016-10-01

    Full Text Available The inoculum effect (IE is an increase in the minimum inhibitory concentration (MIC of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  3. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism.

    Science.gov (United States)

    Sever, Sakine; Weinstein, David A; Wolfsdorf, Joseph I; Gedik, Reyhan; Schaefer, Ernst J

    2012-01-01

    A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides >5000 mg/dL. The diagnosis of type 1A glycogen storage disease was made via the result of a liver biopsy, which showed increased glycogen and absent glucose-6-phosphatase enzyme activity. The patient was treated with dextrose administered orally, which was replaced by frequent feedings of cornstarch, which resulted in an improvement of her metabolic parameters. At age 18 years of age, she had marked hypertriglyceridemia (3860 mg/dL) and eruptive xanthomas and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels >75 mg/dL and lactate levels triglycerides 179, high-density lipoprotein cholesterol 32, and calculated low-density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m(2). Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels >75 mg/dL is critical in the management of this disease. Copyright © 2012. Published by Elsevier Inc.

  4. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong

    2017-01-01

    BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment. PMID:28584574

  5. Muscle glycogen depletion does not alter segmental extracellular and intracellular water distribution measured using bioimpedance spectroscopy.

    Science.gov (United States)

    Shiose, Keisuke; Yamada, Yosuke; Motonaga, Keiko; Takahashi, Hideyuki

    2018-02-08

    Although each gram of glycogen is well known to bind 2.7-4.0 g of water, no studies have been conducted on the effect of muscle glycogen depletion on body water distribution. We investigated changes in extracellular and intracellular water (ECW and ICW) distribution in each body segment in muscle glycogen-depletion and glycogen-recovery condition using segmental bioimpedance spectroscopy technique (BIS). Twelve male subjects consumed 7.0 g.kg body mass -1 of indigestible (glycogen-depleted group) or digestible (glycogen-recovered group) carbohydrate for 24 hours after a glycogen-depletion cycling exercise. Muscle glycogen content using 13 C-magnetic resonance spectroscopy, blood hydration status, body composition, and ECW and ICW content of the arm, trunk, and leg using BIS were measured. Muscle glycogen content at the thigh muscles decreased immediately after exercise (glycogen-depleted group, 71.6 {plus minus} 12.1 to 25.5 {plus minus} 10.1 mmol.kg -1 wet wt; glycogen-recovered group, 76.2 {plus minus} 16.4 to 28.1 {plus minus} 16.8 mmol.kg -1 wet wt) and recovered in the glycogen-recovered group (72.7 {plus minus} 21.2 mmol.kg -1 wet wt), but not in the glycogen-depleted group (33.2 {plus minus} 12.6 mmol.kg -1 wet wt) 24 hours post-exercise. Fat-free mass decreased in the glycogen-depleted group ( P glycogen-recovered group 24 hours post-exercise. However, no changes were observed in ECW and ICW content at the leg in both groups. Our results suggested that glycogen depletion per se does not alter body water distribution as estimated via BIS. This information is valuable in assessing body composition using BIS in athletes who show variable glycogen status during training and recovery.

  6. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  7. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  8. A new non-degradative method to purify glycogen.

    Science.gov (United States)

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion.

    Science.gov (United States)

    O'Reilly, K P; Warhol, M J; Fielding, R A; Frontera, W R; Meredith, C N; Evans, W J

    1987-07-01

    Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.

  10. Somatomedin-C stimulates glycogen synthesis in fetal rat hepatocytes

    International Nuclear Information System (INIS)

    Freemark, M.; D'Ercole, A.J.; Handwerger, S.

    1985-01-01

    The effects of somatomedin-C/insulin-like growth factor I (Sm-C) on glycogen metabolism in cultured hepatocytes from 20-day-old rat fetuses have been examined and compared with the effects of insulin. Sm-C (25-375 ng/ml; 3.25-50 nM) stimulated dose-dependent increases in [ 14 C]glucose incorporation into glycogen (14.4-72.9% and total cell glycogen content (10.6-34.3%. Maximal stimulation of glycogen synthesis by Sm-C occurred at 2-4 h of incubation. Insulin (10 nM to 10 microM) also stimulated [ 14 C]glucose incorporation but its potency was only 1/20th that of Sm-C. The time course of stimulation of glucose incorporation by insulin was identical to that of Sm-C, the dose-response curves of the two hormones were parallel, and the maximal effects of insulin were not enhanced by simultaneous exposure of cells to Sm-C. These findings suggest that Sm-C and insulin stimulate glycogenesis in fetal liver through similar or identical mechanisms. Since the potency of Sm-C was 20 times greater than that of insulin, the glycogenic action of insulin in fetal liver may be mediated through binding to a hepatic receptor which also binds Sm-C. In addition to having mitogenic effects on fetal tissues, Sm-C may have direct anabolic effects on fetal carbohydrate metabolism

  11. Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Piotr Sklepkiewicz

    2011-04-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare progressive pulmonary vascular disorder associated with vascular remodeling and right heart failure. Vascular remodeling involves numerous signaling cascades governing pulmonary arterial smooth muscle cell (PASMC proliferation, migration and differentiation. Glycogen synthase kinase 3beta (GSK3ß is a serine/threonine kinase and can act as a downstream regulatory switch for numerous signaling pathways. Hence, we hypothesized that GSK3ß plays a crucial role in pulmonary vascular remodeling.All experiments were done with lung tissue or isolated PASMCs in a well-established monocrotaline (MCT-induced PAH rat model. The mRNA expression of Wnt ligands (Wnt1, Wnt3a, Wnt5a, upstream Wnt signaling regulator genes (Frizzled Receptors 1, 2 and secreted Frizzled related protein sFRP-1 and canonical Wnt intracellular effectors (GSK3ß, Axin1 were assessed by real-time polymerase chain reaction and protein levels of GSK3ß, phospho-GSK3ß (ser 9 by western blotting and localization by immunohistochemistry. The role of GSK3ß in PASMCs proliferation was assessed by overexpression of wild-type GSK3ß (WT and constitutively active GSK3ß S9A by [(3H]-thymidine incorporation assay.Increased levels of total and phosphorylated GSK3ß (inhibitory phosphorylation were observed in lungs and PASMCs isolated from MCT-induced PAH rats compared to controls. Further, stimulation of MCT-PASMCs with growth factors induced GSK3ß inactivation. Most importantly, treatment with the PDGFR inhibitor, Imatinib, attenuated PDGF-BB and FCS induced GSK3ß phosphorylation. Increased expression of GSK3ß observed in lungs and PASMC isolated from MCT-induced PAH rats was confirmed to be clinically relevant as the same observation was identified in human iPAH lung explants. Overexpression of GSK3ß significantly increased MCT-PASMCs proliferation by regulating ERK phosphorylation. Constitutive activation of GSK3ß (GSK3ß S9A, 9th serine

  12. Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directions.

    Science.gov (United States)

    Upadhyay, Vivek A; Brunner, Andrew M; Fathi, Amir T

    2017-09-01

    Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme. Over the last two decades, there has been a growing focus on the metabolic derangements that occur with IDH1 and IDH2 mutations. The altered IDH protein leads to accumulation of 2-hydroxyglutarate (2-HG), a metabolite with oncogenic activity via epigenetic mechanisms. The advent of IDH inhibitors has engendered hope in novel and targeted therapies in IDH1/2 mutant myeloid malignancies. We here summarize the basic physiology of IDH, the metabolic and oncogenic consequences of mutant IDH1/2, and the clinical significance of IDH inhibition in hematologic malignancies. We also discuss completed and ongoing clinical trials focusing on the inhibition of IDH proteins, which have demonstrated preliminary indications of efficacy. The promise of IDH inhibition is now being further investigated as a novel therapeutic approach for AML and other myeloid malignancies. Copyright © 2017. Published by Elsevier Inc.

  13. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise

    NARCIS (Netherlands)

    Knuiman, Pim; Hopman, Maria T.E.; Mensink, Marco

    2015-01-01

    It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of

  14. Medical-Nutritional Intervention in a Jordanian Child with Glycogen Storage Disease Type IIIA: Case Report

    Directory of Open Access Journals (Sweden)

    Al-Zeidaneen Safaa A.

    2017-12-01

    Full Text Available Background: Glycogen storage disease (GSD type IIIa is a rare inborn error of metabolism characterized by a deficiency in glycogen disbranching enzymes. Nutritional intervention is a cornerstone in the medical care plane.

  15. Progress in genetic diagnosis and management of glycogen storage disease typeⅡ

    Directory of Open Access Journals (Sweden)

    Cheng ZHANG

    2014-05-01

    Full Text Available Glycogen storage disease type Ⅱ (GSD Ⅱ is a rare autosomal recessive hereditary metabolic disorder characterized by progressive atrophy and weakness of skeletal muscle. It can be confirmed by clinical history, acid α-glucosidase (GAA testing and GAA mutations. Early targeting treatment and nursing can improve the prognosis and quality of life of patients with GSDⅡ. Progress in genetic diagnosis and management of GSDⅡ will be reviewed in this paper. doi: 10.3969/j.issn.1672-6731.2014.05.005

  16. Saturated free fatty acid sodium palmitate-induced lipoapoptosis by targeting glycogen synthase kinase-3β activation in human liver cells.

    Science.gov (United States)

    Cao, Jie; Feng, Xiao-Xia; Yao, Long; Ning, Bo; Yang, Zhao-Xia; Fang, Dian-Liang; Shen, Wei

    2014-02-01

    Elevated serum saturated fatty acid levels and hepatocyte lipoapoptosis are features of nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to investigate saturated fatty acid induction of lipoapoptosis in human liver cells and the underlying mechanisms. Human liver L02 and HepG2 cells were treated with sodium palmitate, a saturated fatty acid, for up to 48 h with or without lithium chloride, a glycogen synthase kinase-3β (GSK-3β) inhibitor, or GSK-3β shRNA transfection. Transmission electron microscopy was used to detect morphological changes, flow cytometry was used to detect apoptosis, a colorimetric assay was used to detect caspase-3 activity, and western blot analysis was used to detect protein expression. The data showed that sodium palmitate was able to induce lipoapoptosis in L02 and HepG2 cells. Western blot analysis showed that sodium palmitate activated GSK-3β protein, which was indicated by dephosphorylation of GSK-3β at Ser-9. However, inhibition of GSK-3β activity with lithium chloride treatment or knockdown of GSK-3β expression with shRNA suppressed sodium palmitate-induced lipoapoptosis in L02 and HepG2 cells. On a molecular level, inhibition of GSK-3β expression or activity suppressed sodium palmitate-induced c-Jun-N-terminal kinase (JNK) phosphorylation and Bax upregulation, whereas GSK-3β inhibition did not affect endoplasmic reticulum stress-induced activation of unfolded protein response. The present data demonstrated that saturated fatty acid sodium palmitate-induced lipoapoptosis in human liver L02 and HepG2 cells was regulated by GSK-3β activation, which led to JNK activation and Bax upregulation. This finding indicates that GSK-3β inhibition may be a potential therapeutic target to control NAFLD.

  17. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  18. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Muscle glycogen depletion and lactate concentration during downhill skiing.

    Science.gov (United States)

    Tesch, P; Larsson, L; Eriksson, A; Karlsson, J

    1978-01-01

    Skilled and unskilled skiers were studied during downhill skiing. Muscle glycogen and muscle lactate concentrations in the vastus lateralis muscle were determined following different skiing conditions. Heavy glycogen utilization was found in the groups studied during a day of skiing. The skilled and unskilled skiers differed with respect to selective glycogen depletion pattern and the skilled subjects demonstrated greater depletion of slow twitch fibers than the unskilled subjects. Lactate concentrations ranged from approximately 5-26 mmoles x kg-1 wet muscle after approximately one minute of maximal skiing. This wide range was not found to be related to the level of skiing proficiency. However, skiing with varyingly angled boots, resulting in different knee angles, did affect lactate concentration. Lactate concentration was positively correlated to individual muscle fiber composition expressed as a percent of fast twitch fibers. The results suggest more pronounced involvement of aerobic energy metabolism in skilled skiers than in unskilled skiers.

  20. Glucocorticoid excess induces accumulation of cardiac glycogen and triglyceride: suggested role for AMPK.

    Science.gov (United States)

    Puthanveetil, Prasanth; Rodrigues, Brian

    2013-01-01

    Glucocorticoids include steroid hormones released from the adrenal cortex or synthetic analogues developed for various inflammatory and immune disorders. GCs are known to play an important role in maintaining the body's metabolic balance, but their irregular activity has been associated with complications like Cushing's syndrome, insulin resistance, and heart disease. Conventional GC action is through their nuclear receptor activation, but specific and non-specific membrane bound receptor mediated non-genomic actions have also been reported. GCs increase AMPK phosphorylation at Thr172, in addition to augmenting AMPK protein and gene expressions. AMPK is insulin mimetic in many of its actions like glucose uptake and inhibition of lipolysis, and these properties of AMPK are made used in conditions like insulin resistance and diabetes. Nevertheless, if AMPK is activated by GC in the absence of diabetes or decreased insulin signaling, accumulation of substrates in the form of glycogen and triglycerides could precipitate cardiac abnormalities. Glycogen storage can lead to many disorders like hypertrophy, conduction system disease and Wolff Parkinson White syndrome. TG accumulation is associated with generation of free radicals, ceramide formation, mitochondrial dysfunction and cardiac cell death. In this review, we outline the cardiometabolic changes associated with GC, especially related to augmentation in AMPK, and link these changes to cardiac dysfunction.

  1. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    Science.gov (United States)

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; PGlycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (Pglycogen debranching enzyme expression 24 hours post-stroke was 77% (Pglycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129

  2. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    OpenAIRE

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L.?acidophilus?NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP - amy - pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and gro...

  3. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle.

    OpenAIRE

    Hespel, P; Richter, E A

    1992-01-01

    The influence of differences in glycogen concentration on glycogen breakdown and on phosphorylase activity was investigated in perfused contracting rat skeletal muscle. The rats were preconditioned by a combination of swimming exercise and diet (carbohydrate-free or carbohydrate-rich) in order to obtain four sub-groups of rats with varying resting muscle glycogen concentrations (range 10-60 mumol/g wet wt.). Pre-contraction muscle glycogen concentration was closely positively correlated with ...

  4. THE FINE STRUCTURE OF THE GLYCOGEN CONTAINING CELLS IN THE CHICKEN SPINAL CORD

    OpenAIRE

    UEHARA, Masato; UESHIMA, Toshihiko; KUDO, Norio

    1982-01-01

    Transmission electron microscope has been used to observe the glycogen body, the major marginal nuclei, the ventral margins of the lumbosacral cord and the lower coccygeal cord of chickens in which large amounts of glycogen accumulate. The typical glycogen body cells are located in the classically described glycogen body. They have a dense, irregular-shaped nucleus and also a dense juxtanuclear cytoplasm containing numerous free ribosomes, and a rather long cisternae of the rough endoplasmic ...

  5. Combination treatment of epilepsy with ketogenic diet and concurrent pharmacological inhibition of cytochrome P450 2E1.

