WorldWideScience

Sample records for treatment delivery verification

  1. Gated Treatment Delivery Verification With On-Line Megavoltage Fluoroscopy

    International Nuclear Information System (INIS)

    Tai An; Christensen, James D.; Gore, Elizabeth; Khamene, Ali; Boettger, Thomas; Li, X. Allen

    2010-01-01

    Purpose: To develop and clinically demonstrate the use of on-line real-time megavoltage (MV) fluoroscopy for gated treatment delivery verification. Methods and Materials: Megavoltage fluoroscopy (MVF) image sequences were acquired using a flat panel equipped for MV cone-beam CT in synchrony with the respiratory signal obtained from the Anzai gating device. The MVF images can be obtained immediately before or during gated treatment delivery. A prototype software tool (named RTReg4D) was developed to register MVF images with phase-sequenced digitally reconstructed radiograph images generated from the treatment planning system based on four-dimensional CT. The image registration can be used to reposition the patient before or during treatment delivery. To demonstrate the reliability and clinical usefulness, the system was first tested using a thoracic phantom and then prospectively in actual patient treatments under an institutional review board-approved protocol. Results: The quality of the MVF images for lung tumors is adequate for image registration with phase-sequenced digitally reconstructed radiographs. The MVF was found to be useful for monitoring inter- and intrafractional variations of tumor positions. With the planning target volume contour displayed on the MVF images, the system can verify whether the moving target stays within the planning target volume margin during gated delivery. Conclusions: The use of MVF images was found to be clinically effective in detecting discrepancies in tumor location before and during respiration-gated treatment delivery. The tools and process developed can be useful for gated treatment delivery verification.

  2. Dosimetric verification of RapidArc treatment delivery

    DEFF Research Database (Denmark)

    Korreman, Stine; Medin, Joakim; Kjaer-Kristoffersen, Flemming

    2009-01-01

    . METHODS AND MATERIALS: Nine treatment plans were generated in the Eclipse version 8.5 including the RapidArc optimizer for H&N and prostate cases. The plans were delivered to the Scandidos Delta4 cylindrical diode array phantom. First, the measured dose distributions were compared with the calculated......: Overall, good agreement was observed between measured and calculated doses in most cases with gamma values above 1 in >95% of measured points. The reproducibility of delivery was also very high. Gamma analysis between two consecutive runs of the same delivery plan generally showed gamma values above 1......: The delivery of RapidArc beam delivery has been verified to correspond well with calculated dose distributions for a number of different cases. The delivery was very reproducible, and was carried out with high stability of the accelerator performance....

  3. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  4. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  5. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  6. MO-G-BRE-04: Automatic Verification of Daily Treatment Deliveries and Generation of Daily Treatment Reports for a MR Image-Guided Treatment Machine

    International Nuclear Information System (INIS)

    Yang, D; Li, X; Li, H; Wooten, H; Green, O; Rodriguez, V; Mutic, S

    2014-01-01

    Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beam segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart

  7. Radiation dose delivery verification in the treatment of carcinoma-cervix

    International Nuclear Information System (INIS)

    Shrotriya, D.; Srivastava, R. N. L.; Kumar, S.

    2015-01-01

    The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively

  8. Radiation dose delivery verification in the treatment of carcinoma-cervix

    Science.gov (United States)

    Shrotriya, D.; Kumar, S.; Srivastava, R. N. L.

    2015-06-01

    The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.

  9. Radiation dose delivery verification in the treatment of carcinoma-cervix

    Energy Technology Data Exchange (ETDEWEB)

    Shrotriya, D., E-mail: shrotriya2007@gmail.com; Srivastava, R. N. L. [Department of Radiotherapy, J.K. Cancer Institute Kanpur-208019 (India); Kumar, S. [Department of Physics, Christ Church College, Kanpur-208001 (India)

    2015-06-24

    The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.

  10. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  11. TU-FG-201-03: Automatic Pre-Delivery Verification Using Statistical Analysis of Consistencies in Treatment Plan Parameters by the Treatment Site and Modality

    International Nuclear Information System (INIS)

    Liu, S; Wu, Y; Chang, X; Li, H; Yang, D

    2016-01-01

    Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans of the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the

  12. TU-FG-201-03: Automatic Pre-Delivery Verification Using Statistical Analysis of Consistencies in Treatment Plan Parameters by the Treatment Site and Modality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S; Wu, Y; Chang, X; Li, H; Yang, D [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans of the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the

  13. SU-E-T-375: Evaluation of a MapCHECK2(tm) Planar 2-D Diode Array for High-Dose-Rate Brachytherapy Treatment Delivery Verifications

    Energy Technology Data Exchange (ETDEWEB)

    Macey, N; Siebert, M; Shvydka, D; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: Despite improvements of HDR brachytherapy delivery systems, verification of source position is still typically based on the length of the wire reeled out relative to the parked position. Yet, the majority of errors leading to medical events in HDR treatments continue to be classified as missed targets or wrong treatment sites. We investigate the feasibility of using dose maps acquired with a two-dimensional diode array to independently verify the source locations, dwell times, and dose during an HDR treatment. Methods: Custom correction factors were integrated into frame-by-frame raw counts recorded for a Varian VariSource™ HDR afterloader Ir-192 source located at various distances in air and in solid water from a MapCHECK2™ diode array. The resultant corrected counts were analyzed to determine the dwell position locations and doses delivered. The local maxima of polynomial equations fitted to the extracted dwell dose profiles provided the X and Y coordinates while the distance to the source was determined from evaluation of the full width at half maximum (FWHM). To verify the approach, the experiment was repeated as the source was moved through dwell positions at various distances along an inclined plane, mimicking a vaginal cylinder treatment. Results: Dose map analysis was utilized to provide the coordinates of the source and dose delivered over each dwell position. The accuracy in determining source dwell positions was found to be +/−1.0 mm of the preset values, and doses within +/−3% of those calculated by the BrachyVision™ treatment planning system for all measured distances. Conclusion: Frame-by-frame data furnished by a 2 -D diode array can be used to verify the dwell positions and doses delivered by the HDR source over the course of treatment. Our studies have verified that measurements provided by the MapCHECK2™ can be used as a routine QA tool for HDR treatment delivery verification.

  14. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry

    International Nuclear Information System (INIS)

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2014-01-01

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by −0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery

  15. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  16. SU-G-BRB-11: On the Sensitivity of An EPID-Based 3D Dose Verification System to Detect Delivery Errors in VMAT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B; Mans, A; Rozendaal, R [Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Noord-Holland (Netherlands)

    2016-06-15

    Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of the various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.

  17. SU-F-T-573: Evaluation of EBT-XD Radiochromic Films for Verification of SBRT and SRS Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, J; Zerouali, K [Centre hospitalier de l’Universite de Montreal, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: To evaluate the accuracy and precision of radiochromic films EBT-XD for quality control of stereotaxic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) plan delivery. Methods: A film cut in 3×10 cm2 strips was irradiated from 0 to 20 Gy in increments of 1 to 1.5 Gy using a 15 MeV electron beam. Triple-channel film calibration was completed 24 hours later by scanning the film strips on an Epson 10000XL scanner using a well-defined protocol. Several dose measurements of increasing complexity were subsequently performed with Varian iX accelerators. Pieces of films were first irradiated in a solid water phantom with 6 MV photon beams and a static gantry to doses spanning the calibration range, either in a single field or multiple fields setup. High dose (>15 Gy per fraction) IMRT plans were then measured. Finally films were irradiated with volumetric modulated arc therapy (VMAT) plans of lung and spinal lesions with prescribed doses per fraction between 8 and 20 Gy. The dose measured with the films was compared to the calculated dose from the Eclipse planning system using the Anisotropic Analytical Algorithm (AAA). Results: 77 dose measurements were compared to either ion chamber measurements or dose calculations (reference). The average dose difference between film measurements and reference was 0.7 % and the standard deviation was 1.3%. The maximum and minimum dose differences were +3.5% and −2% in the 4 Gy to 20 Gy range. Measured dose profiles of lung and vertebra treatment plans agreed very well with the calculations. Conclusion: EBT-XD films are a useful dosimeter for quality control of SBRT and SRS plan delivery. The measurement of a full 2D dose plane with high spatial resolution and acceptable dose accuracy make it an advantageous choice compared to other detectors such as ion chambers or diodes.

  18. A feasible method for clinical delivery verification and dose reconstruction in tomotherapy

    International Nuclear Information System (INIS)

    Kapatoes, J.M.; Olivera, G.H.; Ruchala, K.J.; Smilowitz, J.B.; Reckwerdt, P.J.; Mackie, T.R.

    2001-01-01

    Delivery verification is the process in which the energy fluence delivered during a treatment is verified. This verified energy fluence can be used in conjunction with an image in the treatment position to reconstruct the full three-dimensional dose deposited. A method for delivery verification that utilizes a measured database of detector signal is described in this work. This database is a function of two parameters, radiological path-length and detector-to-phantom distance, both of which are computed from a CT image taken at the time of delivery. Such a database was generated and used to perform delivery verification and dose reconstruction. Two experiments were conducted: a simulated prostate delivery on an inhomogeneous abdominal phantom, and a nasopharyngeal delivery on a dog cadaver. For both cases, it was found that the verified fluence and dose results using the database approach agreed very well with those using previously developed and proven techniques. Delivery verification with a measured database and CT image at the time of treatment is an accurate procedure for tomotherapy. The database eliminates the need for any patient-specific, pre- or post-treatment measurements. Moreover, such an approach creates an opportunity for accurate, real-time delivery verification and dose reconstruction given fast image reconstruction and dose computation tools

  19. Quantitative dosimetric verification of an IMRT planning and delivery system

    International Nuclear Information System (INIS)

    Low, D.A.; Mutic, S.; Dempsey, J.F.; Gerber, R.L.; Bosch, W.R.; Perez, C.A.; Purdy, J.A.

    1998-01-01

    Background and purpose: The accuracy of dose calculation and delivery of a commercial serial tomotherapy treatment planning and delivery system (Peacock, NOMOS Corporation) was experimentally determined. Materials and methods: External beam fluence distributions were optimized and delivered to test treatment plan target volumes, including three with cylindrical targets with diameters ranging from 2.0 to 6.2 cm and lengths of 0.9 through 4.8 cm, one using three cylindrical targets and two using C-shaped targets surrounding a critical structure, each with different dose distribution optimization criteria. Computer overlays of film-measured and calculated planar dose distributions were used to assess the dose calculation and delivery spatial accuracy. A 0.125 cm 3 ionization chamber was used to conduct absolute point dosimetry verification. Thermoluminescent dosimetry chips, a small-volume ionization chamber and radiochromic film were used as independent checks of the ion chamber measurements. Results: Spatial localization accuracy was found to be better than ±2.0 mm in the transverse axes (with one exception of 3.0 mm) and ±1.5 mm in the longitudinal axis. Dosimetric verification using single slice delivery versions of the plans showed that the relative dose distribution was accurate to ±2% within and outside the target volumes (in high dose and low dose gradient regions) with a mean and standard deviation for all points of -0.05% and 1.1%, respectively. The absolute dose per monitor unit was found to vary by ±3.5% of the mean value due to the lack of consideration for leakage radiation and the limited scattered radiation integration in the dose calculation algorithm. To deliver the prescribed dose, adjustment of the monitor units by the measured ratio would be required. Conclusions: The treatment planning and delivery system offered suitably accurate spatial registration and dose delivery of serial tomotherapy generated dose distributions. The quantitative dose

  20. Dose delivery verification and accuracy assessment of stereotaxy in stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Pelagade, S.M.; Bopche, T.T.; Namitha, K.; Munshi, M.; Bhola, S.; Sharma, H.; Patel, B.K.; Vyas, R.K.

    2008-01-01

    The outcome of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) in both benign and malignant tumors within the cranial region highly depends on precision in dosimetry, dose delivery and the accuracy assessment of stereotaxy associated with the unit. The frames BRW (Brown-Roberts-Wells) and GTC (Gill- Thomas-Cosman) can facilitate accurate patient positioning as well as precise targeting of tumours. The implementation of this technique may result in a significant benefit as compared to conventional therapy. As the target localization accuracy is improved, the demand for treatment planning accuracy of a TPS is also increased. The accuracy of stereotactic X Knife treatment planning system has two components to verify: (i) the dose delivery verification and the accuracy assessment of stereotaxy; (ii) to ensure that the Cartesian coordinate system associated is well established within the TPS for accurate determination of a target position. Both dose delivery verification and target positional accuracy affect dose delivery accuracy to a defined target. Hence there is a need to verify these two components in quality assurance protocol. The main intention of this paper is to present our dose delivery verification procedure using cylindrical wax phantom and accuracy assessment (target position) of stereotaxy using Geometric Phantom on Elekta's Precise linear accelerator for stereotactic installation

  1. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    Science.gov (United States)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  2. Phantoms for IMRT dose distribution measurement and treatment verification

    International Nuclear Information System (INIS)

    Low, Daniel A.; Gerber, Russell L.; Mutic, Sasa; Purdy, James A.

    1998-01-01

    Background: The verification of intensity-modulated radiation therapy (IMRT) patient treatment dose distributions is currently based on custom-built or modified dose measurement phantoms. The only commercially available IMRT treatment planning and delivery system (Peacock, NOMOS Corp.) is supplied with a film phantom that allows accurate spatial localization of the dose distribution using radiographic film. However, measurements using other dosimeters are necessary for the thorough verification of IMRT. Methods: We have developed a phantom to enable dose measurements using a cylindrical ionization chamber and the localization of prescription isodose curves using a matrix of thermoluminescent dosimetry (TLD) chips. The external phantom cross-section is identical to that of the commercial phantom, to allow direct comparisons of measurements. A supplementary phantom has been fabricated to verify the IMRT dose distributions for pelvis treatments. Results: To date, this phantom has been used for the verification of IMRT dose distributions for head and neck and prostate cancer treatments. Designs are also presented for a phantom insert to be used with polymerizing gels (e.g., BANG-2) to obtain volumetric dose distribution measurements. Conclusion: The phantoms have proven useful in the quantitative evaluation of IMRT treatments

  3. Computer-controlled 3-D treatment delivery

    International Nuclear Information System (INIS)

    Fraass, Benedick A.

    1995-01-01

    -controlled scanned beam treatments will also be discussed. CCRT-related approaches to treatment plan generation and transfer, accelerator control systems, treatment delivery, verification, documentation and charting will also be discussed, including the importance of real-time portal imaging for conformal therapy. The potential benefits of 3-D computer-controlled conformal treatment delivery will be illustrated with results from on-going clinical dose escalation and normal tissue complication studies. Conclusion: A large amount of interest in computer-controlled conformal treatment delivery techniques has developed in recent years. This presentation will attempt to summarize the current status of clinical and research work in 3-D computer-controlled conformal therapy treatment techniques. Particular attention is paid to issues related to implementation and clinical use of this developing treatment modality

  4. Verification of helical tomotherapy delivery using autoassociative kernel regression

    International Nuclear Information System (INIS)

    Seibert, Rebecca M.; Ramsey, Chester R.; Garvey, Dustin R.; Wesley Hines, J.; Robison, Ben H.; Outten, Samuel S.

    2007-01-01

    Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The error and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector

  5. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions

    International Nuclear Information System (INIS)

    Woodruff, Henry C.; Fuangrod, Todsaporn; Van Uytven, Eric; McCurdy, Boyd M.C.; Beek, Timothy van; Bhatia, Shashank; Greer, Peter B.

    2015-01-01

    Purpose: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. Methods and Materials: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) had ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. Results: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. Conclusions: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.

  6. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Henry C., E-mail: henry.woodruff@newcastle.edu.au [Faculty of Science and Information Technology, School of Mathematical and Physical Sciences, University of Newcastle, New South Wales (Australia); Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, University of Newcastle, New South Wales (Australia); Van Uytven, Eric; McCurdy, Boyd M.C.; Beek, Timothy van [Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada); Bhatia, Shashank [Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia); Greer, Peter B. [Faculty of Science and Information Technology, School of Mathematical and Physical Sciences, University of Newcastle, New South Wales (Australia); Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia)

    2015-11-01

    Purpose: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. Methods and Materials: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) had ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. Results: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. Conclusions: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.

  7. Automated radiotherapy treatment plan integrity verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Moore, Kevin L. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri 63110 (United States)

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  8. Automated radiotherapy treatment plan integrity verification

    International Nuclear Information System (INIS)

    Yang Deshan; Moore, Kevin L.

    2012-01-01

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  9. Expert system verification and validation survey. Delivery 3: Recommendations

    Science.gov (United States)

    1990-01-01

    The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.

  10. An in vivo dose verification method for SBRT–VMAT delivery using the EPID

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: peter.mccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Van Uytven, E.; Van Beek, T.; Asuni, G. [Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2015-12-15

    Purpose: Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT–VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In this work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT–VMAT delivery. Methods: The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their “forward” model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their “inverse” model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient’s density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT–VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT–VMAT plan. The

  11. Evaluation of DVH-based treatment plan verification in addition to gamma passing rates for head and neck IMRT

    International Nuclear Information System (INIS)

    Visser, Ruurd; Wauben, David J.L.; Groot, Martijn de; Steenbakkers, Roel J.H.M.; Bijl, Henk P.; Godart, Jeremy; Veld, Aart A. van’t; Langendijk, Johannes A.; Korevaar, Erik W.

    2014-01-01

    Background and purpose: Treatment plan verification of intensity modulated radiotherapy (IMRT) is generally performed with the gamma index (GI) evaluation method, which is difficult to extrapolate to clinical implications. Incorporating Dose Volume Histogram (DVH) information can compensate for this. The aim of this study was to evaluate DVH-based treatment plan verification in addition to the GI evaluation method for head and neck IMRT. Materials and methods: Dose verifications of 700 subsequent head and neck cancer IMRT treatment plans were categorised according to gamma and DVH-based action levels. Fractionation dependent absolute dose limits were chosen. The results of the gamma- and DVH-based evaluations were compared to the decision of the medical physicist and/or radiation oncologist for plan acceptance. Results: Nearly all treatment plans (99.7%) were accepted for treatment according to the GI evaluation combined with DVH-based verification. Two treatment plans were re-planned according to DVH-based verification, which would have been accepted using the evaluation alone. DVH-based verification increased insight into dose delivery to patient specific structures increasing confidence that the treatment plans were clinically acceptable. Moreover, DVH-based action levels clearly distinguished the role of the medical physicist and radiation oncologist within the Quality Assurance (QA) procedure. Conclusions: DVH-based treatment plan verification complements the GI evaluation method improving head and neck IMRT-QA

  12. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    International Nuclear Information System (INIS)

    Zhao, J; Hu, W; Xing, Y; Wu, X; Li, Y

    2016-01-01

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, position and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.

  13. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Xing, Y [Fudan univercity shanghai proton and heavy ion center, Shanghai (China); Wu, X [Fudan university shanghai proton and heavy ion center, Shanghai, shagnhai (China); Li, Y [Department of Medical physics at Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, position and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.

  14. EDITORIAL: International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification

    Science.gov (United States)

    Verhaegen, Frank; Seuntjens, Jan

    2008-03-01

    Monte Carlo particle transport techniques offer exciting tools for radiotherapy research, where they play an increasingly important role. Topics of research related to clinical applications range from treatment planning, motion and registration studies, brachytherapy, verification imaging and dosimetry. The International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification took place in a hotel in Montreal in French Canada, from 29 May-1 June 2007, and was the third workshop to be held on a related topic, which now seems to have become a tri-annual event. About one hundred workers from many different countries participated in the four-day meeting. Seventeen experts in the field were invited to review topics and present their latest work. About half of the audience was made up by young graduate students. In a very full program, 57 papers were presented and 10 posters were on display during most of the meeting. On the evening of the third day a boat trip around the island of Montreal allowed participants to enjoy the city views, and to sample the local cuisine. The topics covered at the workshop included the latest developments in the most popular Monte Carlo transport algorithms, fast Monte Carlo, statistical issues, source modeling, MC treatment planning, modeling of imaging devices for treatment verification, registration and deformation of images and a sizeable number of contributions on brachytherapy. In this volume you will find 27 short papers resulting from the workshop on a variety of topics, some of them on very new stuff such as graphics processing units for fast computing, PET modeling, dual-energy CT, calculations in dynamic phantoms, tomotherapy devices, . . . . We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Association Québécoise des Physicien(ne)s Médicaux Clinique, the Institute of Physics, and Medical

  15. Multi-centre audit of VMAT planning and pre-treatment verification.

    Science.gov (United States)

    Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria

    2017-08-01

    We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    International Nuclear Information System (INIS)

    Janek, S; Svensson, R; Jonsson, C; Brahme, A

    2006-01-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11 C and 15 O but also 13 N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12 C, 16 O and 14 N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12 C, 16 O and 14 N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  17. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin Fangfang; Gao Qinghuai; Xie Huchen; Nelson, Diana F.; Yu Yan; Kwok, W. Edmund; Totterman, Saara; Schell, Michael C.; Rubin, Philip

    1998-01-01

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  18. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    Energy Technology Data Exchange (ETDEWEB)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor [Gamma Knife Unit, Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029 (India)

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  19. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    International Nuclear Information System (INIS)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-01-01

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film

  20. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin, F.-F.; Gao, Q.H.; Xie, H.; Nelson, D.F.; Yu, Y.; Kwok, W.E.; Totterman, S.; Schell, M.C.; Rubin, P.

    1996-01-01

    Purpose/Objective: Although MR images have been extensively used for the treatment planning of radiation therapy of cancers, especially for brain cancers, they are not effectively used for the portal verification due to lack of bone/air information in MR images and geometric distortions. Typically, MR images are utilized through correlation with CT images, and this procedure is usually very labor and time consuming. For many brain cancer patients to be treated using conventional external beam radiation, MR images with proper distortion correction provide sufficient information for treatment planning and dose calculation, and a projection images may be generated for each specific treatment port and to be used as a reference image for treatment verification. The question is how to transfer anatomical features in MR images to the projection image as landmarks which could be correlated automatically to those in the portal image. The goal of this study is to generate digitally reconstructed projection images from MR brain images with some important anatomical features (brain contour, skull and gross tumor) as well as their relative locations to be used as references for the development of computerized portal verification scheme. Materials/Methods: Compared to conventional digital reconstructed radiograph from CT images, generation of digitally reconstructed projection images from MR images is heavily involved with pixel manipulation of MR images to correlate information from two types of images (MR, portal x-ray images) which are produced based on totally different imaging principles. Initially a wavelet based multi-resolution adaptive thresholding method is used to segment the skull slice-by-slice in MR brain axial images, and identified skull pixels are re-assigned to relatively higher intensities so that projection images will have comparable grey-level information as that in typical brain portal images. Both T1- and T2-weighted images are utilized to eliminate fat

  1. The impact of treatment complexity and computer-control delivery technology on treatment delivery errors

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Lash, Kathy L.; Matrone, Gwynne M.; Volkman, Susan K.; McShan, Daniel L.; Kessler, Marc L.; Lichter, Allen S.

    1998-01-01

    Purpose: To analyze treatment delivery errors for three-dimensional (3D) conformal therapy performed at various levels of treatment delivery automation and complexity, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system (CCRS). Methods and Materials: All treatment delivery errors which occurred in our department during a 15-month period were analyzed. Approximately 34,000 treatment sessions (114,000 individual treatment segments [ports]) on four treatment machines were studied. All treatment delivery errors logged by treatment therapists or quality assurance reviews (152 in all) were analyzed. Machines 'M1' and 'M2' were operated in a standard manual setup mode, with no record and verify system (R/V). MLC machines 'M3' and 'M4' treated patients under the control of the CCRS system, which (1) downloads the treatment delivery plan from the planning system; (2) performs some (or all) of the machine set up and treatment delivery for each field; (3) monitors treatment delivery; (4) records all treatment parameters; and (5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3; therefore, it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments, nonaxial and noncoplanar plans, multisegment intensity modulation, and pseudoisocentric treatments studied for a 6-month period (505 patients) concurrent with the period in which the delivery errors were obtained. Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines; therefore, this analysis does not depend on fixed therapist staff on particular

  2. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  3. SU-G-TeP4-08: Automating the Verification of Patient Treatment Parameters

    Energy Technology Data Exchange (ETDEWEB)

    DiCostanzo, D; Ayan, A; Woollard, J; Gupta, N [The Ohio State University, Columbus, OH (United States)

    2016-06-15

    Purpose: To automate the daily verification of each patient’s treatment by utilizing the trajectory log files (TLs) written by the Varian TrueBeam linear accelerator while reducing the number of false positives including jaw and gantry positioning errors, that are displayed in the Treatment History tab of Varian’s Chart QA module. Methods: Small deviations in treatment parameters are difficult to detect in weekly chart checks, but may be significant in reducing delivery errors, and would be critical if detected daily. Software was developed in house to read TLs. Multiple functions were implemented within the software that allow it to operate via a GUI to analyze TLs, or as a script to run on a regular basis. In order to determine tolerance levels for the scripted analysis, 15,241 TLs from seven TrueBeams were analyzed. The maximum error of each axis for each TL was written to a CSV file and statistically analyzed to determine the tolerance for each axis accessible in the TLs to flag for manual review. The software/scripts developed were tested by varying the tolerance values to ensure veracity. After tolerances were determined, multiple weeks of manual chart checks were performed simultaneously with the automated analysis to ensure validity. Results: The tolerance values for the major axis were determined to be, 0.025 degrees for the collimator, 1.0 degree for the gantry, 0.002cm for the y-jaws, 0.01cm for the x-jaws, and 0.5MU for the MU. The automated verification of treatment parameters has been in clinical use for 4 months. During that time, no errors in machine delivery of the patient treatments were found. Conclusion: The process detailed here is a viable and effective alternative to manually checking treatment parameters during weekly chart checks.

  4. A multi-professional software tool for radiation therapy treatment verification

    International Nuclear Information System (INIS)

    Fox, Tim; Brooks, Ken; Davis, Larry

    1996-01-01

    Purpose: Verification of patient setup is important in conformal therapy because it provides a means of quality assurance for treatment delivery. Electronic portal imaging systems have led to software tools for performing digital comparison and verification of patient setup. However, these software tools are typically designed from a radiation oncologist's perspective even though treatment verification is a team effort involving oncologists, physicists, and therapists. A new software tool, Treatment Verification Tool (TVT), has been developed as an interactive, multi-professional application for reviewing and verifying treatment plan setup using conventional personal computers. This study will describe our approach to electronic treatment verification and demonstrate the features of TVT. Methods and Materials: TVT is an object-oriented software tool written in C++ using the PC-based Windows NT environment. The software utilizes the selection of a patient's images from a database. The software is also developed as a single window interface to reduce the amount of windows presented to the user. However, the user can select from four different possible views of the patient data. One of the views is side-by-side comparison of portal images (on-line portal images or digitized port film) with a prescription image (digitized simulator film or digitally reconstructed radiograph), and another view is a textual summary of the grades of each portal image. The grades of a portal image are assigned by a radiation oncologist using an evaluation method, and the physicists and therapists may only review these results. All users of TVT can perform image enhancement processes, measure distances, and perform semi-automated registration methods. An electronic dialogue can be established through a set of annotations and notes among the radiation oncologists and the technical staff. Results: Features of TVT include: 1) side-by-side comparison of portal images and a prescription image; 2

  5. Independent verification of monitor unit calculation for radiation treatment planning system.

    Science.gov (United States)

    Chen, Li; Chen, Li-Xin; Huang, Shao-Min; Sun, Wen-Zhao; Sun, Hong-Qiang; Deng, Xiao-Wu

    2010-02-01

    To ensure the accuracy of dose calculation for radiation treatment plans is an important part of quality assurance (QA) procedures for radiotherapy. This study evaluated the Monitor Units (MU) calculation accuracy of a third-party QA software and a 3-dimensional treatment planning system (3D TPS), to investigate the feasibility and reliability of independent verification for radiation treatment planning. Test plans in a homogenous phantom were designed with 3-D TPS, according to the International Atomic Energy Agency (IAEA) Technical Report No. 430, including open, blocked, wedge, and multileaf collimator (MLC) fields. Test plans were delivered and measured in the phantom. The delivered doses were input to the QA software and the independent calculated MUs were compared with delivery. All test plans were verified with independent calculation and phantom measurements separately, and the differences of the two kinds of verification were then compared. The deviation of the independent calculation to the measurements was (0.1 +/- 0.9)%, the biggest difference fell onto the plans that used block and wedge fields (2.0%). The mean MU difference between the TPS and the QA software was (0.6 +/- 1.0)%, ranging from -0.8% to 2.8%. The deviation in dose of the TPS calculation compared to the measurements was (-0.2 +/- 1.7)%, ranging from -3.9% to 2.9%. MU accuracy of the third-party QA software is clinically acceptable. Similar results were achieved with the independent calculations and the phantom measurements for all test plans. The tested independent calculation software can be used as an efficient tool for TPS plan verification.

  6. A virtual linear accelerator for verification of treatment planning systems

    International Nuclear Information System (INIS)

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  7. Clinical Experience and Evaluation of Patient Treatment Verification With a Transit Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, Kate, E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, London (United Kingdom); Department of Radiotherapy Physics, Royal Berkshire NHS Foundation Trust, Reading (United Kingdom); Navarro, Clara; Lane, Katherine; Blowfield, Claire; Cotten, Gary; Tomala, Dee; Lord, Christine; Jones, Joanne; Adeyemi, Abiodun [Department of Radiotherapy Physics, Royal Berkshire NHS Foundation Trust, Reading (United Kingdom)

    2016-08-01

    Purpose: To prospectively evaluate a protocol for transit dosimetry on a patient population undergoing intensity modulated radiation therapy (IMRT) and to assess the issues in clinical implementation of electronic portal imaging devices (EPIDs) for treatment verification. Methods and Materials: Fifty-eight patients were enrolled in the study. Amorphous silicon EPIDs were calibrated for dose and used to acquire images of delivered fields. Measured EPID dose maps were back-projected using the planning computed tomographic (CT) images to calculate dose at prespecified points within the patient and compared with treatment planning system dose offline using point dose difference and point γ analysis. The deviation of the results was used to inform future action levels. Results: Two hundred twenty-five transit images were analyzed, composed of breast, prostate, and head and neck IMRT fields. Patient measurements demonstrated the potential of the dose verification protocol to model dose well under complex conditions: 83.8% of all delivered beams achieved the initial set tolerance level of Δ{sub D} of 0 ± 5 cGy or %Δ{sub D} of 0% ± 5%. Importantly, the protocol was also sensitive to anatomic changes and spotted that 3 patients from 20 measured prostate patients had undergone anatomic change in comparison with the planning CT. Patient data suggested an EPID-reconstructed versus treatment planning system dose difference action level of 0% ± 7% for breast fields. Asymmetric action levels were more appropriate for inversed IMRT fields, using absolute dose difference (−2 ± 5 cGy) or summed field percentage dose difference (−6% ± 7%). Conclusions: The in vivo dose verification method was easy to use and simple to implement, and it could detect patient anatomic changes that impacted dose delivery. The system required no extra dose to the patient or treatment time delay and so could be used throughout the course of treatment to identify and limit

  8. A quality assurance index for brachytherapy treatment plan verification

    International Nuclear Information System (INIS)

    Simpson, J.B.; Clarke, J.P.

    2000-01-01

    A method is described which provides an independent verification of a brachytherapy treatment plan. The method is applicable to any common geometric configuration and utilises a simple equation derived from a common form of nonlinear regression. The basis for the index value is the relationship between the treatment time, prescribed dose, source strength and plan geometry. This relationship may be described mathematically as: Total Treatment Time ∝ Prescribed Dose/Source Strength x (a geometric term) with the geometric term incorporating three geometric components, namely the distance from source positions to points of dose normalisation (d), the total length of the dwell positions (L), and the number of source trains or catheters (N). A general equation of the form GF = k (d) -α (L) -β (N) -y is used to describe the plan geometry, where GF is what we have termed the geometric factor, k is a constant of proportionality and the exponents are derived from the non-linear regression process. The resulting index is simple to calculate prior to patient treatment and sensitive enough to identify significant error whilst being robust enough to allow for a normal degree of geometric distortion

  9. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Fast film dosimetry calibration method for IMRT treatment plan verification

    International Nuclear Information System (INIS)

    Schwob, N.; Wygoda, A.

    2004-01-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments are delivered dynamically and as so, require routinely performed verification measurements [1]. Radiographic film dosimetry is a well-adapted method for integral measurements of dynamic treatments fields, with some drawbacks related to the known problems of dose calibration of films. Classically, several films are exposed to increasing doses, and a Net Optical Density (N.O.D) vs. dose sensitometric curve (S.C.) is generated. In order to speed up the process, some authors have developed a method based on the irradiation of a single film with a non-uniform pattern of O.D., delivered with a dynamic MLC. However, this curve still needs to be calibrated to dose by the means of measurements in a water phantom. It is recommended to make a new calibration for every series of measurements, in order to avoid the processing quality dependence of the film response. These frequent measurements are very time consuming. We developed a simple method for quick dose calibration of films, including a check of the accuracy of the calibration curve obtained

  11. Comparison of 3D anatomical dose verification and 2D phantom dose verification of IMRT/VMAT treatments for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lin, Hailei; Huang, Shaomin; Deng, Xiaowu; Zhu, Jinhan; Chen, Lixin

    2014-01-01

    The two-dimensional phantom dose verification (2D-PDV) using hybrid plan and planar dose measurement has been widely used for IMRT treatment QA. Due to the lack of information about the correlations between the verification results and the anatomical structure of patients, it is inadequate in clinical evaluation. A three-dimensional anatomical dose verification (3D-ADV) method was used in this study to evaluate the IMRT/VMAT treatment delivery for nasopharyngeal carcinoma and comparison with 2D-PDV was analyzed. Twenty nasopharyngeal carcinoma (NPC) patients treated with IMRT/VMAT were recruited in the study. A 2D ion-chamber array was used for the 2D-PDV in both single-gantry-angle composite (SGAC) and multi-gantry-angle composite (MGAC) verifications. Differences in the gamma pass rate between the 2 verification methods were assessed. Based on measurement of irradiation dose fluence, the 3D dose distribution was reconstructed for 3D-ADV in the above cases. The reconstructed dose homogeneity index (HI), conformity index (CI) of the planning target volume (PTV) were calculated. Gamma pass rate and deviations in the dose-volume histogram (DVH) of each PTV and organ at risk (OAR) were analyzed. In 2D-PDV, the gamma pass rate (3%, 3 mm) of SGAC (99.55% ± 0.83%) was significantly higher than that of MGAC (92.41% ± 7.19%). In 3D-ADV, the gamma pass rates (3%, 3 mm) were 99.75% ± 0.21% in global, 83.82% ± 16.98% to 93.71% ± 6.22% in the PTVs and 45.12% ± 32.78% to 98.08% ± 2.29% in the OARs. The maximum HI increment in PTVnx was 19.34%, while the maximum CI decrement in PTV1 and PTV2 were -32.45% and -6.93%, respectively. Deviations in dose volume of PTVs were all within ±5%. D2% of the brainstem, spinal cord, left/right optic nerves, and the mean doses to the left/right parotid glands maximally increased by 3.5%, 6.03%, 31.13%/26.90% and 4.78%/4.54%, respectively. The 2D-PDV and global gamma pass rate might be insufficient to provide an accurate assessment for

  12. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    International Nuclear Information System (INIS)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  13. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024 (United States)

    2015-11-15

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  14. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.

    Science.gov (United States)

    Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke

    2015-11-01

    Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup

  15. A novel method for sub-arc VMAT dose delivery verification based on portal dosimetry with an EPID.

    Science.gov (United States)

    Cools, Ruud A M; Dirkx, Maarten L P; Heijmen, Ben J M

    2017-11-01

    The EPID-based sub-arc verification of VMAT dose delivery requires synchronization of the acquired electronic portal images (EPIs) with the VMAT delivery, that is, establishment of the start- and stop-MU of the acquired images. To realize this, published synchronization methods propose the use of logging features of the linac or dedicated hardware solutions. In this study, we developed a novel, software-based synchronization method that only uses information inherently available in the acquired images. The EPIs are continuously acquired during pretreatment VMAT delivery and converted into Portal Dose Images (PDIs). Sub-arcs of approximately 10 MU are then defined by combining groups of sequentially acquired PDIs. The start- and stop-MUs of measured sub-arcs are established in a synchronization procedure, using only dosimetric information in measured and predicted PDIs. Sub-arc verification of a VMAT dose delivery is based on comparison of measured sub-arc PDIs with synchronized, predicted sub-arc PDIs, using γ-analyses. To assess the accuracy of this new method, measured and predicted PDIs were compared for 20 clinically applied VMAT prostate cancer plans. The sensitivity of the method for detection of delivery errors was investigated using VMAT deliveries with intentionally inserted, small perturbations (25 error scenarios; leaf gap deviations ≤ 1.5 mm, leaf motion stops during ≤ 15 MU, linac output error ≤ 2%). For the 20 plans, the average failed pixel rates (FPR) for full-arc and sub-arc dose QA were 0.36% ± 0.26% (1 SD) and 0.64% ± 0.88%, based on 2%/2 mm and 3%/3 mm γ-analyses, respectively. Small systematic perturbations of up to 1% output error and 1 mm leaf offset were detected using full-arc QA. Sub-arc QA was able to detect positioning errors in three leaves only during approximately 20 MU and small dose delivery errors during approximately 40 MU. In an ROC analysis, the area under the curve (AUC) for the combined full-arc/sub-arc approach was

  16. Verification of the linac isocenter for stereotactic radiosurgery using cine-EPID imaging and arc delivery

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; Sabet, Mahsheed; O' Connor, Daryl J.; Greer, Peter B.

    2011-01-01

    Purpose:Verification of the mechanical isocenter position is required as part of comprehensive quality assurance programs for stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. Several techniques have been proposed for this purpose but each of them has certain drawbacks. In this paper, a new efficient and more comprehensive method using cine-EPID images has been introduced for automatic verification of the isocenter with sufficient accuracy for stereotactic applications. Methods: Using a circular collimator fixed to the gantry head to define the field, EPID images of a Winston-Lutz phantom were acquired in cine-imaging mode during 360 deg. gantry rotations. A robust matlab code was developed to analyze the data by finding the center of the field and the center of the ball bearing shadow in each image with sub-pixel accuracy. The distance between these two centers was determined for every image. The method was evaluated by comparison to results of a mechanical pointer and also by detection of a manual shift applied to the phantom position. The repeatability and reproducibility of the method were tested and it was also applied to detect couch and collimator wobble during rotation. Results:The accuracy of the algorithm was 0.03 ± 0.02 mm. The repeatability was less than 3 μm and the reproducibility was less than 86 μm. The time elapsed for the analysis of more than 100 cine images of Varian aS1000 and aS500 EPIDs were ∼65 and 20 s, respectively. Processing of images taken in integrated mode took 0.1 s. The output of the analysis software is printable and shows the isocenter shifts as a function of angle in both in-plane and cross-plane directions. It gives warning messages where the shifts exceed the criteria for SRS/SRT and provides useful data for the necessary adjustments in the system including bearing system and/or room lasers. Conclusions: The comprehensive method introduced in this study uses cine-images, is highly accurate, fast, and independent

  17. Verification of the linac isocenter for stereotactic radiosurgery using cine-EPID imaging and arc delivery

    Energy Technology Data Exchange (ETDEWEB)

    Rowshanfarzad, Pejman; Sabet, Mahsheed; O' Connor, Daryl J.; Greer, Peter B. [School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, New South Wales 2310, Australia and School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308 (Australia)

    2011-07-15

    Purpose:Verification of the mechanical isocenter position is required as part of comprehensive quality assurance programs for stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. Several techniques have been proposed for this purpose but each of them has certain drawbacks. In this paper, a new efficient and more comprehensive method using cine-EPID images has been introduced for automatic verification of the isocenter with sufficient accuracy for stereotactic applications. Methods: Using a circular collimator fixed to the gantry head to define the field, EPID images of a Winston-Lutz phantom were acquired in cine-imaging mode during 360 deg. gantry rotations. A robust matlab code was developed to analyze the data by finding the center of the field and the center of the ball bearing shadow in each image with sub-pixel accuracy. The distance between these two centers was determined for every image. The method was evaluated by comparison to results of a mechanical pointer and also by detection of a manual shift applied to the phantom position. The repeatability and reproducibility of the method were tested and it was also applied to detect couch and collimator wobble during rotation. Results:The accuracy of the algorithm was 0.03 {+-} 0.02 mm. The repeatability was less than 3 {mu}m and the reproducibility was less than 86 {mu}m. The time elapsed for the analysis of more than 100 cine images of Varian aS1000 and aS500 EPIDs were {approx}65 and 20 s, respectively. Processing of images taken in integrated mode took 0.1 s. The output of the analysis software is printable and shows the isocenter shifts as a function of angle in both in-plane and cross-plane directions. It gives warning messages where the shifts exceed the criteria for SRS/SRT and provides useful data for the necessary adjustments in the system including bearing system and/or room lasers. Conclusions: The comprehensive method introduced in this study uses cine-images, is highly accurate, fast, and

  18. Initial Clinical Experience Performing Patient Treatment Verification With an Electronic Portal Imaging Device Transit Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Sean L., E-mail: BerryS@MSKCC.org [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Polvorosa, Cynthia; Cheng, Simon; Deutsch, Israel; Chao, K. S. Clifford; Wuu, Cheng-Shie [Department of Radiation Oncology, Columbia University, New York, New York (United States)

    2014-01-01

    Purpose: To prospectively evaluate a 2-dimensional transit dosimetry algorithm's performance on a patient population and to analyze the issues that would arise in a widespread clinical adoption of transit electronic portal imaging device (EPID) dosimetry. Methods and Materials: Eleven patients were enrolled on the protocol; 9 completed and were analyzed. Pretreatment intensity modulated radiation therapy (IMRT) patient-specific quality assurance was performed using a stringent local 3%, 3-mm γ criterion to verify that the planned fluence had been appropriately transferred to and delivered by the linear accelerator. Transit dosimetric EPID images were then acquired during treatment and compared offline with predicted transit images using a global 5%, 3-mm γ criterion. Results: There were 288 transit images analyzed. The overall γ pass rate was 89.1% ± 9.8% (average ± 1 SD). For the subset of images for which the linear accelerator couch did not interfere with the measurement, the γ pass rate was 95.7% ± 2.4%. A case study is presented in which the transit dosimetry algorithm was able to identify that a lung patient's bilateral pleural effusion had resolved in the time between the planning CT scan and the treatment. Conclusions: The EPID transit dosimetry algorithm under consideration, previously described and verified in a phantom study, is feasible for use in treatment delivery verification for real patients. Two-dimensional EPID transit dosimetry can play an important role in indicating when a treatment delivery is inconsistent with the original plan.

  19. Verification and validation of the decision analysis model for assessment of TWRS waste treatment strategies

    International Nuclear Information System (INIS)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-01-01

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model

  20. ETV REPORT AND VERIFICATION STATEMENT - KASELCO POSI-FLO ELECTROCOAGULATION TREATMENT SYSTEM

    Science.gov (United States)

    The Kaselco Electrocoagulation Treatment System (Kaselco system) in combination with an ion exchange polishing system was tested, under actual production conditions, processing metal finishing wastewater at Gull Industries in Houston, Texas. The verification test evaluated the a...

  1. Television system for verification and documentation of treatment fields during intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Fraass, B.A.; Harrington, F.S.; Kinsella, T.J.; Sindelar, W.F.

    1983-01-01

    Intraoperative radiation therapy (IORT) involves direct treatment of tumors or tumor beds with large single doses of radiation. The verification of the area to be treated before irradiation and the documentation of the treated area are critical for IORT, just as for other types of radiation therapy. A television system which allows the target area to be directly imaged immediately before irradiation has been developed. Verification and documentation of treatment fields has made the IORT television system indispensable

  2. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte

  3. SU-E-T-784: Using MLC Log Files for Daily IMRT Delivery Verification

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2015-06-15

    Purpose: To verify daily intensity modulated radiation therapy (IMRT) treatments using multi-leaf collimator (MLC) log files. Methods: The MLC log files from a NovalisTX Varian linear accelerator were used in this study. The MLC files were recorded daily for all patients undergoing IMRT or volumetric modulated arc therapy (VMAT). The first record of each patient was used as reference and all records for subsequent days were compared against the reference. An in house MATLAB software code was used for the comparisons. Each MLC log file was converted to a fluence map (FM) and a gamma index (γ) analysis was used for the evaluation of each daily delivery for every patient. The tolerance for the gamma index was set to 2% dose difference and 2mm distance to agreement while points with signal of 10% or lower of the maximum value were excluded from the comparisons. Results: The γ between each of the reference FMs and the consecutive daily fraction FMs had an average value of 99.1% (ranged from 98.2 to 100.0%). The FM images were reconstructed at various resolutions in order to study the effect of the resolution on the γ and at the same time reduce the time for processing the images. We found that the comparison of images with the highest resolution (768×1024) yielded on average a lower γ (99.1%) than the ones with low resolution (192×256) (γ 99.5%). Conclusion: We developed an in-house software that allows us to monitor the quality of daily IMRT and VMAT treatment deliveries using information from the MLC log files of the linear accelerator. The information can be analyzed and evaluated as early as after the completion of each daily treatment. Such tool can be valuable to assess the effect of MLC positioning on plan quality, especially in the context of adaptive radiotherapy.

  4. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, G; Podesta, M [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Reniers, B [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, F [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities such as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator

  5. Content analysis of age verification, purchase and delivery methods of internet e-cigarette vendors, 2013 and 2014.

    Science.gov (United States)

    Williams, Rebecca S; Derrick, Jason; Liebman, Aliza Kate; LaFleur, Kevin; Ribisl, Kurt M

    2018-05-01

    Identify the population of internet e-cigarette vendors (IEVs) and conduct content analyses of their age verification, purchase and delivery methods in 2013 and 2014. We used multiple sources to identify IEV websites, primarily complex search algorithms scanning more than 180 million websites. In 2013, we manually screened 32 446 websites, identifying 980 IEVs, selecting the 281 most popular for content analysis. This methodology yielded 31 239 websites for screening in 2014, identifying 3096 IEVs, with 283 selected for content analysis. The proportion of vendors that sold online-only, with no retail store, dropped significantly from 2013 (74.7%) to 2014 (64.3%) (ponline age verification services (7.1% in 2013 and 8.5% in 2014), driving licences (1.8% in 2013 and 7.4% in 2014, ponline e-cigarette sales are needed, including strict age and identity verification requirements. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System

    International Nuclear Information System (INIS)

    Ahmad, M; Nourzadeh, H; Neal, B; Siebers, J; Watkins, W

    2016-01-01

    Purpose: To create a real-time EPID-based treatment verification system which robustly detects treatment delivery and patient attenuation variations. Methods: Treatment plan DICOM files sent to the record-and-verify system are captured and utilized to predict EPID images for each planned control point using a modified GPU-based digitally reconstructed radiograph algorithm which accounts for the patient attenuation, source energy fluence, source size effects, and MLC attenuation. The DICOM and predicted images are utilized by our C++ treatment verification software which compares EPID acquired 1024×768 resolution frames acquired at ∼8.5hz from Varian Truebeam™ system. To maximize detection sensitivity, image comparisons determine (1) if radiation exists outside of the desired treatment field; (2) if radiation is lacking inside the treatment field; (3) if translations, rotations, and magnifications of the image are within tolerance. Acquisition was tested with known test fields and prior patient fields. Error detection was tested in real-time and utilizing images acquired during treatment with another system. Results: The computational time of the prediction algorithms, for a patient plan with 350 control points and 60×60×42cm^3 CT volume, is 2–3minutes on CPU and <27 seconds on GPU for 1024×768 images. The verification software requires a maximum of ∼9ms and ∼19ms for 512×384 and 1024×768 resolution images, respectively, to perform image analysis and dosimetric validations. Typical variations in geometric parameters between reference and the measured images are 0.32°for gantry rotation, 1.006 for scaling factor, and 0.67mm for translation. For excess out-of-field/missing in-field fluence, with masks extending 1mm (at isocenter) from the detected aperture edge, the average total in-field area missing EPID fluence was 1.5mm2 the out-of-field excess EPID fluence was 8mm^2, both below error tolerances. Conclusion: A real-time verification software, with

  7. MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Nourzadeh, H; Neal, B; Siebers, J [University of Virginia Health System, Charlottesville, VA (United States); Watkins, W

    2016-06-15

    Purpose: To create a real-time EPID-based treatment verification system which robustly detects treatment delivery and patient attenuation variations. Methods: Treatment plan DICOM files sent to the record-and-verify system are captured and utilized to predict EPID images for each planned control point using a modified GPU-based digitally reconstructed radiograph algorithm which accounts for the patient attenuation, source energy fluence, source size effects, and MLC attenuation. The DICOM and predicted images are utilized by our C++ treatment verification software which compares EPID acquired 1024×768 resolution frames acquired at ∼8.5hz from Varian Truebeam™ system. To maximize detection sensitivity, image comparisons determine (1) if radiation exists outside of the desired treatment field; (2) if radiation is lacking inside the treatment field; (3) if translations, rotations, and magnifications of the image are within tolerance. Acquisition was tested with known test fields and prior patient fields. Error detection was tested in real-time and utilizing images acquired during treatment with another system. Results: The computational time of the prediction algorithms, for a patient plan with 350 control points and 60×60×42cm^3 CT volume, is 2–3minutes on CPU and <27 seconds on GPU for 1024×768 images. The verification software requires a maximum of ∼9ms and ∼19ms for 512×384 and 1024×768 resolution images, respectively, to perform image analysis and dosimetric validations. Typical variations in geometric parameters between reference and the measured images are 0.32°for gantry rotation, 1.006 for scaling factor, and 0.67mm for translation. For excess out-of-field/missing in-field fluence, with masks extending 1mm (at isocenter) from the detected aperture edge, the average total in-field area missing EPID fluence was 1.5mm2 the out-of-field excess EPID fluence was 8mm^2, both below error tolerances. Conclusion: A real-time verification software, with

  8. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Yin, Y; Lin, X [Shandong Cancer Hospital and Institute, China, Jinan, Shandong (China)

    2016-06-15

    Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system. Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.

  9. 3-D conformal radiation therapy - Part II: Computer-controlled 3-D treatment delivery

    International Nuclear Information System (INIS)

    Benedick, A.

    1997-01-01

    -controlled scanned beam treatments will also be discussed. CCRT-related approaches to treatment plan generation and transfer, accelerator control systems, treatment delivery, verification, documentation and charting will also be discussed, including the importance of real-time portal imaging for conformal therapy. The potential benefits of 3-D computer-controlled conformal treatment delivery will be illustrated with results from on-going clinical dose escalation and normal tissue complication studies. Conclusion: A large amount of interest in computer-controlled conformal treatment delivery techniques has developed in recent years. This presentation will attempt to summarize the current status of clinical and research work in 3-D computer-controlled conformal therapy treatment techniques. Particular attention is paid to issues related to implementation and clinical use of this developing treatment modality

  10. Verification of patient position and delivery of IMRT by electronic portal imaging

    International Nuclear Information System (INIS)

    Fielding, Andrew L.; Evans, Philip M.; Clark, Catharine H.

    2004-01-01

    Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 2 deg. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam

  11. Polymeric Gene Delivery for Diabetic Treatment

    Directory of Open Access Journals (Sweden)

    Sung Wan Kim

    2011-08-01

    Full Text Available Several polymers were used to delivery genes to diabetic animals. Polyaminobutyl glycolic acid was utilized to deliver IL-10 plasmid DNA to prevent autoimmune insulitis of non-obese diabetic (NOD mouse. Polyethylene glycol grafted polylysine was combined with antisense glutamic acid decarboxylase (GAD MRNA to represent GAD autoantigene expression. GLP1 and TSTA (SP-EX4 were delivered by bioreducible polymer to stop diabetic progression. Fas siRNA delivery was carried out to treat diabetic NOD mice animal.

  12. TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    J Zwan, B; Colvill, E; Booth, J; J O’Connor, D; Keall, P; B Greer, P

    2016-01-01

    Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3) field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm 2 (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.

  13. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    International Nuclear Information System (INIS)

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-01-01

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible

  14. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  15. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  16. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  17. Dosimetric verification of a dedicated 3D treatment planning system for episcleral plaque therapy

    International Nuclear Information System (INIS)

    Knutsen, Stig; Hafslund, Rune; Monge, Odd R.; Valen, Harald; Muren, Ludvig Paul; Rekstad, Bernt Louni; Krohn, Joergen; Dahl, Olav

    2001-01-01

    Purpose: Episcleral plaque therapy (EPT) is applied in the management of some malignant ocular tumors. A customized configuration of typically 4 to 20 radioactive seeds is fixed in a gold plaque, and the plaque is sutured to the scleral surface corresponding to the basis of the intraocular tumor, allowing for a localized radiation dose delivery to the tumor. Minimum target doses as high as 100 Gy are directed at malignant tumor sites close to critical normal tissues (e.g., optic disc and macula). Precise dosimetry is therefore fundamental for judging both the risk for normal tissue toxicity and tumor dose prescription. This paper describes the dosimetric verification of a commercially available dedicated treatment planning system (TPS) for EPT when realistic multiple-seed configurations are applied. Materials and Methods: The TPS Bebig Plaque Simulator is used to plan EPT at our institution. Relative dose distributions in a water phantom, including central axis depth dose and off-axis dose profiles for three different plaques, the University of Southern California (USC) No. 9 and the Collaborative Ocular Melanoma Study (COMS) 12-mm and 20-mm plaques, were measured with a diode detector. Each plaque was arranged with realistic multiple 125 I seed configurations. The measured dose distributions were compared to the corresponding dose profiles calculated with the TPS. All measurements were corrected for the angular sensitivity variation of the diode. Results: Single-seed dose distributions measured with our dosimetry setup agreed with previously published data within 3%. For the three multiple-seed plaque configurations, the measured and calculated dose distributions were in good agreement. For the central axis depth doses, the agreement was within 4%, whereas deviations up to 11% were observed in single points far off-axis. Conclusions: The Bebig Plaque Simulator is a reliable TPS for calculating relative dose distributions around realistic multiple 125 I seed

  18. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  19. Targeted nanodrug delivery systems for the treatment of Tuberculosis

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2010-06-01

    Full Text Available patient treatment compliance and drug resistance pose a great challenge to TB treatment programs worldwide. To improve the current inadequate therapeutic management of TB, a polymeric anti-TB nanodrug delivery system for anti-TB drugs was developed...

  20. Verification of hyperthermia treatment planning in cervix carcinoma patients using invasive thermometry

    International Nuclear Information System (INIS)

    Haaren Van, P.M.A.; Kok, H.P.; Zum Voerde Sive Voerding, P.J.; Oldenborg, S.; Stalpers, L.J.A.; Crezee, J.; Berg Van den, C.A.T; Leeuw De, A.A.C.

    2005-01-01

    Full text: Hyperthermia treatment planning (HTP) is a useful tool for improvement of clinical hyperthermia treatments. Aim of this study was to determine the correlation between HTP and measurements during hyperthermia treatments. We compared the calculated specific absorption rate (SAR) with clinically measured SAR-values, from ΔT-measurements, in cervix carcinoma patients. General difficulties for such clinical verifications are changes in the anatomy during the different steps and possible movement of the catheters. We used one fixed invasive catheter in the tumor additional to the usual non-invasive catheters in the vagina, bladder and rectum, for insertion of multisensor thermocouple probes. A special CT-scan with the patient in treatment position and the catheters in situ was made for the HTP. We performed these verifications in a total of 11 treatments in 7 patients. The main difficulties for accurate verification were of clinical nature: difficulties arising from the use of gynaecological tampon and the limited number of measurements in tissue. Remaining air in the vagina and sub-optimal tissue contact of the catheters resulted in bad thermal contact between thermocouples and tissue, causing measurement artefacts that are difficult to correlate with calculations. These artefacts are probably not specific for thermocouple measurements, but more general for intraluminal temperature and SAR measurements. (author)

  1. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  2. TU-CD-304-03: Dosimetric Verification and Preliminary Comparison of Dynamic Wave Arc for SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Burghelea, M [UZ BRUSSEL, Brussels (Belgium); BRAINLAB AG, Munich (Germany); Babes Bolyai University, Cluj-Napoca (Romania); Poels, K; Gevaert, T; Tournel, K; Dhont, J; De Ridder, M; Verellen, D [UZ BRUSSEL, Brussels (Belgium); Hung, C [BRAINLAB AG, Munich (Germany); Eriksson, K [RAYSEARCH LABORATORIES AB, Stockholm (Sweden); Simon, V [Babes Bolyai University, Cluj-Napoca (Romania)

    2015-06-15

    Purpose: To evaluate the potential dosimetric benefits and verify the delivery accuracy of Dynamic Wave Arc, a novel treatment delivery approach for the Vero SBRT system. Methods: Dynamic Wave Arc (DWA) combines simultaneous movement of gantry/ring with inverse planning optimization, resulting in an uninterrupted non-coplanar arc delivery technique. Thirteen SBRT complex cases previously treated with 8–10 conformal static beams (CRT) were evaluated in this study. Eight primary centrally-located NSCLC (prescription dose 4×12Gy or 8×7.5Gy) and five oligometastatic cases (2×2 lesions, 10×5Gy) were selected. DWA and coplanar VMAT plans, partially with dual arcs, were generated for each patient using identical objective functions for target volumes and OARs on the same TPS (RayStation, RaySearch Laboratories). Dosimetric differences and delivery time among these three planning schemes were evaluated. The DWA delivery accuracy was assessed using the Delta4 diode array phantom (ScandiDos AB). The gamma analysis was performed with the 3%/3mm dose and distance-to-agreement criteria. Results: The target conformity for CRT, VMAT and DWA were 0.95±0.07, 0.96±0.04 and 0.97±0.04, while the low dose spillage gradient were 5.52±1.36, 5.44±1.11, and 5.09±0.98 respectively. Overall, the bronchus, esophagus and spinal cord maximum doses were similar between VMAT and DWA, but highly reduced compared with CRT. For the lung cases, the mean dose and V20Gy were lower for the arc techniques compares with CRT, while for the liver cases, the mean dose and the V30Gy presented slightly higher values. The average delivery time of VMAT and DWA were 2.46±1.10 min and 4.25±1.67 min, VMAT presenting shorter treatment time in all cases. The DWA dosimetric verification presented an average gamma index passing rate of 95.73±1.54% (range 94.2%–99.8%). Conclusion: Our preliminary data indicated that the DWA is deliverable with clinically acceptable accuracy and has the potential to

  3. TU-CD-304-03: Dosimetric Verification and Preliminary Comparison of Dynamic Wave Arc for SBRT Treatments

    International Nuclear Information System (INIS)

    Burghelea, M; Poels, K; Gevaert, T; Tournel, K; Dhont, J; De Ridder, M; Verellen, D; Hung, C; Eriksson, K; Simon, V

    2015-01-01

    Purpose: To evaluate the potential dosimetric benefits and verify the delivery accuracy of Dynamic Wave Arc, a novel treatment delivery approach for the Vero SBRT system. Methods: Dynamic Wave Arc (DWA) combines simultaneous movement of gantry/ring with inverse planning optimization, resulting in an uninterrupted non-coplanar arc delivery technique. Thirteen SBRT complex cases previously treated with 8–10 conformal static beams (CRT) were evaluated in this study. Eight primary centrally-located NSCLC (prescription dose 4×12Gy or 8×7.5Gy) and five oligometastatic cases (2×2 lesions, 10×5Gy) were selected. DWA and coplanar VMAT plans, partially with dual arcs, were generated for each patient using identical objective functions for target volumes and OARs on the same TPS (RayStation, RaySearch Laboratories). Dosimetric differences and delivery time among these three planning schemes were evaluated. The DWA delivery accuracy was assessed using the Delta4 diode array phantom (ScandiDos AB). The gamma analysis was performed with the 3%/3mm dose and distance-to-agreement criteria. Results: The target conformity for CRT, VMAT and DWA were 0.95±0.07, 0.96±0.04 and 0.97±0.04, while the low dose spillage gradient were 5.52±1.36, 5.44±1.11, and 5.09±0.98 respectively. Overall, the bronchus, esophagus and spinal cord maximum doses were similar between VMAT and DWA, but highly reduced compared with CRT. For the lung cases, the mean dose and V20Gy were lower for the arc techniques compares with CRT, while for the liver cases, the mean dose and the V30Gy presented slightly higher values. The average delivery time of VMAT and DWA were 2.46±1.10 min and 4.25±1.67 min, VMAT presenting shorter treatment time in all cases. The DWA dosimetric verification presented an average gamma index passing rate of 95.73±1.54% (range 94.2%–99.8%). Conclusion: Our preliminary data indicated that the DWA is deliverable with clinically acceptable accuracy and has the potential to

  4. Stereotactic Target point Verification in Actual Treatment Position of Radiosurgery

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Lee, Hyun Koo

    1995-01-01

    Purpose : Authors tried to enhance the safety and accuracy of radiosurgery by verifying stereotactic target point in actual treatment position prior to irradiation. Materials and Methods : Before the actual treatment, several sections of anthropomorphic head phantom were used to create a condition of unknown coordinated of the target point. A film was sand witched between the phantom sections and punctured by sharp needle tip. The tip of the needle represented the target point. The head phantom was fixed to the stereotactic ring and CT scan was done with CT localizer attached to the ring. After the CT scanning, the stereotactic coordinates of the target point were determined. The head phantom was secured to accelerator's treatment couch and the movement of laser isocenter to the stereotactic coordinates determined by CT scanning was performed using target positioner. Accelerator's anteroposterior and lateral portal films were taken using angiographic localizers. The stereotactic coordinates determined by analysis of portal films were compared with the stereotactic coordinates previously determined by CT scanning. Following the correction of discrepancy, the head phantom was irradiated using a stereotactic technique of several arcs. After the irradiation, the film which was sand witched between the phantom sections was developed and the degree of coincidence between the center of the radiation distribution with the target point represented by the hole in the film was measured. In the treatment of actual patients, the way of determining the stereotactic coordinates with CT localizers and angiographic localizers between two sets of coordinates, we proceeded to the irradiation of the actual patient. Results : In the phantom study, the agreement between the center of the radiation distribution and the localized target point was very good. By measuring optical density profiles of the sand witched film along axes that intersected the target point, authors could confirm

  5. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit

    OpenAIRE

    Rutonjski Laza; Petrović Borislava; Baucal Milutin; Teodorović Milan; Čudić Ozren; Gershkevitsh Eduard; Izewska Joanna

    2012-01-01

    Abstract Background Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. Methods The audit was conducte...