    Science.gov (United States)

    Palmer, Michael

    2013-04-01

    While most epileptic patients respond to treatment with existing antiepileptic drugs, there remains a considerable number of patients in whom these drugs do not suffice. Such patients, particularly children, are often treated using the ketogenic diet. This diet imposes a strict limit on carbohydrates; while providing for adequate protein, most of the calories are supplied as triacylglycerol, much of which is metabolized to ketone bodies. Animal experiments have provided evidence that the anticonvulsant effect of the ketogenic diet is mediated by acetone and correlates with blood acetone levels. Acetone can be converted in vivo to glucose via acetol and pyruvate; the initial conversion to acetol is catalyzed by cytochrome P450 2E1 (CYP2E1). When CYP2E1 knockout mice are subjected to starvation to induce ketogenesis, they develop blood acetone levels much higher than those observed in wild-type mice. Similarly, pharmacological inhibition of CYP2E1 significantly increases blood acetone levels in rat and man. Taken together, these observations suggest that pharmacological inhibition of CYP2E1 has the potential to significantly increase the antiepileptic effect of the ketogenic diet. With patients that respond insufficiently to the diet alone, increased acetone levels may improve response. With patients who respond sufficiently to the diet, CYP2E1 inhibitors might allow a relaxation of the fairly severe diet regimen and so improve compliance and quality of life. An existing inhibitor of CYP2E1 is the drug disulfiram. This drug also inhibits the enzyme aldehyde dehydrogenase, which functions in alcohol degradation, and in this capacity has long been used in the treatment of alcohol addiction. Disulfiram inhibits CYP2E1 at conventional therapeutic dosages and increases blood acetone levels in humans and animals. It should therefore be a viable candidate for the proposed drug/diet combination treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis.

    Science.gov (United States)

    Li, Ran; Zhu, Li-Na; Ren, Li-Qi; Weng, Jie-Yang; Sun, Jin-Sheng

    2017-12-01

    Glycogen plays an important role in glucose and energy homeostasis at cellular and organismal levels. In glycogen synthesis, glycogen synthase (GS) is a rate-limiting enzyme catalysing the addition of α-1,4-linked glucose units from (UDP) 3 -glucose to a nascent glycogen chain using glycogenin (GN) as a primer. While studies on mammalian liver GS (GYS2) are numerous, enzymes from crustaceans, which also use glycogen and glucose as their main energy source, have received less attention. In the present study, we amplified full-length GS cDNA from Eriocheir sinensis. Tissue expression profiling revealed the highest expression of GS in the hepatopancreas. During moulting, GS expression and activity declined, and glycogen levels in the hepatopancreas were reduced. Recombinant GS was expressed in Escherichia coli Rosetta (DE3), and induction at 37°C or 16°C yielded EsGS in insoluble inclusion bodies (EsGS-I) or in soluble form (EsGS-S), respectively. Enzyme activity was measured in a cell-free system containing glucose-6-phosphate (G6P), and both forms possessed glycosyltransferase activity, but refolded EsGS-I was more active. Enzyme activity of both GS and EsGS-I in the hepatopancreas was optimum at 25°C, which is coincident with the optimum growth temperature of Chinese mitten crab, and higher (37°C) or lower (16°C) temperatures resulted in lower enzyme activity. Taken together, the results suggest that GS may be important for maintaining normal physiological functions such as growth and reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Enhanced Symbiotic Performance by Rhizobium tropici Glycogen Synthase Mutants

    Science.gov (United States)

    Marroquí, Silvia; Zorreguieta, Angeles; Santamaría, Carmen; Temprano, Francisco; Soberón, Mario; Megías, Manuel; Downie, J. Allan

    2001-01-01

    We isolated a Tn5-induced Rhizobium tropici mutant that has enhanced capacity to oxidize N,N-dimethyl-p-phenylendiamine (DMPD) and therefore has enhanced respiration via cytochrome oxidase. The mutant had increased levels of the cytochromes c1 and CycM and a small increase in the amount of cytochrome aa3. In plant tests, the mutant increased the dry weight of Phaseolus vulgaris plants by 20 to 38% compared with the control strain, thus showing significantly enhanced symbiotic performance. The predicted product of the mutated gene is homologous to glycogen synthases from several bacteria, and the mutant lacked glycogen. The DNA sequence of the adjacent gene region revealed six genes predicted to encode products homologous to the following gene products from Escherichia coli: glycogen phosphorylase (glgP), glycogen branching enzyme (glgB), ADP glucose pyrophosphorylase (glgC), glycogen synthase (glgA), phosphoglucomutase (pgm), and glycogen debranching enzyme (glgX). All six genes are transcribed in the same direction, and analysis with lacZ gene fusions suggests that the first five genes are organized in one operon, although pgm appears to have an additional promoter; glgX is transcribed independently. Surprisingly, the glgA mutant had decreased levels of high-molecular-weight exopolysaccharide after growth on glucose, but levels were normal after growth on galactose. A deletion mutant was constructed in order to generate a nonpolar mutation in glgA. This mutant had a phenotype similar to that of the Tn5 mutant, indicating that the enhanced respiration and symbiotic nitrogen fixation and decreased exopolysaccharide were due to mutation of glgA and not to a polar effect on a downstream gene. PMID:11208782

  8. PCSK9 inhibition: the way forward in the treatment of dyslipidemia

    NARCIS (Netherlands)

    Stoekenbroek, Robert M.; Kastelein, John J. P.; Huijgen, Roeland

    2015-01-01

    Barely a decade after the discovery of the gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its recognition as a key player in cholesterol metabolism, PCSK9 inhibition is now considered an exciting approach in the reduction of residual risk of cardiovascular disease. The

  9. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  10. Glycogen metabolism in Schistosoma mansoni worms after their isolation from the host

    NARCIS (Netherlands)

    Tiolens, A.G.M.; Bergh, S.G. van den

    Adult Schistosoma mansoni worms rapidly degrade their endogenous glycogen stores immediately after isolation from the host. In NCTC 109 or in a diphasic culture medium the glycogen levels slowly recovered again after the initial decrease. The rapid degradation of glycogen could be prevented, even in

  11. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.

    Science.gov (United States)

    Yano, Takanori; Funamizu, Yuhei; Yoshida, Nobuyuki

    2016-01-01

    An extreme oligotroph, Rhodococcus erythropolis N9T-4, showed intracellular accumulation of trehalose and glycogen under oligotrophic conditions. No trehalose accumulation was observed in cells grown on the rich medium. Deletion of the polyphosphate kinase genes enhanced the trehalose accumulation and decreases the intracellular glycogen contents, suggesting an oligotrophic relationship between among the metabolic pathways of trehalose, glycogen, and inorganic polyphosphate biosyntheses.

  12. Partly ordered synthesis and degradation of glycogen in cultured rat myotubes

    DEFF Research Database (Denmark)

    Elsner, Peter; Quistorff, Bjørn; Hansen, Gert H

    2001-01-01

    .81 and 1.39 h(-1), respectively. The degradation of glycogen largely followed the last-in-first-out principle, particularly in the initial period. Analysis of the size of the glycogen molecules and the beta-dextrin limit during glycogen accumulation and degradation showed that both synthesis...

  13. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vivek, E-mail: vivek.gupta@mq.edu.au [Australian School of Advanced Medicine, Macquarie University (Australia); Chitranshi, Nitin; You, Yuyi [Australian School of Advanced Medicine, Macquarie University (Australia); Gupta, Veer [School of Medical Sciences, Edith Cowan University, Perth (Australia); Klistorner, Alexander; Graham, Stuart [Australian School of Advanced Medicine, Macquarie University (Australia); Save Sight Institute, Sydney University, Sydney (Australia)

    2014-11-21

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.

  15. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    International Nuclear Information System (INIS)

    Gupta, Vivek; Chitranshi, Nitin; You, Yuyi; Gupta, Veer; Klistorner, Alexander; Graham, Stuart

    2014-01-01

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF +/− animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling

  16. Inhibition of NTPDase, 5'-nucleotidase, Na+/K+-ATPase and acetylcholinesterase activities by subchronic treatment with Casearia sylvestris.

    Science.gov (United States)

    da Silva, A C; Balz, D; de Souza, J B D'A; Morsch, V M; Corrêa, M C; Zanetti, G D; Manfron, M P; Schetinger, M R C

    2006-07-01

    The aqueous extract of Casearia sylvestris was tested in cortical membrane preparations. C. sylvestris was obtained commercially from two different sources, designated as Sample A and Sample B. The enzymes studied in this work were NTPDase-like, 5'-Nucleotidase, Na(+)/K(+)-ATPase and acetylcholinesterase (AChE). Adult rats received aqueous extracts from C. sylvestris in a dose of 20mg/kg body wt. daily for a 75-day-period, by oral administration (gavage). Our study showed that this treatment caused an inhibition of NTPDase-like activity with both, ATP (19.41% with Sample A and 25.03% with Sample B) and ADP (41.57% with Sample A and 31.20% with Sample B) as substrates. This treatment also caused an inhibition of 5'-nucleotidase activity (28.34% with Sample A and 31.46% with Sample B) and Na(+)/K(+)-ATPase (25.08% with Sample A and 24.81% with Sample B). The rate of acetylcholine degradation was reduced, as shown by the inhibition of AChE (31.65% and 26.74%, Samples A and B, respectively). These results suggest that extracts of C. sylvestris can cause neurochemical alterations in the purinergic and cholinergic systems of the central nervous system.

  17. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Shengpeng Wang

    Full Text Available Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO, a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose polymerase (PARP, caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs. Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp. Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.

  18. Gastric cancer following a liver transplantation for glycogen storage disease type Ia (von Gierke disease): A case report

    OpenAIRE

    XIAO, HUA; BIAN, JIANMIN; ZHANG, LEI; WANG, ZHAOMING; DING, AIXING

    2014-01-01

    Glycogen storage disease type Ia (GSD-Ia; also termed von Gierke disease) is an inherited metabolic disorder resulting from a glucose-6-phosphatase deficiency. Liver transplantation is considered to be the most effective treatment for GSD-Ia patients. In the present study, the case of a patient with GSD-Ia who received a liver transplantation at 17 years of age is presented. During the 12 years following transplantation, the patient’s quality of life markedly improved. However, recently, the ...

  19. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine.

    Science.gov (United States)

    Bai, Qiufang; Song, Dan; Gu, Li; Verkhratsky, Alexei; Peng, Liang

    2017-04-01

    Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.

  20. GRISEOFULVIN ANALOGUES FOR THE TREATMENT OF CANCER BY INHIBITION OF CENTROSOMAL CLUSTERING

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to uses of compounds having a structure as shown by formula (I) for the manufacture of a pharmaceutical composition for the treatment of cancer. Moreover, the present invention encompasses methods of treatment for said diseases....

  1. The role of insulin, glucagon, dexamethasone, and leptin in the regulation of ketogenesis and glycogen storage in primary cultures of porcine hepatocytes prepared from 60 kg pigs.

    Science.gov (United States)

    Fernández-Fígares, I; Shannon, A E; Wray-Cahen, D; Caperna, T J

    2004-08-01

    A study was conducted to elucidate hormonal control of ketogenesis and glycogen deposition in primary cultures of porcine hepatocytes. Hepatocytes were isolated from pigs (54-68 kg) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Monolayers were established in medium containing fetal bovine serum for 1 day and switched to a serum-free medium for the remainder of the culture period. Hepatocytes were maintained in DMEM/M199 containing 1% DMSO, dexamethasone (10(-6) or 10(-7) M), linoleic acid (3.4 x 10(-5) M), and carnitine (10(-3) M) for 3 days. On the first day of serum-free culture, insulin was added at 1 or 100 ng/ml and glucagon was added at 0, 1, or 100 ng/ml. Recombinant human leptin (200 ng/ml) was added during the final 24 h; medium and all cells were harvested on the third day. Concentrations of acetoacetate and beta-hydroxybutyrate (ketone bodies) in media and glycogen deposition in the cellular compartment were determined. Ketogenesis was highly stimulated by glucagon (1 and 100 ng/ml) and inhibited by insulin. In contrast, glycogen deposition was stimulated by insulin and attenuated by glucagon; high insulin was also associated with a reduction in the ketone body ratio (acetoacetate:beta-hydroxybutyrate). High levels of dexamethasone stimulated ketogenesis, but inhibited glycogen deposition at low insulin. Culture of cells with leptin for 24 h, over the range of insulin, glucagon, and dexamethasone concentrations had no effect on either glycogen deposition or ketogenesis. These data suggest that while adult porcine hepatocytes are indeed sensitive to hormonal manipulation, leptin has no direct influence on hepatic energy metabolism in swine.

  2. BAFF inhibition: a new class of drugs for the treatment of autoimmunity

    Science.gov (United States)

    Liu, Zheng; Davidson, Anne

    2011-01-01

    BAFF (BLyS) and APRIL are TNF-like cytokines that support survival and differentiation of B cells. Recent studies have discovered a role for BAFF in augmenting both innate and adaptive immune responses as well as in collaborating with other inflammatory cytokines to promote the activation and differentiation of effector immune cells. BAFF is an important pathogenic factor in lupus mouse models and BAFF inhibition successfully delays disease onset in these mice, although the responsiveness to BAFF inhibition varies among different strains. These results have led to the development of inhibitors targeting BAFF and APRIL in humans. An anti-BAFF antibody has shown significant but modest efficacy in two Phase III clinical trials for moderately active SLE and other inhibitors are being developed or at early stages of clinical testing. PMID:21333645

  3. Effect of starvation and subsequent feeding on glycogen concentration, behavior and mortality in the golden mussel Limnoperna fortunei (Dunker, 1857 (Bivalvia: Mytilidae

    Directory of Open Access Journals (Sweden)

    Nelmara I.S. Cordeiro

    2016-07-01

    Full Text Available The success of Limnoperna fortunei as an invasive species is related to its physiological plasticity that allows them to endure adverse environmental conditions. Starvation tolerance is considered to be an important trait associated with bivalve invasiveness. In natural ecosystems, food resources can vary during the year, exposing mussels to variable periods of starvation or limited food availability. Thus, mussels have developed physiological strategies to tolerate and survive fluctuations in food availability. Glycogen concentration has been used in different monitoring studies as an indicator of the nutritional condition of bivalves. The aim of this study was to investigate the physiological responses of L. fortunei based on the glycogen concentrations of specimens under four treatments, comprising different combinations of feeding and starvation, during 125 days. The experiment was carried out in two phases. In the phase I, mussels were divided in two treatments: starvation (S and feeding (F. After 100 days, tissue samples were collected to quantify glycogen concentrations and, each phase I group was divided in two subgroups: starvation (S and feeding (F, resulting in four treatments. In the phase II, that lasted 25 days, starvation specimens (S from phase I were allowed to feed (starvation-feeding treatment , or S-F, or continued to undergo starvation (starvation-starvation treatment , or S-S and the feeding specimens (F continued feeding (feeding-feeding group, or F-F, or were subjected to starvation (feeding-starvation treatment , or F-S. Behavior (valve-closing and mortality were recorded in 24 h intervals. After the 25 days (phase II all specimens were killed, and their soft tissue was removed to quantify glycogen concentrations. The glycogen concentration of the S-F treatment was lower than that of the F-S treatment, which was initially allowed to feed (phase I and then subjected to starvation (phase II. Stability in the glycogen

  4. Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+T-cell immunity.

    Science.gov (United States)

    Yin, Wei; Song, Yan; Liu, Qing; Wu, Yunyun; He, Rui

    2017-10-01

    All-trans retinoic acid (atRA), the main biologically active metabolite of vitamin A, has been implicated in immunoregulation and anti-cancer. A recent finding that vitamin A could decrease the risk of melanoma in humans indicates the beneficial role of atRA in melanoma. However, it remains unknown whether topical application of atRA could inhibit melanoma growth by influencing tumour immunity. We demonstrate topical application of tretinoin ointment (atRA as the active ingredient) effectively inhibited B16F10 melanoma growth. This is accompanied by markedly enhanced CD8 + T-cell responses, as evidenced by significantly increased proportions of effector CD8 + T cells expressing granzyme B, tumour necrosis factor-α, or interferon-γ, and Ki67 + proliferating CD8 + T cells in atRA-treated tumours compared with vaseline controls. Furthermore, topical atRA treatment promoted the differentiation of effector CD8 + T cells in draining lymph nodes (DLN) of tumour-bearing mice. Interestingly, atRA did not affect tumoral CD4 + T-cell response, and even inhibited the differentiation of interferon-γ-expressing T helper type 1 cells in DLN. Importantly, we demonstrated that the tumour-inhibitory effect of atRA was partly dependent on CD8 + T cells, as CD8 + T-cell depletion restored tumour volumes in atRA-treated mice, which, however, was still significantly smaller than those in vaseline-treated mice. Finally, we demonstrated that atRA up-regulated MHCI expression in B16F10 cells, and DLN cells from tumour-bearing mice had a significantly higher killing rate when culturing with atRA-treated B16F10 cells. Hence, our study demonstrates that topical atRA treatment effectively inhibits melanoma growth partly by promoting the differentiation and the cytotoxic function of effector CD8 + T cells. © 2017 John Wiley & Sons Ltd.

  5. Effect of oral D-tagatose on liver volume and hepatic glycogen accumulation in healthy male volunteers.

    Science.gov (United States)

    Boesch, C; Ith, M; Jung, B; Bruegger, K; Erban, S; Diamantis, I; Kreis, R; Bär, A

    2001-04-01

    Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid. Copyright 2001 Academic Press.

  6. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2014-08-01

    Full Text Available Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.

  7. Persistence of atovaquone in human sera following treatment: inhibition of Plasmodium falciparum development in vivo and in vitro.

    Science.gov (United States)

    Butcher, Geoff A; Sinden, Robert E

    2003-01-01

    Published pharmacokinetic data indicate that after treatment of patients with therapeutic doses of atovaquone/proguanil hydrochloride (Malarone, GlaxoSmithKline Research Triangle Park, NC), the plasma half-lives of these drugs are 70h and 15h, respectively. However, using two biologic assays (mosquito transmission and in vitro asexual stage development), we demonstrate here that sera from volunteers treated with atovaquone/proguanil retained activity against Plasmodium falciparum up to 6 weeks after such treatment. This activity was due to atovaquone, as administration of this drug alone replicated the data obtained with the combination. Most notably, asexual stage development of an atovaquone-resistant strain (NGATV01) of P. falciparum was not inhibited by sera taken after atovaquone treatment. These data indicate that for atovaquone, biologic assays, though not quantitative, are more sensitive than the usual physicochemical assays. Also, persistence of atovaquone in plasma at low concentrations for long periods may increase the risk of resistant parasites arising.

  8. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast......-twitch muscle than in slow-twitch muscle, but the latter contained many more small intermediate-acceptor molecules that could act as glycogen synthase substrates. The enzymes involved in de novo synthesis of glycogen in fast-twitch muscle were strongly stimulated by Glc-6-P, but those in slow-twitch muscle were...

  9. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast-twitch...... muscle than in slow-twitch muscle, but the latter contained many more small intermediate-acceptor molecules that could act as glycogen synthase substrates. The enzymes involved in de novo synthesis of glycogen in fast-twitch muscle were strongly stimulated by Glc-6-P, but those in slow-twitch muscle were...

  10. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  11. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    Science.gov (United States)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  12. Glycogen-rich clear cell carcinoma of the breast

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Paulsen, S M

    1987-01-01

    The light microscopic, immunohistochemical and ultrastructural features of a clear cell carcinoma of the breast have been studied. Both intraductal and invasive components were found. Histochemistry showed large amounts of intracytoplasmic glycogen and sparse neutral mucin in the tumour. The tumour...

  13. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  14. Purification and characterization of glycogen phosphorylase b from ...

    African Journals Online (AJOL)

    The kinetic and physicochemical properties of glycogen phosphorylase b from the breast muscle of the fruit bat, Eidolon helvum Kerr were investigated in order to obtain some information about the possible physiological role of the enzyme in meeting the energy requirements of the bat muscle either at the initiation of or ...

  15. Effects of Petrol Exposure on Glucose, Liver and Muscle glycogen ...

    African Journals Online (AJOL)

    This study investigated the effects of exposure to petrol on blood glucose, liver and muscle glycogen levels in the common African toad Bufo regularis. A total of 126 adult toads of either sex weighing between 70-100g were used for this study. The experiment was divided into three phases. The phase 1 experiment the acute ...

  16. Glycogen storage disease type 3: A management challenge in ...

    African Journals Online (AJOL)

    Glycogen storage disease type 3: A management challenge in pregnancy. OG Okunoye, C Deakin, S Maguire. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  17. Disturbed lipid metabolism in glycogen storage disease type 1

    NARCIS (Netherlands)

    Bandsma, RHJ; Smit, GPA; Kuipers, F

    2002-01-01

    Glycogen storage disease type 1 (GSD1) is an inborn error of metabolism caused by deficiency of glucose-6-phosphatase, the enzyme catalysing the conversion of glucose-6-phosphate (G6P) to glucose. GSD1 is associated with severe hyperlipidaemia and hepatic steatosis. The underlying mechanisms

  18. Genetics Home Reference: glycogen storage disease type VI

    Science.gov (United States)

    ... Shin YS, Kilimann MW. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet. 1998 Apr;62(4):785-91. Citation on PubMed or Free article on PubMed Central Chang S, Rosenberg MJ, Morton ...

  19. Mountain bike racing - the influence of prior glycogen-inducing ...

    African Journals Online (AJOL)

    Objective. To investigate the effect of pre-exercise glutamine supplementation and the influence of a prior acute bout of glycogen-reducing exercise on the general stress and immune response to acute high-intensity cycling. Design. Randomised, double-blind, cross-over supplementation study. Setting and intervention.

  20. Natural Progression of Canine Glycogen Storage Disease Type IIIa.

    Science.gov (United States)

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-02-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.

  1. Glycogen storage disease type I: clinical and laboratory profile

    Directory of Open Access Journals (Sweden)

    Berenice L. Santos

    2014-11-01

    Conclusions: Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients.

  2. Liver transplantation in glycogen storage disease type I

    NARCIS (Netherlands)

    Boers, Susanna J. B.; Visser, Gepke; Smit, Peter G. P. A.; Fuchs, Sabine A.

    2014-01-01

    Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is

  3. Molecular analysis of glycogen storage disease type Ia in Iranian ...

    Indian Academy of Sciences (India)

    Glycogen storage diseases (GSDs) are caused by abnormalities in enzymes that are involved in the regulation of gluconeogenesis and glycogenolysis. GSD I, an autosomal recessive metabolic disorder, is the most common GSD and has four subtypes. Here, we examined GSD Ia caused by the defective ...

  4. Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders.

    Science.gov (United States)

    Rajas, F; Labrune, P; Mithieux, G

    2013-10-01

    Glycogen storage disease type 1 (GSD1) and diabetes may look at first like totally opposite disorders, as diabetes is characterized by uncontrolled hyperglycaemia, whereas GSD1 is characterized by severe fasting hypoglycaemia. Diabetes is due to a failure to suppress endogenous glucose production (EGP) in the postprandial state because of either a lack of insulin or insulin resistance. In contrast, GSD1 is characterized by a lack of EGP. However, both diseases share remarkably similar patterns in terms of pathophysiology such as the long-term progression of renal dysfunction and hepatic steatosis leading to renal failure and the development of hepatic tumours, respectively. Thus, much may be learned from considering the similarities between GSD1 and diabetes, especially in the metabolic pathways underlying nephropathy and fatty liver, and perhaps even more from their differences. In this review, the differences between diabetes and GSD1 are first highlighted, as both are characterized by alterations in EGP. The molecular pathways involved in liver pathologies, including steatosis, hepatomegaly (glycogenic hepatopathy) and the development of liver tumours are also compared. These pathologies are mainly due to the accumulation of lipids and/or glycogen in hepatocytes. Finally, the similar pathways leading to nephropathy in both diabetic and GSD1 patients are described. In conclusion, comparisons of these pathologies should lead to a better understanding of the crucial role of EGP in the control of glucose and energy homoeostasis. Moreover, it may highlight similar therapeutic targets for the two disorders. Thus, this review suggests that the treatment of adult patients with either GSD1 or diabetes could be carried out by the same specialists-diabetologists. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Hepatocytes of cirrhotic rat liver accumulate glycogen more slowly than normal ones.

    Science.gov (United States)

    Bezborodkina, Natalia N; Okovity, Sergey V; Chestnova, Anna Yu; Kudryavtsev, Boris N

    2013-10-01

    To investigate the accumulation of glycogen in cirrhotic rat liver at several time intervals after per os administration of glucose to fasted animals. Liver cirrhosis was produced by inhalation of the hepatotropic poison CCl4. Glycogen concentration in the liver was determined biochemically. Glycogen content in hepatocytes was measured cytofluorimetrically in the smears stained with a fluorescent PAS reaction. Glycogen content in the hepatocytes of the portal and the central zone of the liver lobule was determined by absorption cytophotometry. Rats poisoned with CCl4 for 6 months developed typical liver cirrhosis characterized by a fourfold (p < 0.001) increase in the proportion of the connective tissue. In the cirrhotic rats fasted for 48 h, glycogen concentration in the liver and glycogen content in hepatocytes were lower as compared with the control by 36 and 27 % (p < 0.01), respectively. According to data obtained by different methods, the control animals accumulated glycogen at a high rate. In particular, the glycogen content in hepatocytes increased by 34 % after 10 min (p < 0.01). In the cirrhotic rats, glycogen content remained at the same level for 20 min. In both groups of animals, hepatocytes of the portal zone accumulated more glycogen than those of the central zone. Glycogen accumulation in cirrhotic rats starts after a delay and proceeds at a lower rate than in the norm.

  6. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    Science.gov (United States)

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  7. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    Science.gov (United States)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  8. Characterization and pathogenesis of anemia in glycogen storage disease type Ia and Ib.

    Science.gov (United States)

    Wang, David Q; Carreras, Caroline T; Fiske, Laurie M; Austin, Stephanie; Boree, Danielle; Kishnani, Priya S; Weinstein, David A

    2012-09-01

    The aim of this study was to characterize the frequency and causes of anemia in glycogen storage disease type I. Hematologic data and iron studies were available from 202 subjects (163 with glycogen storage disease Ia and 39 with glycogen storage disease Ib). Anemia was defined as hemoglobin concentrations less than the 5th percentile for age and gender; severe anemia was defined as presence of a hemoglobin glycogen storage disease Ia, 68/163 patients were anemic at their last follow-up. Preadolescent patients tended to have milder anemia secondary to iron deficiency, but anemia of chronic disease predominated in adults. Severe anemia was present in 8/163 patients, of whom 75% had hepatic adenomas. The anemia improved or resolved in all 10 subjects who underwent resection of liver lesions. Anemia was present in 72% of patients with glycogen storage disease Ib, and severe anemia occurred in 16/39 patients. Anemia in patients with glycogen storage disease Ib was associated with exacerbations of glycogen storage disease enterocolitis, and there was a significant correlation between C-reactive protein and hemoglobin levels (P = 0.036). Anemia is a common manifestation of both glycogen storage disease Ia and Ib, although the pathophysiology appears to be different between these conditions. Those with severe anemia and glycogen storage disease Ia likely have hepatic adenomas, whereas glycogen storage disease enterocolitis should be considered in those with glycogen storage disease Ib.

  9. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    Science.gov (United States)

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  10. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    Science.gov (United States)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  11. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    on the preceding day. 4. Muscle membrane glucose transport, as measured by the rate of accumulation of 14C-3-O-methylglucose in the contracting muscles, was 25% lower in supercompensated than in glycogen-depleted muscles at the onset as well as at the end of the 15 min contraction period. 5. Intracellular......1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats...

  12. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism

    Science.gov (United States)

    Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S.

    2016-01-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  13. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Science.gov (United States)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  14. GRISEOFULVIN ANALOGUES FOR THE TREATMENT OF CANCER BY INHIBITION OF CENTROSOMAL CLUSTERING

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to compounds of the formula (I), where the symbols have the meaning given in the specification, for use in a method for treating cancer, to use of these compounds for the manufacture of a pharmaceutical composition for the treatment of cancer, and to methods of treatment for...

  15. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.

    Science.gov (United States)

    Fleischmann, A; Hirschmann, S; Dolberg, O T; Dannon, P N; Grunhaus, L

    1999-03-15

    Studies in laboratory animals suggest that repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive shock (ECS) increase seizure inhibition acutely. This study was designed to explore whether chronic rTMS would also have seizure inhibition properties. To this purpose we administered rTMS (Magstim Rapid) and sham rTMS twice daily (2.5 T, 4-sec train duration, 20 Hz) to two groups of 10 rats for 16 days. The rTMS coil was a 50-mm figure-8 coil held directly over the rat's head. Raters were blind to experimental groups. On days 11, 17, and 21 (5 days after the last rTMS) ECS was administered with a Siemens convulsator using three electrical charge levels. Variables examined were the presence or absence of seizures and seizure length (measured from the initiation of the tonic contraction until the end of the limb movement). At day 11 rTMS had no effect on seizures, and both rTMS and sham rTMS animals convulsed equally. At day 17, however, rTMS-treated animals convulsed significantly less (both at presence/absence of seizures, and at seizure length) than sham rTMS animals. At day 21 the effects of rTMS had disappeared. These findings suggest that rTMS administered chronically leads to changes in seizure threshold similar to those reported for ECS and ECT; however, these effects were short-lived.

  16. Reolysin and Histone Deacetylase Inhibition in the Treatment of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Alena C. Jaime-Ramirez

    2017-06-01

    Full Text Available Oncolytic viruses (OVs are emerging as powerful anti-cancer agents and are currently being tested for their safety and efficacy in patients. Reovirus (Reolysin, a naturally occurring non-pathogenic, double-stranded RNA virus, has natural oncolytic activity and is being tested in phase I–III clinical trials in a variety of tumor types. With its recent US Food and Drug Administration (FDA orphan drug designation for several tumor types, Reolysin is a potential therapeutic agent for various cancers, including head and neck squamous cell carcinomas (HNSCCs, which have a 5-year survival of ∼55%. Histone deacetylase inhibitors (HDACis comprise a structurally diverse class of compounds with targeted anti-cancer effects. The first FDA-approved HDACi, vorinostat (suberoylanilide hydroxamic acid [SAHA], is currently being tested in patients with head and neck cancer. Recent findings indicate that HDAC inhibition in myeloma cells results in the upregulation of the Reolysin entry receptor, junctional adhesion molecule 1 (JAM-1, facilitating reovirus infection and tumor cell killing both in vitro and in vivo. In this study, we tested the anti-tumor efficacy of HDAC inhibitors AR-42 or SAHA in conjunction with Reolysin in HNSCCs. While HDAC inhibition increased JAM-1 and reovirus entry, the impact of this combination therapy was tested on the development of anti-tumor immune responses.

  17. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival.

    Science.gov (United States)

    Terashima, Masato; Fujita, Yoshihiko; Togashi, Yosuke; Sakai, Kazuko; De Velasco, Marco A; Tomida, Shuta; Nishio, Kazuto

    2014-08-30

    The KIAA1199 gene was first discovered to be associated with non-syndromic hearing loss. Recently, several reports have shown that the up-regulation of KIAA1199 is associated with cancer cell migration or invasion and a poor prognosis. These findings indicate that KIAA1199 may be a novel target for cancer therapy. Therefore, we explored in detail the function of KIAA1199 in cancer cells. In this study, we investigated the interaction of KIAA1199 protein with intracellular proteins in cancer cells. To this end, we expressed KIAA1199-MBP fusion protein and performed a pull-down assay. In addition, KIAA1199-overexpressing cancer cell lines were constructed using a retroviral vector and were used for further experiments. A pull-down analysis showed that the glycogen phosphorylase kinase β-subunit (PHKB) interacted with the C-terminal region of KIAA1199 protein. Furthermore, we observed the interaction of KIAA1199 with glycogen phosphorylase brain form (PYGB) under serum-free conditions. The interaction promoted glycogen breakdown and cancer cell survival. Our findings indicate that KIAA1199 plays an important role in glycogen breakdown and cancer cell survival and that it may represent a novel target for cancer therapy.