  6. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  7. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    De Wagter, C.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  8. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  9. In vivo verification of proton beam path by using post-treatment PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, Wen C.; Indelicato, Daniel J.; Vargas, Carlos; Duvvuri, Srividya; Li Zuofeng; Palta, Jatinder [Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Boca Radiation Oncology Associates, Boca Raton, Florida 33431 (United States); Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2009-09-15

    Purpose: The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. Methods: A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the post-treatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. Results: The less than 2 deg. of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D{sub AP}) and superior-inferior (D{sub SI}) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D{sub AP} or D{sub SI}), 13

  10. SU-F-T-218: Validation of An In-Vivo Proton Range Verification Method for Reducing the Risk of Permanent Alopecia in the Treatment of Pediatric Medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Lucconi, G [Department of Medical Physics, S. Orsola-Malpighi University Hospital, Bologna (Italy); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Bentefour, E; Janssens, G [Advanced Technology Group, Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Deepak, S [Department of Physics, Central University of Karnataka, Karnataka 585367 (India); Weaver, K; Moteabbed, M; Lu, H-M [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflow was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.

  11. Enhanced skin delivery of vismodegib by microneedle treatment.

    Science.gov (United States)

    Nguyen, Hiep X; Banga, Ajay K

    2015-08-01

    The present study investigated the effects of microneedle treatment (maltose microneedles, Admin Pen™ 1200, and Admin Pen™ 1500) on in vitro transdermal delivery of vismodegib with different needle lengths, skin equilibration times, and microneedle insertion durations. The influence of microneedle treatment on the dimensions of microchannels (dye binding, calcein imaging, histology, and confocal microscopy studies), transepidermal water loss, and skin permeability of vismodegib was also evaluated. Skin viscoelasticity was assessed using a rheometer, and microneedle geometry was characterized by scanning electron microscopy. Permeation studies of vismodegib through dermatomed porcine ear skin were conducted using vertical Franz diffusion cells. Skin irritation potential of vismodegib formulation was assessed using an in vitro reconstructed human epidermis model. Results of the in vitro permeation studies revealed significant enhancement in permeation of vismodegib through microneedle-treated skin. As the needle length increased from 500 to 1100 and 1400 μm, drug delivery increased from 14.50 ± 2.35 to 32.38 ± 3.33 and 74.40 ± 15.86 μg/cm(2), respectively. Positive correlation between drug permeability and microneedle treatment duration was observed. The equilibration time was also found to affect the delivery of vismodegib. Thus, changes in microneedle length, equilibration time, and duration of treatment altered transdermal delivery of vismodegib.

  12. Multicentre validation of IMRT pre-treatment verification: Comparison of in-house and external audit

    International Nuclear Information System (INIS)

    Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi

    2014-01-01

    Background and purpose: We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Materials and methods: Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre’s equipment and methodology to those of an external audit. Results: While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Conclusions: Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres

  13. Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification

    International Nuclear Information System (INIS)

    Bragg, Christopher M.; Wingate, Katrina; Conway, John

    2008-01-01

    Purpose: To determine the implications of the use of the Anisotropic Analytical Algorithm (AAA) for the production and dosimetric verification of IMRT plans for treatments of the prostate, parotid, nasopharynx and lung. Methods: 72 IMRT treatment plans produced using the Pencil Beam Convolution (PBC) algorithm were recalculated using the AAA and the dose distributions compared. Twenty-four of the plans were delivered to inhomogeneous phantoms and verification measurements made using a pinpoint ionisation chamber. The agreement between the AAA and measurement was determined. Results: Small differences were seen in the prostate plans, with the AAA predicting slightly lower minimum PTV doses. In the parotid plans, there were small increases in the lens and contralateral parotid doses while the nasopharyngeal plans revealed a reduction in the volume of the PTV covered by the 95% isodose (the V 95% ) when the AAA was used. Large changes were seen in the lung plans, the AAA predicting reductions in the minimum PTV dose and large reductions in the V 95% . The AAA also predicted small increases in the mean dose to the normal lung and the V 20 . In the verification measurements, all AAA calculations were within 3% or 3.5 mm distance to agreement of the measured doses. Conclusions: The AAA should be used in preference to the PBC algorithm for treatments involving low density tissue but this may necessitate re-evaluation of plan acceptability criteria. Improvements to the Multi-Resolution Dose Calculation algorithm used in the inverse planning are required to reduce the convergence error in the presence of lung tissue. There was excellent agreement between the AAA and verification measurements for all sites

  14. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips

    International Nuclear Information System (INIS)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-01-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  15. In vivo verification of proton beam path by using post-treatment PET/CT imaging.

    Science.gov (United States)

    Hsi, Wen C; Indelicato, Daniel J; Vargas, Carlos; Duvvuri, Srividya; Li, Zuofeng; Palta, Jatinder

    2009-09-01

    The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the posttreatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. The less than 2 degrees of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D(AP)) and superior-inferior (D(SI)) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D(AP) or D(SI)), 13 studies, referred as motion-after-Tx cases

  16. A microcomputer system for prescription, calculation, verification and recording of radiotherapy treatments

    International Nuclear Information System (INIS)

    Morrey, D.; Smith, C.W.; Belcher, R.A.; Harding, T.; Sutherland, W.H.

    1982-01-01

    The design of a microcomputer system for the reduction of mistakes in radiotherapy is described. The system covers prescription entry, prescription and treatment calculations, and verification and recording of the treatment set-up. A telecobalt unit was interfaced to the system and in the first 12 months 400 patients have been prescribed and 5000 treatment fields verified. The prescription is entered by the medical officer using an interactive program and this prescription provides the reference for verifying the treatment set-up. The program allows amendments to the prescription to be made easily during the treatment course. The treatment parameters verified are field size, wedge and treatment time. The system uses bar-codes for patient and field identification. A reduction in the number of mistakes has been achieved and future developments are discussed. (author)

  17. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  18. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  19. Sorption Modeling and Verification for Off-Gas Treatment

    International Nuclear Information System (INIS)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-01-01

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  20. Verification of Treatment Planning System (TPS) on Beam Axis of Co-60 Teletherapy

    International Nuclear Information System (INIS)

    Nunung-Nuraeni; Budhy-Kurniawan; Purwanto; Sugiyantari; Heru-Prasetio; Nasukha

    2001-01-01

    Cancer diseases up to now can be able to be treated by using surgery, chemotherapy and radiotherapy. The need of high level precision and accuracy on radiation dose are very important task. One of task is verification of Treatment Planning System (Tps) to the treatment of patients. The research has been done to verify Tps on beam exis of teletherapy Co-60. Result found that the different between Tps and measurements are about -2.682 % to 1.918% for simple geometry and homogeneous material, 5.278 % to 4.990 % for complex geometry, and -3.202 % to -2.090 % for more complex geometry. (author)

  1. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    International Nuclear Information System (INIS)

    Wang, Z.

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  2. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [Duke University Medical Center (United States)

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  3. SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Black, P; Na, Y; Wuu, C [Columbia University, New York, NY (United States)

    2016-06-15

    Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) system (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to

  4. Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy

    International Nuclear Information System (INIS)

    Gianoli, Chiara; Riboldi, Marco; Fattori, Giovanni; Baselli, Giuseppe; Baroni, Guido; Bauer, Julia; Debus, Jürgen; Parodi, Katia; De Bernardi, Elisabetta

    2014-01-01

    In ion beam radiotherapy, PET-based treatment verification provides a consistency check of the delivered treatment with respect to a simulation based on the treatment planning. In this work the region-based MLEM reconstruction algorithm is proposed as a new evaluation strategy in PET-based treatment verification. The comparative evaluation is based on reconstructed PET images in selected regions, which are automatically identified on the expected PET images according to homogeneity in activity values. The strategy was tested on numerical and physical phantoms, simulating mismatches between the planned and measured β + activity distributions. The region-based MLEM reconstruction was demonstrated to be robust against noise and the sensitivity of the strategy results were comparable to three voxel units, corresponding to 6 mm in numerical phantoms. The robustness of the region-based MLEM evaluation outperformed the voxel-based strategies. The potential of the proposed strategy was also retrospectively assessed on patient data and further clinical validation is envisioned. (paper)

  5. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy

    NARCIS (Netherlands)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A; Michaud, Susan; Loeffler, Jay S; DeLaney, Thomas F; Liebsch, Norbert J; Munzenrider, John E; Fischman, Alan J; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    PURPOSE: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. METHODS AND MATERIALS: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3

  6. A framework for the organization and delivery of systemic treatment.

    Science.gov (United States)

    Vandenberg, T; Coakley, N; Nayler, J; Degrasse, C; Green, E; Mackay, J A; McLennan, C; Smith, A; Wilcock, L; Trudeau, M E

    2009-01-01

    Increasing systemic treatment and shortages of oncology professionals in Canada require innovative approaches to the safe and effective delivery of intravenous (IV) cancer treatment. We conducted a systematic review of the clinical and scientific literature, and an environmental scan of models in Canada, the United Kingdom, Australia, and New Zealand. We then developed a framework for the organization and delivery of IV systemic treatment. The systematic review covered the medline, embase, cinahl, and HealthStar databases. The environmental scan retrieved published and unpublished sources, coupled with a free key word search using the Google search engine. The Systemic Treatment Working Group reviewed the evidence and developed a draft framework using evidence-based analysis, existing recommendations from various jurisdictions, and expert opinion based on experience and consensus. The draft was assessed by Ontario stakeholders and reviewed and approved by Cancer Care Ontario. The poor quantity and quality of the evidence necessitated a consensus-derived model. That model comprises four levels of care determined by a regional systemic treatment program and three integrated structures (integrated cancer programs, affiliate institutions, and satellite institutions), each with a defined scope of practice and a specific organizational framework. New models of care are urgently required beyond large centres, particularly in geographically remote or rural areas. Despite limited applicable evidence, the development and successful implementation of this framework is intended to create sustainable, accessible, quality care and to measurably improve patient outcomes.

  7. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Taur, C.K.; Chang, S.C.

    1995-01-01

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  8. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Baek, T [Korea University, Seoul (Korea, Republic of); National Health Insurance Co.Ilsan Hospital, Ilsan (Korea, Republic of); Chung, E [National Health Insurance Co.Ilsan Hospital, Ilsan (Korea, Republic of); Lee, S [Cheil General Hospital and Women Healthcare Center, Kwandong University, Seoul (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  9. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ding, G [Vanderbilt University Nashville, TN (United States); Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code, BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the

  10. Development of a computerized portal verification scheme for pelvic treatment fields

    International Nuclear Information System (INIS)

    Nie, K.; Yin, F.-F.; Gao, Q.; Brasacchio, R.

    1996-01-01

    Purpose/Objective: At present, treatment verification between portal and reference images is performed based on manually-identified features by radiation oncologist, which is both time-consuming and potentially error-prone. There is a demand for the computerized verification procedure in clinical application. The purpose of this study is to develop a computerized portal verification scheme for pelvic treatment fields. Materials/Methods: The automated verification system involves image acquisition, image feature extraction, feature matching between reference and portal images and quantitative evaluation of patient setup. Electronic portal images with a matrix size of 256 x 256 and 12 bit gray levels were acquired using a liquid matrix electronic portal imaging device. Simulation images were acquired by digitizing simulation films using a TV camera into images with 256 x 256 matrix and 8 bit gray levels. Initially a Canny edge detector is applied to identify the field edges and an elliptic Fourier transformation is used to correlate the size and shape information between the reference and portal field edges. Several measures can be calculated using the transformation coefficients to describe the field shape, size and orientation. The quantitative information regarding to the relative shifts, rotation and magnification factor between portal and reference field edges can then be determined based on these measures. Next the pelvic brim, which is typically used as the landmark for radiation treatment verification, is identified by a pyramid searching process with double snakes defined from initial global area to final local area. A snake is an active model and energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. The search range is limited to the region between two snakes. Sobel edge detector and wavelet transformation approach are used to generate a serial image forces at

  11. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-01-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1–2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85–6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins.

  12. Dosimetric parameters of enhanced dynamic wedge for treatment planning and verification

    International Nuclear Information System (INIS)

    Leavitt, Dennis D.; Lee, Wing Lok; Gaffney, David K.

    1996-01-01

    Purpose/Objective: Enhanced Dynamic Wedge (EDW) is an intensity-modulated radiotherapy technique in which one collimating jaw sweeps across the field to define a desired wedge dose distribution while dose rate is modified according to jaw position. This tool enables discrete or continuous wedge angles from zero to sixty degrees for field widths from three cm to 30 cm in the direction of the wedge, and up to 40 cm perpendicular to the wedge direction. Additionally, asymmetric wedge fields not centered on the line through isocenter can be created for applications such as tangential breast irradiation. The unique range of field shapes and wedge angles introduce a new set of dosimetric challenges to be resolved before routine clinical use of EDW, and especially require that a simple set of independent dose calculation and verification techniques be developed to check computerized treatment planning results. Using terminology in common use in treatment planning, this work defines the effective wedge factor vs. field width and wedge angle, evaluates the depth dose vs. open field values, defines primary intensity functions from which specific dynamic wedges can be calculated in treatment planning systems, and describes the technique for independent calculation of Monitor Units for EDW fields. Materials and Methods: Using 6- and 18-MV beams from a CI2100C, EDW beam profiles were measured in water phantom for depths from near-surface to 30 cm for the full range of field widths and wedge angles using a linear detector array of 25 energy-compensated diodes. Asymmetric wedge field profiles were likewise measured. Depth doses were measured in water phantom using an ionization chamber sequentially positioned to depths of 30 cm. Effective wedge factors for the full range of field widths and wedge angles were measured using an ionization chamber in water-equivalent plastic at a depth of 10 cm on central axis. Dose profiles were calculated by computer as the summation of a series

  13. Dosimetric pre-treatment verification of IMRT using an EPID; clinical experience

    International Nuclear Information System (INIS)

    Zijtveld, Mathilda van; Dirkx, Maarten L.P.; Boer, Hans C.J. de; Heijmen, Ben J.M.

    2006-01-01

    Background and purpose: In our clinic a QA program for IMRT verification, fully based on dosimetric measurements with electronic portal imaging devices (EPID), has been running for over 3 years. The program includes a pre-treatment dosimetric check of all IMRT fields. During a complete treatment simulation at the linac, a portal dose image (PDI) is acquired with the EPID for each patient field and compared with a predicted PDI. In this paper, the results of this pre-treatment procedure are analysed, and intercepted errors are reported. An automated image analysis procedure is proposed to limit the number of fields that need human intervention in PDI comparison. Materials and methods: Most of our analyses are performed using the γ index with 3% local dose difference and 3 mm distance to agreement as reference values. Scalar parameters are derived from the γ values to summarize the agreement between measured and predicted 2D PDIs. Areas with all pixels having γ values larger than one are evaluated, making decisions based on clinically relevant criteria more straightforward. Results: In 270 patients, the pre-treatment checks revealed four clinically relevant errors. Calculation of statistics for a group of 75 patients showed that the patient-averaged mean γ value inside the field was 0.43 ± 0.13 (1 SD) and only 6.1 ± 6.8% of pixels had a γ value larger than one. With the proposed automated image analysis scheme, visual inspection of images can be avoided in 2/3 of the cases. Conclusion: EPIDs may be used for high accuracy and high resolution routine verification of IMRT fields to intercept clinically relevant dosimetric errors prior to the start of treatment. For the majority of fields, PDI comparison can fully rely on an automated procedure, avoiding excessive workload

  14. Transepidermal drug delivery: a new treatment option for areata alopecia?

    Science.gov (United States)

    Issa, Maria Claudia Almeida; Pires, Marianna; Silveira, Priscilla; Xavier de Brito, Esther; Sasajima, Cristiane

    2015-02-01

    Transepidermal drug delivery (TED) is a new potential method in dermatology. Permeability alterations induced by ablative fractional resurfacing have been described with the aim to increasing the delivery of different substances into the skin. To evaluate clinical response and side effects of TED in areata alopecia (AA) treatment using ablative fractional methods associated with acoustic pressure ultrasound (US) to deliver triamcinolone solution into the skin. Five cases of AA underwent treatment which comprised of 3 steps: 1) Ablative fractioned RF or CO2 laser 2) topical application of triamcinolone 3) acoustic pressure wave US. The number of sessions varied according to the clinical response, ranging from one to six sessions. All patients had complete recovery of the area treated. Two of them treated with ablative fractional RF + triamcinolone + US had complete response after three and six sessions. The other two treated with ablative fractional CO2 + triamcinolone + US had complete response after one session. Fractioned ablative resurfacing associated with acoustic pressure wave US is a new option to areata alopecia treatment with good clinical result and low incidence of side effects.

  15. Implementation of a gel dosimeter for dosimetric verification of treatments with RapidArcTM

    International Nuclear Information System (INIS)

    Cortes, H.; Vasquez, J.; Plazas, M.

    2014-08-01

    The gel dosimetry represents advantages on other dosimetric systems for its potential of analyzing information in third dimension (3D). This work seeks to find another alternative for the verification of treatments of high complexity like the RapidArc TM . A gel type Magic was prepared and characterized, which was irradiated with base in a plan of RapidArc TM calculated in the Treatment Planning System (Tps) Eclipse, using the Anisotropic Analytic Algorithm (Aaa) for a beam with an acceleration potential of 6 MV. The dosimeter was characterized using Magnetic Resonance Images starting from the correlation between the T2 and the dose. The dose distribution curves were analyzed in second dimension (2D) using the program Omni Pro-I mrT and were compared with the curves obtained for the Tps under the approach gamma 2D. The comparison showed that the Gel represents a valid option inside the acceptable ranges for Quality Assurance in radiotherapy. (Author)

  16. Verification and implications of the multiple pin treatment in the SASSYS-1 LMR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1994-01-01

    As part of a program to obtain realistic, as opposed to excessively conservative, analysis of reactor transients, a multiple pin treatment for the analysis of intra-subassembly thermal hydraulics has been included in the SASSYS-1 liquid metal reactor systems analysis code. This new treatment has made possible a whole new level of verification for the code. The code can now predict the steady-state and transient responses of individual thermocouples within instrumented subassemlies in a reactor, rather than just predicting average temperatures for a subassembly. Very good agreement has been achieved between code predictions and the experimental measurements of steady-state and transient temperatures and flow rates in the Shutdown Heat Removal Tests in the EBR-II Reactor. Detailed multiple pin calculations for blanket subassemblies in the EBR-II reactor demonstrate that the actual steady-state and transient peak temperatures in these subassemblies are significantly lower than those that would be calculated by simpler models

  17. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    International Nuclear Information System (INIS)

    Jackson, Jake; Juang, Titania; Oldham, Mark; Adamovics, John

    2015-01-01

    The purpose of this work was to characterize three formulations of PRESAGE ® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE ® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE ® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R 2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ∼63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE ® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE ® is observed to be a useful method of 3D verification when careful

  18. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  19. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems

  20. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Stanford University Cancer Center (United States)

    2016-06-15

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems.

  1. A computer-controlled conformal radiotherapy system. III: graphical simulation and monitoring of treatment delivery

    International Nuclear Information System (INIS)

    Kessler, Marc L.; McShan, Daniel L.; Fraass, Benedick A.

    1995-01-01

    Purpose: Safe and efficient delivery of radiotherapy using computer-controlled machines requires new procedures to design and verify the actual delivery of these treatments. Graphical simulation and monitoring techniques for treatment delivery have been developed for this purpose. Methods and Materials: A graphics-based simulator of the treatment machine and a set of procedures for creating and manipulating treatment delivery scripts are used to simulate machine motions, detect collisions, and monitor machine positions during treatment. The treatment delivery simulator is composed of four components: a three-dimensional dynamic model of the treatment machine; a motion simulation and collision detection algorithm, user-interface widgets that mimic the treatment machine's control and readout devices; and an icon-based interface for creating and manipulating treatment delivery scripts. These components are used in a stand-alone fashion for interactive treatment delivery planning and integrated with a machine control system for treatment implementation and monitoring. Results: A graphics-based treatment delivery simulator and a set of procedures for planning and monitoring computer-controlled treatment delivery have been developed and implemented as part of a comprehensive computer-controlled conformal radiotherapy system. To date, these techniques have been used to design and help monitor computer-controlled treatments on a radiotherapy machine for more than 200 patients. Examples using these techniques for treatment delivery planning and on-line monitoring of machine motions during therapy are described. Conclusion: A system that provides interactive graphics-based tools for defining the sequence of machine motions, simulating treatment delivery including collision detection, and presenting the therapists with continual visual feedback from the treatment machine has been successfully implemented for routine clinical use as part of an overall system for computer

  2. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy.

    Science.gov (United States)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-06-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1-2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85-6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins. © 2016 The Royal Australian and New Zealand College of Radiologists.

  3. The electronic view box: a software tool for radiation therapy treatment verification

    International Nuclear Information System (INIS)

    Bosch, Walter R.; Low, Daniel A.; Gerber, Russell L.; Michalski, Jeff M.; Graham, Mary V.; Perez, Carlos A.; Harms, William B.; Purdy, James A.

    1995-01-01

    Purpose: We have developed a software tool for interactively verifying treatment plan implementation. The Electronic View Box (EVB) tool copies the paradigm of current practice but does so electronically. A portal image (online portal image or digitized port film) is displayed side by side with a prescription image (digitized simulator film or digitally reconstructed radiograph). The user can measure distances between features in prescription and portal images and 'write' on the display, either to approve the image or to indicate required corrective actions. The EVB tool also provides several features not available in conventional verification practice using a light box. Methods and Materials: The EVB tool has been written in ANSI C using the X window system. The tool makes use of the Virtual Machine Platform and Foundation Library specifications of the NCI-sponsored Radiation Therapy Planning Tools Collaborative Working Group for portability into an arbitrary treatment planning system that conforms to these specifications. The present EVB tool is based on an earlier Verification Image Review tool, but with a substantial redesign of the user interface. A graphical user interface prototyping system was used in iteratively refining the tool layout to allow rapid modifications of the interface in response to user comments. Results: Features of the EVB tool include 1) hierarchical selection of digital portal images based on physician name, patient name, and field identifier; 2) side-by-side presentation of prescription and portal images at equal magnification and orientation, and with independent grayscale controls; 3) 'trace' facility for outlining anatomical structures; 4) 'ruler' facility for measuring distances; 5) zoomed display of corresponding regions in both images; 6) image contrast enhancement; and 7) communication of portal image evaluation results (approval, block modification, repeat image acquisition, etc.). Conclusion: The EVB tool facilitates the rapid

  4. SU-E-P-27: Efficient Process for AccuBoost Planning and Treatment Delivery to Minimize Patient Compression Time

    Energy Technology Data Exchange (ETDEWEB)

    Iftimia, I; Talmadge, M; Halvorsen, P [Lahey Clinic, Burlington, MA (United States)

    2015-06-15

    Purpose: To implement an efficient and robust process for AccuBoost planning and treatment delivery that can be safely performed by a single Physicist while minimizing patient’s total session time. Methods: Following a thorough commissioning and validation process, templates were created in the brachytherapy planning system for each AccuBoost applicator. Tables of individual and total nominal dwell times for each applicator as a function of separation were generated to streamline planning while an Excel-based nomogram provided by the vendor functions as a secondary verification of the treatment parameters. Tables of surface dose as a function of separation and applicator, along with concise guidance documents for applicator selection, are readily available during the planning process. The entire process is described in a set of detailed Standard Operating Procedures which, in addition to the items described above, include a verbal time-out between the primary planner and the individual performing the secondary verification as well as direct visual confirmation of applicator placement using an articulated mirror. Prior to treatment initiation, a final time-out is conducted with the Radiation Oncologist. Chart documentation is finalized after the patient is released from compression following completion of the treatment. Results: With the aforementioned procedures, it has been possible to consistently limit the time required to prepare each treatment such that the patient is typically under compression for less than 10 minutes per orientation prior to the initiation of the treatment, which is particularly important for APBI cases. This process can be overseen by a single physicist assisted by a dosimetrist and has been optimized during the past 16 months, with 180 treatment sessions safely completed to date. Conclusion: This work demonstrates the implementation of an efficient and robust process for real-time-planned AccuBoost treatments that effectively minimizes

  5. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Christopher

    2014-06-12

    Due to the accessible sharp dose gradients, external beam radiotherapy with protons and heavier ions enables a highly conformal adaptation of the delivered dose to arbitrarily shaped tumour volumes. However, this high conformity is accompanied by an increased sensitivity to potential uncertainties, e.g., due to changes in the patient anatomy. Additional challenges are imposed by respiratory motion which does not only lead to rapid changes of the patient anatomy, but, in the cased of actively scanned ions beams, also to the formation of dose inhomogeneities. Therefore, it is highly desirable to verify the actual application of the treatment and to detect possible deviations with respect to the planned irradiation. At present, the only clinically implemented approach for a close-in-time verification of single treatment fractions is based on detecting the distribution of β{sup +}-emitter formed in nuclear fragmentation reactions during the irradiation by means of positron emission tomography (PET). For this purpose, a commercial PET/CT (computed tomography) scanner has been installed directly next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). Up to present, the application of this treatment verification technique is, however, still limited to static target volumes. This thesis aimed at investigating the feasibility and performance of PET-based treatment verification under consideration of organ motion. In experimental irradiation studies with moving phantoms, not only the practicability of PET-based treatment monitoring for moving targets, using a commercial PET/CT device, could be shown for the first time, but also the potential of this technique to detect motion-related deviations from the planned treatment with sub-millimetre accuracy. The first application to four exemplary hepato-cellular carcinoma patient cases under substantially more challenging clinical conditions indicated potential for improvement by taking organ motion into

  6. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    International Nuclear Information System (INIS)

    Kurz, Christopher

    2014-01-01

    Due to the accessible sharp dose gradients, external beam radiotherapy with protons and heavier ions enables a highly conformal adaptation of the delivered dose to arbitrarily shaped tumour volumes. However, this high conformity is accompanied by an increased sensitivity to potential uncertainties, e.g., due to changes in the patient anatomy. Additional challenges are imposed by respiratory motion which does not only lead to rapid changes of the patient anatomy, but, in the cased of actively scanned ions beams, also to the formation of dose inhomogeneities. Therefore, it is highly desirable to verify the actual application of the treatment and to detect possible deviations with respect to the planned irradiation. At present, the only clinically implemented approach for a close-in-time verification of single treatment fractions is based on detecting the distribution of β + -emitter formed in nuclear fragmentation reactions during the irradiation by means of positron emission tomography (PET). For this purpose, a commercial PET/CT (computed tomography) scanner has been installed directly next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). Up to present, the application of this treatment verification technique is, however, still limited to static target volumes. This thesis aimed at investigating the feasibility and performance of PET-based treatment verification under consideration of organ motion. In experimental irradiation studies with moving phantoms, not only the practicability of PET-based treatment monitoring for moving targets, using a commercial PET/CT device, could be shown for the first time, but also the potential of this technique to detect motion-related deviations from the planned treatment with sub-millimetre accuracy. The first application to four exemplary hepato-cellular carcinoma patient cases under substantially more challenging clinical conditions indicated potential for improvement by taking organ motion into

  7. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  8. Genital herpes and its treatment in relation to preterm delivery.