  18. Guidelines for management of glycogen storage disease type I - European study on glycogen storage disease type I (ESGSD I)

    NARCIS (Netherlands)

    Rake, JP; Visser, G; Labrune, P; Leonard, JV; Ullrich, K; Smit, GPA

    2002-01-01

    Life-expectancy in glycogen storage disease type I (GSD I) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and experience with long-term management and follow-up at each centre is limited. There is wide variation in methods

  19. Consensus guidelines for management of glycogen storage disease type 1b - European Study on Glycogen Storage Disease Type 1

    NARCIS (Netherlands)

    Visser, G; Rake, JP; Labrune, P; Leonard, JV; Moses, S; Ullrich, K; Wendel, U; Smit, GPA

    2002-01-01

    Life expectancy in glycogen storage disease type 1 (GSD-1) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and therefore experience with long-term management and follow-up at each centre is limited. There is wide variation in

  20. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  1. The availability of water associated with glycogen during dehydration: a reservoir or raindrop?

    Science.gov (United States)

    King, Roderick F G J; Jones, Ben; O'Hara, John P

    2018-02-01

    This study evaluated whether glycogen-associated water is a protected entity not subject to normal osmotic homeostasis. An investigation into practical and theoretical aspects of the functionality of this water as a determinant of osmolality, dehydration, and glycogen concentration was undertaken. In vitro experiments were conducted to determine the intrinsic osmolality of glycogen-potassium phosphate mixtures as would be found intra-cellularly at glycogen concentrations of 2% for muscle and 5 and 10% for liver. Protected water would not be available to ionic and osmotic considerations, whereas free water would obey normal osmotic constraints. In addition, the impact of 2 L of sweat loss in situations of muscle glycogen repletion and depletion was computed to establish whether water associated with glycogen is of practical benefit (e.g., to increase "available total body water"). The osmolality of glycogen-potassium phosphate mixtures is predictable at 2% glycogen concentration (predicted 267, measured 265.0 ± 4.7 mOsmol kg -1 ) indicating that glycogen-associated water is completely available to all ions and is likely part of the greater osmotic system of the body. At higher glycogen concentrations (5 and 10%), there was a small amount of glycogen water (~ 10-20%) that could be considered protected. However, the majority of the glycogen-associated water behaved to normal osmotic considerations. The theoretical exercise of selective dehydration (2 L) indicated a marginal advantage to components of total body water such as plasma volume (1.57% or 55 mL) when starting exercise glycogen replete. Glycogen-associated water does not appear to be a separate reservoir and is not able to uniquely replete water loss during dehydration.

  2. Myocardial glycophagy - a specific glycogen handling response to metabolic stress is accentuated in the female heart.

    Science.gov (United States)

    Reichelt, M E; Mellor, K M; Curl, C L; Stapleton, D; Delbridge, L M D

    2013-12-01

    Cardiac metabolic stress is a hallmark of many cardiac pathologies, including diabetes. Cardiac glycogen mis-handling is a frequent manifestation of various cardiopathologies. Diabetic females have a higher risk of heart disease than males, yet sex disparities in cardiac metabolic stress settings are not well understood. Oestrogen acts on key glycogen regulatory proteins. The goal of this study was to evaluate sex-specific metabolic stress-triggered cardiac glycogen handling responses. Male and female adult C57Bl/6J mice were fasted for 48h. Cardiac glycogen content, particle size, regulatory enzymes, signalling intermediates and autophagic processes were evaluated. Female hearts exhibited 51% lower basal glycogen content than males associated with lower AMP-activated-kinase (AMPK) activity (35% decrease in pAMPK:AMPK). With fasting, glycogen accumulated in female hearts linked with decreased particle size and upregulation of Akt and AMPK signalling, activation of glycogen synthase and inactivation of glycogen phosphorylase. Fasting did not alter glycogen content or regulatory proteins in male hearts. Expression of glycogen autophagy marker, starch-binding-protein-domain-1 (STBD1), was 63% lower in female hearts than males and increased by 69% with fasting in females only. Macro-autophagy markers, p62 and LC3BII:I ratio, increased with fasting in male and female hearts. This study identifies glycogen autophagy ('glycophagy') as a potentially important component of the response to cardiac metabolic stress. Glycogen autophagy occurs in association with a marked and selective accumulation of glycogen in the female myocardium. Our findings suggest that sex-specific differences in glycogen handling may have cardiopathologic consequences in various settings, including diabetic cardiomyopathy. © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  4. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    International Nuclear Information System (INIS)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun; Chung, Won-Yoon

    2014-01-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  5. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Lee, Jong Kil; Kim, Nam-Jung

    2017-08-02

    P38 mitogen-activated protein kinase (MAPK) is a crucial target for chronic inflammatory diseases. Alzheimer's disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain, as well as neurodegeneration, and there is no known cure. Recent studies on the underlying biology of AD in cellular and animal models have indicated that p38 MAPK is capable of orchestrating diverse events related to AD, such as tau phosphorylation, neurotoxicity, neuroinflammation and synaptic dysfunction. Thus, the inhibition of p38 MAPK is considered a promising strategy for the treatment of AD. In this review, we summarize recent advances in the targeting of p38 MAPK as a potential strategy for the treatment of AD and envision possibilities of p38 MAPK inhibitors as a fundamental therapeutics for AD.

  6. Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats

    NARCIS (Netherlands)

    W.A. Dik (Willem); R.J. McAnulty; M.A. Versnel (Marjan); B.A. Naber (Brigitta); L.J.I. Zimmermann (Luc); G.J. Laurent; S.E. Mutsaers (Steven)

    2003-01-01

    textabstractBACKGROUND: Corticosteroids are routinely used in patients with pulmonary fibrosis. The timing for initiation of treatment is likely to be crucial for corticosteroids to exert an antifibrotic effect. Experimental studies in animals have examined the effect of

  7. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    Energy Technology Data Exchange (ETDEWEB)

    Ferramosca, Alessandra, E-mail: alessandra.ferramosca@unisalento.it [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Conte, Annalea; Guerra, Flora; Felline, Serena [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Rimoli, Maria Grazia [Dipartimento di Farmacia, Università di Napoli Federico II, Napoli (Italy); Mollo, Ernesto [Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (Italy); Zara, Vincenzo [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Terlizzi, Antonio [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Stazione Zoologica Anton Dohrn, Napoli (Italy)

    2016-05-13

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  8. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    International Nuclear Information System (INIS)

    Ferramosca, Alessandra; Conte, Annalea; Guerra, Flora; Felline, Serena; Rimoli, Maria Grazia; Mollo, Ernesto; Zara, Vincenzo; Terlizzi, Antonio

    2016-01-01

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  9. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments

    Science.gov (United States)

    Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David

    2015-01-01

    The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342

  10. Neuroprotective Functions Through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model.

    Science.gov (United States)

    Prentice, Howard; Gharibani, Payam M; Ma, Zhiyuan; Alexandrescu, Anamaria; Genova, Rafaella; Chen, Po-Chih; Modi, Jigar; Menzie, Janet; Pan, Chunliu; Tao, Rui; Wu, Jang-Yen

    2017-01-01

    Taurine, as a free amino acid, is found at high levels in many tissues including brain, heart and skeletal muscle and is known to demonstrate neuroprotective effects in a range of disease conditions including stroke and neurodegenerative disease. Using in vitro culture systems we have demonstrated that taurine can elicit protection against endoplasmic reticulum stress (ER stress) from glutamate excitotoxicity or from excessive reactive oxygen species in PC12 cells or rat neuronal cultures. In our current investigation we hypothesized that taurine treatment after stroke in the rat middle cerebral artery occlusion (MCAO) model would render protection against ER stress processes as reflected in decreased levels of expression of ER stress pathway components. We demonstrated that taurine elicited high level protection and inhibited both ATF-6 and IRE-1 ER stress pathway components. As ischemic stroke has a complex pathology it is likely that certain combination treatment approaches targeting multiple disease mechanisms may have excellent potential for efficacy. We have previously employed the partial NMDA antagonist DETC-MeSO to render protection against in vivo ischemic stroke using a rat cerebral ischemia model. Here we tested administration of subcutaneous administration of 0.56 mg/kg DETC-MeSO or 40 mg/kg of taurine separately or as combined treatment after a 120 min cerebral ischemia in the rat MCAO model. Neither drug alone demonstrated protection at the low doses employed. Remarkably however the combination of low dose DETC-MeSO plus low dose taurine conferred a diminished infarct size and an enhanced Neuroscore (reflecting decreased neurological deficit). Analysis of ER stress markers pPERK, peIF-2-alpha and cleaved ATF-6 all showed decreased expression demonstrating that all 3 ER stress pathways were inhibited concurrent with a synergistic protective effect by the post-stroke administration of this DETC-MeSO-taurine combination treatment.

  11. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic reticulum stress-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ker Woon Choy

    Full Text Available Endoplasmic reticulum (ER stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone, the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage, reactive oxygen species (ROS scavenger, tempol (20 mg/kg/day or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α and oxidative stress (NOX2 and nitrotyrosine were evaluated using Western blotting. Nitric oxide (NO bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein. ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved

  12. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale

    2016-08-01

    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  13. Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer.

    Science.gov (United States)

    Male, Heather; Patel, Vijay; Jacob, Mark A; Borrego-Diaz, Emma; Wang, Kun; Young, Derek A; Wise, Amanda L; Huang, Chao; Van Veldhuizen, Peter; O'Brien-Ladner, Amy; Williamson, Stephen K; Taylor, Sarah A; Tawfik, Ossama; Esfandyari, Tuba; Farassati, Faris

    2012-08-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and relatively resistant to chemotherapy. The most prevalent molecular abnormality in NSCLC is the overactivation of K-Ras proto-oncogene; therefore, elucidating down-stream Ras signaling in NSCLC is significantly important in developing novel therapies against this malignancy. Our work indicates that RalA, an important effector of Ras, is activated in NSCLC cell lines. While RalA was also overactivated in fetal human broncho-epithelial cells, RalBP1 (Ral binding protein-1), an important down-stream effector of RalA, was expressed at higher levels in cancer cell lines. Aurora kinase-A (AKA), an upstream activator of RalA, was also found to be active only in malignant cells. The outcome of inhibition of RalA (by gene specific silencing using a lentivirus) on the malignant phenotype of A549 cells was also studied. While proliferation and invasiveness of A549 cells were reduced upon silencing RalA, apoptosis and necrosis were elevated in such conditions. Additionally, the in vivo tumorigenesis of A549 cells was reduced upon partial inhibition of RalA and AKA using pharmacological inhibitors. Finally, we were interested in evaluating the level of active RalA in the fraction of NSCLC cells expressing cancer stem cell markers. For this purpose cells with increased expression of CD44 were separated from A549 cells and compared with cells with low level of expression of this marker and an unsorted population. A significant enhancement of RalA activation in high CD44+ cells was found as potential evidence for involvement of RalA signaling in initiation of the neoplastic procedure and an important contributor for tumor maintenance in NSCLC. Further studies can reveal therapeutic, preventive and diagnostic value of RalA pathway in this deadly disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Establishment and directed differentiation of induced pluripotent stem cells from glycogen storage disease type Ib patient.

    Science.gov (United States)

    Satoh, Daisuke; Maeda, Tohru; Ito, Tetsuya; Nakajima, Yoko; Ohte, Mariko; Ukai, Akane; Nakamura, Katsunori; Enosawa, Shin; Toyota, Masashi; Miyagawa, Yoshitaka; Okita, Hajime; Kiyokawa, Nobutaka; Akutsu, Hidenori; Umezawa, Akihiro; Matsunaga, Tamihide

    2013-12-01

    Glycogen storage disease type Ib (GSDIb) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), which leads to neutrophil dysfunction. However, the underlying causes of these dysfunctions and their relationship with glucose homeostasis are unclear. Induced pluripotent stem cells (iPSCs) hold a great promise for advances in developmental biology, cell-based therapy and modeling of human disease. Here, we examined the use of iPSCs as a model for GSDIb. In this study, one 2-year-old patient was genetically screened and diagnosed with GSDIb. We established iPSCs and differentiated these cells into hepatocytes and neutrophils, which comprise the main pathological components of GSDIb. Cells that differentiated into hepatocytes exhibited characteristic albumin secretion and indocyanine green uptake. Moreover, iPSC-derived cells generated from patients with GSDIb metabolic abnormalities recapitulated key pathological features of the diseases affecting the patients from whom they were derived, such as glycogen, lactate, pyruvate and lipid accumulation. Cells that were differentiated into neutrophils also showed the GSDIb pathology. In addition to the expression of neutrophil markers, we showed increased superoxide anion production, increased annexin V binding and activation of caspase-3 and caspase-9, consistent with the GSDIb patient's neutrophils. These results indicate valuable tools for the analysis of this pathology and the development of future treatments. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  15. Modeling and optimization of acid dye manufacturing wastewater treatment with Fenton's reagent: comparison with electrocoagulation treatment results and effects on activated sludge inhibition.

    Science.gov (United States)

    Arslan-Alaton, Idil; Gursoy, B Hande; Akyol, Abdurahman; Kobya, Mehmet; Bayramoglu, Mahmut

    2010-01-01

    In the present study, Fenton's oxidation of a chromium complex disazo dye (Acid Blue 193) synthesis wastewater was evaluated, modeled and optimized by employing Central Composite Design. Within this context, the individual and interactive effects of critical process parameters such as Fe(2 + ), H(2)O(2) concentrations, initial chemical oxygen demand (COD) and reaction time was assessed. The process response (output) variables were chosen as percent color, COD and total organic carbon (TOC) removal efficiencies. Optimum working conditions in terms of color and organic carbon removals were established to be Fe(2 + )=3 mM; H(2)O(2)=25 mM; reaction time = 10 min at pH 3 and an initial COD content of 245 mg/L. Under these conditions, 96% color, 82% COD and 51% TOC removals were obtained. The established polynomial regression models describing color, COD and TOC removals satisfactorily fitted the experimental data and could be used to predict Fenton's treatment results at statistically significant rates. Optimized treatment results were compared with those obtained via electrocoagulation treatment under optimized conditions (applied current = 50 A/m(2); reaction time = 15 min; initial pH = 7 for an initial COD content of 245 mg/L). The relative inhibition of heterotrophic oxygen uptake rate was measured to examine the inhibitory effect of azo dye synthesis effluent before and after Fenton's oxidation and electrocoagulation with respect to synthetic domestic wastewater. Untreated azo dye production wastewater exhibited a slightly inhibitory effect that was appreciably reduced but not entirely removed after Fenton's oxidation, whereas no inhibition of mixed bioculture was observed for azo dye synthesis effluent subjected to electrocoagulation treatment.

  16. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Khowaja, Ameer; Kubisiak, Kristine; Eberly, Lynn E; Seaquist, Elizabeth R

    2017-08-01

    Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1- 13 C]glucose intravenously over 80+ h while maintaining euglycemia. 13 C-glycogen levels in the occipital lobe were measured by 13 C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13 C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.

  18. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  19. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  20. Human brain glycogen content and metabolism: implications on its role in brain energy metabolism.

    Science.gov (United States)

    Oz, Gülin; Seaquist, Elizabeth R; Kumar, Anjali; Criego, Amy B; Benedict, Luke E; Rao, Jyothi P; Henry, Pierre-Gilles; Van De Moortele, Pierre-Francois; Gruetter, Rolf

    2007-03-01

    The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.

  1. Glycogenolysis during short-term fasting in malaria and healthy subjects - the potential regulatory role of glycogen content on glycogen breakdown: a hypothesis

    NARCIS (Netherlands)

    Sprangers, F.; Thien, H. V.; Ackermans, M. T.; Endert, E.; Sauerwein, H. P.