    Science.gov (United States)

    Li, De-Kun; Raebel, Marsha A; Cheetham, T Craig; Hansen, Craig; Avalos, Lyndsay; Chen, Hong; Davis, Robert

    2014-12-01

    To examine the risks of genital herpes and antiherpes treatment during pregnancy in relation to preterm delivery (PTD), we conducted a multicenter, member-based cohort study within 4 Kaiser Permanente regions: northern and southern California, Colorado, and Georgia. The study included 662,913 mother-newborn pairs from 1997 to 2010. Pregnant women were classified into 3 groups based on genital herpes diagnosis and treatment: genital herpes without treatment, genital herpes with antiherpes treatment, and no herpes diagnosis or treatment (unexposed controls). After controlling for potential confounders, we found that compared with being unexposed, having untreated genital herpes during first or second trimester was associated with more than double the risk of PTD (odds ratio (OR) = 2.23, 95% confidence interval (CI): 1.80, 2.76). The association was stronger for PTD due to premature rupture of membrane (OR = 3.57, 95% CI: 2.53, 5.06) and for early PTD (≤35 weeks gestation) (OR = 2.87, 95% CI: 2.22, 3.71). In contrast, undergoing antiherpes treatment during pregnancy was associated with a lower risk of PTD compared with not being treated, and the PTD risk was similar to that observed in the unexposed controls (OR = 1.11, 95% CI: 0.89, 1.38). The present study revealed increased risk of PTD associated with genital herpes infection if left untreated and a potential benefit of antiherpes medications in mitigating the effect of genital herpes infection on the risk of PTD. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. 19 CFR 10.784 - Verification and justification of claim for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... accounting principles. When conducting a verification of origin to which Generally Accepted Accounting Principles may be relevant, CBP will apply and accept the Generally Accepted Accounting Principles applicable...

  10. 19 CFR 10.824 - Verification and justification of claim for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... accounting principles. When conducting a verification of origin to which Generally Accepted Accounting Principles may be relevant, CBP will apply and accept the Generally Accepted Accounting Principles applicable...

  11. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors

    International Nuclear Information System (INIS)

    Asuni, G; Van Beek, T A; Venkataraman, S; McCurdy, B M C; Popescu, I A

    2013-01-01

    The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in ‘movie’ mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ 90% of percentage pixels with γ <1. We found that over

  12. SU-E-J-115: Graticule for Verification of Treatment Position in Neutron Therapy.

    Science.gov (United States)

    Halford, R; Snyder, M

    2012-06-01

    Until recently the treatment verification for patients undergoing fast neutron therapy at our facility was accomplished through a combination of neutron beam portal films aligned with a graticule mounted on an orthronormal x-ray tube. To eliminate uncertainty with respect to the relative positions of the x-ray graticule and the therapy beam, we have developed a graticule which is placed in the neutron beam itself. For a graticule to be visible on the portal film, the attenuation of the neutron beam by the graticule landmarks must be significantly greater than that of the material in which the landmarks are mounted. Various materials, thicknesses, and mounting points were tried to gain the largest contrast between the graticule landmarks and the mounting material. The final design involved 2 inch steel pins of 0.125 inch diameter captured between two parallel plates of 0.25 inch thick clear acrylic plastic. The distance between the two acrylic plates was 1.625 inches, held together at the perimeter with acrylic sidewall spacers. This allowed the majority of length of the steel pins to be surrounded by air. The pins were set 1 cm apart and mounted at angles parallel to the divergence of the beam dependent on their position within the array. The entire steel pin and acrylic plate assembly was mounted on an acrylic accessory tray to allow for graticule alignment. Despite the inherent difficulties in attenuating fast neutrons, our simple graticule design produces the required difference of attenuation between the arrays of landmarks and the mounting material. The graticule successfully provides an in-beam frame of reference for patient portal verification. © 2012 American Association of Physicists in Medicine.

  13. Three dimensional dose verification for clinical treatments of small intracranial tumours

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dunn, L.; Kairn, L.; Jenny, J.; Knight, R.; Trapp, J.; Smith, R.; Ackerly, T.

    2010-01-01

    Full text: Cancers of the brain and central nervous system account for 1.6% of new cancers and 1.8% of cancer deaths globally. The highest rates of all developed nations are observed in Australia and New Zealand. There are known complexities associated with dose measurement of very small radiation fields. Here, 3D dosimetric verification of treatments for small intracranial tumours using gel dosimetry was investigated. An anthropomorphic head phantom with a 43 mm diameter and 63 mm long gel container was filled with PAGAT normoxic radiosensitive gel. In this work, we show results for a 12-field stereotactic radiotherapy treatment delivered using a Varian 21EX with BrainLAB mini-multi leaf collimator. The gel was read out using an Octopus-1Q laser optical CT scanner. Generally good agreement was observed between the measured doses and those calculated with the iPlan treatment planning system (pencil beam convolution); see Fig. I. For gamma criteria of 5%/5 mm the percentage of gamma values less than unity was 95% above the 80% isodose line, indicating good PTV coverage. For lower isodose regions approaching the boundaries of the container poorer agreement was observed. The feasibility of three-dimensional measurement of small field dose distributions in clinical contexts has been demonstrated. Development of this methodology has the potential to overcome many shortcomings of other dosimetric methods, such as limitations of spatial information (typically one- and two-dimensions), volume-averaging effects and perturbation due to poor mediamatching. (author)

  14. SU-E-T-127: Application of TG-119 for Evaluation of Proton Spot Scanning Based Planning and Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saini, J; Cao, N; Wong, T [SCCA Proton Therapy, A Procure Center, Seattle, WA (United States); Bowen, S; Bloch, C [University of Washington, School of Medicine, Seattle, WA (United States)

    2015-06-15

    Purpose: The clinical test cases presented in AAPM TG-119 are used to evaluate the accuracy of treatment planning and delivery through spot scanning proton beams. Methods: An IBA spot scanning delivery system has been commissioned to be used with the RayStation treatment planning system. Various test cases provided in TG-119 were used for planning and delivery verification. The CT dataset and structures as provided by TG-119 were imported into a mock patient. The plans were optimized using the multi field optimization (MFO) to achieve the desired goals. The planner was given the flexibility to achieve the given dose-volume goals by creating appropriate objectives and constraints. Beams were delivered to a phantom and measurements were performed at multiple depths using the MatrixxPT detector array. The analyses were performed on beam by beam basis and quantified using the gamma index. A tolerance of 3%/3 mm in 2D was used for gamma index analysis along with dose threshold of 10%. Results: The clinical goals for targets and critical structures were met or improved for all cases except the C-Shape target with difficult constraints. The minimum gamma index using the 3%/3mm as a criterion is 93.3% for one of the planes measured for C-Shape target. Using 2%/2mm as a criterion, the minimum gamma index drops to 70%. Only Prostate target has all the planes above >90% pass using the 2%/2mm criterion. Conclusion: The overall accuracy of the treatment planning and delivery is deemed clinically acceptable. The test cases with highly modulated beams can have steep gradients in the dose profiles that can reduce the gamma index pass rate. Gamma analysis based on 3D data may be needed for routine use of 2%/2mm criterion. In addition, improvements in modelling of spot profiles in dose engine may be required for further improving the gamma index pass rate.

  15. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    Science.gov (United States)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  16. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  17. Treatment verification with megavoltage electronic portal imaging applied to the tomotherapy concept

    International Nuclear Information System (INIS)

    Hesse, B.-M.; Spies, L.; Groh, B.; Doll, J.; Haering, P.; Hoever, K. H.

    1997-01-01

    Purpose: A new treatment strategy called Tomotherapy, introduced by T. R. Mackie et al. in 1993, was designed to perform a dynamic conformal treatment technique in precision radiotherapy. This technique delivers sliced intensity-modulated radiation fields to achieve best tumor control while sparing neighbouring sensitive normal tissue and organs at risk. The beam continuously revolves around the patient similarly to a spiral-CT while the patient is moved through the bore of the gantry. As a first step towards the realization of such a concept with a linear accelerator (Siemens Mevatron Experimental) used in clinical routine, we focused on treatment setup and dose verification. In tomotherapy, an actual CT data set is needed for patient positioning and for the verification of the absorbed dose, also, the dose transmitted through the patient must be known. This makes possible both routine tomographic treatment setup verification and tomographic dose reconstruction of the actual delivered dose. Materials and Methods: All measurements were performed with a megavoltage electronic portal imaging device of Wellhoefer TM (BIS-710). The BIS-710 detector is based on a scintillation foil and contains a camera for 10-bit digital data output. The dimension of the detector plane is 512 x 512 pixels with a pixel size of 0.6 mm in each direction. The BIS-710 was developed especially for quantitative dose measuring, whereas most of the existing Portal Imaging Systems are used for image display only. To examine the properties of the BIS-710 concerning tomographical reconstruction with a therapeutic 6 MV X-ray beam, a tissue-equivalent Alderson head phantom was rotated stepwise across a stationary beam between the collimator and the detector plane. The influence of scattering can be estimated by comparing measurements which were taken with a homogeneous phantom which is invariant under rotation with a calculated exit dose distribution using a simple exponential law for the

  18. Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams

    Science.gov (United States)

    Hoesl, M.; Deepak, S.; Moteabbed, M.; Jassens, G.; Orban, J.; Park, Y. K.; Parodi, K.; Bentefour, E. H.; Lu, H. M.

    2016-04-01

    The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.

  19. Dose patient verification during treatment using an amorphous silicon electronic portal imaging device in radiotherapy

    International Nuclear Information System (INIS)

    Berger, Lucie

    2006-01-01

    Today, amorphous silicon electronic portal imaging devices (aSi EPID) are currently used to check the accuracy of patient positioning. However, they are not use for dose reconstruction yet and more investigations are required to allow the use of an aSi EPID for routine dosimetric verification. The aim of this work is first to study the dosimetric characteristics of the EPID available at the Institut Curie and then, to check patient dose during treatment using these EPID. First, performance optimization of the Varian aS500 EPID system is studied. Then, a quality assurance system is set up in order to certify the image quality on a daily basis. An additional study on the dosimetric performance of the aS500 EPID is monitored to assess operational stability for dosimetry applications. Electronic portal imaging device is also a useful tool to improve IMRT quality control. The validation and the quality assurance of a portal dose image prediction system for IMRT pre-treatment quality control are performed. All dynamic IMRT fields are verified in clinical routine with the new method based on portal dosimetry. Finally, a new formalism for in vivo dosimetry using transit dose measured with EPID is developed and validated. The absolute dose measurement issue using aSi EPID is described and the midplane dose determination using in vivo dose measurements in combination with portal imaging is used with 3D-conformal-radiation therapy. (author) [fr

  20. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit.

    Science.gov (United States)

    Rutonjski, Laza; Petrović, Borislava; Baucal, Milutin; Teodorović, Milan; Cudić, Ozren; Gershkevitsh, Eduard; Izewska, Joanna

    2012-09-12

    Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. The audit was conducted in three radiotherapy departments of Serbia. An anthropomorphic phantom was scanned with a computed tomography unit (CT) and treatment plans for eight different test cases involving various beam configurations suggested by the IAEA were prepared on local treatment planning systems (TPSs). The phantom was irradiated following the treatment plans for these test cases and doses in specific points were measured with an ionization chamber. The differences between the measured and calculated doses were reported. The measurements were conducted for different photon beam energies and TPS calculation algorithms. The deviation between the measured and calculated values for all test cases made with advanced algorithms were within the agreement criteria, while the larger deviations were observed for simpler algorithms. The number of measurements with results outside the agreement criteria increased with the increase of the beam energy and decreased with TPS calculation algorithm sophistication. Also, a few errors in the basic dosimetry data in TPS were detected and corrected. The audit helped the users to better understand the operational features and limitations of their TPSs and resulted in increased confidence in dose calculation accuracy using TPSs. The audit results indicated the shortcomings of simpler algorithms for the test cases performed and, therefore the transition to more advanced algorithms is highly desirable.

  1. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit

    International Nuclear Information System (INIS)

    Rutonjski, Laza; Petrović, Borislava; Baucal, Milutin; Teodorović, Milan; Čudić, Ozren; Gershkevitsh, Eduard; Izewska, Joanna

    2012-01-01

    Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. The audit was conducted in three radiotherapy departments of Serbia. An anthropomorphic phantom was scanned with a computed tomography unit (CT) and treatment plans for eight different test cases involving various beam configurations suggested by the IAEA were prepared on local treatment planning systems (TPSs). The phantom was irradiated following the treatment plans for these test cases and doses in specific points were measured with an ionization chamber. The differences between the measured and calculated doses were reported. The measurements were conducted for different photon beam energies and TPS calculation algorithms. The deviation between the measured and calculated values for all test cases made with advanced algorithms were within the agreement criteria, while the larger deviations were observed for simpler algorithms. The number of measurements with results outside the agreement criteria increased with the increase of the beam energy and decreased with TPS calculation algorithm sophistication. Also, a few errors in the basic dosimetry data in TPS were detected and corrected. The audit helped the users to better understand the operational features and limitations of their TPSs and resulted in increased confidence in dose calculation accuracy using TPSs. The audit results indicated the shortcomings of simpler algorithms for the test cases performed and, therefore the transition to more advanced algorithms is highly desirable

  2. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit

    Directory of Open Access Journals (Sweden)

    Rutonjski Laza

    2012-09-01

    Full Text Available Abstract Background Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. Methods The audit was conducted in three radiotherapy departments of Serbia. An anthropomorphic phantom was scanned with a computed tomography unit (CT and treatment plans for eight different test cases involving various beam configurations suggested by the IAEA were prepared on local treatment planning systems (TPSs. The phantom was irradiated following the treatment plans for these test cases and doses in specific points were measured with an ionization chamber. The differences between the measured and calculated doses were reported. Results The measurements were conducted for different photon beam energies and TPS calculation algorithms. The deviation between the measured and calculated values for all test cases made with advanced algorithms were within the agreement criteria, while the larger deviations were observed for simpler algorithms. The number of measurements with results outside the agreement criteria increased with the increase of the beam energy and decreased with TPS calculation algorithm sophistication. Also, a few errors in the basic dosimetry data in TPS were detected and corrected. Conclusions The audit helped the users to better understand the operational features and limitations of their TPSs and resulted in increased confidence in dose calculation accuracy using TPSs. The audit results indicated the shortcomings of simpler algorithms for the test cases performed and, therefore the transition to more advanced algorithms is highly desirable.

  3. Passive flow regulators for drug delivery and hydrocephalus treatment

    Science.gov (United States)

    Chappel, E.; Dumont-Fillon, D.; Mefti, S.

    2014-03-01

    Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.

  4. Drug Delivery Approaches for the Treatment of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Farideh Ordikhani

    2016-07-01

    Full Text Available Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods.

  5. Three-dimensional pre-treatment verification for intensity modulated radiotherapy using the 3DVH™ software

    International Nuclear Information System (INIS)

    Martins, Lais P.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Santos, Maira R.; Batista, Delano V.S.

    2013-01-01

    The IMRT quality assurance is normally analyzed punctual or bi-dimensionally. One difficult of this procedure is to evaluate the clinical impact of the QA result on treatment. The 3DVHTM software gives a 3D measured dose distribution, providing DVH analysis for organs at risk and target volumes. The aim of this work is to validate and implement the software 3DVH™ for IMRT treatments and to verify advantages over the QA 2D. The software uses two groups of data to generate the dose distribution: one from the treatment planning system and another from the irradiation for traditional QA 2D, measured with MapCHECK (Sun Nuclear) (MC). To validate the software, a small volume ionization chamber was used to check if both calculated 3DVHTM dose and measured dose by the chamber were equivalent. For QA analysis, ten IMRT cases planned in Eclipse 8.6 (Varian) and treated in Instituto Nacional de Cancer (INCA) were selected. For all cases, verification plans were created and irradiated in MC, and the analysis were made using the gamma index. Among the cases, five DVH comparisons between planned and measured data presented a deviation lower than 4% of the prescribed dose in 95% of the PTV and GTV's coverage. Other cases showed differences larger than 4%, presented in areas where the movements of the MLC leaves were more complex, mostly in the neighborhood of organs at risk. The 3DVH™ software provides several clinical advantages to IMRT QA, generating refined analysis of the cases evaluated, in comparison to conventional QA 2D. (author)

  6. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Tinganelli, Walter; Durante, Marco [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany and Trento Institute for Fundamental Physics and Application (TIFPA-INFN), 38123, via Sommarive 14, Trento (Italy); Brons, Stephan; Tessonnier, Thomas [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany and Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Parodi, Katia [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Department of Medical Physics, Am Coulombwall 1, 85748 Munich (Germany)

    2016-04-15

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in

  7. Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan

    International Nuclear Information System (INIS)

    Gellermann, Johanna; Wust, Peter; Stalling, Dether; Seebass, Martin; Nadobny, Jacek; Beck, Rudolf; Hege, Hans-Christian; Deuflhard, Peter; Felix, Roland

    2000-01-01

    Purpose: A prototype of the hyperthermia treatment planning system (HTPS) HyperPlan for the SIGMA-60 applicator (BSD Medical Corp., Salt Lake City, Utah, USA) has been evaluated with respect to clinical practicability and correctness. Materials and Methods: HyperPlan modules extract tissue boundaries from computed tomography (CT) images to generate regular and tetrahedral grids as patient models, to calculate electric field (E-field) distributions, and to visualize three-dimensional data sets. The finite difference time-domain (FDTD) method is applied to calculate the specific absorption rate (SAR) inside the patient. Temperature distributions are calculated by a finite-element code and can be optimized. HyperPlan was tested on 6 patients with pelvic tumors. For verification, measured SAR values were compared with calculated SAR values. Furthermore, intracorporeal E-field scans were performed and compared with calculated profiles. Results: The HTPS can be applied under clinical conditions. Measured absolute SAR (in W/kg), as well as relative E-field scans, correlated well with calculated values (±20%) using the contour-based FDTD method. Values calculated by applying the FDTD method directly on the voxel (CT) grid, were less well correlated with measured data. Conclusion: The HyperPlan system proved to be clinically feasible, and the results were quantitatively and qualitatively verified for the contour-based FDTD method

  8. Comparison of monitor units calculated by radiotherapy treatment planning system and an independent monitor unit verification software.

    Science.gov (United States)

    Sellakumar, P; Arun, C; Sanjay, S S; Ramesh, S B

    2011-01-01

    In radiation therapy, the monitor units (MU) needed to deliver a treatment plan are calculated by treatment planning systems (TPS). The essential part of quality assurance is to verify the MU with independent monitor unit calculation to correct any potential errors prior to the start of treatment. In this study, we have compared the MU calculated by TPS and by independent MU verification software. The MU verification software was commissioned and tested for the data integrity to ensure that the correct beam data was considered for MU calculations. The accuracy of the calculations was tested by creating a series of test plans and comparing them with ion chamber measurements. The results show that there is good agreement between the two. The MU difference (MUdiff) between the monitor unit calculations of TPS and independent MU verification system was calculated for 623 fields from 245 patients and was analyzed by treatment site for head & neck, thorax, breast, abdomen and pelvis. The mean MUdiff of -0.838% with a standard deviation of 3.04% was observed for all 623 fields. The site specific standard deviation of MUdiff was as follows: abdomen and pelvis (<1.75%), head & neck (2.5%), thorax (2.32%) and breast (6.01%). The disparities were analyzed and different correction methods were used to reduce the disparity. © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    International Nuclear Information System (INIS)

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal; Devic, Slobodan

    2014-01-01

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT

  10. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Ghada [Medical Physics Unit, Montreal General Hospital, McGill University, Montreal, Quebec (Canada); Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal [Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Devic, Slobodan [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada)

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.

  11. 19 CFR 10.550 - Verification and justification of claim for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... may agree. (b) Applicable accounting principles. When conducting a verification of origin to which Generally Accepted Accounting Principles may be relevant, CBP will apply and accept the Generally Accepted Accounting Principles applicable in the country of production. ...

  12. 19 CFR 10.616 - Verification and justification of claim for preferential tariff treatment.

    Science.gov (United States)

    2010-04-01

    .... (b) Applicable accounting principles. When conducting a verification of origin to which Generally Accepted Accounting Principles may be relevant, CBP will apply and accept the Generally Accepted Accounting Principles applicable in the country of production. ...

  13. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  14. Capability verification of the beam delivery system in the superficially-placed tumor therapy terminal at HIRFL

    International Nuclear Information System (INIS)

    Dai Zhongying; Li Qiang; Xiao Guoqing; Jin Xiaodong; Yan Zheng; Chinese Academy of Sciences, Beijing

    2007-01-01

    The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Research Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL. (authors)

  15. [Diagnosis and treatment of rib fracture during spontaneous vaginal delivery].

    Science.gov (United States)

    Jovanović, Nebojša; Ristovska, Nataša; Bogdanović, Zorica; Petronijević, Miloš; Opalić, Jasna; Plećaš, Darko

    2013-01-01

    Progress of labor in multiparous women usually is not accompanied with risk of any kind of birth trauma. We report a very rare case of rib fracture in a neonate during vaginal delivery in the 39/40 week of gestation. The expulsion started spontaneously without any manipulation from the obstetrician. Live male newborn was delivered 4650 g. in weight, 55 cm long, with head circumference of 39 cm, Apgar score 9. The child was immediately examined by the neonatologist. Crepitations were palpable over the left hemithorax, and auscultatory on the left side inspiratory cracks. Finding was suspicious for rib fracture on the left side posteriorly and brachial plexus palsy, while other findings were normal. X-ray finding was inconclusive, but suspicious for fracture of the 4th, 5th, and 6th left rib posteriorly, without dislocation of bone fragments. There were no signs of pneumothorax. Dorsal position of the newborn was considered sufficient, accompanied with analgetics. X-ray was scheduled in a week because formation of the calus would be the only objective sign of previous rib fracture. On the control X-ray fracture lines were clearly visible on the 3rd, 4th, 5th 6th and 7th rib posteriorly, without dislocation of bone fragments with initial calus formation. The child was discharged from hospital in good condition after two weeks, for further outpatient care. With timely diagnostics of this very rare intrapartal fracture, adequate treatment, dorsal position and close control of clinical condition of the newborn, serious and potentially life threatening complications can be avoided.

  16. Diagnosis and treatment of rib fracture during spontaneous vaginal delivery

    Directory of Open Access Journals (Sweden)

    Jovanović Nebojša

    2013-01-01

    Full Text Available Introduction. Progress of labor in multiparous women usually is not accompanied with risk of any kind of birth trauma. Case Outline. We report a very rare case of rib fracture in a neonate during vaginal delivery in the 39/40 week of gestation. The expulsion started spontaneously without any manipulation from the obstetrician. Live male newborn was delivered 4650 g. in weight, 55 cm long, with head circumference of 39 cm, Apgar score 9. The child was immediately examined by the neonatologist. Crepitations were palpable over the left hemithorax, and auscultatory on the left side inspiratory cracks. Finding was suspicious for rib fracture on the left side posteriorly and brachial plexus palsy, while other findings were normal. X­ray finding was inconclusive, but suspicious for fracture of the 4th, 5th, and 6th left rib posteriorly, without dislocation of bone fragments. There were no signs of pneumothorax. Dorsal position of the newborn was considered sufficient, accompanied with analgetics. X­ray was scheduled in a week because formation of the calus would be the only objective sign of previous rib fracture. On the control X­ray fracture lines were clearly visible on the 3rd, 4th, 5th, 6th and 7th rib posteriorly, without dislocation of bone fragments with initial calus formation. The child was discharged from hospital in good condition after two weeks, for further outpatient care. Conclusion. With timely diagnostics of this very rare intrapartal fracture, adequate treatment, dorsal position and close control of clinical condition of the newborn, serious and potentially life threatening complications can be avoided.

  17. Patient Study of In Vivo Verification of Beam Delivery and Range, Using Positron Emission Tomography and Computed Tomography Imaging After Proton Therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; DeLaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application

  18. Initial Application of the FEMP Measurement and Verification Guidelines in Super ESPC Delivery Orders: Final Report; May 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jump, D.; Stetz, M.

    2000-09-05

    Schiller Associates examined the measurement and verification (M and V) plans and activities for seven Western Region Super Energy Savings Performance Contract (ESPC) projects to learn how federal agencies are implementing M and V and what factors influence M and V plan development. This report describes the method used to examine the M and V plans and presents the findings. The goals were to find common factors that influenced M and V plan development and implementation, assess risks to the agency as a result of particular M and V plans, and develop recommendations for improving M and V plan development and implementation. Participating agencies and sites were: (1) National Park Service, Yosemite National Park, CA; (2) Veterans Affairs, VA Medical Center, San Francisco, CA; (3) US Forest Service, USFS Laboratory, Corvallis, OR; (4) Federal Aviation Administration, ATRCC, Auburn, WA; (5) US Department of Defense, Defense Manpower Data Center, Monterey, CA; (6) US Coast Guard, Coast Guard Station, Alameda, CA; and (7) US Navy, Pt. Mugu, Oxnard, CA.

  19. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J

    2015-02-01

    To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The

  20. A fully electronic intensity-modulated radiation therapy quality assurance (IMRT QA) process implemented in a network comprised of independent treatment planning, record and verify, and delivery systems

    International Nuclear Information System (INIS)

    Bailey, Daniel W; Kumaraswamy, Lalith; Podgorsak, Matthew B

    2010-01-01

    The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems. A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager. Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients. In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a

  1. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q; Read, P [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  2. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    International Nuclear Information System (INIS)

    Chen, Q; Read, P

    2016-01-01

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  3. Need of patient-specific quality assurance and pre-treatment verification program for special plans in radiotherapy

    International Nuclear Information System (INIS)

    Ravichandran, Ramamoorthy; Bhasi, Saju; Binukumar, J.P.; Davis, C.A.

    2011-01-01

    Accuracy in planned radiation dose delivery in cancer treatments becomes necessary in the advent of complex treatment delivery options with newer technology using medical linear accelerators, which makes patient management very crucial. Treatment outcome in an individual patient therefore depends on the professional involvement of staff and execution accuracy of planned procedure. Therefore, this article has addressed an important problem. International Atomic Energy Agency (IAEA) and International Commission on Radiological Protection (ICRP) reported mis-administrations of radiation dose, the nature of their occurrence and complexity of situations. Lack of adequate quality assurance (QA) program or failure in their routine applications, complacency in attention, lack of knowledge, overconfidence, pressures of time, lack of resources and failures in communication are some of the general human causes of errors. A recent report enumerated misadministration of radiation doses under the heading 'harming instead of healing' delivery of wrong doses in small field treatment plans with stereotactic equipment' was mostly highlighted

  4. Treatment planning and verification of proton therapy using spot scanning: Initial experiences

    International Nuclear Information System (INIS)

    Lomax, Antony J.; Boehringer, Terence; Bolsi, Alessandra; Coray, Doelf; Emert, Frank; Goitein, Gudrun; Jermann, Martin; Lin, Shixiong; Pedroni, Eros; Rutz, Hanspeter; Stadelmann, Otto; Timmermann, Beate; Verwey, Jorn; Weber, Damien C.

    2004-01-01

    Since the end of 1996, we have treated more than 160 patients at PSI using spot-scanned protons. The range of indications treated has been quite wide and includes, in the head region, base-of-skull sarcomas, low-grade gliomas, meningiomas, and para-nasal sinus tumors. In addition, we have treated bone sarcomas in the neck and trunk - mainly in the sacral area - as well as prostate cases and some soft tissue sarcomas. PTV volumes for our treated cases are in the range 20-4500 ml, indicating the flexibility of the spot scanning system for treating lesions of all types and sizes. The number of fields per applied plan ranges from between 1 and 4, with a mean of just under 3 beams per plan, and the number of fluence modulated Bragg peaks delivered per field has ranged from 200 to 45 000. With the current delivery rate of roughly 3000 Bragg peaks per minute, this translates into delivery times per field of between a few seconds to 20-25 min. Bragg peak weight analysis of these spots has shown that over all fields, only about 10% of delivered spots have a weight of more than 10% of the maximum in any given field, indicating that there is some scope for optimizing the number of spots delivered per field. Field specific dosimetry shows that these treatments can be delivered accurately and precisely to within ±1 mm (1 SD) orthogonal to the field direction and to within 1.5 mm in range. With our current delivery system the mean widths of delivered pencil beams at the Bragg peak is about 8 mm (σ) for all energies, indicating that this is an area where some improvements can be made. In addition, an analysis of the spot weights and energies of individual Bragg peaks shows a relatively broad spread of low and high weighted Bragg peaks over all energy steps, indicating that there is at best only a limited relationship between pencil beam weighting and depth of penetration. This latter observation may have some consequences when considering strategies for fast re-scanning on

  5. 19 CFR 10.470 - Verification and justification of claim for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... accounting and financial records, information relating to the place of production, the number and...) Applicable accounting principles. When conducting a verification of origin to which Generally Accepted Accounting Principles may be relevant, CBP will apply and accept the Generally Accepted Accounting Principles...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: IN-DRAIN TREATMENT DEVICE. HYDRO INTERNATIONAL UP-FLO™ FILTER

    Science.gov (United States)

    Verification testing of the Hydro International Up-Flo™ Filter with one filter module and CPZ Mix™ filter media was conducted at the Penn State Harrisburg Environmental Engineering Laboratory in Middletown, Pennsylvania. The Up-Flo™ Filter is designed as a passive, modular filtr...

  7. Investigating the impact of treatment delivery uncertainties on treatment effectiveness for lung SABR

    DEFF Research Database (Denmark)

    Blake, Samuel J.; Arumugam, Sankar; Holloway, Lois

    2017-01-01

    To quantify the impact of treatment delivery uncertainties on lung stereotactic ablative body radiotherapy (SABR) plans for step-and-shoot intensity-modulated radiotherapy (ssIMRT) and volumetric modulated arc therapy (VMAT). Baseline ssIMRT and VMAT treatment plans were generated for a cohort...... of 18 lung SABR patients. Modified plans were generated for each baseline plan by systematically varying gantry and collimator angles between − 5 and + 5 degrees, as well as multi-leaf collimator (MLC) leaf position errors of magnitude between 1 and 5 mm in both directions (i.e. leaf banks shifted...... either in the same (Type 1) or opposite (Type 2) directions). Planning target volume (PTV), spinal cord and healthy lung dose-volume histogram (DVH) metrics were compared between the modified and baseline plans. Collimator and gantry angle uncertainties did not significantly impact any of the PTV DVH...