    2004-01-01

    Background & aims: During short-term starvation ( <24h), glucose production decreases 10-20% due to a decrease in glycogenolysis. In the fed state glycogen regulates its rate of breakdown, in order to limit glycogen accumulation. Whether in the fasted state a similar mechanism exists to preserve

  2. Use of UV-C treatment to inhibit the microbial growth and maintain the quality of Yali pear.

    Science.gov (United States)

    Li, Jian; Zhang, Qian; Cui, Yang; Yan, Jiaqi; Cao, Jiankang; Zhao, Yumei; Jiang, Weibo

    2010-09-01

    The effects of UV-C radiation on microbial growth in vitro (Monilinia fruticola) and in inoculated Yali pears (Pyrus bretschneideri Rehd.) were investigated. Moreover, postharvest quality and the activities of defense and antioxidant enzymes were analyzed after the pears were exposed to UV-C irradiation at an energy level of 5 kJ m⁻².The results showed that spore germination of M. fructicola was significantly inhibited by each of the 3 doses (1, 5, and 10 kJ m⁻²) in vitro. In the in vivo assays, lesion diameter on the fruit being inoculated before or after the UV-C treatment was both significantly lower than that on the fruit of control. Meanwhile, the activities of phenylalanine ammonia lyase, β-1,3-glucanase, superoxide dismutase, catalase, and glutathione reductase were induced to high levels by UV-C treatment. We conclude that UV-C treatment could reduce postharvest disease by the germicidal and induced effects and maintain the quality by enhancing the antioxidant enzyme activities. UV-C radiation has recently been proposed as a new technology to avoid chemical fungicides. However, there are few studies regarding the effect of UV-C treatment on Yali pear. In this study, we found that 5 kJ m⁻² UV-C irradiation can control postharvest disease and maintain the quality of Yali pear. This method may be applied to reduce the decay of Yali pears during exporting and storage.

  3. A systematic review on topoisomerase 1 inhibition in the treatment of metastatic breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Brünner, Nils; Stenvang, Jan

    2013-01-01

    as standard treatment for the disease. We performed a systematic review on topoisomerase 1 inhibitors in MBC and found 22 prospective trials and three retrospective ones. No phase III trials were identified. Only one study was randomized, and generally studies were small. Response rates (RR) for irinotecan...

  4. Novel insights into the effect of CCR5 inhibition on HIV treatment, pathogenesis and cure

    NARCIS (Netherlands)

    Symons, J.

    2014-01-01

    The introduction of combination antiretroviral therapy (cART) in 1996 has significantly reduced HIV related morbidity and mortality in the Western world. Recent advances in antiretroviral treatment have resulted in a life expectancy of effectively treated HIV infected patients, comparable to those

  5. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish

    DEFF Research Database (Denmark)

    Gram, Lone; Melchiorsen, Jette; Spanggaard, Bettina

    1999-01-01

    To study the possible use of probiotics in fish farming, we evaluated the in vitro and in vivo antagonism of antibacterial strain Pseudomonas fluorescens strain AH2 against the fish- pathogenic bacterium Vibrio anguillarum. As iron is important in virulence and bacterial interactions, the effect....... fluorescens AH2 inhibited the growth of V. anguillarum during coculture, independently of the iron concentration, when the initial count of the antagonist was 100 to 1,000 times greater that of the fish pathogen. These in vitro results were successfully repeated in vivo. A probiotic effect in vivo was tested...... by exposing rainbow trout (Oncorynchus mykiss Walbaum) to P. fluorescens AH2 at a density of 10(5) CFU/ml for 5 days before a challenge with V. anguillarum at 10(4) to 10(5) CFU/ml for 1 h. Some fish were also exposed to P. fluorescens AH2 at 10(7) CFU/ml during the 1-h infection. The combined probiotic...

  6. Inhibiting C-Reactive Protein for the Treatment of Cardiovascular Disease: Promising Evidence from Rodent Models

    Directory of Open Access Journals (Sweden)

    Alexander J. Szalai

    2014-01-01

    Full Text Available Raised blood C-reactive protein (CRP level is a predictor of cardiovascular events, but whether blood CRP is causal in the disease process is unknown. The latter would best be defined by pharmacological inhibition of the protein in the context of a randomized case-control study. However, no CRP specific drug is currently available so such a prospective study cannot be performed. Blood CRP is synthesized primarily in the liver and the liver is an organ where antisense oligonucleotide (ASO drugs accumulate. Taking advantage of this we evaluated the efficacy of CRP specific ASOs in rodents with experimentally induced cardiovascular damage. Treating rats for 4 weeks with a rat CRP-specific ASO achieved >60% reduction of blood CRP. Notably, this effect was associated with improved heart function and pathology following myocardial infarction (induced by ligation of the left anterior descending artery. Likewise in human CRP transgenic mice treated for 2 weeks with a human CRP-specific ASO, blood human CRP was reduced by >70% and carotid artery patency was improved (2 weeks after surgical ligation. CRP specific ASOs might pave the way towards a placebo-controlled trial that could clarify the role of CRP in cardiovascular disease.

  7. Secondary metabolites of Mirabilis jalapa structurally inhibit Lactate Dehydrogenase A in silico: a potential cancer treatment

    Science.gov (United States)

    Kusumawati, R.; Nasrullah, A. H.; Pesik, R. N.; Muthmainah; Indarto, D.

    2018-03-01

    Altered energy metabolism from phosphorylated oxidation to aerobic glycolysis is one of the cancer hallmarks. Lactate dehydrogenase A (LDHA) is a major enzyme that catalyses pyruvate to lactate in such condition. The aim of this study was to explore LDHA inhibitors derived from Indonesian herbal plants. In this study, LDHA and oxamate molecular structures were obtained from protein data bank. As a standard ligand inhibitor, oxamate was molecularly re-validated using Autodock Vina 1.1.2 software and showed binding energy -4.26 ± 0.006 kcal/mol and interacted with LDHA at Gln99, Arg105, Asn137, Arg168, His192, and Thr247 residues. Molecular docking was used to visualize interaction between Indonesian phytochemicals and LDHA. Indonesian phytochemicals with the lowest binding energy and similar residues with standard ligand was Miraxanthin-III (-8.53 ± 0.006 kcal/mol), Vulgaxanthin-I (-8.46 ± 0.006 kcal/mol), Miraxanthin-II (-7.9 ± 0.2 kcal/mol) and Miraxanthin-V (-7.96 ± kcal/mol). Lower energy binding to LDHA and binding site at these residues was predicted to inhibit LDHA activity better than standard ligand. All phytochemicals were found in Mirabilis jalapa plant. Secondary metabolites in Mirabilis jalapa have LDHA inhibitor property in silico. Further in vitro study should be performed to confirm this result.

  8. Specific RSK kinase inhibition by dibenzyl trisulfide and implication for therapeutic treatment of cancer.

    Science.gov (United States)

    Lowe, Henry I C; Facey, Caroline O B; Toyang, Ngeh J; Bryant, Joseph L

    2014-04-01

    The Jamaican "Guinea Hen Weed" (Petiveria alliacea L.) plant has been traditionally used in folklore medicine to treat a variety of diseases including cancer. In the present study we investigated on the therapeutic feasibility of dibenzyl trisulfide (DTS) (isolated from the Jamaican Guinea Hen Weed) as a potent small-molecule kinase inhibitor to treat cancer. We investigated the inhibitory effects of DTS against a large panel of kinases using a well-established competitive binding assay. Cell proliferation data were obtained using the WST-1 colorimetric assay. DTS inhibited the activity of the C-terminal kinase domain of RSK1 (80% compared to control) with a Kd of 1.3 μM. Anti-proliferative effects of DTS were observed in small lung, pancreatic, breast, and prostate cancer cells with IC50 values ranging from 0.34-0.84 μM. We have identified DTS as a highly selective and isoform-specific RSK1 kinase inhibitor with broad cancer therapeutic potential.

  9. Crude glycerol as glycogenic precursor in feed; effects on milk coagulation properties and metabolic profiles of dairy cows.

    Science.gov (United States)

    Harzia, Hedi; Kilk, Kalle; Ariko, Tiia; Kass, Marko; Soomets, Ursel; Jõudu, Ivi; Kaart, Tanel; Arney, David; Kärt, Olav; Ots, Meelis

    2013-05-01

    As grain prices rise, the search for alternative glycogenic precursors in animal feed becomes increasingly important, and this study was conducted to determine if the replacement of starch with glycerol, as an alternative glycogenic precursor, affects the milk metabolic profile and milk coagulation ability, and therefore the quality of the milk. Eight primiparous mid-lactation Holstein cows were fed during a replicated 4 × 4 Latin square trial with four different isoenergetic rations: (1) control (T0) fed a total mixed ration (TMR) with barley meal; (2) group T1, decreased barley content, replaced isoenergetically with 1 kg crude glycerol; (3) group T2, the barley meal was replaced with 2 kg of crude glycerol; and (4) group T3 the barley meal was replaced with 3 kg of crude glycerol. Rumen, blood and milk samples were collected at the end of every 21-d treatment period. Rumen samples were analysed for proportion of total volatile fatty acid (VFA), blood samples for insulin and glucose, and milk for metabolites (e.g. citric-acid cycle compounds). The change in glycogenic precursors had a positive effect on rumen VFA proportions; the proportion of propionic acid increased (P Milk protein (P milk protein concentration may have been due to an increase in microbial protein. Regarding the milk metabolic profiles, different signals were positively associated with coagulation ability and change in the diet. Based on this study, changing the glycogenic precursor in animal diet in this way is possible, and may have no immediate deleterious consequences on milk quality or cow health. Indeed, there is evidence for benefits from this substitution.

  10. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  11. Role of anaplastic lymphoma kinase inhibition in the treatment of non-small-cell lung cancer.

    Science.gov (United States)

    Croegaert, Katie; Kolesar, Jill M

    2015-09-01

    Published data on the clinical efficacy, safety, dosage and administration, and costs of the anaplastic lymphoma kinase (ALK) inhibitors crizotinib and ceritinib in the treatment of non-small-cell lung cancer (NSCLC) are reviewed and compared. The ALK protein functions as a transmembrane receptor tyrosine kinase; rearrangements of the ALK gene are associated with the development of NSCLC with adenocarcinoma histology. Crizotinib is an oral tyrosine kinase inhibitor approved in 2011 as a first-line therapy for patients with metastatic ALK mutation-driven NSCLC. Significantly improved response rates and progression-free survival (PFS) have been reported with the use of crizotinib therapy versus standard chemotherapy, but mutations conferring resistance to treatment develop in most cases. The second-generation ALK inhibitor ceritinib was approved in 2014 for the treatment of ALK-mutated NSCLC in patients who are intolerant or develop resistance to crizotinib. In a clinical trial of ceritinib involving 130 patients with ALK-positive NSCLC, the majority of whom had experienced disease progression during crizotinib use, patients receiving at least 400 mg of ceritinib daily had an overall response rate of 56% and median PFS of seven months. Adverse effects commonly reported with the use of either drug include visual disturbances, gastrointestinal disorders (e.g., diarrhea), and liver enzyme abnormalities. The tyrosine kinase inhibitors crizotinib and ceritinib provide an effective treatment approach for patients with ALK-mutated NSCLC. Efficacy data for both crizotinib and ceritinib indicate improved response rates and PFS with the use of either drug as an alternative to standard chemotherapy. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  12. Anoxia Treatment for Delaying Skin Browning, Inhibiting Disease Development and Maintaining the Quality of Litchi Fruit

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2004-01-01

    Full Text Available Litchi fruit has a very short shelf life after harvest, so marketers and consumers alike desire longer periods of storage, transportation and distribution. To extend shelf life, anoxia treatments were used for the fruit. Litchi fruit were exposed to pure N2 for 0, 3, 6, 12 or 24 h. They were then kept individually in closed but vented containers for 6 days in the dark at 20 °C and 95–100 % relative humidity. Exposure of litchi fruit to N2 for 3 or 6 h markedly delayed skin browning, reduced rot development and maintained higher concentrations of total soluble solids, titratable acidity and ascorbic acid after 6 days of storage. Anoxia treatment for 24 h reduced browning index, but it accelerated disease development, compared to the control. Thus, a pre-storage pure N2 treatment for 3 or 6 h can be an effective means of reducing rotting while maintaining the physical quality of the fruit.

  13. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways

    Science.gov (United States)

    Spring, Bryan Q.; Bryan Sears, R.; Zheng, Lei Zak; Mai, Zhiming; Watanabe, Reika; Sherwood, Margaret E.; Schoenfeld, David A.; Pogue, Brian W.; Pereira, Stephen P.; Villa, Elizabeth; Hasan, Tayyaba

    2016-04-01

    Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)—a multikinase inhibitor—encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.

  14. Identification of mutations in Type IV glycogen storage disease

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.; Kishnani, P.; Chen, Y.T. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1994-09-01

    Type IV glycogen storage disease (GSD IV, Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE) activity, which results in the accumulation of glycogen with unbranched, long, outer chains in the tissues. The molecular basis of the disease is not known. We studied four patients with the disease; three with typical presentation of progressive liver cirrhosis and failure, and one with severe and fatal neonatal hypotonia and cardiomyopathy. Southern blot analysis with EcoRI or MspI did not detect gross DNA rearrangement, deletion or duplication in patients` glycogen branching enzyme genes. Northern analysis with total cellular RNAs isolated from skin fibroblast MI strains of three patients with typical clinical presentation showed a normal level and size (2.95 kb) of GBE mRNA hybridization band in two and absent mRNA hybridization band in the remaining one. The patient with atypical severe neonatal hypotonia demonstrated a less intense and smaller size (2.75 kb) of mRNA hybridization band. A 210 hp deletion from nucleotide sequence 873 to 1082 which causes 70 amino acids missing from amino acid sequence 262 to 331 was detected in all 17 clones sequenced from the fatal hypotonia patient. This deletion is located in the region which is highly conserved between prokaryotic, yeast and human GBE polypeptide sequences, and also includes the first of the four regions which constitute the catalytic active sites of most of amylolytic enzymes. A point mutation C-T (1633) which changes the amino acid from Arginine to Cystine was found in 19 of 20 cDNA clones from a patient with classical clinical presentation. This point mutation was unique to this patient and was not observed in three other patients or normal controls. This is the first report on the molecular basis of GSD IV and our data indicated the presence of extensive genetic heterogeneity in the disease.

  15. Liver adenomas in glycogen storage disease in children

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, F.; Tammam, S.; Chaumont, P.; Odievre, M.

    1984-02-01

    The authors report the ultrasound and angiographic features of adenomas occurring in children with glycogen storage disease. Seven cases from 83 patients were diagnosed either by ultrasound preoperative angiography or during surgery. The lesions appear on ultrasound as multiple rounded intrahepatic masses. Their degree of echogenicity as well of vascularity on angiography is highly variable. Ultrasound is the modality of choice in detecting adeynomas. No malignant degeneration was observed.

  16. Liver adenomas in glycogen storage disease in children

    International Nuclear Information System (INIS)

    Brunelle, F.; Tammam, S.; Chaumont, P.; Odievre, M.

    1984-01-01

    The authors report the ultrasound and angiographic features of adenomas occurring in children with glycogen storage disease. Seven cases from 83 patients were diagnosed either by ultrasound preoperative angiography or during surgery. The lesions appear on ultrasound as multiple rounded intrahepatic masses. Their degree of echogenicity as well of vascularity on angiography is highly variable. Ultrasound is the modality of choice in detecting adeynomas. No malignant degeneration was observed. (orig.)

  17. Preclinical Development of New Therapy for Glycogen Storage Diseases

    OpenAIRE

    Sun, Baodong; Brooks, Elizabeth D.; Koeberl, Dwight D.

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing t...

  18. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase.

    Science.gov (United States)

    Tong, Da-Peng; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2018-02-01

    This paper studied the inhibition of water extract of natural or baked black tea on the activity of α-amylase and α- glucosidase. Baking treatment was found to be one effective way to enhance the inhibition of black tea on both α-amylase and α- glucosidase, and IC 50 of water extract of baked black tea (BBTWE) were 1.213mg/mL and 4.190mg/mL, respectively, while IC 50 of water extract of black tea (BTWE) were 1.723mg/mL and 6.056mg/mL, respectively. This study further studied the mechanism of the effect of water extract on α-amylase and α- glucosidase using HPLC, circular dichroism, and synchronous fluorescence. HPLC analysis of tea polyphenols showed that the content of tea polyphenols with low polarity increased after baking. In addition, BBTWE had higer abilty on decreasing the hydrophobicity of tryptophan residues than BTWE for both α-amylase and α- glucosidase.The increase of α-helix proportion of α-amylase when treated with BBTWE was more obvious than that when treated with BTWE. In a word, thermal process of baked foods may be beneficial for tea polyphenols to reduce the rate of starch digestion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 microU/ml insulin and 11-13 mM glucose...... increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[14C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion...

  20. Dietary Management of the Ketogenic Glycogen Storage Diseases

    Directory of Open Access Journals (Sweden)

    Kaustuv Bhattacharya MBBS, MRCPCH, FRACP, MD

    2016-08-01

    Full Text Available The glycogen storage diseases (GSDs comprise a group of rare inherited disorders of glycogen metabolism. The hepatic glycogenolytic forms of these disorders are typically associated with hypoglycemia and hepatomegaly. For GSD I, secondary metabolic disturbances include fasting hyperlactatemia, hyperuricemia, and hyperlipidemia. Glycogen storage disease III is caused by reduced activity of the debrancher enzyme, GSD VI by phosphorylase, and GSD IX by phosphorylase kinase. It has often been reported that the non-GSD I group of disorders have a benign course. However, myopathy, cardiomyopathy, and cirrhosis have been reported significant clinical morbidities associated with GSD III and IX in particular. There have been a range of reports indicating high-protein diets, high-fat diets, medium chain triglyceride (MCT, modified Atkins diet, and therapeutic ketones as rescuing severe phenotypes of GSD III in particular. The etiology of these severe phenotypes has not been defined. Cases presented in this report indicate potential harm from excessive simple sugar use in GSD IX C. Review of the literature indicates that most interventions have reduced the glycemic load and provide alternate substrates for energy in rescue situations. Prevention of complications is most likely to occur with a mixed balanced low glycemic index diet potentially with relative increases in protein.

  1. Pregnancy in women with glycogen storage disease Ia and Ib.

    Science.gov (United States)

    Ferrecchia, Iris A; Guenette, Ginny; Potocik, Elizabeth A; Weinstein, David A

    2014-01-01

    Over the past 9 decades since glycogen storage disease (GSD) was described, an almost universally fatal disease has become one where women are living well into adulthood and choosing to bear children. This inborn error of metabolism associated with the creation and utilization of glycogen, when untreated, manifests with unrelenting hypoglycemia. The initiation of continuous feeds has improved outcomes, and later in 1982, the administration of intermittent doses of cornstarch in water provided a continuous supply of exogenous glucose. As metabolic control has improved, morbidity has decreased. Glycogen storage disease Ib has the same severity of hypoglycemia as GSD Ia, with associated immune disturbance. Prior to the introduction of granulocyte colony-stimulating factor (G-CSF), infections caused significant mortality in GSD Ib. Pregnancy in patients with GSD Ia and Ib poses unique challenges during gestation and delivery. Good metabolic control before conception and throughout pregnancy is directly related to successful outcomes. There is no nursing literature to date addressing perinatal and neonatal care in this population.

  2. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    Science.gov (United States)

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  3. Hypoxic treatment inhibits insulin-induced chondrogenesis of ATDC5 cells despite upregulation of DEC1

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    Chondrogenesis occurs in vivo in a hypoxic environment, in which the hypoxia inducible factor 1, HIF-1, plays a regulatory role, possibly mediated through the transcription factor DEC1. We have analyzed the effect of hypoxia (1% oxygen) alone and in combination with insulin on the chondrogenic...... differentiation of the mouse embryonic stem cell line ATDC5. Hypoxic treatment alone induced early chondrogenesis as evidenced by enhanced expression of aggrecan and collagen II, whereas hypoxic incubation of insulin-treated cells delayed and suppressed insulin-mediated early chondrogenesis and almost completely...... blocked hypertrophic differentiation. Paradoxically, the transcriptional activation of DEC1 was invariably enhanced by the hypoxic exposure....

  4. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response.

    Science.gov (United States)

    Gill, Kheshwant S; Fernandes, Philana; O'Donovan, Tracey R; McKenna, Sharon L; Doddakula, Kishore K; Power, Derek G; Soden, Declan M; Forde, Patrick F

    2016-08-01

    Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy. Copyright © 2016. Published by Elsevier B.V.

  5. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Science.gov (United States)

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen PH; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-01-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P endocannabinoids and related compounds in neuropathic pain states. PMID:19570201

  6. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  7. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats.

    Science.gov (United States)

    Egerton, Alice; Reid, Lee; McGregor, Sandie; Cochran, Susan M; Morris, Brian J; Pratt, Judith A

    2008-05-01

    We have previously demonstrated that subchronic (five daily administrations of 2.6 mg/kg PCP) and chronic intermittent administration of 2.6 mg/kg PCP to rats produces hypofrontality and other neurochemical changes akin to schizophrenia pathology (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003). We sought to determine whether behavioral alterations related to discrete aspects of schizophrenia are also induced by these PCP treatment regimes. Following administration of vehicle or PCP according to the protocols described above, rats were assessed for attentional set shifting ability, prepulse inhibition (PPI), or social interaction and the locomotor response to a challenge dose of amphetamine. Ability to shift attentional set was impaired 72 h after the last PCP administration following the subchronic and chronic intermittent treatment regimes. PPI was disrupted after each acute administration of PCP in animals under the subchronic treatment regime. However, PPI deficits were not sustained 72 h after the last of five daily administrations. In subchronic and chronic PCP treated animals, no change was found in social interaction behavior, and there was little change in baseline or amphetamine-stimulated locomotor activity, employed as an indicator of dopaminergic hyperfunction. The temporally distinct behavioral effects of these PCP treatment regimes suggest that PPI deficits relate directly to acute NMDA receptor antagonism, whereas the more enduring set shifting deficits relate to the longer term consequences of NMDA receptor blockade. Therefore, these subchronic and chronic PCP treatment regimes produce hypofrontality (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003) and associated prefrontal cortex-dependent deficits in behavioral flexibility which mirror core deficits in schizophrenia.

  8. Pharmacological treatments inhibiting levodopa-induced dyskinesias in MPTP-lesioned monkeys: brain glutamate biochemical correlates

    Directory of Open Access Journals (Sweden)

    Nicolas eMorin

    2014-08-01

    Full Text Available Antiglutamatergic drugs can relieve Parkinson’s disease (PD symptoms and decrease L-3,4-dihydroxyphenylalanine (L-DOPA-induced dyskinesias (LID. This review reports relevant studies investigating glutamate receptor subtypes in relation to motor complications in PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-lesioned monkeys. Antagonists of the ionotropic glutamate receptors, such as NMDA and AMPA receptors, display antidyskinetic activity in PD patients and animal models such as the MPTP monkey. Metabotropic glutamate 5 (mGlu5 receptor antagonists were shown to reduce the severity of LID in PD patients as well as in already dyskinetic non-human primates and to prevent the development of LID in de novo treatments in non-human primates. An increase in striatal post-synaptic NMDA, AMPA and mGlu5 receptors is documented in PD patients and MPTP monkeys with LID. This increase can be prevented in MPTP monkeys with the addition of a specific glutamate receptor antagonist to the L-DOPA treatment and also with drugs of various pharmacological specificities suggesting multiple receptor interactions. This is yet to be well documented for presynaptic mGlu4 and mGlu2/3 and offers additional new promising avenues.

  9. Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease*

    Science.gov (United States)

    DePaoli-Roach, Anna A.; Contreras, Christopher J.; Segvich, Dyann M.; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J.

    2015-01-01

    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. PMID:25416783

  10. Candidate Gene Polymorphisms and their Association with Glycogen Content in the Pacific Oyster Crassostrea gigas

    Science.gov (United States)

    She, Zhicai; Li, Li; Qi, Haigang; Song, Kai; Que, Huayong; Zhang, Guofan

    2015-01-01

    Background The Pacific oyster Crassostrea gigas is an important cultivated shellfish that is rich in nutrients. It contains high levels of glycogen, which is of high nutritional value. To investigate the genetic basis of this high glycogen content and its variation, we conducted a candidate gene association analysis using a wild population, and confirmed our results using an independent population, via targeted gene resequencing and mRNA expression analysis. Results We validated 295 SNPs in the 90 candidate genes surveyed for association with glycogen content, 86 of were ultimately genotyped in all 144 experimental individuals from Jiaonan (JN). In addition, 732 SNPs were genotyped via targeted gene resequencing. Two SNPs (Cg_SNP_TY202 and Cg_SNP_3021) in Cg_GD1 (glycogen debranching enzyme) and one SNP (Cg_SNP_4) in Cg_GP1 (glycogen phosphorylase) were identified as being associated with glycogen content. The glycogen content of individuals with genotypes TT and TC in Cg_SNP_TY202 was higher than that of individuals with genotype CC. The transcript abundance of both glycogen-associated genes was differentially expressed in high glycogen content and low glycogen content individuals. Conclusions This study identified three polymorphisms in two genes associated with oyster glycogen content, via candidate gene association analysis. The transcript abundance differences in Cg_GD1 and Cg_GP1 between low- and the high-glycogen content individuals suggests that it is possible that transcript regulation is mediated by variations of Cg_SNP_TY202, Cg_SNP_3021, and Cg_SNP_4. These findings will not only provide insights into the genetic basis of oyster quality, but also promote research into the molecular breeding of oysters. PMID:25951187

  11. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  12. The availability of water associated with glycogen during dehydration: a reservoir or raindrop?

    OpenAIRE

    King, Roderick F. G. J.; Jones, Ben; O’Hara, John P.

    2017-01-01

    Purpose This study evaluated whether glycogen-associated water is a protected entity not subject to normal osmotic homeostasis. An investigation into practical and theoretical aspects of the functionality of this water as a determinant of osmolality, dehydration, and glycogen concentration was undertaken. Methods In vitro experiments were conducted to determine the intrinsic osmolality of glycogen–potassium phosphate mixtures as would be found intra-cellularly at glycogen concentrations of 2%...

  13. Glycogen accumulation in normal and irradiated minced muscle autografts on frog gastrocnemius

    International Nuclear Information System (INIS)

    Malhotra, R.K.; Kaul, R.; Malhotra, N.

    1989-01-01

    Alterations induced in glycogen content and phosphorylase activity have been studied in normal and irradiated minced muscle autografts on frog gastrocnemius at days 1, 3, 5, 7, 10, 15 and 30 postgrafting. The changes observed in the glycogen content and phosphorylase activity conform to the degeneration and regeneration phases of muscle repair. An attempt has been made to explain the altered glycogen utilizing capacities of the frog skeletal muscle during its repair and regeneration. (author)

  14. The biochemical mechanism of hypoxia-induced mobilization of glycogen in cultured cancer cell

    OpenAIRE

    Mung, KL; Wong, NS

    2014-01-01

    BACKGROUND: Metabolic reprogramming is one of the strategies adopted by cancer cells to survive hypoxic conditions. Recent findings suggest that hypoxic cancer cells derive the energy that they need through glycolysis using glucose mobilized from intracellular glycogen reserve. Glycogen phosphorylase (GP) is the major rate-determining enzyme for glycogen mobilization in many normal cells under the condition of starvation or physical exercise. The lysosomal alpha-glucosidase (GAA) has also bee...

  15. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans

    OpenAIRE

    HOLDSWORTH, DAVID A.; COX, PETER J.; KIRK, TOM; STRADLING, HUW; IMPEY, SAMUEL G.; CLARKE, KIERAN

    2017-01-01

    INTRODUCTION: Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesises the ketone bodies, D-β-hydroxybutyrate and acetoacetate, from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase post-exercis...

  16. Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease.

    Directory of Open Access Journals (Sweden)

    Kristin M Taylor

    Full Text Available Pompe disease, also known as glycogen storage disease (GSD type II, is caused by deficiency of lysosomal acid α-glucosidase (GAA. The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1 to 2 years of age to a slower progressive course that causes significant morbidity and early mortality in children and adults. The aim of this study is to better understand the biochemical consequences of glycogen accumulation in the Pompe mouse. We evaluated glycogen metabolism in heart, triceps, quadriceps, and liver from wild type and several strains of GAA(-/- mice. Unexpectedly, we observed that lysosomal glycogen storage correlated with a robust increase in factors that normally promote glycogen biosynthesis. The GAA(-/- mouse strains were found to have elevated glycogen synthase (GS, glycogenin, hexokinase, and glucose-6-phosphate (G-6-P, the allosteric activator of GS. Treating GAA(-/- mice with recombinant human GAA (rhGAA led to a dramatic reduction in the levels of glycogen, GS, glycogenin, and G-6-P. Lysosomal glycogen storage also correlated with a dysregulation of phosphorylase, which normally breaks down cytoplasmic glycogen. Analysis of phosphorylase activity confirmed a previous report that, although phosphorylase protein levels are identical in muscle lysates from wild type and GAA(-/- mice, phosphorylase activity is suppressed in the GAA(-/- mice in the absence of AMP. This reduction in phosphorylase activity likely exacerbates lysosomal glycogen accumulation. If the dysregulation in glycogen metabolism observed in the mouse model of Pompe disease also occurs in Pompe patients, it may contribute to the observed broad spectrum of disease severity.

  17. Involvement of glucokinase translocation in the mechanism by which resorcinol inhibits glycolysis in hepatocytes.

    OpenAIRE

    Agius, L

    1997-01-01

    Proglycosyn and resorcinol stimulate glycogen synthesis and inhibit glycolysis in hepatocytes. The former effect is attributed to inactivation of phosphorylase mediated by glucuronidated metabolites. This study investigated the mechanism by which resorcinol inhibits glycolysis. Resorcinol (150 microM) inhibited glycolysis in hepatocytes incubated with glucose (15-35 mM) but not with dihydroxyacetone (10 mM). The inhibition of glycolysis at elevated glucose concentration was associated with in...

  18. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  19. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase.

    Science.gov (United States)

    Maile, C A; Hingst, J R; Mahalingan, K K; O'Reilly, A O; Cleasby, M E; Mickelson, J R; McCue, M E; Anderson, S M; Hurley, T D; Wojtaszewski, J F P; Piercy, R J

    2017-01-01

    Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2+2a and significantly higher AMPKα1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower K m for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Comparison of Alkaline Water and Mediterranean Diet vs Proton Pump Inhibition for Treatment of Laryngopharyngeal Reflux.