  8. Verification of a table of phantom scatter factors for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Arts, J.K.; Bailey, M.J.; Hill, R.

    2004-01-01

    Full text: Many commercially available treatment planning systems require the medical physicist to measure and enter significant quantities of data for the verification of physics based algorithms. The CMS XiO (St. Louis, USA) treatment planning system requires a table of phantom scatter factors amongst other data. In a previous paper by Storchi et al, a table of phantom scatter factors is described. This table gives the phantom scatter factor as a function of field size and quality index determined from a collection of measured data for the total scatter factor and the collimator scatter factor from 25 different beam qualities ranging from 4MV up to 25MV. These factors have been determined at a fixed reference depth of 10cm for square fields of various sizes. This work investigates the claim that this table can be used as an alternative to calculated phantom scatter curve from measured data of a particular treatment unit. According to definition, it is difficult to directly measure the phantom scatter correction factor (Sp). This problem can be solved using the relation; S cp (A) = S c (A)S p (A) where S cp (A)) is the measured total scatter factor for a field size of square side dimension, A and S c (A) is the measured collimator scatter factor for a field size of square side dimension, A (Khan et al 1980, van Gasteren et al 1991). The total scatter correction factor (Sc,p) was measured in a full phantom, and the collimator scatter factor (Sc) measured using an ESTRO mini-phantom. These factors were measured on three Siemens linear accelerators (Concord, USA) with energies 6MV and 18MV and square field sizes ranging from 4x4cm to 40x40cm. The Primus and KD Mevatron produced 6 and 18MV X-rays and the MXE Mevatron produced 6Mv X-rays only. The values for Sp were calculated by rearranging equation (1). Phantom scatter factors were calculated from the data provided by Storchi et al using the quality index of each beam. For comparison, a set of Sp values was

  9. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning.

    Science.gov (United States)

    Liu, Shi; Wu, Yu; Wooten, H Omar; Green, Olga; Archer, Brent; Li, Harold; Yang, Deshan

    2016-03-08

    A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image-guided radiation therapy (MR-IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam-on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected dose rate. To predict the remain-ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of

  10. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants.

    Science.gov (United States)

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B; Bonab, Ali A; Alpert, Nathaniel M; Lohmann, Kevin; Bortfeld, Thomas

    2007-02-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of

  11. Validation of a cylindrical phantom for verification of radiotherapy treatments in head and neck with special techniques

    International Nuclear Information System (INIS)

    Vargas, Nicolas M.; Garcia, Marcia; Piriz, Gustavo; Perez, Niurka

    2011-01-01

    Verification of radiotherapy treatments in head and neck requires, among other things, small volume chambers and a phantom to reproduce the geometry and density of the anatomical structure. New documents from the ICRU (International Commission on Radiation Units and Measurements), Report 83, established the need for quality control in radiotherapy with special techniques such as IMRT (intensity-modulated radiation therapy). In this study, we built a cylindrical acrylic phantom with standing water, containing seven measuring points in the transverse plane and free location (0-20 cm) in the longitudinal plane. These points of measurement are constituted by cavities for the accommodation of the ionization chamber of 7 mm of mayor diameter (semi flex, pinpoint with build cup). The results of the phantom validation yielded percentage differences less than 1% in fixed beams and less than 2.5% in arc therapy for TPS Eclipse calculation. The preparation of this phantom, particularly made to verify the head and neck treatments, was simple and reliable for checking the dose in radiotherapy with fixed beams and/or special techniques such as arc therapy or IMRT, so that will be sent to various radiotherapy centers in the country for dosimetric verification in such treatments. (author)

  12. Validation of a cylindrical phantom for verification of radiotherapy treatments in head and neck with special techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Nicolas M.; Garcia, Marcia, E-mail: nimoralesv@gmail.com [Universidad de La Frontera, Temuco (Chile). Dept. de Ciencias Fisicas; Piriz, Gustavo [Instituto Nacional del Cancer, Santiago (Chile). Fisica Medica; Perez, Niurka [Instituto de Salud Publica, Santiago (Chile). QA Radioterapia. Inst. de Salud Publica

    2011-07-01

    Verification of radiotherapy treatments in head and neck requires, among other things, small volume chambers and a phantom to reproduce the geometry and density of the anatomical structure. New documents from the ICRU (International Commission on Radiation Units and Measurements), Report 83, established the need for quality control in radiotherapy with special techniques such as IMRT (intensity-modulated radiation therapy). In this study, we built a cylindrical acrylic phantom with standing water, containing seven measuring points in the transverse plane and free location (0-20 cm) in the longitudinal plane. These points of measurement are constituted by cavities for the accommodation of the ionization chamber of 7 mm of mayor diameter (semi flex, pinpoint with build cup). The results of the phantom validation yielded percentage differences less than 1% in fixed beams and less than 2.5% in arc therapy for TPS Eclipse calculation. The preparation of this phantom, particularly made to verify the head and neck treatments, was simple and reliable for checking the dose in radiotherapy with fixed beams and/or special techniques such as arc therapy or IMRT, so that will be sent to various radiotherapy centers in the country for dosimetric verification in such treatments. (author)

  13. The Impact of Advanced Technologies on Treatment Deviations in Radiation Treatment Delivery

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Light, Kim L.; Hubbs, Jessica L.; Georgas, Debra L.; Jones, Ellen L.; Wright, Melanie C.; Willett, Christopher G.; Yin Fangfang

    2007-01-01

    Purpose: To assess the impact of new technologies on deviation rates in radiation therapy (RT). Methods and Materials: Treatment delivery deviations in RT were prospectively monitored during a time of technology upgrade. In January 2003, our department had three accelerators, none with 'modern' technologies (e.g., without multileaf collimators [MLC]). In 2003 to 2004, we upgraded to five new accelerators, four with MLC, and associated advanced capabilities. The deviation rates among patients treated on 'high-technology' versus 'low-technology' machines (defined as those with vs. without MLC) were compared over time using the two-tailed Fisher's exact test. Results: In 2003, there was no significant difference between the deviation rate in the 'high-technology' versus 'low-technology' groups (0.16% vs. 0.11%, p = 0.45). In 2005 to 2006, the deviation rate for the 'high-technology' groups was lower than the 'low-technology' (0.083% vs. 0.21%, p = 0.009). This difference was caused by a decline in deviations on the 'high-technology' machines over time (p = 0.053), as well as an unexpected trend toward an increase in deviations over time on the 'low-technology' machines (p = 0.15). Conclusions: Advances in RT delivery systems appear to reduce the rate of treatment deviations. Deviation rates on 'high-technology' machines with MLC decline over time, suggesting a learning curve after the introduction of new technologies. Associated with the adoption of 'high-technology' was an unexpected increase in the deviation rate with 'low-technology' approaches, which may reflect an over-reliance on tools inherent to 'high-technology' machines. With the introduction of new technologies, continued diligence is needed to ensure that staff remain proficient with 'low-technology' approaches

  14. Film techniques in radiotherapy for treatment verification, determination of patient exit dose, and detection of localization error

    International Nuclear Information System (INIS)

    Haus, A.G.; Marks, J.E.

    1974-01-01

    In patient radiation therapy, it is important to know that the diseased area is included in the treatment field and that normal anatomy is properly shielded or excluded. Since 1969, a film technique developed for imaging of the complete patient radiation exposure has been applied for treatment verification and for the detection and evaluation of localization errors that may occur during treatment. The technique basically consists of placing a film under the patient during the entire radiation exposure. This film should have proper sensitivity and contrast in the exit dose exposure range encountered in radiotherapy. In this communication, we describe how various exit doses fit the characteristic curve of the film; examples of films exposed to various exit doses; the technique for using the film to determine the spatial distribution of the absorbed exit dose; and types of errors commonly detected. Results are presented illustrating that, as the frequency of use of this film technique is increased, localization error is reduced significantly

  15. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    Science.gov (United States)

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Sci—Thur PM: Planning and Delivery — 04: Respiratory margin derivation and verification in partial breast irradiation

    International Nuclear Information System (INIS)

    Quirk, S; Conroy, L; Smith, WL

    2014-01-01

    Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20 mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm

  17. Depression and diabetes: Treatment and health-care delivery

    DEFF Research Database (Denmark)

    Petrak, Frank; Baumeister, Harald; Skinner, Timothy C.

    2015-01-01

    © 2015 Elsevier Ltd. Despite research efforts in the past 20 years, scientific evidence about screening and treatment for depression in diabetes remains incomplete and is mostly focused on North American and European health-care systems. Validated instruments to detect depression in diabetes......, which are often implemented through collaborative care and stepped-care approaches. The evidence for improved glycaemic control in the treatment of depression by use of selective serotonin reuptake inhibitors or psychological approaches is conflicting; only some analyses show small to moderate...... improvements in glycaemic control. More research is needed to evaluate treatment of different depression subtypes in people with diabetes, the cost-effectiveness of treatments, the use of health-care resources, the need to account for cultural differences and different health-care systems, and new treatment...

  18. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  19. IMRT, IGRT, SBRT - Advances in the Treatment Planning and Delivery of Radiotherapy

    CERN Document Server

    Meyer, JL

    2011-01-01

    Over the last 4 years, IMRT, IGRT, SBRT: Advances in the Treatment Planning and Delivery of Radiotherapy has become a standard reference in the field. During this time, however, significant progress in high-precision technologies for the planning and delivery of radiotherapy in cancer treatment has called for a second edition to include these new developments. Thoroughly updated and extended, this new edition offers a comprehensive guide and overview of these new technologies and the many clinical treatment programs that bring them into practical use. Advances in intensity-modulated radiothera

  20. Use of digitally reconstructed radiographs in radiotherapy treatment planning and verification

    International Nuclear Information System (INIS)

    Yang, C.; Guiney, M.; Hughes, P.; Leung, S.; Liew, K.H.; Matar, J.; Quong, G.

    2000-01-01

    The authors present 3 years of experience of using digitally reconstructed radiographs (DRR) for radiotherapy planning and verification. Comparison is made with simulation film (SF) to illustrate the advantages of DRR over SF. Emphasis is placed on using the appropriate equipment and applying the correct technique. A brief discourse on the principle of CT imaging is presented to illustrate the operation of CT software and optimization of image display for axial slices and DRR. Emphasis placed on the application of clinical knowledge to enhance the usefulness as well as the technical quality of the DRR. Illustrative examples are given. Copyright (1999) Blackwell Science Pty Ltd

  1. QA Issues for Computer-Controlled Treatment Delivery: This Is Not Your Old R/V System Any More!

    International Nuclear Information System (INIS)

    Fraass, Benedick A.

    2008-01-01

    State-of-the-art radiotherapy treatment delivery has changed dramatically during the past decade, moving from manual individual field setup and treatment to automated computer-controlled delivery of complex treatments, including intensity-modulated radiotherapy and other similarly complex delivery strategies. However, the quality assurance methods typically used to ensure treatment is performed precisely and correctly have not evolved in a similarly dramatic way. This paper reviews the old manual treatment process and use of record-and-verify systems, and describes differences with modern computer-controlled treatment delivery. The process and technology used for computer-controlled treatment delivery are analyzed in terms of potential (and actual) problems, as well as relevant published guidance on quality assurance. The potential for improved quality assurance for computer-controlled delivery is discussed

  2. Treatment planning for SBRT using automated field delivery: A case study

    International Nuclear Information System (INIS)

    Ritter, Timothy A.; Owen, Dawn; Brooks, Cassandra M.; Stenmark, Matthew H.

    2015-01-01

    Stereotactic body radiation therapy (SBRT) treatment planning and delivery can be accomplished using a variety of techniques that achieve highly conformal dose distributions. Herein, we describe a template-based automated treatment field approach that enables rapid delivery of more than 20 coplanar fields. A case study is presented to demonstrate how modest adaptations to traditional SBRT planning can be implemented to take clinical advantage of this technology. Treatment was planned for a left-sided lung lesion adjacent to the chest wall using 25 coplanar treatment fields spaced at 11° intervals. The plan spares the contralateral lung and is in compliance with the conformality standards set forth in Radiation Therapy and Oncology Group protocol 0915, and the dose tolerances found in the report of the American Association of Physicists in Medicine Task Group 101. Using a standard template, treatment planning was accomplished in less than 20 minutes, and each 10 Gy fraction was delivered in approximately 5.4 minutes. For those centers equipped with linear accelerators capable of automated treatment field delivery, the use of more than 20 coplanar fields is a viable SBRT planning approach and yields excellent conformality and quality combined with rapid planning and treatment delivery. Although the case study discusses a laterally located lung lesion, this technique can be applied to centrally located tumors with similar results

  3. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  4. The use of gel dosimetry for verification of electron and photon treatment plans in carcinoma of the scalp

    International Nuclear Information System (INIS)

    Trapp, J V; Partridge, M; Hansen, V N; Childs, P; Bedford, J; Warrington, A P; Leach, M O; Webb, S

    2004-01-01

    In recent years there has been a large amount of research into the potential use of radiation sensitive gels for three-dimensional verification of clinical radiotherapy doses. In this paper we report the use of a MAGIC gel dosimeter (Fong et al 2001 Phys. Med. Biol. 46 3105) for the verification of a specific patient's radiation therapy dose distribution. A 69-year-old male patient presented with a squamous cell carcinoma extending approximately 180 deg. across the top of the scalp (anterior to posterior) and from just over midline to 90 deg. left of the skull. The patient's treatment was commenced using two electron fields. For gel dosimetry, phantoms were produced in which the outer surface spatially corresponded to the outer contours of the patient's anatomy in the region of irradiation. The phantoms were treated with either electrons or intensity modulated radiation therapy (IMRT) with photons. The results identified a hot spot between the matched electron fields and confirmed the more homogeneous dose distribution produced by the IMRT planning system. The IMRT plan was then clinically implemented. The application of a clinical dose to a phantom shaped to a specific patient as well as the ability to select a slice at will during phantom imaging means that gel dosimetry can no longer be considered to simply have potential alone, but is now in fact a useful dosimetric tool

  5. Reinforcing of QA/QC programs in radiotherapy departments in Croatia: Results of treatment planning system verification

    Energy Technology Data Exchange (ETDEWEB)

    Jurković, Slaven; Švabić, Manda; Diklić, Ana; Smilović Radojčić, Đeni; Dundara, Dea [Clinic for Radiotherapy and Oncology, Physics Division, University Hospital Rijeka, Rijeka (Croatia); Kasabašić, Mladen; Ivković, Ana [Department for Radiotherapy and Oncology, University Hospital Osijek, Osijek (Croatia); Faj, Dario, E-mail: dariofaj@mefos.hr [Department of Physics, School of Medicine, University of Osijek, Osijek (Croatia)

    2013-04-01

    Implementation of advanced techniques in clinical practice can greatly improve the outcome of radiation therapy, but it also makes the process much more complex with a lot of room for errors. An important part of the quality assurance program is verification of treatment planning system (TPS). Dosimetric verifications in anthropomorphic phantom were performed in 4 centers where new systems were installed. A total of 14 tests for 2 photon energies and multigrid superposition algorithms were conducted using the CMS XiO TPS. Evaluation criteria as specified in the International Atomic Energy Agency Technical Reports Series (IAEA TRS) 430 were employed. Results of measurements are grouped according to the placement of the measuring point and the beam energy. The majority of differences between calculated and measured doses in the water-equivalent part of the phantom were in tolerance. Significantly more out-of-tolerance values were observed in “nonwater-equivalent” parts of the phantom, especially for higher-energy photon beams. This survey was done as a part of continuous effort to build up awareness of quality assurance/quality control (QA/QC) importance in the Croatian radiotherapy community. Understanding the limitations of different parts of the various systems used in radiation therapy can systematically improve quality as well.

  6. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-01-01

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 ± 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  7. Microparticulate drug delivery system containing tramadol hydrochloride for pain treatment.

    Science.gov (United States)

    Ciurba, Adriana; Todoran, Nicoleta; Vari, C E; Lazăr, Luminita; Al Hussein, Stela; Hancu, G

    2014-01-01

    The current trend of replacing conventional pharmaceutical forms is justified because most substances administered in this form give fluctuations of therapeutic concentrations and often outside the therapeutic range. In addition, these formulations offer a reduction in the dose or the number of administrations, thus increasing patient compliance. In the experiment, we developed an appropriate technology for the preparation of gelatin microspheres containing tramadol hydrochloride by emulsification/cross-linking method. The formulated microspheres were characterized by product yield, size distribution, encapsulation efficiency and in vitro release of tramadol hydrochloride. Data obtained from in vitro release studies were fitted to various mathematical models to elucidate the transport mechanisms. The kinetic models used were zero-order, first-order, Higuchi Korsmeyer-Peppas and Hopfenberg. Spherical microspheres were obtained, with free-flowing properties. The entrapment efficiency of tramadol hydrochloride in microparticles was 79.91% and product yield -94.92%. As the microsphere size was increased, the entrapment efficiency increased. This was 67.56, 70.03, 79.91% for formulations MT80-250, MT8-500 and, MT250-500. High entrapment efficiency was observed for MT250-500 formulation. The gelatin microspheres had particle sizes ranging from 80 to 500 microm. The drug was released for a period of 12 hours with a maximum release of 96.02%. Of the three proposed formulations, MT250-500 presented desirable properties and optimal characteristics for the therapy of pain. Release of tramadol hydrochloridi was best fitted to Korsmeyer-Peppas equation because the Akaike Information Criterion had the lowest values for this kinetic model. These results suggest the opportunity to influence the therapeutic characteristics of gelatin microspheres to obtain a suitable drug delivery system for the oral administration of tramadol hydrochloride.

  8. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.

    Science.gov (United States)

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-12-10

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment

    Directory of Open Access Journals (Sweden)

    Jason A. Ellis

    2015-01-01

    Full Text Available Effective treatment for glioblastoma (GBM will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.

  10. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    Science.gov (United States)

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  11. Patient Perceptions of Treatment Delivery Platforms for Cognitive Behavioral Therapy for Insomnia.

    Science.gov (United States)

    Cheung, Janet M Y; Bartlett, Delwyn J; Armour, Carol L; Laba, Tracey-Lea; Saini, Bandana

    2017-03-21

    Stepped care has given rise to the proliferation of abbreviated CBT-I programs and delivery formats. This includes interventions delivered by allied health professionals and those delivered electronically through the Internet. This article aims to explore patient perceptions between electronic and face-to-face (FTF) delivery platforms for (abbreviated) CBT-I. Patients with insomnia from specialist sleep or psychology clinics and those from the general community in Sydney, Australia. Semistructured interviews were conducted with patients with insomnia, guided by a schedule of questions and a choice task to explore patient perceptions of the different CBT-I treatment delivery platforms (e.g., perceived advantages and disadvantages or willingness to engage with either platform). Interviews were transcribed verbatim and analyzed using Framework Analysis. Participants also completed a battery of clinical mood and insomnia measures. Fifty-one interviews were conducted with patients with insomnia from specialist sleep or psychology clinics (n = 22) and the general community (n = 29). Synthesis of the qualitative data set revealed three themes pertinent to the patients' perspective toward electronic and FTF CBT-I delivery: Concepts of Efficacy, Concerns About Treatment, and Treatment on My Terms. Participants' choice to engage with either platform was also informed by diverse factors including perceived efficacy of treatment, personal commitments, lifestyle, and beliefs about sleep and insomnia. Clarifying patient treatment priorities and allaying potential concerns about engaging with an electronic treatment platform represent important steps for disseminating eCBT-I into mainstream practice.

  12. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2016-01-15

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged

  13. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    International Nuclear Information System (INIS)

    McCowan, P. M.; McCurdy, B. M. C.

    2016-01-01

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose ( 80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their

  14. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    International Nuclear Information System (INIS)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-01-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated

  15. The impacts of dental filling materials on RapidArc treatment planning and dose delivery: Challenges and solution

    Energy Technology Data Exchange (ETDEWEB)

    Mail, Noor; Al-Ghamdi, S.; Saoudi, A. [Princess Norah Oncology Center, National Guard Health Affairs, Jeddah 21423, Saudi Arabia and King Abdullah International Medical Research Center, Jeddah 21423 (Saudi Arabia); Albarakati, Y.; Ahmad Khan, M.; Saeedi, F.; Safadi, N. [Princess Norah Oncology Center, National Guard Health Affairs, Jeddah 21423 (Saudi Arabia)

    2013-08-15

    Purpose: The presence of high-density material in the oral cavity creates dose perturbation in both downstream and upstream directions at the surfaces of dental filling materials (DFM). In this study, the authors have investigated the effect of DFM on head and neck RapidArc treatment plans and delivery. Solutions are proposed to address (1) the issue of downstream dose perturbation, which might cause target under dosage, and (2) to reduce the upstream dose from DFM which may be the primary source of mucositis. In addition, an investigation of the clinical role of a custom-made plastic dental mold/gutter (PDM) in sparing the oral mucosa and tongue reaction is outlined.Methods: The influence of the dental filling artifacts on dose distribution was investigated using a geometrically well-defined head and neck intensity modulated radiation therapy (IMRT) verification phantom (PTW, Freiberg, Germany) with DFM inserts called amalgam, which contained 50% mercury, 25% silver, 14% tin, 8% copper, and 3% other trace metals. Three RapidArc plans were generated in the Varian Eclipse System to treat the oral cavity using the same computer tomography (CT) dataset, including (1) a raw CT image, (2) a streaking artifacts region, which was replaced with a mask of 10 HU, and (3) a 2 cm-thick 6000 HU virtual filter [a volume created in treatment planning system to compensate for beam attenuation, where the thickness of this virtual filter is based on the measured percent depth dose (PDD) data and Eclipse calculation]. The dose delivery for the three plans was verified using Gafchromic-EBT2 film measurements. The custom-made PDM technique to reduce backscatter dose was clinically tested on four head and neck cancer patients (T3, N1, M0) with DFM, two patients with PDM and the other two patients without PDM. The thickness calculation of the PDM toward the mucosa and tongue was purely based on the measured upstream dose. Patients’ with oral mucosal reaction was clinically examined

  16. The impacts of dental filling materials on RapidArc treatment planning and dose delivery: Challenges and solution

    International Nuclear Information System (INIS)

    Mail, Noor; Al-Ghamdi, S.; Saoudi, A.; Albarakati, Y.; Ahmad Khan, M.; Saeedi, F.; Safadi, N.

    2013-01-01

    Purpose: The presence of high-density material in the oral cavity creates dose perturbation in both downstream and upstream directions at the surfaces of dental filling materials (DFM). In this study, the authors have investigated the effect of DFM on head and neck RapidArc treatment plans and delivery. Solutions are proposed to address (1) the issue of downstream dose perturbation, which might cause target under dosage, and (2) to reduce the upstream dose from DFM which may be the primary source of mucositis. In addition, an investigation of the clinical role of a custom-made plastic dental mold/gutter (PDM) in sparing the oral mucosa and tongue reaction is outlined.Methods: The influence of the dental filling artifacts on dose distribution was investigated using a geometrically well-defined head and neck intensity modulated radiation therapy (IMRT) verification phantom (PTW, Freiberg, Germany) with DFM inserts called amalgam, which contained 50% mercury, 25% silver, 14% tin, 8% copper, and 3% other trace metals. Three RapidArc plans were generated in the Varian Eclipse System to treat the oral cavity using the same computer tomography (CT) dataset, including (1) a raw CT image, (2) a streaking artifacts region, which was replaced with a mask of 10 HU, and (3) a 2 cm-thick 6000 HU virtual filter [a volume created in treatment planning system to compensate for beam attenuation, where the thickness of this virtual filter is based on the measured percent depth dose (PDD) data and Eclipse calculation]. The dose delivery for the three plans was verified using Gafchromic-EBT2 film measurements. The custom-made PDM technique to reduce backscatter dose was clinically tested on four head and neck cancer patients (T3, N1, M0) with DFM, two patients with PDM and the other two patients without PDM. The thickness calculation of the PDM toward the mucosa and tongue was purely based on the measured upstream dose. Patients’ with oral mucosal reaction was clinically examined

  17. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    International Nuclear Information System (INIS)

    Bache, S; Belley, M; Benning, R; Adamovics, J; Stanton, I; Therien, M; Yoshizumi, T; Oldham, M

    2014-01-01

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R 2 = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE

  18. Planning, delivery, and quality assurance of treatment with dynamic multileaf collimator for prostate: a strategy for large scale implementation

    International Nuclear Information System (INIS)

    Burman, Chandra; Chen, Chui; Kutcher, Gerald; Leibel, Steven; Zelefsky, Michael; LoSasso, Thomas; Spirou, Spiridon; Wu Qiuwen; Stein, Jorge; Mohan, Radhe; Ling, C. Clifton; Fuks, Zvi

    1996-01-01

    Purpose: In an attempt to improve tumor control of patients treated for the adenocarcinoma of the prostate, we have implemented a technique to deliver a prescribed dose of 81 Gy. At such high doses, the surrounding normal organs such as the rectum, bladder, and femur impose challenging constraints. We present a method to plan and deliver intensity modulated fields with dynamic multileaf collimators (DMLCs) in an effort to meet the difficult constraints. While the planning technique which uses inverse planning has been described in the literature, safe delivery with DMLC is a new and challenging problem. We will describe in detail our procedures with the emphasis on the delivery problems and chosen solutions. Procedures for the quality assurance of DMLC will be described. Methods and Materials: Using a recently developed and modified inverse planning algorithm, we have developed a 5-field intensity modulated plan that is delivered using DMLC. The planner specifies the target, normal organs, and the desired doses for these tissues and for the overlap regions. The planning system designs the desired intensity profiles to meet the specified criteria. To deliver the dose DMLCs provide a practical and convenient method. A procedure has been developed for the dose delivery. A scheme has been designed to determine the leaf motion to produce the required intensity pattern based on the prescribed dose and the dose rate. In order to ensure that the dose is delivered as planned, we have instituted the following procedures: (1) verification of the aperture shape on a localization port film, (2) an additional dose calculation, which uses the delivered leaf motion, and compares the difference between the planned and delivered doses, (3) comparison of the machine log files, generated during the actual dose delivery, with the planned leaf motions, (4) comparison of the measured dose profile in a flat phantom with the calculated dose distribution using the prescribed treatment

  19. Improved delivery of magnetic nanoparticles with chemotherapy cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Giustini, Andrew J.; Gottesman, Rachel E.; Hoopes, P. Jack

    2013-02-01

    Most nanoparticle-based cancer therapeutic strategies seek to develop an effective individual cancer cell or metastatic tumor treatment. Critical to the success of these therapies is to direct as much of the agent as possible to the targeted tissue while avoiding unacceptable normal tissue complications. In this light, three different cisplatinum/magnetic nanoparticle (mNP) administration regimens were investigated. The most important finding suggests that clinically relevant doses of cisplatinum result in a significant increase in the tumor uptake of systemically delivered mNP. This enhancement of mNP tumor uptake creates the potential for an even greater therapeutic ratio through the addition of mNP based, intracellular hyperthermia.

  20. Verification of dosimetric commissioning accuracy of intensity modulated radiation therapy and volumetric modulated arc therapy delivery using task Group-119 guidelines

    Directory of Open Access Journals (Sweden)

    Karunakaran Kaviarasu

    2017-01-01

    Full Text Available Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT and volumetric-modulated arc therapy (VMAT based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119. Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5. Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume at the specified positions/locations was measured using compact (CC-13 ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b. The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  1. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines.

    Science.gov (United States)

    Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  2. Predisposing factors for bacterial vaginosis, treatment efficacy and pregnancy outcome among term deliveries; results from a preterm delivery study

    Directory of Open Access Journals (Sweden)

    Jakobsson Tell

    2007-10-01

    Full Text Available Abstract Background Bacterial vaginosis (BV during pregnancy is associated with an increased risk of preterm delivery but little is known about factors that could predict BV. We have analyzed if it is possible to identify a category of pregnant women that should be screened for BV, and if BV would alter the pregnancy outcome at term; we have also studied the treatment efficacy of clindamycin. Methods Prospective BV screening and treatment study of 9025 women in a geographically defined region in southeast Sweden. BV was defined as a modified Nugent score of 6 and above. Data was collected from the Swedish Medical Birth Register. Women allocated to treatment were supplied with vaginal clindamycin cream. The main outcome goals were to identify factors that could predict BV. Results Vaginal smears were consistent with BV criteria in 9.3%. Logistic regression indicates a significant correlation between smoking and BV (p Conclusion BV is more than twice as common among smokers, and there is a higher prevalence in the younger age group. However these two markers for BV do not suffice as a tool for screening, and considering the lack of other risk factors associated with BV, screening of all pregnant women might be a strategy to follow in a program intended to reduce the number of preterm births.

  3. Nuclear disarmament verification

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1993-01-01

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification

  4. Dry Eye Treatment Based on Contact Lens Drug Delivery: A Review.

    Science.gov (United States)

    Guzman-Aranguez, Ana; Fonseca, Begoña; Carracedo, Gonzalo; Martin-Gil, Alba; Martinez-Aguila, Alejandro; Pintor, Jesús

    2016-09-01

    Dry eye disease affects a substantial segment of the word population with increasing frequency. It is a multifactorial disease of the ocular surface and tear film, which causes ocular discomfort, visual disturbances, and tear instability with potential damage to the cornea and conjunctiva. Because of its multifactorial etiology, the use of different pharmacological treatment for dry eye treatment has been proposed, which include anti-inflammatory molecules, lubricants or comfort agents, and secretagogues. However, in some cases these pharmacological approaches only relieve symptoms temporarily, and consequently, eye care professionals continue to have difficulties managing dry eye. To improve pharmacological therapy that allows a more efficient and long-term action, effective ocular drug delivery of the currently available drugs for dry eye treatment is required. Contact lenses are emerging as alternative ophthalmic drugs delivery systems that provide an increased residence time of the drug at the eye, thus leading to enhanced bioavailability and more convenient and efficacious therapy. In this article, we reviewed the different techniques used to prepare contact lens-based drug delivery systems and focused on articles that describe the delivery of compounds for dry eye treatment through contact lenses.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, REMOVAL OF ARSENIC IN DRINKING WATER: WATTS PREMIER M-SERIES M-15,000 REVERSE OSMOSIS TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Watts Premier M-Series M-15,000 RO Treatment System was conducted over a 31-day period from April 26, 2004, through May 26, 2004. This test was conducted at the Coachella Valley Water District (CVWD) Well 7802 in Thermal, California. The source water...