    Science.gov (United States)

    Zalvan, Craig H; Hu, Shirley; Greenberg, Barbara; Geliebter, Jan

    2017-10-01

    Laryngopharyngeal reflux (LPR) is a common disorder with protean manifestations in the head and neck. In this retrospective study, we report the efficacy of a wholly dietary approach using alkaline water, a plant-based, Mediterranean-style diet, and standard reflux precautions compared with that of the traditional treatment approach of proton pump inhibition (PPI) and standard reflux precautions. To determine whether treatment with a diet-based approach with standard reflux precautions alone can improve symptoms of LPR compared with treatment with PPI and standard reflux precautions. This was a retrospective medical chart review of 2 treatment cohorts. From 2010 to 2012, 85 patients with LPR that were treated with PPI and standard reflux precautions (PS) were identified. From 2013 to 2015, 99 patients treated with alkaline water (pH >8.0), 90% plant-based, Mediterranean-style diet, and standard reflux precautions (AMS) were identified. The outcome was based on change in Reflux Symptom Index (RSI). Recorded change in the RSI after 6 weeks of treatment. Of the 184 patients identified in the PS and AMS cohorts, the median age of participants in each cohort was 60 years (95% CI, 18-82) and 57 years (95% CI, 18-93), respectively (47 [56.3%] and 61 [61.7%] were women, respectively). The percentage of patients achieving a clinically meaningful (≥6 points) reduction in RSI was 54.1% in PS-treated patients and 62.6% in AMS-treated patients (difference between the groups, 8.05; 95% CI, -5.74 to 22.76). The mean reduction in RSI was 27.2% for the PS group and 39.8% in the AMS group (difference, 12.10; 95% CI, 1.53 to 22.68). Our data suggest that the effect of PPI on the RSI based on proportion reaching a 6-point reduction in RSI is not significantly better than that of alkaline water, a plant-based, Mediterranean-style diet, and standard reflux precautions, although the difference in the 2 treatments could be clinically meaningful in favor of the dietary approach. The

  1. A novel mutation in the glycogen synthase 2 gene in a child with glycogen storage disease type 0

    Science.gov (United States)

    2010-01-01

    Background Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver. Case Presentation Biochemical evaluation as well as direct sequencing of exons and exon-intron boundary regions of the GYS2 gene were performed in a patient presenting fasting hypoglycemia and postprandial hyperglycemia and her parents. The patient was found to be compound heterozygous for one previously reported nonsense mutation (c.736 C>T; R243X) and a novel frameshift mutation (966_967delGA/insC) which introduces a stop codon 21 aminoacids downstream from the site of the mutation that presumably leads to loss of 51% of the COOH-terminal part of the protein. The glycemia and lactatemia of the parents after an oral glucose tolerance test were evaluated to investigate a possible impact of the carrier status on the metabolic profile. The mother, who presented a positive family history of type 2 diabetes, was classified as glucose intolerant and the father, who did not exhibit metabolic changes after the glucose overload, had an antecedent history of hypoglycemia after moderate alcohol ingestion. Conclusion The current results expand the spectrum of known mutations in GYS2 and suggest that haploinsufficiency could explain metabolic abnormalities in heterozygous carriers in presence of predisposing conditions. PMID:20051115

  2. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    Science.gov (United States)

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  3. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    Science.gov (United States)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  4. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    Science.gov (United States)

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  5. Human brain glycogen content and metabolism: implications on its role in brain energy metabolism

    OpenAIRE

    Oz, Gülin; Seaquist, Elizabeth R; Kumar, Anjali; Criego, Amy B; Benedict, Luke E; Rao, Jyothi P; Henry, Pierre-Gilles; Van De Moortele, Pierre-Francois; Gruetter, Rolf

    2007-01-01

    The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brai...

  6. Mass spectrometric quantification of glycogen to assess primary substrate accumulation in the Pompe mouse.

    Science.gov (United States)

    Fuller, Maria; Duplock, Stephen; Turner, Christopher; Davey, Philippa; Brooks, Doug A; Hopwood, John J; Meikle, Peter J

    2012-02-15

    Glycogen storage in the α-glucosidase knockout((6neo/6neo)) mouse recapitulates the biochemical defect that occurs in the human condition; as such, this mouse serves as a model for the inherited metabolic deficiency of lysosomal acid α-glucosidase known as Pompe disease. Although this model has been widely used for the assessment of therapies, the time course of glycogen accumulation that occurs as untreated Pompe mice age has not been reported. To address this, we developed a quantitative method involving amyloglucosidase digestion of glycogen and quantification of the resulting free glucose by liquid chromatography/electrospray ionization-tandem mass spectrometry. The method was sensitive enough to measure as little as 0.1 μg of glycogen in tissue extracts with intra- and interassay coefficients of variation of less than 12%. Quantification of glycogen in tissues from Pompe mice from birth to 26 weeks of age showed that, in addition to the accumulation of glycogen in the heart and skeletal muscle, glycogen also progressively accumulated in the brain, diaphragm, and skin. Glycogen storage was also evident at birth in these tissues. This method may be particularly useful for longitudinal assessment of glycogen reduction in response to experimental therapies being trialed in this model. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans.

    Science.gov (United States)

    Roberts, Paul A; Fox, John; Peirce, Nicholas; Jones, Simon W; Casey, Anna; Greenhaff, Paul L

    2016-08-01

    Muscle glycogen availability can limit endurance exercise performance. We previously demonstrated 5 days of creatine (Cr) and carbohydrate (CHO) ingestion augmented post-exercise muscle glycogen storage compared to CHO feeding alone in healthy volunteers. Here, we aimed to characterise the time-course of this Cr-induced response under more stringent and controlled experimental conditions and identify potential mechanisms underpinning this phenomenon. Fourteen healthy, male volunteers cycled to exhaustion at 70 % VO2peak. Muscle biopsies were obtained at rest immediately post-exercise and after 1, 3 and 6 days of recovery, during which Cr or placebo supplements (20 g day(-1)) were ingested along with a prescribed high CHO diet (37.5 kcal kg body mass(-1) day(-1), >80 % calories CHO). Oral-glucose tolerance tests (oral-GTT) were performed pre-exercise and after 1, 3 and 6 days of Cr and placebo supplementation. Exercise depleted muscle glycogen content to the same extent in both treatment groups. Creatine supplementation increased muscle total-Cr, free-Cr and phosphocreatine (PCr) content above placebo following 1, 3 and 6 days of supplementation (all P glycogen content noticeably above placebo after 1 day of supplementation (P glycogen super-compensation, and demonstrates this occurred during the initial 24 h of post-exercise recovery (when muscle total-Cr had increased by <10 %). This marked response ensued without apparent treatment differences in muscle insulin sensitivity (oral-GTT, muscle GLUT4 mRNA), osmotic stress (muscle c-fos and HSP72 mRNA) or muscle cell volume (muscle water content) responses, such that another mechanism must be causative.

  8. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region: functional role in calcium/calpain signaling.

    Science.gov (United States)

    Azoulay-Alfaguter, Inbar; Yaffe, Yakey; Licht-Murava, Avital; Urbanska, Malgorzata; Jaworski, Jacek; Pietrokovski, Shmuel; Hirschberg, Koret; Eldar-Finkelman, Hagit

    2011-04-15

    Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway.

  9. Response inhibition and psychomotor speed during methadone maintenance: impact of treatment duration, dose, and sleep deprivation.

    Science.gov (United States)

    Bracken, B K; Trksak, G H; Penetar, D M; Tartarini, W L; Maywalt, M A; Dorsey, C M; Lukas, S E

    2012-09-01

    In opiate-dependent individuals, abstinence results in deficits in cognitive functioning, which may be exacerbated by medication-associated sleep disruption. To assess cognitive function and the influence of sleep deprivation (SD), 14 healthy control (HC) and 22 methadone maintained (MM) participants completed the continuous performance task (CPT) after a baseline night, a night of total SD, and two recovery sleep nights. The digit symbol substitution task (DSST) was administered at bedtime and in the morning. Secondary analyses separated MM participants into short- (effect of SD. Across all days MM participants had more errors of omission, fewer correct responses, and slower reaction times (RTs) on the CPT, and fewer accurate substitutions on the evening and morning DSST. Short-term MM participants exhibited slower RTs on the CPT, and fewer correct substitutions on the evening DSST compared to long-term MM participants. Low-dose MM participants had slower RTs on the CPT than HCs and high-dose MM participants. These data demonstrate that methadone-maintained individuals exhibit poorer performance on tasks of psychomotor speed and selective attention/impulsivity, but with longer-term treatment, performance appears to return toward control levels. Furthermore, while one day of SD was enough to alter subjective reports of sleep quality, cognitive function may be more resilient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Glycogen and proximate content of white shrimp fed on different carbohydrate level and feeding frequency

    Directory of Open Access Journals (Sweden)

    , Zainuddin

    2015-10-01

    Full Text Available ABSTRACT White shrimp Litopenaeus vannamei is one of penaeid shrimp which can be cultured either in traditional and advanced technology scale. One problem that commonly faced by pond farmer is the high price of feed with high protein content. This research was to identify the optimal level of carbohydrate and feeding frequency on glycogen deposit and chemical composition of white shrimp juvenile. Research used factorial completely randomized design with two factors in triplicates. Treatments were factor A, carbohydrate level in feed respectively A1 (30%, A2 (37%, A3 (44%, A4 (50%, and factor B daily feeding frequency respectively B1 (twice, B2 (four times, and B3 (six times respectively. White shrimp used had an initial average body weight of 0.3 g/shrimp. Feeding level was 10% of shrimp body weight. Results showed that both factors, carbohydrate level in feed, feeding frequency and their interactions were not significantly different on glycogen deposit of white shrimp juvenile. Analysis result on chemical compositions of white shrimp juvenile consisted of protein, lipid, nitrogen-free extract, crude fiber, ash, and energy were generally increased after treatments. Keywords: glycogen deposit, feeding frequency, chemical composition, carbohydrate level ABSTRAK Udang vaname Litopenaeus vannamei merupakan salah satu jenis udang penaeid yang dapat dibudidayakan baik dalam skala teknologi tradisional maupun skala teknologi maju. Salah satu masalah yang dihadapi para petani tambak adalah tingginya harga pakan yang disebabkan karena tingginya kandungan protein pakan. Penelitian ini bertujuan untuk menguji efek pemberian pakan dengan kadar karbohidrat dan frekuensi pemberian berbeda terhadap deposit glikogen dan komposisi kimia tubuh juvenil udang vanamei. Penelitian menggunakan desain rancangan acak lengkap pola faktorial dengan dua faktor dan setiap faktor diberi masing-masing tiga ulangan. Perlakuan yang diuji adalah faktor A, kadar karbohidrat

  12. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel.

    Science.gov (United States)

    Coda, Alvin B; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C; Del Rosso, James Q; Gallo, Richard L

    2013-10-01

    Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel

    Science.gov (United States)

    Coda, Alvin B.; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C.; Del Rosso, James Q.; Gallo, Richard L.

    2014-01-01

    Background Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. Objective We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Methods Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. Results AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Limitations Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. Conclusions These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. PMID:23871720

  14. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation.

    Science.gov (United States)

    Wang, Zihao; Pandey, Akhilesh; Hart, Gerald W

    2007-08-01

    O-GlcNAcylation on serine and threonine side chains of nuclear and cytoplasmic proteins is dynamically regulated in response to various environmental and biological stimuli. O-GlcNAcylation is remarkably similar to O-phosphorylation and appears to have a dynamic interplay with O-phosphate in cellular regulation. A systematic glycoproteomics analysis of the affects of inhibiting specific kinases on O-GlcNAcylation should help reveal both the global and specific dynamic relationships between these two abundant post-translational modifications. Here we report the O-GlcNAc perturbations in response to inhibition of glycogen synthase kinase-3 (GSK-3), a pivotal kinase involved in many signaling pathways. By combining immunoaffinity chromatography and SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative mass spectrometry, we identified 45 potentially O-GlcNAcylated proteins. Quantitative measurements indicated that at least 10 proteins had an apparent increase of O-GlcNAcylation upon GSK-3 inhibition by lithium, whereas surprisingly 19 other proteins showed decreases. O-GlcNAcylation changes on a subset of the proteins were confirmed by follow-up experiments. By combining a new O-GlcNAc peptide enrichment method and beta-elimination followed by Michael addition with DTT, we also mapped the O-GlcNAc site (Ser-55) of vimentin, which showed an apparent increase of O-GlcNAcylation upon GSK-3 inhibition. Based on the MS data, we further investigated potential roles of O-GlcNAc on host cell factor-1, a transcription co-activator, and showed that dynamic regulation of O-GlcNAcylation on host cell factor-1 influenced its subcellular distribution. Taken together, these data indicated the complex interplay between phosphorylation and O-GlcNAcylation that occurs within signaling networks.

  15. PEDF expression is inhibited by insulin treatment in adipose tissue via suppressing 11β-HSD1.

    Directory of Open Access Journals (Sweden)

    Yinli Zhou

    Full Text Available Early intensive insulin therapy improves insulin sensitivity in type 2 diabetic patients; while the underlying mechanism remains largely unknown. Pigment epithelium-derived factor (PEDF, an anti-angiogenic factor, is believed to be involved in the pathogenesis of insulin resistance. Here, we hypothesize that PEDF might be down regulated by insulin and then lead to the improved insulin resistance in type 2 diabetic patients during insulin therapy. We addressed this issue by investigating insulin regulation of PEDF expression in diabetic conditions. The results showed that serum PEDF was reduced by 15% in newly diagnosed type 2 diabetic patients after insulin therapy. In adipose tissue of diabetic Sprague-Dawley rats, PEDF expression was associated with TNF-α elevation and it could be decreased both in serum and in adipose tissue by insulin treatment. In adipocytes, PEDF was induced by TNF-α through activation of NF-κB. The response was inhibited by knockdown and enhanced by over expression of NF-κB p65. However, PEDF expression was indirectly, not directly, induced by NF-κB which promoted 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1 expression in adipocytes. 11β-HSD1 is likely to stimulate PEDF expression through production of active form of glucocorticoids as dexamethasone induced PEDF expression in adipose tissue. Insulin inhibited PEDF by down-regulating 11β-HSD1 expression. The results suggest that PEDF activity is induced by inflammation and decreased by insulin through targeting 11β-HSD1/glucocorticoid pathway in adipose tissue of diabetic patients.

  16. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  17. Inhibitory effect and mechanism of azo dyes on anaerobic methanogenic wastewater treatment: Can redox mediator remediate the inhibition?

    Science.gov (United States)

    Dai, Ruobin; Chen, Xiaoguang; Luo, Ying; Ma, Puyue; Ni, Shengsheng; Xiang, Xinyi; Li, Gang

    2016-11-01

    Inhibitory effect of azo dyes on anaerobic methanogenic wastewater treatment (AMWT) has been studied mainly focusing on biological toxicity in the batch test with simulated sole co-substrate. Detailed information on inhibitory effect and mechanism of azo dyes during the long-term operation with real complex co-substrate is limited. Moreover, whether redox mediator (RM) could remediate the inhibition is still unclear in previous studies, especially under the complex scenario. In this study, the real textile wastewater with alternative concentrations of azo dyes (0-600 mg/L) were used to operate a lab-scale high-rate anaerobic methanogenic bioreactor for 127 days, and 50 μM anthraquinone-2-sulfonate (AQS) as RM was added at the last period of operation. Azo dyes with concentration of 600 mg/L could cause significant inhibition on overall (decolorizing and methanogenic) performance of AMWT. Specific methanogenic activity assays showed that acetoclastic methanogens was more susceptible to high concentration azo dyes than hydrogenotrophic methanogens. The spatial distribution of extracellular polymeric substance in the anaerobic granular sludge (AGS) showed that the high biological toxicity of azo dyes was mainly attributed to enrichment effect in tightly bound-EPS (TB-EPS). The channels of AGS was clogged by azo dyes, which was evidenced by the hard release of aromatic amines in EPSs as well as decreased porosity of AGS and scanning electron microscope images. Meanwhile, the settling ability, particle size and strength of AGS all deteriorated after azo dyes concentration exceeded 450 mg/L. The dosing of AQS could mostly remediate overall performance of the bioreactor even if the recovery of acetoclastic methanogens was slow. However, except for the porosity with a part of recovery, physical characteristics of AGS hardly recovered, and washout of sludge from the bioreactor was still happening. It suggested that additional attention should be paid to prevent sludge

  18. Rancidity inhibition study in frozen whole mackerel (scomber scombrus by a previous plant extract treatment.

    Directory of Open Access Journals (Sweden)

    Aubourg, Santiago P.