  6. Iontophoresis-targeted, follicular delivery of minoxidil sulfate for the treatment of alopecia.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Tais; Delgado-Charro, M Begoña; Guy, Richard H; Vianna Lopez, Renata Fonseca

    2013-05-01

    Although minoxidil (MX) is a drug known to stimulate hair growth, the treatment of androgenic alopecia could be improved by delivery strategies that would favor drug accumulation into the hair follicles. This work investigated in vitro the potential of iontophoresis to achieve this objective using MX sulfate (MXS), a more water-soluble derivative of MX. Passive delivery of MXS was first determined from an ethanol-water solution and from a thermosensitive gel. The latter formulation resulted in greater accumulation of MXS in the stratum corneum (skin's outermost layer) and hair follicles and an overall decrease in absorption through the skin. Anodal iontophoresis of MXS from the same gel formulation was then investigated at pH 3.5 and pH 5.5. Compared with passive delivery, iontophoresis increased the amount of drug reaching the follicular infundibula from 120 to 600 ng per follicle. In addition, drug recovery from follicular casts was threefold higher following iontophoresis at pH 5.5 compared with that at pH 3.5. Preliminary in vivo experiments in rats confirmed that iontophoretic delivery of MXS facilitated drug accumulation in hair follicles. Overall, therefore, iontophoresis successfully and significantly enhanced follicular delivery of MX suggesting a useful opportunity for the improved treatment of alopecia. Copyright © 2013 Wiley Periodicals, Inc.

  7. Verification of Monitor unit calculations for eclipse Treatment Planning System by in- house developed spreadsheet

    Directory of Open Access Journals (Sweden)

    Hemalatha Athiyaman

    2018-04-01

    Conclusion: The spreadsheet was tested for most of the routine treatment sites and geometries. It has good agreement with the Eclipse TPS version 13.8 for homogenous treatment sites such as head &and neck and carcinoma cervix.

  8. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Vandewouw, Marlee M., E-mail: marleev@mie.utoronto.ca; Aleman, Dionne M. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada)

    2016-08-15

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  9. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    International Nuclear Information System (INIS)

    Vandewouw, Marlee M.; Aleman, Dionne M.; Jaffray, David A.

    2016-01-01

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  10. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Locke, C.; Zavgorodni, S.; British Columbia Cancer Agency, Vancouver Island Center, Victoria BC

    2008-01-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam

  11. Tomotherapy: IMRT and tomographic verification

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2000-01-01

    include MLC's and many clinics use them to replace 90% or more of the field-shaping requirements of conventional radiotherapy. Now, several academic centers are treating patients with IMRT using conventional MLC's to modulate the field. IMRT using conventional MLC's have the advantage that the patient is stationary during the treatment and the MLC's can be used in conventional practice. Nevertheless, tomotherapy using the Peacock system delivers the most conformal dose distributions of any commercial system to date. The biggest limitation with the both the NOMOS Peacock tomotherapy system and conventional MLC's for IMRT delivery is the lack of treatment verification. In conventional few-field radiotherapy one relied on portal images to determine if the patient was setup correctly and the beams were correctly positioned. With IMRT the image contrast is superimposed on the beam intensity variation. Conventional practice allowed for monitor unit calculation checks and point dosimeters placed on the patient's surface to verify that the treatment was properly delivered. With IMRT it is impossible to perform hand calculations of monitor units and dosimeters placed on the patient's surface are prone to error due to high gradients in the beam intensity. NOMOS has developed a verification phantom that allows multiple sheets of film to be placed in a light-tight box that is irradiated with the same beam pattern that is used to treat the patient. The optical density of the films are adjusted, normalized, and calibrated and then quantitatively compared with the dose calculated for the phantom delivery. However, this process is too laborious to be used for patient-specific QA. If IMRT becomes ubiquitous and it can be shown that IMRT is useful on most treatment sites then there is a need to design treatment units dedicated to IMRT delivery and verification. Helical tomotherapy is such a redesign. Helical tomotherapy is the delivery of a rotational fan beam while the patient is

  12. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields

    International Nuclear Information System (INIS)

    Pavon, Ester Carrasco; Sanchez-Doblado, Francisco; Leal, Antonio; Capote, Roberto; Lagares, Juan Ignacio; Perucha, Maria; Arrans, Rafael

    2003-01-01

    Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm 2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm 2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm 2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R 50 , R 80 , R 100 , R p , E 0 ) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13deg at SSD 100 cm to more than 30deg at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC

  13. Treatment planning and delivery of involved field radiotherapy in advanced Hodgkin's disease: results from a questionnaire-based audit for the UK Stanford V regimen vs ABVD clinical trial quality assurance programme (ISRCTN 64141244).

    Science.gov (United States)

    Diez, P; Hoskin, P J; Aird, E G A

    2007-10-01

    This questionnaire forms the basis of the quality assurance (QA) programme for the UK randomized Phase III study of the Stanford V regimen versus ABVD for treatment of advanced Hodgkin's disease to assess differences between participating centres in treatment planning and delivery of involved-field radiotherapy for Hodgkin's lymphoma The questionnaire, which was circulated amongst 42 participating centres, consisted of seven sections: target volume definition and dose prescription; critical structures; patient positioning and irradiation techniques; planning; dose calculation; verification; and future developments The results are based on 25 responses. One-third plan using CT alone, one-third use solely the simulator and the rest individualize, depending on disease site. Eleven centres determine a dose distribution for each patient. Technique depends on disease site and whether CT or simulator planning is employed. Most departments apply isocentric techniques and use immobilization and customized shielding. In vivo dosimetry is performed in 7 centres and treatment verification occurs in 24 hospitals. In conclusion, the planning and delivery of treatment for lymphoma patients varies across the country. Conventional planning is still widespread but most centres are moving to CT-based planning and virtual simulation with extended use of immobilization, customized shielding and compensation.

  14. Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2013-01-01

    Full Text Available Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion, liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

  15. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders.

    Science.gov (United States)

    Taha, Masoumeh Fakhr

    2010-03-01

    Cell based-gene delivery has provided an important therapeutic strategy for different disorders in the recent years. This strategy is based on the transplantation of genetically modified cells to express specific genes and to target the delivery of therapeutic factors, especially for the treatment of cancers and neurological, immunological, cardiovascular and heamatopoietic disorders. Although, preliminary reports are encouraging, and experimental studies indicate functionally and structurally improvements in the animal models of different disorders, universal application of this strategy for human diseases requires more evidence. There are a number of parameters that need to be evaluated, including the optimal cell source, the most effective gene/genes to be delivered, the optimal vector and method of gene delivery into the cells and the most efficient route for the delivery of genetically modified cells into the patient. Also, some obstacles have to be overcome, including the safety and usefulness of the approaches and the stability of the improvements. Here, recent studies concerning with the cell-based gene delivery for spinal cord injury and some neurodegenerative disorders such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease are briefly reviewed, and their exciting consequences are discussed.

  16. Current challenges and emerging drug delivery strategies for the treatment of psoriasis.

    Science.gov (United States)

    Hoffman, Melissa B; Hill, Dane; Feldman, Steven R

    2016-10-01

    Psoriasis is a common skin disorder associated with physical, social, psychological and financial burden. Over the past two decades, advances in our understanding of pathogenesis and increased appreciation for the multifaceted burden of psoriasis has led to new treatment development and better patient outcomes. Yet, surveys demonstrate that many psoriasis patients are either undertreated or are dissatisfied with treatment. There are many barriers that need be overcome to optimize patient outcomes and satisfaction. This review covers the current challenges associated with each major psoriasis treatment strategy (topical, phototherapy, oral medications and biologics). It also reviews the challenges associated with the psychosocial aspects of the disease and how they affect treatment outcomes. Patient adherence, inconvenience, high costs, and drug toxicities are all discussed. Then, we review the emerging drug delivery strategies in topical, oral, and biologic therapy. By outlining current treatment challenges and emerging drug delivery strategies, we hope to highlight the deficits in psoriasis treatment and strategies for how to overcome them. Regardless of disease severity, clinicians should use a patient-centered approach. In all cases, we need to balance patients' psychosocial needs, treatment costs, convenience, and effectiveness with patients' preferences in order to optimize treatment outcomes.

  17. Generic Protocol for the Verification of Ballast Water Treatment Technology. Version 5.1

    Science.gov (United States)

    2010-09-01

    and to build the scientific knowledge base needed to manage our ecological resources wisely, to understand how pollutants affect our health, and to...occurring in the water at the TF location. Ballast Water Treatment System (or System): Prefabricated , commercial-ready, treatment systems designed to...pathway to begin the development of technical procedures for approving BWTSs for installation on ships. EPA’s interest includes the ecological , economic

  18. Use of Electronic Portal Image Detectors for Quality Assurance of Advanced Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Jean M, E-mail: jmmoran@med.umich.ed [Department of Radiation Therapy, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor MI 48109-0010 (United States)

    2010-11-01

    As the complexity of radiation therapy has increased, the need for quantitative dosimetric evaluation of treatment delivery has also increased. A growing number of investigations have expanded the use of EPIDs from anatomic applications to dosimetric verification. This work focuses on the applications of EPIDs for pre-treatment dosimetric verification of IMRT and intensity modulated arc therapy techniques. The advantages and disadvantages of these techniques are discussed along with methods to extrapolate to 3D dose verification applications.

  19. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT

    International Nuclear Information System (INIS)

    Chen, Lili; Price, Robert A.; Wang Lu; Li Jinsheng; Qin Lihong; McNeeley, Shawn; Ma, C.-M. Charlie; Freedman, Gary M.; Pollack, Alan

    2004-01-01

    Purpose: Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT. Methods and materials: A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans. Results: Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose

  20. Delivery of Intraocular Triamcinolone Acetonide in the Treatment of Macular Edema

    Directory of Open Access Journals (Sweden)

    Brent Siesky

    2012-03-01

    Full Text Available Macular edema (ME is one of the eventual outcomes of various intraocular and systemic pathologies. The pathogenesis for ME is not yet entirely understood; however, some of the common risk factors for its development have been identified. While this investigation will not discuss the numerous etiologies of ME in detail, it appraises the two most widely studied delivery modalities of intraocular corticosteroids in the treatment of ME—intravitreal injection (IVI and sub-Tenon’s infusion (STI. A thorough review of the medical literature was conducted to identify the efficacy and safety of IVI and STI, specifically for the administration of triamcinolone acetonide (TA, in the setting of ME in an attempt to elucidate a preferred steroid delivery modality for treatment of ME.

  1. SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment

    International Nuclear Information System (INIS)

    Lu, W; Chen, M; Jiang, S

    2015-01-01

    Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and the respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems

  2. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  3. High-intensity focused ultrasound treatment of placenta accreta after vaginal delivery: a preliminary study.

    Science.gov (United States)

    Bai, Y; Luo, X; Li, Q; Yin, N; Fu, X; Zhang, H; Qi, H

    2016-04-01

    To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  4. Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment.

    Science.gov (United States)

    Trickler, William J; Khurana, Jatin; Nagvekar, Ankita A; Dash, Alekha K

    2010-03-01

    The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytotoxicity of the nanostructures were evaluated by HPLC, confocal microscopy, or MTT assay in Mia PaCa-2 and BxPC-3 cells. The average particle diameter for 2% and 4% (w/w) drug loaded delivery system were 382.3 +/- 28.6 nm, and 385.2 +/- 16.1 nm, respectively with a surface charge of +21.94 +/- 4.37 and +21.23 +/- 1.46 mV. The MTT cytotoxicity dose-response studies revealed the placebo at/or below 1 mg/ml has no effect on MIA PaCa-2 or BxPC-3 cells. The delivery system demonstrated a significant decrease in the IC50 (3 to 4 log unit shift) in cell survival for gemcitabine nanostructures at 72 and 96 h post-treatment when compared with a solution of gemcitabine alone. The nanostructure reported here can be resuspended in an aqueous medium that demonstrate increased effective treatment compared with gemcitabine treatment alone in an in vitro model of human pancreatic cancer. The drug delivery system demonstrates capability to entrap both hydrophilic and hydrophobic compounds to potentially provide an effective treatment option in human pancreatic cancer.

  5. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs

    OpenAIRE

    Banks, Stan L.; Pinninti, Raghotham R.; Gill, Harvinder S.; Paudel, Kalpana S.; Crooks, Peter A.; Brogden, Nicole K.; Prausnitz, Mark R.; Stinchcomb, Audra L.

    2010-01-01

    Controlled-release delivery of 6-β-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. Micro...

  6. Online 3D EPID-based dose verification: Proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozendaal@nki.nl; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands); Herk, Marcel van [University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom)

    2016-07-15

    Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame

  7. Online 3D EPID-based dose verification: Proof of concept

    International Nuclear Information System (INIS)

    Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; Herk, Marcel van

    2016-01-01

    Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame

  8. Online 3D EPID-based dose verification: Proof of concept.

    Science.gov (United States)

    Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel

    2016-07-01

    Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took

  9. Application for verification of monitor units of the treatment planning system

    International Nuclear Information System (INIS)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-01-01

    Current estimates algorithms achieve acceptable degree of accuracy. However, operate on the basis of un intuitive models. It is therefore necessary to verify the calculation of monitor units of the treatment planning system (TPS) with those obtained by other independent formalisms. To this end, we have developed an application based on factorization formalism that automates the calculation of dose.

  10. RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Ceberg, Sofie; Gagne, Isabel; Gustafsson, Helen

    2010-01-01

    The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc™) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements...

  11. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    International Nuclear Information System (INIS)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia

    2016-01-01

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  12. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia [University of British Columbia, University of Victoria, University of British Columbia, University of British Columbia, University of British Columbia, TRIUMF (Canada)

    2016-08-15

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  13. Dosimetric verification of a software for planning of radio therapeutical treatments

    International Nuclear Information System (INIS)

    Alfonso, R.; Huerta, U.; Alfonso, J.L.; Torres, M.

    1995-01-01

    A software for radiation treatment planning was recently developed by medical physicists at the Hermanos Ameijeiras Hospital in Havana. Selected locations in head and neck region were used to evaluate the reliability of calculated dose distributions in patients, taking as a reference the results of dosimetric measurements with TLD-700 powder in a RANDO type phantom. The different options is shown. Causes of discrepancies are analyzed and recommendations are made for the use of data acquisitions options

  14. Migration check tool: automatic plan verification following treatment management systems upgrade and database migration.

    Science.gov (United States)

    Hadley, Scott W; White, Dale; Chen, Xiaoping; Moran, Jean M; Keranen, Wayne M

    2013-11-04

    Software upgrades of the treatment management system (TMS) sometimes require that all data be migrated from one version of the database to another. It is necessary to verify that the data are correctly migrated to assure patient safety. It is impossible to verify by hand the thousands of parameters that go into each patient's radiation therapy treatment plan. Repeating pretreatment QA is costly, time-consuming, and may be inadequate in detecting errors that are introduced during the migration. In this work we investigate the use of an automatic Plan Comparison Tool to verify that plan data have been correctly migrated to a new version of a TMS database from an older version. We developed software to query and compare treatment plans between different versions of the TMS. The same plan in the two TMS systems are translated into an XML schema. A plan comparison module takes the two XML schemas as input and reports any differences in parameters between the two versions of the same plan by applying a schema mapping. A console application is used to query the database to obtain a list of active or in-preparation plans to be tested. It then runs in batch mode to compare all the plans, and a report of success or failure of the comparison is saved for review. This software tool was used as part of software upgrade and database migration from Varian's Aria 8.9 to Aria 11 TMS. Parameters were compared for 358 treatment plans in 89 minutes. This direct comparison of all plan parameters in the migrated TMS against the previous TMS surpasses current QA methods that relied on repeating pretreatment QA measurements or labor-intensive and fallible hand comparisons.

  15. PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment.

    Science.gov (United States)

    Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.

  16. The feasibility of using Pareto fronts for comparison of treatment planning systems and delivery techniques

    International Nuclear Information System (INIS)

    Ottosson, Rickard O.; Sjoestroem, David; Behrens, Claus F.; Karlsson, Anna; Engstroem, Per E.; Knoeoes, Tommy; Ceberg, Crister

    2009-01-01

    Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head and neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered

  17. The feasibility of using Pareto fronts for comparison of treatment planning systems and delivery techniques.

    Science.gov (United States)

    Ottosson, Rickard O; Engstrom, Per E; Sjöström, David; Behrens, Claus F; Karlsson, Anna; Knöös, Tommy; Ceberg, Crister

    2009-01-01

    Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head & neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered.

  18. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Science.gov (United States)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  19. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment.

    Science.gov (United States)

    Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-08

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.

  20. In vivo dose verification for photon treatments of head and neck carcinomas using MOSFET dosimeters

    International Nuclear Information System (INIS)

    Tung, C.J.; Wang, L.C.; Wang, H.C.; Lee, C.C.; Chao, T.C.

    2008-01-01

    In vivo dosimetry was performed for the head and neck carcinoma patients during the treatment of a large photon field using MOSFETs. This study followed the protocols recommended by the European Society for Therapeutic Radiology and Oncology. A total of 32 portals belonging to 12 patients were under investigation. Results showed that the deviation between in vivo midline doses and planned target doses was partly due to the manual dose calculations in the treatment planning which used the patient geometric thickness rather than the radiological thickness. Other factors responsible for this deviation included the difficult positioning of MOSFETs on the face mask, the asymmetric positioning of MOSFETs on the left and right sides of the mask, and the asymmetric tissue inhomogeneities with respect to the body midline. To reduce the deviation contributed from these factors, in vivo midline doses were calculated by averaging the results for each bilaterally opposed portals and compared with corresponding planned target doses. This comparison showed that MOSFET dosimeters are suitable for in vivo dosimetry of the present study

  1. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains.

    Science.gov (United States)

    Zheng, Ajuan; Zhang, Lihui; Wang, Shaojin

    2017-05-16

    Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - a w , protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Nadeau, Sylvain; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-01-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements

  3. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    Science.gov (United States)

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been

  4. Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis--A Review.

    Science.gov (United States)

    da Silva, Patricia Bento; de Freitas, Eduardo Sinésio; Bernegossi, Jessica; Gonçalez, Maíra Lima; Sato, Mariana Rillo; Leite, Clarice Queico Fujimura; Pavan, Fernando Rogério; Chorilli, Marlus

    2016-02-01

    Tuberculosis (TB) is an infectious and transmissible disease that is caused by Mycobacterium tuberculosis and primarily affects the lungs, although it can affect other organs and systems. The pulmonary presentation of TB, in addition to being more frequent, is also the most relevant to public health because it is primarily responsible for the transmission of the disease. The to their low World Health Organization (WHO) recommends a combined therapeutic regimen of several drugs, such as rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (ETB). These drugs have low plasma levels after oral administration, due to their low water solubility, poor permeability and ability to be rapidly metabolized by the liver and at high concentrations. Furthermore, they have short t₁/₂ (only 1-4 hours) indicating a short residence in the plasma and the need for multiple high doses, which can result in neurotoxicity and hepatotoxicity. Nanotechnology drug delivery systems have considerable potential for the treatment of TB. The systems can also be designed to allow for the sustained release of drugs from the matrix and drug delivery to a specific target. These properties of the systems enable the improvement of the bioavailability of drugs, can reduce the dosage and frequency of administration, and may solve the problem of non-adherence to prescribed therapy, which is a major obstacle to the control of TB. The purpose of this study was to systematically review nanotechnology-based drug delivery systems for the treatment of TB.

  5. A Prototype of Mathematical Treatment of Pen Pressure Data for Signature Verification.

    Science.gov (United States)

    Li, Chi-Keung; Wong, Siu-Kay; Chim, Lai-Chu Joyce

    2018-01-01

    A prototype using simple mathematical treatment of the pen pressure data recorded by a digital pen movement recording device was derived. In this study, a total of 48 sets of signature and initial specimens were collected. Pearson's correlation coefficient was used to compare the data of the pen pressure patterns. From the 820 pair comparisons of the 48 sets of genuine signatures, a high degree of matching was found in which 95.4% (782 pairs) and 80% (656 pairs) had rPA > 0.7 and rPA > 0.8, respectively. In the comparison of the 23 forged signatures with their corresponding control signatures, 20 of them (89.2% of pairs) had rPA values prototype could be used as a complementary technique to improve the objectivity of signature examination and also has a good potential to be developed as a tool for automated signature identification. © 2017 American Academy of Forensic Sciences.

  6. Protocol for the quality control systems of electronic portal imaging used in verification of radiotherapy treatment

    International Nuclear Information System (INIS)

    Silvestre, Ileana; Alfonso, Rodolfo; Garcia, Fernando

    2009-01-01

    Following the approach of quality control of radiotherapy equipment, conceived in the IAEA TECDOC-1151, we analyzed the different tests must be to an EPID to guarantee levels of accuracy required in the administration of radiation treatments, including the study of the impact of different parameters, geometric and dosimetric imaging, involved in the process. Established the types and frequency of checks, as well as procedures for their implementation, the allowable tolerances set of values records and forms for recording . Was carried out assessment protocol in various services based on amorphous silicon EPID for its applicability and scope. Was designed and validated in clinical practice protocol for EPID quality control, demonstrating its applicability with a minimum of material and human resources. It We concluded that with proper and systematic quality control program, tests including dosimetry, the EPID can provide valuable information about physico-beam dosimetry, and ensure adequate accuracy geometric in the patient's location. (author)

  7. Improving consistency and quality of service delivery: implications for the addiction treatment field.

    Science.gov (United States)

    Knott, Anne Marie; Corredoira, Rafael; Kimberly, John

    2008-09-01

    Addiction treatment providers face serious problems in delivering consistent, high-quality services over time. Among those providers with multiple treatment sites, there is also intersite variability. This is a serious problem in the addiction field, likely to be made worse as new technologies are introduced and/or as there is industry consolidation (Corredoira, R., Kimberly, J. (2006) Industry evolution through consolidation: Implications for addiction treatment. Journal of Substance Abuse Treatment 31, 255-265.). Although serious, these problems in managing and monitoring to assure consistent service quality have been faced by many other industries. Here, we review evidence from research in other industries regarding three different forms of management (vertical integration, franchising, and licensing) across a chain of individual service providers. We show how each management form affects the level, consistency, and improvement of service delivery over time. In addition, we discuss how such performance advantages affect customer demand as well as regulatory endorsement of the consolidated firm and its approach.

  8. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    Science.gov (United States)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  9. Treatment of acute massive pulmonary embolism by streptokinase during labour and delivery.

    Science.gov (United States)

    Hall, R J; Young, C; Sutton, G C; Cambell, S

    1972-12-16

    A 29-year-old woman sustained an acute massive pulmonary embolism in the 32nd week of pregnancy. Rapid clinical improvement followed the use of streptokinase. Treatment was continued for 41 hours, including labour and the first three hours after delivery. There was slow but severe postpartum haemorrhage. Partial uterine atony occurred, and may have been due, at least in part, to fibrin degradation products arising from thrombolysis. No adverse effects were noted in the baby.Our experience suggests that streptokinase may be given during labour but that an oxytocic agent may be needed; and that reversal of fibrinolysis before delivery is best achieved by the use of aprotinin (Trasylol) rather than aminocaproic acid.

  10. In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Zhang Li; He Zhichun; Allen Li, X.; Kwan, Ian; Lerch, Michael; Cutajar, Dean; Metcalfe, Peter; Rosenfeld, Anatoly

    2009-01-01

    Skin dose is one of the key issues for clinical dosimetry in radiation therapy. Currently planning computer systems are unable to accurately predict dose in the buildup region, leaving ambiguity as to the dose levels actually received by the patient's skin during radiotherapy. This is one of the prime reasons why in vivo measurements are necessary to estimate the dose in the buildup region. A newly developed metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector designed specifically for dose measurements in rapidly changing dose gradients was introduced for accurate in vivo skin dosimetry. The feasibility of this detector for skin dose measurements was verified in comparison with plane parallel ionization chamber and radiochromic films. The accuracy of a commercial treatment planning system (TPS) in skin dose calculations for intensity-modulated radiation therapy treatment of nasopharyngeal carcinoma was evaluated using MOSFET detectors in an anthropomorphic phantom as well as on the patients. Results show that this newly developed MOSFET detector can provide a minimal but highly reproducible intrinsic buildup of 7 mg cm -2 corresponding to the requirements of personal surface dose equivalent Hp (0.07). The reproducibility of the MOSFET response, in high sensitivity mode, is found to be better than 2% at the phantom surface for the doses normally delivered to the patients. The MOSFET detector agrees well with the Attix chamber and the EBT Gafchromic registered film in terms of surface and buildup region dose measurements, even for oblique incident beams. While the dose difference between MOSFET measurements and TPS calculations is within measurement uncertainty for the depths equal to or greater than 0.5 cm, an overestimation of up to 8.5% was found for the surface dose calculations in the anthropomorphic phantom study. In vivo skin dose measurements reveal that the dose difference between the MOSFET results and the TPS calculations was on average -7

  11. The straightforward numerical treatment of the time dependent advection in air pollution problems and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, K

    1982-01-01

    A very simple Lagrangian finite difference scheme has been developed to calculate the time dependent advection of air pollutants. It is mass conserving and avoids numerical pseudo-diffusion. No condition of numerical stability is required. The Eulerian grid used for the diffusion part of the pollutant transport equation remains unchanged. There are no restrictions on temporally and spatially variable emission rates, production and destruction processes, wind velocity, diffusion coefficients, roughness parameters or inversion heights. The only exception is that the wind field should not be too far from being homogeneous in the horizontal direction (test of D. W. Pepper and P. E. Long, 1978, J. appl. Met. 17, 228-233). Steady state solutions are nearly identical with corresponding analytical solutions. The propagation of a pollutant cloud is simulated more realistically as compared with the advection treatment of E. Runca and F. Sardei (1975, Atmospheric Environment 9, 69-80) and M. Dunst (1980, Z. Met. 30, 47-59). The course of a diffusion experiment is modelled to demonstrate the efficiency of the proposed method. Because of its simplicity, the method is especially suited for use in license processes, for control, and for calculating health risks in relation to industrial and power plant accidents with the goal of organizing efficient protection or evacuation.

  12. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MC eff ) indicated no unacceptable risk for any of the individual chemicals, while MC eff /PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and

  13. Tuberculosis treatment delivery in high burden settings: does patient choice of supervision matter?

    Science.gov (United States)

    Kironde, S; Meintjies, M

    2002-07-01

    The Northern Cape Province, Republic of South Africa. To determine the effect of patient choice of treatment delivery option on the treatment outcomes of tuberculosis (TB) patients in a high burden setting under actual programme conditions. Cohort study involving 769 new and retreatment TB patients recruited from 45 randomly selected clinics. Patients were interviewed and subsequent follow-up was done through regular visits to the clinics to check progress through formal health records. There was a statistically significant difference (P < 0.001) between the treatment outcome of new patients (70% successful) and re-treatment patients (54% successful). Direct observation of treatment (DOT) was found to have no effect on the treatment outcome of new patients (P = 0.875), but re-treatment patients were found to fare better with than without DOT (OR 14.2, 95% CI 4.18-53.14, P < 0.001). The results obtained for new patients are similar to those of two recent randomised controlled trials on DOT. This study revealed that for new patients, undue emphasis on universal DOT might be unnecessary. It would perhaps be more beneficial to target supervision at those patients who are most likely to benefit from it (i.e., re-treatment patients). This is of particular relevance in high burden, resource-limited settings where universal DOT for all TB patients is generally unfeasible.

  14. Dosimetric Verification and Evaluation of the 3-D Conformal Parotid Gland-Sparing Irradiation Technique for Bilateral Neck Treatment at University Hospital Centre Zagreb

    International Nuclear Information System (INIS)

    Kovacevic, N; Hrsak, H.; Bibic, J.

    2011-01-01

    3-D Conformal Parotid Gland-Sparing Irradiation Technique for Bilateral Neck (ConPas) is an alternative to Intensity-modulated radiotherapy (IMRT), and is in routine use at University Hospital Centre Rebro (KBC-Rebro), Zagreb. This technique includes highly asymmetric wedged conformal multi-leaf fields and demands very precise application. The aim of this paper is to present the dosimetric verification method of ConPas (and evaluation of ConPas applicability) as performed at KBC, taking into account the precision of the Treatment Planning System (TPS), possibilities of linear accelerator and patient set-up error. Results for two patients are shown in some details.ConPas is a rather sophisticated method and demands high precision in the whole radiotherapy process. Verification of ConPas using IMRT Verification Matrix Phantom shows good agreement between measured and predicted doses inside and outside PTV regions of the head and neck. Furthermore, a careful track of the positioning during the treatment shows that the overall set-up error is very small (practically negligible). When possible, one parotid gland may be partially spared, and therefore its function preserved at least to some extent. (author)

  15. Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment.

    Science.gov (United States)

    Liu, Hanqing; Tu, Zhigang; Feng, Fan; Shi, Haifeng; Chen, Keping; Xu, Ximing

    2015-06-01

    A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment.

  16. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal

    2015-01-01

    CT (CBCT) can be used for MRI-only image-guided radiotherapy (IGRT) and for verifying the correctness of the corresponding pCT. Material and methods. Six patients receiving palliative cranial RT were included in the study. Each patient had three-dimensional (3D) T1W MRI, a CBCT and a CT for reference...

  17. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases.

    Science.gov (United States)

    Monteiro, Lis Marie; Löbenberg, Raimar; Cotrim, Paulo Cesar; Barros de Araujo, Gabriel Lima; Bou-Chacra, Nádia

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z -average in the range of 100-300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z -averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z -average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  18. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases

    Directory of Open Access Journals (Sweden)

    Lis Marie Monteiro

    2017-01-01

    Full Text Available Buparvaquone (BPQ, a veterinary drug, was formulated as nanostructured lipid carriers (NLC for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1 and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w aiming for z-average in the range of 100–300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z-averages (<350 nm, polydispersity (<0.3, and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z-average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  19. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.

    Science.gov (United States)

    Banks, Stan L; Pinninti, Raghotham R; Gill, Harvinder S; Paudel, Kalpana S; Crooks, Peter A; Brogden, Nicole K; Prausnitz, Mark R; Stinchcomb, Audra L

    2010-07-01

    Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Surgical clips for position verification and correction of non-rigid breast tissue in simultaneously integrated boost (SIB) treatments

    International Nuclear Information System (INIS)

    Penninkhof, Joan; Quint, Sandra; Boer, Hans de; Mens, Jan Willem; Heijmen, Ben; Dirkx, Maarten

    2009-01-01

    Background and purpose: The aim of this study is to investigate whether surgical clips in the lumpectomy cavity are representative for position verification of both the tumour bed and the whole breast in simultaneously integrated boost (SIB) treatments. Materials and methods: For a group of 30 patients treated with a SIB technique, kV and MV planar images were acquired throughout the course of the fractionated treatment. The 3D set-up error for the tumour bed was derived by matching the surgical clips (3-8 per patient) in two almost orthogonal planar kV images. By projecting the 3D set-up error derived from the planar kV images to the (u, v)-plane of the tangential beams, the correlation with the 2D set-up error for the whole breast, derived from the MV EPID images, was determined. The stability of relative clip positions during the fractionated treatment was investigated. In addition, for a subgroup of 15 patients, the impact of breathing was determined from fluoroscopic movies acquired at the linac. Results: The clip configurations were stable over the course of radiotherapy, showing an inter-fraction variation (1 SD) of 0.5 mm on average. Between the start and the end of the treatment, the mean distance between the clips and their center of mass was reduced by 0.9 mm. A decrease larger than 2 mm was observed in eight patients (17 clips). The top-top excursion of the clips due to breathing was generally less than 2.5 mm in all directions. The population averages of the difference (±1 SD) between kV and MV matches in the (u, v)-plane were 0.2 ± 1.8 mm and 0.9 ± 1.5 mm, respectively. In 30% of the patients, time trends larger than 3 mm were present over the course of the treatment in either or in both kV and MV match results. Application of the NAL protocol based on the clips reduced the population mean systematic error to less than 2 mm in all directions, both for the tumour bed and the whole breast. Due to the observed time trends, these systematic errors can

  1. Preclinical evaluation of gene delivery methods for the treatment of loco-regional disease in breast cancer.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2011-04-01

    Preclinical results with various gene therapy strategies indicate significant potential for new cancer treatments. However, many therapeutics fail at clinical trial, often due to differences in tissue physiology between animal models and humans, and tumor phenotype variation. Clinical data relevant to treatment strategies may be generated prior to clinical trial through experimentation using intact patient tissue ex vivo. We developed a novel tumor slice model culture system that is universally applicable to gene delivery methods, using a realtime luminescence detection method to assess gene delivery. Methods investigated include viruses (adenovirus [Ad] and adeno-associated virus), lipofection, ultrasound (US), electroporation and naked DNA. Viability and tumor populations within the slices were well maintained for seven days, and gene delivery was qualitatively and quantitatively examinable for all vectors. Ad was the most efficient gene delivery vector with transduction efficiency >50%. US proved the optimal non-viral gene delivery method in human tumor slices. The nature of the ex vivo culture system permitted examination of specific elements. Parameters shown to diminish Ad gene delivery included blood, regions of low viability and secondary disease. US gene delivery was significantly reduced by blood and skin, while tissue hyperthermia improved gene delivery. US achieved improved efficacy for secondary disease. The ex vivo model was also suitable for examination of tissue-specific effects on vector expression, with Ad expression mediated by the CXCR4 promoter shown to provide a tumor selective advantage over the ubiquitously active cytomegalovirus promoter. In conclusion, this is the first study incorporating patient tissue models in comparing gene delivery from various vectors, providing knowledge on cell-type specificity and examining the crucial biological factors determining successful gene delivery. The results highlight the importance of in

  2. Preclinical evaluation of gene delivery methods for the treatment of loco-regional disease in breast cancer.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    Preclinical results with various gene therapy strategies indicate significant potential for new cancer treatments. However, many therapeutics fail at clinical trial, often due to differences in tissue physiology between animal models and humans, and tumor phenotype variation. Clinical data relevant to treatment strategies may be generated prior to clinical trial through experimentation using intact patient tissue ex vivo. We developed a novel tumor slice model culture system that is universally applicable to gene delivery methods, using a realtime luminescence detection method to assess gene delivery. Methods investigated include viruses (adenovirus [Ad] and adeno-associated virus), lipofection, ultrasound (US), electroporation and naked DNA. Viability and tumor populations within the slices were well maintained for seven days, and gene delivery was qualitatively and quantitatively examinable for all vectors. Ad was the most efficient gene delivery vector with transduction efficiency >50%. US proved the optimal non-viral gene delivery method in human tumor slices. The nature of the ex vivo culture system permitted examination of specific elements. Parameters shown to diminish Ad gene delivery included blood, regions of low viability and secondary disease. US gene delivery was significantly reduced by blood and skin, while tissue hyperthermia improved gene delivery. US achieved improved efficacy for secondary disease. The ex vivo model was also suitable for examination of tissue-specific effects on vector expression, with Ad expression mediated by the CXCR4 promoter shown to provide a tumor selective advantage over the ubiquitously active cytomegalovirus promoter. In conclusion, this is the first study incorporating patient tissue models in comparing gene delivery from various vectors, providing knowledge on cell-type specificity and examining the crucial biological factors determining successful gene delivery. The results highlight the importance of in

  3. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  4. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.

    Science.gov (United States)

    Novák, Petr; Moros, Eduardo G; Straube, William L; Myerson, Robert J

    2005-11-01

    A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)]. In this paper we concentrate on the design, development, and testing of the personal computer (PC) based treatment delivery software that runs the therapy system. The SURLAS requires the coordinated interaction between the therapy applicator and several peripheral devices for its proper and safe operation. One of the most important tasks was the coordination of the input power sequences for the elements of two parallel opposed ultrasound arrays (eight 1.5 cm x 2 cm elements/array, array 1 and 2 operate at 1.9 and 4.9 MHz, respectively) in coordination with the position of a dual-face scanning acoustic reflector. To achieve this, the treatment delivery software can divide the applicator's treatment window in up to 64 sectors (minimum size of 2 cm x 2 cm), and control the power to each sector independently by adjusting the power output levels from the channels of a 16-channel radio-frequency generator. The software coordinates the generator outputs with the position of the reflector as it scans back and forth between the arrays. Individual sector control and dual frequency operation allows the SURLAS to adjust power deposition in three dimensions to superficial targets coupled to its treatment window. The treatment delivery software also monitors and logs several parameters such as temperatures acquired using a 16-channel thermocouple thermometry unit. Safety (in particular to patients) was the paramount concern and design criterion. Failure mode and effects analysis (FMEA) was applied to the applicator as well as to the entire therapy system in order to identify safety issues and rank their relative importance. This analysis led to the implementation of several safety mechanisms and a software structure where each device communicates with the controlling PC independently of the others. In case

  5. Dosimetric verification of lung cancer treatment using the CBCTs estimated from limited-angle on-board projections.

    Science.gov (United States)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2015-08-01

    Lung cancer treatment is susceptible to treatment errors caused by interfractional anatomical and respirational variations of the patient. On-board treatment dose verification is especially critical for the lung stereotactic body radiation therapy due to its high fractional dose. This study investigates the feasibility of using cone-beam (CB)CT images estimated by a motion modeling and free-form deformation (MM-FD) technique for on-board dose verification. Both digital and physical phantom studies were performed. Various interfractional variations featuring patient motion pattern change, tumor size change, and tumor average position change were simulated from planning CT to on-board images. The doses calculated on the planning CT (planned doses), the on-board CBCT estimated by MM-FD (MM-FD doses), and the on-board CBCT reconstructed by the conventional Feldkamp-Davis-Kress (FDK) algorithm (FDK doses) were compared to the on-board dose calculated on the "gold-standard" on-board images (gold-standard doses). The absolute deviations of minimum dose (ΔDmin), maximum dose (ΔDmax), and mean dose (ΔDmean), and the absolute deviations of prescription dose coverage (ΔV100%) were evaluated for the planning target volume (PTV). In addition, 4D on-board treatment dose accumulations were performed using 4D-CBCT images estimated by MM-FD in the physical phantom study. The accumulated doses were compared to those measured using optically stimulated luminescence (OSL) detectors and radiochromic films. Compared with the planned doses and the FDK doses, the MM-FD doses matched much better with the gold-standard doses. For the digital phantom study, the average (± standard deviation) ΔDmin, ΔDmax, ΔDmean, and ΔV100% (values normalized by the prescription dose or the total PTV) between the planned and the gold-standard PTV doses were 32.9% (±28.6%), 3.0% (±2.9%), 3.8% (±4.0%), and 15.4% (±12.4%), respectively. The corresponding values of FDK PTV doses were 1.6% (±1

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT. STORMWATER SOURCE AREA TREATMENT DEVICE. THE TERRE HILL CONCRETE PRODUCTS TERRE KLEEN™ 09

    Science.gov (United States)

    Verification testing of the Terre Hill Concrete Products Terre Kleen™ 09 was conducted on a 1.27 acre portion of the City of Harrisburg, Pennsylvania Department of Public Works facility. The Terre Kleen™ devices combines primary and secondary chambers, baffles, a screen, and incl...

  7. Risk Factors for Uterine Atony/Postpartum Hemorrhage Requiring Treatment after Vaginal Delivery

    Science.gov (United States)

    Wetta, Luisa A; Szychowski, Jeff M; Seals, Ms. Samantha; Mancuso, Melissa S; Biggio, Joseph R; Tita, Alan TN

    2013-01-01

    Objective To identify risk factors for uterine atony or hemorrhage. Study Design Secondary analysis of a 3-arm double-blind randomized trial of different dose-regimens of oxytocin to prevent uterine atony after vaginal delivery. The primary outcome was uterine atony or hemorrhage requiring treatment. Twenty-one potential risk factors were evaluated. Logistic regression was used to identify independent risk factors using 2 complementary pre-defined model selection strategies. Results Among 1798 women randomized to 10, 40 or 80U prophylactic oxytocin after vaginal delivery, treated uterine atony occurred in 7%. Hispanic (OR 2.1; 95% CI 1.3–3.4) and non-Hispanic whites (OR 1.6; 95% CI 1.0–2.5), preeclampsia (OR 3.2; 95% CI 2.0–4.9) and chorioamnionitis (OR 2.8; 95% CI 1.6–5.0) were consistent independent risk factors. Other risk factors based on the specified selection strategies were obesity, induction/augmentation of labor, twins, hydramnios, anemia, and arrest of descent. Amnioinfusion appeared to be protective against uterine atony (OR 0.53; 95% CI 0.29–0.98). Conclusion Independent risk factors for uterine atony requiring treatment include Hispanic and non-Hispanic white ethnicity, preeclampsia and chorioamnionitis. PMID:23507549

  8. Evaluation of implanted gold seeds for breast radiotherapy planning and on treatment verification: A feasibility study on behalf of the IMPORT trialists

    International Nuclear Information System (INIS)

    Coles, Charlotte E.; Harris, Emma J.; Donovan, Ellen M.; Bliss, Peter; Evans, Philip M.; Fairfoul, Jamie; Mackenzie, Christine; Rawlings, Christine; Syndikus, Isabel; Twyman, Nicola; Vasconcelos, Joana; Vowler, Sarah L.; Wilkinson, Jenny S.; Wilks, Robin; Wishart, Gordon C.; Yarnold, John

    2011-01-01

    Background and purpose: We describe a feasibility study testing the use of gold seeds for the identification of post-operative tumour bed after breast conservation surgery (BCS). Materials and Methods: Fifty-three patients undergoing BCS for invasive cancer were recruited. Successful use was defined as all six seeds correctly positioned around the tumour bed during BCS, unique identification of all implanted seeds on CT planning scan and ≥3 seeds uniquely identified at verification to give couch displacement co-ordinates in 10/15 fractions. Planning target volume (PTV) margin size for four correction strategies were calculated from these data. Variability in tumour bed contouring was investigated with five radiation oncologists outlining five CT datasets. Results: Success in inserting gold seeds, identifying them at CT planning and using them for on-treatment verification was recorded in 45/51 (88%), 37/38 (97%) and 42/43 (98%) of patients, respectively. The clinicians unfamiliar with CT breast planning consistently contoured larger volumes than those already trained. Margin size ranged from 10.1 to 1.4 mm depending on correction strategy. Conclusion: It is feasible to implant tumour bed gold seeds during BCS. Whilst taking longer to insert than surgical clips, they have the advantage of visibility for outlining and verification regardless of the ionising radiation beam quality. Appropriate correction strategies enable margins of the order of 5 mm as required by the IMPORT trials however, tackling clinician variability in contouring is important.

  9. TU-A-304-02: Treatment Simulation, Planning and Delivery for SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.

    2015-06-15

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems.

  10. Delivery Unit Costs for Antiretroviral Treatment and Prevention of Mother-to-Child-Transmission of HIV

    Science.gov (United States)

    Galárraga, Omar; Wirtz, Veronika J.; Figueroa-Lara, Alejandro; Santa-Ana-Tellez, Yared; Coulibaly, Ibrahima; Viisainen, Kirsi; Medina-Lara, Antonieta; Korenromp, Eline L.

    2013-01-01

    Background As antiretroviral treatment (ART) for HIV/AIDS is scaled-up globally, information on per-person costs is critical to improve efficiency in service delivery and maximize coverage and health impact. Objective To review studies on delivery unit costs for adult and pediatric ART provision per-patient-year, and prevention of mother-to-child transmission (PMTCT) interventions per mother-infant pair screened or treated, in low- and middle-income countries. Methods Systematic review of English, French and Spanish publications from 2001 to 2009, reporting empirical costing that accounted for at least antiretroviral (ARV) medicines, laboratory testing and personnel. Expenditures were analyzed by country income level and cost component. All costs were standardized to 2009 US dollars. Results Analyses covered 29 eligible, comprehensive costing studies. In the base case, in low-income countries (LIC), median, ART cost per patient-year was $792 (mean: $839, range: $682-$1089); for lower-middle-income countries (LMIC), the median was $932 (mean: $1246, range: $156-$3904); and for upper-middle-income countries (UMIC) the median was $1454 (mean: $2783, range: $1230-$5667). ARV drugs were largest component of overall ART cost in all settings (62%, 50% and 47% in LIC, LMIC and UMIC respectively). Out of 26 ART studies, 14 report which drug regimes were used, and only one study explicitly reported second line treatment costs. The second cost driver was laboratory cost in LIC and LMIC (14% and 19.5%) whereas it was personnel costs in UMIC (26%). Two studies specified the types of laboratory tests costed, and three studies specifically included above-facility-level personnel costs. Three studies reported detailed PMTCT costs, and two studies reported on pediatric ART. Conclusions There is a paucity of data on the full ART and PMTCT delivery unit costs, in particular for low-and middle-income countries. Heterogeneity in activities costed and insufficient detail regarding

  11. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease.

    Science.gov (United States)

    Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Torimura, Takuji

    2015-10-28

    Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.

  12. Prospective longitudinal cohort study on cumulative 5-year delivery and adoption rates among 1338 couples initiating infertility treatment

    DEFF Research Database (Denmark)

    Pinborg, A; Hougaard, C O; Andersen, A Nyboe

    2009-01-01

    occurred for 5.9% (48/817) of the women. Positive prognostic factors for delivery were male infertility, female age infertility and less than three previous treatment cycles. CONCLUSIONS A crude delivery rate of 69.4% in the total population 5 years after referral to tertiary......BACKGROUND The objective was to assess crude 5-year delivery rates after assisted reproductive technology (ART) treatment, intrauterine inseminations (IUI), spontaneous conceptions (SC) and adoptions in a large infertile cohort. METHODS A prospective longitudinal survey comprised 1338 infertile...... couples starting public infertility programmes offering IUIs and three free ART cycles during 2000-2001. The cohort was cross-linked with the National Medical Birth Register to obtain delivery rates for all 1338 couples. More detailed data were available from 817 women responding to a 5-year follow...

  13. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  14. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  15. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  16. A new method for verification of IMRT treatments on patient geometry files using DYNALOG; Un metodo para la verficacion de tratamientos de IMRT sobre la geometria del paciente utilizando los archivos Dynalog

    Energy Technology Data Exchange (ETDEWEB)

    Infante Utrilla, M. A.; Calama Santiago, J. A.; Lavado Rodriguez, M. E.

    2011-07-01

    The aim of this work is to implement a novel method of verification of IMRT treatments, using this information to reconstruct the flow in the scheduler and calculate the dose, comparing dose distributions in 2D and 3D histograms obtained with the initials. This procedure lacks the limitations and uncertainties of the dosimetric detectors used in the verification of model (ionization chamber, film, etc..) Or ILD, also allowing to quantify the differences on the patient.

  17. Proton radiotherapy for chest wall and regional lymphatic radiation; dose comparisons and treatment delivery

    International Nuclear Information System (INIS)

    MacDonald, Shannon M; Jimenez, Rachel; Paetzold, Peter; Adams, Judith; Beatty, Jonathan; DeLaney, Thomas F; Kooy, Hanne; Taghian, Alphonse G; Lu, Hsiao-Ming

    2013-01-01

    The delivery of post-mastectomy radiation therapy (PMRT) can be challenging for patients with left sided breast cancer that have undergone mastectomy. This study investigates the use of protons for PMRT in selected patients with unfavorable cardiac anatomy. We also report the first clinical application of protons for these patients. Eleven patients were planned with protons, partially wide tangent photon fields (PWTF), and photon/electron (P/E) fields. Plans were generated with the goal of achieving 95% coverage of target volumes while maximally sparing cardiac and pulmonary structures. In addition, we report on two patients with unfavorable cardiac anatomy and IMN involvement that were treated with a mix of proton and standard radiation. PWTF, P/E, and proton plans were generated and compared. Reasonable target volume coverage was achieved with PWTF and P/E fields, but proton therapy achieved superior coverage with a more homogeneous plan. Substantial cardiac and pulmonary sparing was achieved with proton therapy as compared to PWTF and P/E. In the two clinical cases, the delivery of proton radiation with a 7.2 to 9 Gy photon and electron component was feasible and well tolerated. Akimbo positioning was necessary for gantry clearance for one patient; the other was treated on a breast board with standard positioning (arms above her head). LAO field arrangement was used for both patients. Erythema and fatigue were the only noted side effects. Proton RT enables delivery of radiation to the chest wall and regional lymphatics, including the IMN, without compromise of coverage and with improved sparing of surrounding normal structures. This treatment is feasible, however, optimal patient set up may vary and field size is limited without multiple fields/matching

  18. Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Karthik Nair

    2015-10-01

    Full Text Available Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.

  19. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  20. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.

    Science.gov (United States)

    Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2017-06-01

    The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.

  1. New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Chávez-Fumagalli

    2015-06-01

    Full Text Available Leishmaniasis is one of the six major tropical diseases targeted by the World Health Organization. It is a life-threatening disease of medical, social and economic importance in endemic areas. No vaccine is yet available for human use, and chemotherapy presents several problems. Pentavalent antimonials have been the drugs of choice to treat the disease for more than six decades; however, they exhibit high toxicity and are not indicated for children, for pregnant or breastfeeding women or for chronically ill patients. Amphotericin B (AmpB is a second-line drug, and although it has been increasingly used to treat visceral leishmaniasis (VL, its clinical use has been hampered due to its high toxicity. This review focuses on the development and in vivo usage of new delivery systems for AmpB that aim to decrease its toxicity without altering its therapeutic efficacy. These new formulations, when adjusted with regard to their production costs, may be considered new drug delivery systems that promise to improve the treatment of leishmaniasis, by reducing the side effects and the number of doses while permitting a satisfactory cost-benefit ratio.

  2. Advances in the psychosocial treatment of addiction: the role of technology in the delivery of evidence-based psychosocial treatment.

    Science.gov (United States)

    Marsch, Lisa A; Dallery, Jesse

    2012-06-01

    The clinical community has a growing array of psychosocial interventions with a strong evidence base available for the treatment of SUDs. Considerable opportunity exists for leveraging technology in the delivery of evidence-based interventions to promote widespread reach and impact of evidence-based care. Data from this line of research to date are promising, and underscore the potential public health impact of technology-based therapeutic tools. To fully realize the potential of technology-delivered interventions, several areas of inquiry remain important. First, scientifically sound strategies should be explored to ensure technology-based interventions are optimally designed to produce maximal behavior change. Second, efficient and effective methods should be identified to integrate technology-based interventions into systems of care in a manner that is most responsive to the needs of individual users. Third, payment, privacy, and regulatory systems should be refined and extended to go beyond electronic medical records and telehealth/distance care models, and support the deployment of technology-based systems to enhance the quality, efficiency and cost-effectiveness of care. Fourth, the mechanisms underlying behavior change derived from technology-based treatments should be explicated, including new mechanisms that may be tapped via novel, technology-based tools. Such work will be critical in isolating mechanisms that are useful in predicting treatment response, and in ensuring that key ingredients are present in technology-based interventions as they are made widely available.

  3. Improving efficiency and safety in external beam radiation therapy treatment delivery using a Kaizen approach.

    Science.gov (United States)

    Kapur, Ajay; Adair, Nilda; O'Brien, Mildred; Naparstek, Nikoleta; Cangelosi, Thomas; Zuvic, Petrina; Joseph, Sherin; Meier, Jason; Bloom, Beatrice; Potters, Louis

    Modern external beam radiation therapy treatment delivery processes potentially increase the number of tasks to be performed by therapists and thus opportunities for errors, yet the need to treat a large number of patients daily requires a balanced allocation of time per treatment slot. The goal of this work was to streamline the underlying workflow in such time-interval constrained processes to enhance both execution efficiency and active safety surveillance using a Kaizen approach. A Kaizen project was initiated by mapping the workflow within each treatment slot for 3 Varian TrueBeam linear accelerators. More than 90 steps were identified, and average execution times for each were measured. The time-consuming steps were stratified into a 2 × 2 matrix arranged by potential workflow improvement versus the level of corrective effort required. A work plan was created to launch initiatives with high potential for workflow improvement but modest effort to implement. Time spent on safety surveillance and average durations of treatment slots were used to assess corresponding workflow improvements. Three initiatives were implemented to mitigate unnecessary therapist motion, overprocessing of data, and wait time for data transfer defects, respectively. A fourth initiative was implemented to make the division of labor by treating therapists as well as peer review more explicit. The average duration of treatment slots reduced by 6.7% in the 9 months following implementation of the initiatives (P = .001). A reduction of 21% in duration of treatment slots was observed on 1 of the machines (P Kaizen approach has the potential to improve operational efficiency and safety with quick turnaround in radiation therapy practice by addressing non-value-adding steps characteristic of individual department workflows. Higher effort opportunities are identified to guide continual downstream quality improvements. Copyright © 2017 American Society for Radiation Oncology. Published by

  4. EFFICACY OF SUBMUCOSAL DELIVERY THROUGH A PARAPHARYNGEAL APPROACH IN THE TREATMENT OF LIMITED CRICOID CHONDROMA

    Directory of Open Access Journals (Sweden)

    M.T. Khorsi Y. Amidi

    2008-05-01

    Full Text Available Cartilaginous tumors comprise 1% of all laryngeal masses. Since they grow slowly and metastasis is rare, long term survival is expected in cases of chondroma and chondrosarcoma. Thus, based on these facts and the fact that total salvage surgery after recurrence of previous tumor does not influence treatment outcomes, "Quality of Life" must be taken into great consideration. Based on 3 cases of limited condrosarcoma that we have successfully operated on using submucosal delivery through a parapharyngeal approach, after several years of recurrence free follow ups, authors determine this technique as an efficient method of approach to these tumors. Since this technique takes less time and there is no need for glottic incision and the patient is discharged in 2 days without insertion of endolaryngeal stent, we believe this method is superior to laryngofissure or total laryngectomy.

  5. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment

    International Nuclear Information System (INIS)

    Yang, Ke-Ni; Zhang, Chun-Qiu; Wang, Wei; Wang, Paul C.; Zhou, Jian-Ping; Liang, Xing-Jie

    2014-01-01

    In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanoparticles, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail

  6. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure.

    Science.gov (United States)

    Mathews, Patrick D; Fernandes Patta, Ana C M; Gonçalves, Joao V; Gama, Gabriella Dos Santos; Garcia, Irene Teresinha Santos; Mertins, Omar

    2018-02-12

    Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial

  7. Development of Microemulsion Based Nabumetone Transdermal Delivery For Treatment of Arthritis.

    Science.gov (United States)

    Jagdale, Swati; Deore, Gokul; Chabukswar, Anuruddha

    2018-02-26

    Background Nabumetone is biopharmaceutics classification system (BCS) class II drug, widely used in the treatment of osteoarthritis and rheumatoid arthritis. The most frequently reported adverse reactions for the drug involve disturbance in gastrointestinal tract , diarrhea, dyspepsia and abdominal pain. Microemulgel has advantages of microemulsion for improving solubility for hydrophobic drug. Patent literature had shown that the work for drug has been carried on spray chilling, enteric coated tablet, and topical formulation which gave idea for present research work for development of transdermal delivery. Objective Objective of the present research work was to optimize transdermal microemulgel delivery for Nabumetone for treatment of arthritis. Method Oil, surfactant and co-surfactant were selected based on solubility study for the drug. Gelling agents used were Carbopol 934 and HPMC K100M. Optimization was carried out using 32 factorial design. Characterization and evaluation were carried out for microemulsion and microemulsion based gel. Results Field emission-scanning electron microscopy (FE-SEM) study of the microemulsion revealed globules of 50-200 nm size . Zeta potential -9.50 mV indicated good stability of microemulsion. Globule size measured by dynamic light scattering (zetasizer) was 160 nm. Design expert gave optimized batch as F7 which contain 0.2% w/w drug, 4.3% w/w liquid paraffin, 0.71% w/w tween 80, 0.35% w/w propylene glycol, 0.124% w/w Carbopol 934, 0.187% w/w HPMC K100M and 11.68% w/w water. In-vitro diffusion study for F7 batch showed 99.16±2.10 % drug release through egg membrane and 99.15±2.73% drug release in ex-vivo study. Conclusion Nabumetone microemulgel exhibiting good in-vitro and ex-vivo controlled drug release was optimized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Improved survival for elderly married glioblastoma patients. Better treatment delivery, less toxicity, and fewer disease complications

    International Nuclear Information System (INIS)

    Putz, Florian; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer; Putz, Tobias; Eyuepoglu, Ilker; Roessler, Karl

    2016-01-01

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m"2 vs. 33.1 mg/m"2; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies. (orig.) [de

  9. Improved survival for elderly married glioblastoma patients : Better treatment delivery, less toxicity, and fewer disease complications.

    Science.gov (United States)

    Putz, Florian; Putz, Tobias; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Eyüpoglu, Ilker; Rössler, Karl; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer

    2016-11-01

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m² vs. 33.1 mg/m²; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies.

  10. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Science.gov (United States)

    Schoellhammer, Carl M.; Srinivasan, Sharanya; Barman, Ross; Mo, Stacy H.; Polat, Baris E.; Langer, Robert; Blankschtein, Daniel

    2016-01-01

    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet nonspecific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo. PMID:25662228

  11. Assessing the quality of proton PBS treatment delivery using machine log files: comprehensive analysis of clinical treatments delivered at PSI Gantry 2

    International Nuclear Information System (INIS)

    Scandurra, D; Albertini, F; Van der Meer, R; Meier, G; Weber, D C; Bolsi, A; Lomax, A

    2016-01-01

    Pencil beam scanning (PBS) proton therapy requires the delivery of many thousand proton beams, each modulated for position, energy and monitor units, to provide a highly conformal patient treatment. The quality of the treatment is dependent on the delivery accuracy of each beam and at each fraction. In this work we describe the use of treatment log files, which are a record of the machine parameters for a given field delivery on a given fraction, to investigate the integrity of treatment delivery compared to the nominal planned dose. The dosimetry-relevant log file parameters are used to reconstruct the 3D dose distribution on the patient anatomy, using a TPS-independent dose calculation system. The analysis was performed for patients treated at Paul Scherrer Institute on Gantry 2, both for individual fields and per series (or plan), and delivery quality was assessed by determining the percentage of voxels in the log file dose distribution within  +/−  1% of the nominal dose. It was seen that, for all series delivered, the mean pass rate is 96.4%. Furthermore, this work establishes a correlation between the delivery quality of a field and the beam position accuracy. This correlation is evident for all delivered fields regardless of individual patient or plan characteristics. We have also detailed further usefulness of log file analysis within our clinical workflow. In summary, we have highlighted that the integrity of PBS treatment delivery is dependent on daily machine performance and is specifically highly correlated with the accuracy of beam position. We believe this information will be useful for driving machine performance improvements in the PBS field. (paper)

  12. Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Fahmy UA

    2015-11-01

    Full Text Available Usama A Fahmy Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vesicular drug delivery systems have recently gained attention as a way of improving dosing accuracy for drugs with poor transdermal permeation. The current study focuses on utilization of the natural biocompatible vesicles to formulate vardenafil nanoethosomes (VRD-NE, for the enhancement of their transdermal permeation and bioavailability. Fifteen formulations were prepared by thin-layer evaporation technique according to Box–Behnken design to optimize formulation variables. The effects of lipid composition, sonication time, and ethanol concentration on particle size and encapsulation efficiency were studied. The diffusion of vardenafil (VRD from the prepared nanoethosomes specified by the design was carried out using automated Franz diffusion cell apparatus. The optimized formula was investigated for in vivo pharmacokinetic parameters compared with oral VRD suspension. Confocal laser scanning microscopy images were used to confirm enhanced diffusion release of VRD in rat skin. The results showed that the optimized formula produced nanoethosomes with an average size of 128 nm and an entrapment efficiency of 76.23%. VRD-NE provided a significant improvement in permeation with an enhancement ratio of 3.05-fold for a film made with optimally formulated VRD-NE compared with a film made with VRD powder. The transdermal bioavailability of VRD from the nanoethosome film was approximately twofold higher than the oral bioavailability from an aqueous suspension. VRD-NE thus provide a promising transdermal drug delivery system. As a result, management of impotence for a longer duration could be achieved with a reduced dosage rate that improves patient tolerability and compliance for the treatment of erectile dysfunction.Keywords: Box–Behnken design, impotence, vesicles, nanoparticles

  13. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    Science.gov (United States)

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  14. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment.