    2005-09-01

    Full Text Available The effect of flaxseeds (Linum usitatissimum on rancidity development in frozen whole mackerel (Scomber scombrus was studied. For it, fresh mackerel were dipped in flaxseeds aqueous extract during 60 min, frozen at –80 ºC during 24 hours and kept frozen (–20 ºC up to 12 months. Sampling was carried out on the initial material and at months 1, 3, 5, 7, 9 and 12 of frozen storage at –20 ºC. A parallel experiment with non treated fish was carried out in the same conditions. Rancidity development was measured by several biochemical indices (free fatty acids, peroxides, conjugated dienes and trienes, secondary oxidation products and lipoxygenase activity and complemented by the sensory analysis (skin, flesh odour, consistency and flesh appearance. As a result of the previous antioxidant treatment, peroxides showed to breakdown faster (pSe ha estudiado el efecto del lino (Linum usitatissimum en el desarrollo de rancidez en caballa entera congelada (Scomber scombrus. Para ello, caballas frescas fueron sumergidas en extractos acuosos de semillas de lino durante 60 min, congeladas a -80 ºC durante 24 h y mantenidas congeladas ( -20 ºC durante 12 meses. Se tomaron muestras del material inicial y tras 1, 3, 5, 7, 9 y 12 meses de congelación a -20 ºC . Un experimento paralelo con pescado no tratado fue llevado acabo en las mismas condiciones. El desarrollo de la rancidez fue medido por varios índices bioquímicos (ácidos grasos libres, peróxidos, dienos y trienos conjugados, productos secundarios de oxidación y actividad lipoxigenasa y completado con análisis sensorial (piel, olor de la carne, consistencia y apariencia de la carne. Como resultado del tratamiento antioxidante, los peróxidos se degradaron más rápidos (p < 0.05 después del mes 7, y por tanto, contenidos mayores (p < 0.05 de dienos y trienos conjugados pudieron ser detectados en el pescado tratado. El tratamiento antioxidante también condujo a un

  19. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  20. Comparison of Methods to Assay Liver Glycogen Fractions: The Effects of Starvation.

    Science.gov (United States)

    Mojibi, Nastaran; Rasouli, Mehdi

    2017-03-01

    There are several methods to extract and measure glycogen in animal tissues. Glycogen is extracted with or without homogenization by using cold Perchloric Acid (PCA). Three procedures were compared to determine glycogen fractions in rat liver at different physiological states. The present study was conducted on two groups of rats, one group of five rats were fed standard rodent laboratory food and were marked as controls, and another five rats were starved overnight (15 hour) as cases. The glycogen fractions were extracted and measured by using three methods: classical homogenization, total-glycogen-fractionation and homogenization-free protocols. The data of homogenization methods showed that following 15 hour starvation, total glycogen decreased (36.4±1.9 vs. 27.7±2.5, p=0.01) and the change occurred entirely in Acid Soluble Glycogen (ASG) (32.0±1.1 vs. 22.7±2.5, p=0.01), while Acid Insoluble Glycogen (AIG) did not change significantly (4.9±0.9 vs. 4.6±0.3, p=0.7). Similar results were achieved by using the method of total-glycogen-fractionation. Homogenization-free procedure indicated that ASG and AIG fractions compromise about 2/3 and 1/3 of total glycogen and the changes occurred in both ASG (24.4±2.6 vs. 16.7±0.4, pglycogen and is more metabolically active form. The same results were obtained by using 'total-glycogen-fractionation method'. 'Homogenization-free method' gave different results, because AIG has been contaminated with ASG fraction. In both 'homogenization' and 'homogenization-free' methods ASG must be extracted at least twice to prevent contamination of AIG with ASG.

  1. Effect of D-tagatose on liver weight and glycogen content of rats.

    Science.gov (United States)

    Bär, A; Lina, B A; de Groot, D M; de Bie, B; Appel, M J

    1999-04-01

    D-tagatose is an incompletely absorbed ketohexose (stereoisomer of D-fructose) which has potential as an energy-reduced alternative sweetener. In an earlier 90-day toxicity study, rats fed diets with 10, 15 and 20% D-tagatose exhibited increased liver weights, but no histopathological alterations. To determine whether there might be any toxicological relevance to this effect, three studies were conducted in male, adult Sprague-Dawley rats. In the first study, four groups received Purina diet (group A), Purina diet with 20% D-tagatose (group B), SDS diet (group C), or SDS diet with 20% D-tagatose (group D). For groups A and B, the 28-day treatment period was followed by a 14-day recovery period (Purina diet). Food remained available to all animals until the time of sacrifice. Groups of 10 rats were killed on days 14 (groups A and B), 28 (groups A-D), and 42 (groups A and B). Body weights, as well as weights of wet and lyophilized livers, were determined. The lyophilized livers collected on day 28 from groups A and B were analyzed for protein, total lipid, glycogen, DNA, and residual moisture. By day 14, relative wet liver weights had increased by 23% in group B. On day 28, the increase was 38% in group B and 44% in group D. At the end of the recovery period, the increase had diminished to 14% in group B. On day 28, liver glycogen content (in %) was significantly increased, and liver protein, lipid, and DNA contents were significantly decreased in group B compared to group A. Total amounts per liver of protein, total lipid, glycogen, and DNA were significantly increased. In the second study, four groups of 20 rats each received SDS diet with 0, 5, 10, and 20% D-tagatose for 29-31 days. The food was available until the time of sacrifice. At termination, plasma was obtained from 10 rats/group for clinicochemical analyses. Five rats/group were subjected to whole-body perfusion, followed by processing of livers for qualitative and quantitative electron microscopic

  2. Pregnancies in Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Martens, Daniëlle HJ; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A; Merkel, Martin; Sauer, Pieter JJ; Smit, G Peter A

    2013-01-01

    Objective Reports on pregnancies in women with GSD-Ia are scarce. Due to improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies focusing on dietary treatment, biochemical parameters and GSD-Ia complications. Study Design Carbohydrate requirements (mg/kg/min), triglyceride and uric acid levels, liver ultrasonography and creatinine clearance were investigated before, during and after pregnancy. Data of the newborns were obtained from the records. Results In the first trimester, a significant increase in carbohydrate requirements was observed (p=0,007). Most patients had acceptable triglyceride and uric acid levels during pregnancy. No increase in size/number of adenomas was seen. In 3/4 patients, a decrease in GFR was observed after pregnancy. In three pregnancies, lactic acidosis developed during delivery with severe multi-organ failure in one. All but one of the children are healthy and show good psychomotor development. Conclusion Successful pregnancies are possible in GSD-Ia patients, although specific GSD-Ia related risks are present. PMID:18241814

  3. [Renal involvement in glycogen storage disease type 1: Practical issues].

    Science.gov (United States)

    Ben Chehida, Amel; Bensmaïl, Takoua; Ben Rehouma, Faten; Ben Abdelaziz, Rim; Azzouz, Hatem; Boudabbous, Hela; Slim Abdelmoula, Mohamed; Abdelhak, Sonia; Kaabachi, Naziha; Ben Turkia, Hadhami; Tebib, Néji

    2015-07-01

    To investigate risk factors of renal complications in glycogen storage disease type I, in order to identify practical implications for renal preservation. A retrospective study of 38 patients with glycogen storage disease type I. The patients studied were 8.6 years old in average (1.5 to 22 years) and were followed during 7.4 ± 4.5 years. Hypercalciuria was detected in 23 patients and was related to acidosis (P=0.028), higher lactate levels (5.9 ± 3.5 versus 3.7 ± 1.7 mmol/L; P=0.013) and smaller height (-2.1 ± 1.5 SD versus -0.8 ± 1.5 SD; P=0.026). Urolithiasis was diagnosed in 7 cases. Glomerular disease (19/38) was more frequent in cases with severe hypertriglyceridemia (P=0.042) and occurred at an older age (P=0.007). Microalbuminuria occurred in 15/31 cases; ACE inhibitors were prescribed in only 8 cases. The frequency of renal complications did not differ according to the diet group (continuous enteral feeding or uncooked starch). Logistic regression concluded as risk factors: lactic acidosis for tubular disease and age>10 years for glomerular disease. Renal involvement is common in glycogen storage disease type I patients. Tubular abnormalities are precocious, related to lactic acidosis and may be detected by monitoring of urinary calcium. Glomerular hyperfiltration is the first stage of a progressive glomerular disease and is related to age. Practical implications for renal preservation are discussed based on our results and literature. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  4. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...... groups of rats. These changes may partly explain the demonstrated training-induced increase in glucose tolerance. None of the findings could be ascribed to differences in foold intake or body weight....

  5. CT of the liver in glycogen storage disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takayuki [Tohoku Univ., Sendai (Japan). School of Medicine; Ishibashi, Tadashi; Tamura, Ryo; Takahashi, Shoki

    1999-12-01

    We evaluated the density of the liver and focal hepatic lesions in 13 cases of glycogen storage disease by CT scans. The liver parenchyma showed various density on precontrast CT scans. Multiple focal lesions were demonstrated in four cases. We diagnosed as adenomas in three cases. Most adenomas were well enhanced on postcontrast CT scans. Spontaneous regression with/without intratumoral hemorrhage was noted. One lesion enlarged and was diagnosed as hepatocellular carcinoma pathologically. MRI with superparamagnetic iron oxide was more useful rather than CT. (author)

  6. CT of the liver in glycogen storage disease

    International Nuclear Information System (INIS)

    Yamada, Takayuki; Ishibashi, Tadashi; Tamura, Ryo; Takahashi, Shoki

    1999-01-01

    We evaluated the density of the liver and focal hepatic lesions in 13 cases of glycogen storage disease by CT scans. The liver parenchyma showed various density on precontrast CT scans. Multiple focal lesions were demonstrated in four cases. We diagnosed as adenomas in three cases. Most adenomas were well enhanced on postcontrast CT scans. Spontaneous regression with/without intratumoral hemorrhage was noted. One lesion enlarged and was diagnosed as hepatocellular carcinoma pathologically. MRI with superparamagnetic iron oxide was more useful rather than CT. (author)

  7. Glycogen as a biodegradable construction nanomaterial for in vivo use

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Sedláček, Ondřej; Bogomolova, Anna; Vetrík, Miroslav; Jirák, D.; Kovář, J.; Kučka, Jan; Bals, S.; Turner, S.; Štěpánek, Petr; Hrubý, Martin

    2012-01-01

    Roč. 12, č. 12 (2012), s. 1731-1738 ISSN 1616-5187 R&D Projects: GA ČR GA202/09/2078; GA ČR GAP108/12/0640; GA ČR GAP208/10/1600; GA ČR GPP207/10/P054 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : nanoparticles * in vivo imaging * glycogen Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.742, year: 2012

  8. Modified glycogen as construction material for functional biomimetic microfibers

    Czech Academy of Sciences Publication Activity Database

    Rabyk, Mariia; Hrubý, Martin; Vetrík, Miroslav; Kučka, Jan; Proks, Vladimír; Pařízek, Martin; Konefal, Rafal; Krist, Pavel; Chvátil, David; Bačáková, Lucie; Šlouf, Miroslav; Štěpánek, Petr

    2016-01-01

    Roč. 152, 5 November (2016), s. 271-279 ISSN 0144-8617 R&D Projects: GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A; GA MZd(CZ) NV15-32497A; GA MŠk(CZ) LM2015064 Institutional support: RVO:61389013 ; RVO:67985823 ; RVO:61389005 Keywords : glycogen * fibers * irradiation crosslinking Subject RIV: FR - Pharmacology ; Medidal Chemistry; FJ - Surgery incl. Transplants (FGU-C); BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 4.811, year: 2016

  9. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Febbraio, Mark A; Steensberg, Adam; Walsh, Rory

    2002-01-01

    To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects then...

  10. Changing shapes of glycogen-autophagy nexus in neurons: Perspective from a rare epilepsy

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Singh

    2015-02-01

    Full Text Available In brain, glycogen metabolism is predominantly restricted to astrocytes but it also indirectly supports neuronal functions. Increased accumulation of glycogen in neurons is mysteriously pathogenic triggering neurodegeneration as seen in ‘Lafora disease’ and in other transgenic animal models of neuronal glycogen accumulation. Lafora disease is a fatal neurodegenerative disorder with excessive glycogen inclusions in neurons. Autophagy, a pathway for bulk degradation of obsolete cellular constituents also degrades metabolites like lipid and glycogen. Recently, defects in this pathway emerged as a plausible reason for glycogen accumulation in neurons in Lafora disease, although some contradictions prevail. Albeit surprising, a reciprocal regulation of autophagy by glycogen in neurons has also just been proposed. Notably, increasing evidences of interaction between proteins of autophagy and glycogen metabolism from diverse model systems indicate a conserved, dynamic and regulatory cross-talk between these two pathways. Concerning these findings, we herein provide certain models for the molecular basis of this cross-talk and discuss its potential implication in the pathophysiology of Lafora disease.

  11. Cinnamon increases liver glycogen in an animal model of insulin resistance

    Science.gov (United States)

    Cinnamon, and aqueous polyphenol extracts of cinnamon, improve insulin sensitivity in vitro, and in animal and human studies. Given the relationship between the glucose/insulin system and glycogen metabolism, the objective of this study was to determine the effects of cinnamon on glycogen synthesis...

  12. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    Science.gov (United States)

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-06-01

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  13. An exploratory comparison of vaginal glycogen and Lactobacillus levels in pre- and post-menopausal women

    Science.gov (United States)

    Mirmonsef, Paria; Modur, Sharada; Burgad, Derick; Gilbert, Douglas; Golub, Elizabeth T.; French, Audrey L.; McCotter, Kerrie; Landay, Alan L.; Spear, Greg T.

    2014-01-01

    Objective Previous studies have suggested that glycogen expression in vaginal epithelium decreases at menopause, resulting in reduced levels of lactobacilli. However, free glycogen in genital fluids and its relationship to Lactobacillus levels has not been compared in pre- and post-menopausal women. Methods 82 cervico-vaginal lavage samples were collected at different phases of the menstrual cycle from 11 pre-menopausal (4 HIV-uninfected and 7 HIV-infected) and 12 post-menopausal (7 HIV-uninfected and 5 HIV-infected) women over a 1–3 month period. Free glycogen was quantified in genital fluid. Lactobacillus levels were quantified by real time PCR. Estrogen and progesterone levels in blood were determined by ELISA. Results Free glycogen was detected in both pre- and post-menopausal women. Across all samples, those from post-menopausal women had significantly lower levels of free glycogen than those from pre-menopausal women (median 0.002 vs. 0.065 µg/µl, respectively; p = 0.03). Lactobacillus levels correlated positively with free glycogen in both pre- (Spearman r=0.68, p Free glycogen was detected in both pre- and post-menopausal women and correlated with Lactobacillus in both groups. These results point to the complexity of the relationship between menopause and vaginal microbiota and indicate that more careful studies of the role played by glycogen are warranted. PMID:25535963

  14. "Fluorescent glycogen" formation with sensibility for in vivo and in vitro detection.

    Science.gov (United States)

    Louzao, M Carmen; Espiña, Begoña; Vieytes, Mercedes R; Vega, Felix V; Rubiolo, Juan A; Baba, Otto; Terashima, Tatsuo; Botana, Luis M

    2008-08-01

    There are presently many methods of detecting complex carbohydrates, and particularly glycogen. However most of them require radioisotopes or destruction of the tissue and hydrolysis of glycogen to glucose. Here we present a new method based on the incorporation of 2-NBDG (2-{N-[7-nitrobenz-2-oxa-1, 3-diazol 4-yl] amino}-2-deoxyglucose), a D-glucose fluorescent derivative, into glycogen. Two kinds of approaches were carried out by using Clone 9 rat hepatocytes as a cellular model; (1) Incubation of cell lysates with 2-NBDG, carbohydrate precipitation in filters and measurement of fluorescence in a microplate reader (2) Incubation of living hepatocytes with 2-NBDG and recording of fluorescence images by confocal microscopy. 2-NBDG labeled glycogen in both approaches. We confirmed this fact by comparison to the labeling obtained with a specific monoclonal anti-glycogen antibody. Also drugs that trigger glycogen synthesis or degradation induced an