    Science.gov (United States)

    Nelson, Antoinette G; Zhang, Xiaoping; Ganapathi, Usha; Szekely, Zoltan; Flexner, Charles W; Owen, Andrew; Sinko, Patrick J

    2015-12-10

    The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel

  15. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery.

    Science.gov (United States)

    Dolor, Aaron; Szoka, Francis C

    2018-06-04

    Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.

  16. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  17. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  18. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

    Science.gov (United States)

    Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.

    2018-01-01

    Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528

  19. Innovative Technology for the Assisted Delivery of Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson Disease

    Science.gov (United States)

    Halpern, Angela E.; Ramig, Lorraine O.; Matos, Carlos E. C.; Petska-Cable, Jill A.; Spielman, Jennifer L.; Pogoda, Janice M.; Gilley, Phillip M.; Sapir, Shimon; Bennett, John K.; McFarland, David H.

    2012-01-01

    Purpose: To assess the feasibility and effectiveness of a newly developed assistive technology system, Lee Silverman Voice Treatment Companion (LSVT[R] Companion[TM], hereafter referred to as "Companion"), to support the delivery of LSVT[R]LOUD, an efficacious speech intervention for individuals with Parkinson disease (PD). Method: Sixteen…

  20. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis.

    Science.gov (United States)

    González-Vázquez, Patricia; Larrañeta, Eneko; McCrudden, Maelíosa T C; Jarrahian, Courtney; Rein-Weston, Annie; Quintanar-Solares, Manjari; Zehrung, Darin; McCarthy, Helen; Courtenay, Aaron J; Donnelly, Ryan F

    2017-11-10

    Neonatal infections are a leading cause of childhood mortality in low-resource settings. World Health Organization guidelines for outpatient treatment of possible serious bacterial infection (PSBI) in neonates and young infants when referral for hospital treatment is not feasible include intramuscular gentamicin (GEN) and oral amoxicillin. GEN is supplied as an aqueous solution of gentamicin sulphate in vials or ampoules and requires health care workers to be trained in dose calculation or selection of an appropriate dose based on the patient's weight band and to have access to safe injection supplies and appropriate sharps disposal. A simplified formulation, packaging, and delivery method to treat PSBI in low-resource settings could decrease user error and expand access to lifesaving outpatient antibiotic treatment for infants with severe infection during the neonatal period. We developed dissolving polymeric microneedles (MN) arrays to deliver GEN transdermally. MN arrays were produced from aqueous blends containing 30% (w/w) of GEN and two polymers approved by the US Food and Drug Administration: sodium hyaluronate and poly(vinylpyrrolidone). The arrays (19×19 needles and 500μm height) were mechanically strong and were able to penetrate a skin simulant to a depth of 378μm. The MN arrays were tested in vitro using a Franz Cell setup delivering approximately 4.45mg of GEN over 6h. Finally, three different doses (low, medium, and high) of GEN delivered by MN arrays were tested in an animal model. Maximum plasma levels of GEN were dose-dependent and ranged between 2 and 5μg/mL. The time required to reach these levels post-MN array application ranged between 1 and 6h. This work demonstrated the potential of dissolving MN arrays to deliver GEN transdermally at therapeutic levels in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Local delivery of sirolimus nanoparticles for the treatment of in-stent restenosis.

    Science.gov (United States)

    Zago, Alexandre C; Raudales, José C; Attizzani, Guilherme; Matte, Bruno S; Yamamoto, German I; Balvedi, Julise A; Nascimento, Ludmila; Kosachenco, Beatriz G; Centeno, Paulo R; Zago, Alcides J

    2013-02-01

    To test the local delivery of sirolimus nanoparticles following percutaneous transluminal coronary angioplasty (PTCA) to treat in-stent restenosis (ISR) in a swine model. Coronary bare-metal stent (BMS) implantation reduces major adverse cardiac events when compared with PTCA; however, ISR rates remain high. Eighteen swine underwent BMS deployment guided by intravascular ultrasound (IVUS). Of these, 16 developed ISR (1 stent/swine) and underwent angioplasty with a noncompliant balloon (PTCA-NC). The animals were then randomized into four groups for local infusion of sirolimus nanoparticles through a porous balloon catheter, as follows: (1) PTCA-NC alone (control); (2) PTCA-NC + (polylactic acid)-based nanoparticle formulation (anionic 1); (3) PTCA-NC + (polylactic-co-glycolic acid)-based nanoparticle formulation (anionic 2); and (4) PTCA-NC + Eudragit RS nanoparticle formulation (cationic). Coronary angiography and IVUS follow-up were performed 28 days after ISR treatment. There was one episode of acute coronary occlusion with the cationic formulation. Late area loss was similar in all groups at 28 days according to IVUS. However, luminal volume loss (control = 20.7%, anionic 1 = 4.0%, anionic 2 = 6.7%, cationic = 9.6%; P = 0.01) and neointimal volume gain (control = 68.7%, anionic 1 = 17.4%, anionic 2 = 29.5%, cationic = 31.2%; P = 0.019) were significantly reduced in all treatment groups, especially in anionic 1. PTCA-NC followed by local infusion of sirolimus nanoparticles was safe and efficacious to reduce neointima in this model, and this strategy may be a promising treatment for BMS ISR. Further studies are required to validate this method in humans. Copyright © 2012 Wiley Periodicals, Inc.

  2. Swarm Verification

    Science.gov (United States)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  3. Non-communicable diseases and HIV care and treatment: models of integrated service delivery.

    Science.gov (United States)

    Duffy, Malia; Ojikutu, Bisola; Andrian, Soa; Sohng, Elaine; Minior, Thomas; Hirschhorn, Lisa R

    2017-08-01

    Non-communicable diseases (NCD) are a growing cause of morbidity in low-income countries including in people living with human immunodeficiency virus (HIV). Integration of NCD and HIV services can build upon experience with chronic care models from HIV programmes. We describe models of NCD and HIV integration, challenges and lessons learned. A literature review of published articles on integrated NCD and HIV programs in low-income countries and key informant interviews were conducted with leaders of identified integrated NCD and HIV programs. Information was synthesised to identify models of NCD and HIV service delivery integration. Three models of integration were identified as follows: NCD services integrated into centres originally providing HIV care; HIV care integrated into primary health care (PHC) already offering NCD services; and simultaneous introduction of integrated HIV and NCD services. Major challenges identified included NCD supply chain, human resources, referral systems, patient education, stigma, patient records and monitoring and evaluation. The range of HIV and NCD services varied widely within and across models. Regardless of model of integration, leveraging experience from HIV care models and adapting existing systems and tools is a feasible method to provide efficient care and treatment for the growing numbers of patients with NCDs. Operational research should be conducted to further study how successful models of HIV and NCD integration can be expanded in scope and scaled-up by managers and policymakers seeking to address all the chronic care needs of their patients. © 2017 John Wiley & Sons Ltd.

  4. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  5. Pregnancy and delivery while receiving vagus nerve stimulation for the treatment of major depression: a case report

    Directory of Open Access Journals (Sweden)

    Stegman Diane

    2005-09-01

    Full Text Available Abstract Background Depression during pregnancy can have significant health consequences for the mother and her infant. Antidepressant medications, which pass through the placenta, may increase the risk of low birth weight and preterm delivery. The use of selective serotonin reuptake inhibitors (SSRIs during pregnancy may induce serotonergic symptoms in the infant after delivery. Antidepressant medications in breast milk may also be passed to an infant. Vagus nerve stimulation (VNS therapy is an effective non-pharmacologic treatment for treatment-resistant depression (TRD, but little information exists regarding the use of VNS therapy during pregnancy. Case presentation The patient began receiving VNS therapy for TRD in March 1999. The therapy was effective, producing substantial reductions in depressive symptoms and improvement of function. In 2002, the patient reported that she was pregnant. She continued receiving VNS therapy throughout her pregnancy, labor, and delivery, which enabled the sustained remission of her depression. The pregnancy was uneventful; a healthy daughter was delivered at full term. Conclusion In this case, VNS therapy provided effective treatment for TRD during pregnancy and delivery. VNS was safe for the patient and her child.

  6. Commissioning and quality assurance for the treatment delivery components of the AccuBoost system.

    Science.gov (United States)

    Iftimia, Ileana; Talmadge, Mike; Ladd, Ron; Halvorsen, Per

    2015-03-08

    The objective for this work was to develop a commissioning methodology for the treatment delivery components of the AccuBoost system, as well as to establish a routine quality assurance program and appropriate guidance for clinical use based on the commissioning results. Various tests were developed: 1) assessment of the accuracy of the displayed separation value; 2) validation of the dwell positions within each applicator; 3) assessment of the accuracy and precision of the applicator localization system; 4) assessment of the combined dose profile of two opposed applicators to confirm that they are coaxial; 5) measurement of the absolute dose delivered with each applicator to confirm acceptable agreement with dose based on Monte Carlo modeling; 6) measurements of the skin-to-center dose ratio using optically stimulated luminescence dosimeters; and 7) assessment of the mammopad cushion's effect on the center dose. We found that the difference between the measured and the actual paddle separation is < 0.1 cm for the separation range of 3 cm to 7.5 cm. Radiochromic film measurements demonstrated that the number of dwell positions inside the applicators agree with the values from the vendor, for each applicator type and size. The shift needed for a good applicator-grid alignment was within 0.2 cm. The dry-run test using film demonstrated that the shift of the dosimetric center is within 0.15 cm. Dose measurements in water converted to polystyrene agreed within 5.0% with the Monte Carlo data in polystyrene for the same applicator type, size, and depth. A solid water-to-water (phantom) factor was obtained for each applicator, and all future annual quality assurance tests will be performed in solid water using an average value of 1.07 for the solid water-to-water factor. The skin-to-center dose ratio measurements support the Monte Carlo-based values within 5.0% agreement. For the treatment separation range of 4 cm to 8cm, the change in center dose would be < 1.0% for all

  7. Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors

    DEFF Research Database (Denmark)

    Guo, Xiong; Zhao, Zhiyue; Chen, Dawei

    2018-01-01

    Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment. This study was aiming to investigate the potential of concurrent delivery of resveratrol (RES) and docetaxel (DTX) via polymeric nanocarriers to treat breast cancer. To this end, methoxyl poly(ethylene glycol...... profiles, and enhanced cytotoxicity in vitro against MCF-7 cells. The AUC(0→t) of DTX and RES in mPEG-PDLA micelles after i.v. administration to rats were 3.0-fold and 1.6-fold higher than that of i.v. injections of the individual drugs. These findings indicated that the co-delivery of RES and DTX using m...

  8. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Xi J

    2015-07-01

    Full Text Available Jinxiang Xi,1 Jiayao Eddie Yuan,1 Xiuhua April Si,2 James Hasbany1 1School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, 2Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA Background: Despite the prevalence of rhinosinusitis that affects 10%–15% of the population, current inhalation therapy shows limited efficacy. Standard devices deliver <5% of the drugs to the sinuses due to the complexity of nose structure, secluded location of the sinus, poor ventilation, and lack of control of particle motions inside the nasal cavity. Methods: An electric-guided delivery system was developed to guide charged particles to the ostiomeatal complex (OMC. Its performance was numerically assessed in an MRI-based nose–sinus model. Key design variables related to the delivery device, drug particles, and patient breathing were determined using sensitivity analysis. A two-stage optimization of design variables was conducted to obtain the best performance of the delivery system using the Nelder-Mead algorithm. Results and discussion: The OMC delivery system exhibited high sensitivity to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses. An OMC delivery efficiency of 72.4% was obtained with the optimized design, which is one order of magnitude higher than the standard nasal devices. Moreover, optimization is imperative to achieve a sound delivery protocol because of the large number of design variables. The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system. The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region

  9. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzler, Thomas [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Grezdo, Jozef [Department of Radiotherapy, St Elisabeth Institute of Oncology, Bratislava (Slovakia); Bogner, Joachim [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Birkfellner, Wolfgang [Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria)

    2007-04-21

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm{sup 3} tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm{sup 3} were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical

  10. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-01-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm 3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm 3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target

  11. Discuss the impact technological advances in equipment and materials have made on the delivery and outcome of endodontic treatment.

    Science.gov (United States)

    Lababidi, Emad Aldin

    2013-12-01

    Recent advances in endodontic equipment and materials have considerably changed the manner in which endodontic treatment is delivered. Specific technological advances, including nickel-titanium instruments, ultrasonic instruments and the dental operating microscope have been associated with increased efficiency and efficacy of treatment and simplification of delivery. The effects of most of these changes have been tested via in vitro studies and case reports. Ongoing studies should constantly investigate what effects technological advances might have on the outcome of endodontic treatment. © 2013 Australian Society of Endodontology.

  12. Improved survival for elderly married glioblastoma patients. Better treatment delivery, less toxicity, and fewer disease complications

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Florian; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany); Putz, Tobias [University of Bamberg, Professorship of Demography, Bamberg (Germany); Eyuepoglu, Ilker; Roessler, Karl [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2016-11-15

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m{sup 2} vs. 33.1 mg/m{sup 2}; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies. (orig.) [German] Fuer verheiratete Patienten mit malignen Gliomen ist ein verbessertes Gesamtueberleben gut beschrieben. Die zugrunde liegenden Mechanismen konnten bislang jedoch in den verfuegbaren bevoelkerungsbezogenen Arbeiten nicht erklaert werden. Eine Serie von 57 aelteren Patienten mit

  13. The role of treatment delivery factors in exposure-based cognitive behavioral therapy for panic disorder with agoraphobia.

    Science.gov (United States)

    Weck, Florian; Grikscheit, Florian; Höfling, Volkmar; Kordt, Anne; Hamm, Alfons O; Gerlach, Alexander L; Alpers, Georg W; Arolt, Volker; Kircher, Tilo; Pauli, Paul; Rief, Winfried; Lang, Thomas

    2016-08-01

    Treatment delivery factors (i.e., therapist adherence, therapist competence, and therapeutic alliance) are considered to be important for cognitive behavioral therapy (CBT) for panic disorder and agoraphobia (PD/AG). In the current study, four independent raters conducted process evaluations based on 168 two-hour videotapes of 84 patients with PD/AG treated with exposure-based CBT. Two raters evaluated patients' interpersonal behavior in Session 1. Two raters evaluated treatment delivery factors in Session 6, in which therapists provided the rationale for conducting exposure exercises. At the 6-month follow-up, therapists' adherence (r=0.54) and therapeutic alliance (r=0.31) were significant predictors of changes in agoraphobic avoidance behavior; therapist competence was not associated with treatment outcomes. Patients' interpersonal behavior in Session 1 was a significant predictor of the therapeutic alliance in Session 6 (r=0.17). The findings demonstrate that treatment delivery factors, particularly therapist adherence, are relevant to the long-term success of CBT for PD/AG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, L [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Thomas, C; Syme, A [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Medical Physics, Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada)

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  15. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    International Nuclear Information System (INIS)

    MacDonald, L; Thomas, C; Syme, A

    2016-01-01

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  16. Treatment of the Cornea Using Transcytotic Delivery into the Tear Film

    Science.gov (United States)

    2015-12-01

    following popular refractive proce- dures, such as photorefractive keratectomy ( PRK ) and laser in situ keratomileusis ( LASIK ), directly rely on the...chronic inflammation of the eyelid) vs . normal tears [9]. LG-targeted delivery of this therapeutic within our novel delivery system is chosen for...particle compared to SI. If so, this might result from a larger hydro- philic fraction for KSI (66% vs . 48% for SI), which could result in a larger radius of

  17. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis

    Directory of Open Access Journals (Sweden)

    Saidykhan L

    2016-02-01

    Full Text Available Lamin Saidykhan,1 Md Zuki Bin Abu Bakar,2 Yaya Rukayadi,1,3 Aminu Umar Kura,4 Saiful Yazan Latifah5 1Microbiology Unit, Laboratory of Natural Products, Institute of Bioscience, 2Laboratory of Anatomy and Histology, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, 3Department of Food Science, Faculty of Food Science and Technology, 4Vaccine and Immunotherapeutics Laboratory Unit, Institute of Bioscience, 5Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia Abstract: A local antibiotic delivery system (LADS with biodegradable drug vehicles is recognized as the most effective therapeutic approach for the treatment of osteomyelitis. However, the design of a biodegradable LADS with high therapeutic efficacy is too costly and demanding. In this research, a low-cost, facile method was used to design vancomycin-loaded aragonite nanoparticles (VANPs with the aim of understanding its potency in developing a nanoantibiotic bone implant for the treatment of osteomyelitis. The aragonite nanoparticles (ANPs were synthesized from cockle shells by a hydrothermal approach using a zwitterionic surfactant. VANPs were prepared using antibiotic ratios of several nanoparticles, and the formulation (1:4 with the highest drug-loading efficiency (54.05% was used for physicochemical, in vitro drug release, and biological evaluation. Physiochemical characterization of VANP was performed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Zetasizer. No significant differences were observed between VANP and ANP in terms of size and morphology as both samples were cubic shaped with sizes of approximately 35 nm. The Fourier transform infrared spectroscopy of VANP indicated a weak noncovalent interaction between ANP and vancomycin, while the zeta potential values were slightly increased from -19

  18. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, R; Kale, S; Gopishankar, N; Rath, G; Julka, P; Agarwal, D; Singh, M; Garg, A; Kumar, P; Thulkar, S; Sharma, B [All India Institute of Medical Sciences, New Delhi (India)

    2015-06-15

    Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum head cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic

  19. Treatment verification system in radiotherapy using a digital portal imaging device. Comparison with screen/film systems

    International Nuclear Information System (INIS)

    Nakata, Manabu; Komai, Yoshinori; Okada, Takashi; Fukumoto, Satoshi; Chadani, Kazuma; Nohara, Hiroki; Kazusa, Chudou.

    1994-01-01

    A digital portal imaging (DPI) system for megavoltage photon beams was installed recently in our department. The purpose of this study is to evaluate the image quality of this system. We have analyzed the following properties of the system; relationship between measured dose-rate and pixel values of the DPI, spatial resolution, detectability of low-contrast objects and setup errors. The results were compared with those of conventional screen-film systems. As a result, the relationship between the measured dose-rate and the pixel value of the DPI was found to be linear in the dose-rate range between 100 and 400 cGy/min. Spatial resolution was 1.25 and 0.5 mm for the DPI and the screen-film systems, respectively. The slope of the contrast-detail curves differed between the DPI and the screen-film systems, the contrast thresholds were 0.6 and 0.3% for the DPI and the screen-film systems, respectively. The detectability of a setup error of 1 mm and 2 mm for the DPI was lower than that by the screen-film systems, although the difference was not very significant. In conclusion, the image quality of the DPI at present time is slightly inferior to the conventional screen-film systems. However, notable advantages of the DPI system are that any positional changes in patients during irradiation can be detected very quickly, and that quantitative analysis of the setup variation can be obtained. The image quality of the DPI will be improved as the technology regarding advances. Therefore, this verification system using the DPI device, is expected to be used for clinical radiation therapy in the future. (author)

  20. The Nasal Route as a Potential Pathway for Delivery of Erythropoietin in the Treatment of Acute Ischemic Stroke in Humans

    Directory of Open Access Journals (Sweden)

    Julio Cesar García-Rodríguez

    2009-01-01

    Full Text Available Intranasal delivery provides a practical, noninvasive method of bypassing the blood-brain barrier (BBB in order to deliver therapeutic agents to the brain. This method allows drugs that do not cross the BBB to be delivered to the central nervous system in a few minutes. With this technology, it will be possible to eliminate systemic administration and its potential side effects. Using the intranasal delivery system, researchers have demonstrated neuroprotective effects in different animal models of stroke using erythropoietin (EPO as a neuroprotector or other different types of EPO without erythropoiesis-stimulating activity. These new molecules retain their ability to protect neural tissue against injury and they include Asialoerythropoietin (asialoEPO carbamylated EPO (CEPO, and rHu-EPO with low sialic acid content (Neuro-EPO. Contrary to the other EPO variants, Neuro-EPO is not chemically modified, making it biologically similar to endogenous EPO, with the advantage of less adverse reactions when this molecule is applied chronically. This constitutes a potential benefit of Neuro-EPO over other variants of EPO for the chronic treatment of neurodegenerative illnesses. Nasal administration of EPO is a potential, novel, neurotherapeutic approach. However, it will be necessary to initiate clinical trials in stroke patients using intranasal delivery in order to obtain the clinical evidence of its neuroprotectant capacity in the treatment of patients with acute stroke and other neurodegenerative disorders. This new therapeutic approach could revolutionize the treatment of neurodegenerative disorders in the 21st century.

  1. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  2. Human resource aspects of antiretroviral treatment delivery models: current practices and recommendations.

    Science.gov (United States)

    Assefa, Yibeltal; Van Damme, Wim; Hermann, Katharina

    2010-01-01

    PURPOSE OF VIEW: To illustrate and critically assess what is currently being published on the human resources for health dimension of antiretroviral therapy (ART) delivery models. The use of human resources for health can have an effect on two crucial aspects of successful ART programmes, namely the scale-up capacity and the long-term retention in care. Task shifting as the delegation of tasks from higher qualified to lower qualified cadres has become a widespread practice in ART delivery models in low-income countries in recent years. It is increasingly shown to effectively reduce the workload for scarce medical doctors without compromising the quality of care. At the same time, it becomes clear that task shifting can only be successful when accompanied by intensive training, supervision and support from existing health system structures. Although a number of recent publications have focussed on task shifting in ART delivery models, there is a lack of accessible information on the link between task shifting and patient outcomes. Current ART delivery models do not focus sufficiently on retention in care as arguably one of the most important issues for the long-term success of ART programmes. There is a need for context-specific re-designing of current ART delivery models in order to increase access to ART and improve long-term retention.

  3. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery.

    Science.gov (United States)

    Yang, Qi; Parker, Christina L; McCallen, Justin D; Lai, Samuel K

    2015-12-28

    Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Implementation of a method for patient-specific IMRT treatment verification using dynalog files; Aplicacion de un metodo para la verificacion de tratamientos de imrt sobre la anatomia del paciente utilizando archivos dynalog

    Energy Technology Data Exchange (ETDEWEB)

    Calama Santiago, J. A.; Infante Utrilla, M. A.; Lavado Rodriguez, M. E.

    2011-07-01

    The aim of this work is to implement a simple method of intensity modulated radiation therapy (IMRT) verification on the patient anatomy using dynalog files. Monitor units (MU) fraction and leaf positions, both planned and actually positioned during treatment, are sampled every 55 ms and stored in these files. This information was used in the treatment planning system to reconstruct the given fluence and to recalculate the absorbed dose in the patients CT, comparing absorbed dose distributions and histograms with those initially planned. Differences mainly appeared in areas with high absorbed dose gradients at the beginning and at the end of the radiation fields. These differences were lower than 3% in absorbed dose for most cases. No significant differences were found on dose-volume histograms. With proper linac and multileaf collimator commissioning, and a more stringent linac, treatment planning and record and verify system quality assurance program, this procedure allows patient-specific IMRT treatment verification, unlike conventional methods. (Author) 15 refs.

  5. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  6. Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment.

    Science.gov (United States)

    Ranjbar, Reza; Hafezi-Moghadam, Mohammad Sadegh

    2016-02-01

    With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is "scaffolded DNA origami" to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method. In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server. Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate. We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.

  7. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview.

    Science.gov (United States)

    Djupesland, Per G; Messina, John C; Mahmoud, Ramy A

    2014-06-01

    The intricate pathophysiology of brain disorders, difficult access to the brain, and the complexity and high risks and costs of drug development represent major hurdles for improving therapies. Nose-to-brain drug transport offers an attractive alternative or addition to formulation-only strategies attempting to enhance drug penetration into the CNS. Although still a matter of controversy, many studies in animals claim direct nose-to-brain transport along the olfactory and trigeminal nerves, circumventing the traditional barriers to CNS entry. Some clinical trials in man also suggest nose-to-brain drug delivery, although definitive proof in man is lacking. This review focuses on new nasal delivery technologies designed to overcome inherent anatomical and physiological challenges and facilitate more efficient and targeted drug delivery for CNS disorders.

  9. Drug delivery system design and development for boron neutron capture therapy on cancer treatment

    International Nuclear Information System (INIS)

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-01-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,L-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. - Highlights: • Herein, we have synthesized boron-modified diblock copolymer. • Bpin-PLA-PEOz, which will be served as new boron containing vehicle for transporting the boron drug. • This boron containing Bpin-PLA-PEOz micelle was low toxicity can be applied to drug delivery

  10. Inulin based glutathione-responsive delivery system for colon cancer treatment.

    Science.gov (United States)

    Wang, Dongdong; Sun, Feifei; Lu, Chunbo; Chen, Peng; Wang, Zhaojie; Qiu, Yuanhao; Mu, Haibo; Miao, Zehong; Duan, Jinyou

    2018-05-01

    Colorectal cancer is one of the most common types of tumor in the world. Here we developed a lipoic acid esterified polysaccharide (inulin) delivery system for tanshinone IIA to treat colorectal cancer in vitro. The release of tanshinone IIA in the system was highly responsive to glutathione, which is commonly abundant in cancer cells. In addition, this drug delivery system was proliferative to Bifidobacterium longum, the common inhabitant of human intestine. Thus, this strategy might be useful to improve colon cancer therapy efficacy of anticancer drugs and meanwhile promote the growth of beneficial commensal flora in the gut. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.

    Science.gov (United States)

    Sekerdag, Emine; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Öztürk, Naile; Kara, Aslı; Kaffashi, Abbas; Vural, Imran; Işıkay, Ilkay; Yavuz, Burҫin; Oguz, Kader Karlı; Söylemezoğlu, Figen; Gürsoy-Özdemir, Yasemin; Mut, Melike

    2017-09-10

    New drug delivery systems are highly needed in research and clinical area to effectively treat gliomas by reaching a high antineoplastic drug concentration at the target site without damaging healthy tissues. Intranasal (IN) administration, an alternative route for non-invasive drug delivery to the brain, bypasses the blood-brain-barrier (BBB) and eliminates systemic side effects. This study evaluated the antitumor efficacy of farnesylthiosalicylic acid (FTA) loaded (lipid-cationic) lipid-PEG-PLGA hybrid nanoparticles (HNPs) after IN application in rats. FTA loaded HNPs were prepared, characterized and evaluated for cytotoxicity. Rat glioma 2 (RG2) cells were implanted unilaterally into the right striatum of female Wistar rats. 10days later, glioma bearing rats received either no treatment, or 5 repeated doses of 500μM freshly prepared FTA loaded HNPs via IN or intravenous (IV) application. Pre-treatment and post-treatment tumor sizes were determined with MRI. After a treatment period of 5days, IN applied FTA loaded HNPs achieved a significant decrease of 55.7% in tumor area, equal to IV applied FTA loaded HNPs. Herewith, we showed the potential utility of IN application of FTA loaded HNPs as a non-invasive approach in glioblastoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Software verification for nuclear industry

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1985-08-01

    Why verification of software products throughout the software life cycle is necessary is considered. Concepts of verification, software verification planning, and some verification methodologies for products generated throughout the software life cycle are then discussed

  13. SU-E-T-370: Evaluating Plan Quality and Dose Delivery Accuracy of Tomotherapy SBRT Treatments for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Blake, S; Thwaites, D [University of Sydney, Sydney, NSW (Australia); Hansen, C [Odense University Hospital, Odense C (Denmark); Deshpande, S; Phan, P; Franji, I [Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW (United Kingdom); Holloway, L [Ingham Institute, Sydney, NSW (Australia)

    2015-06-15

    Purpose: This study evaluated the plan quality and dose delivery accuracy of stereotactic body radiotherapy (SBRT) helical Tomotherapy (HT) treatments for lung cancer. Results were compared with those previously reported by our group for flattening filter (FF) and flattening filter free (FFF) VMAT treatments. This work forms part of an ongoing multicentre and multisystem planning and dosimetry audit on FFF beams for lung SBRT. Methods: CT datasets and DICOM RT structures delineating the target volume and organs at risk for 6 lung cancer patients were selected. Treatment plans were generated using the HT treatment planning system. Tumour locations were classified as near rib, near bronchial tree or in free lung with prescribed doses of 48Gy/4fr, 50Gy/5fr and 54Gy/3fr respectively. Dose constraints were specified by a modified RTOG0915 protocol used for an Australian SBRT phase II trial. Plan quality was evaluated using mean PTV dose, PTV volume receiving 100% of the prescribed dose (V100%), target conformity (CI=VD100%/VPTV) and low dose spillage (LDS=VD50%/VPTV). Planned dose distributions were compared to those measured using an ArcCheck phantom. Delivery accuracy was evaluated using a gamma-index pass rate of 95% with 3% (of max dose) and 3mm criteria. Results: Treatment plans for all patients were clinically acceptable in terms of quality and accuracy of dose delivery. The following DVH metrics are reported as averages (SD) of all plans investigated: mean PTV dose was 115.3(2.4)% of prescription, V100% was 98.8(0.9)%, CI was 1.14(0.03) and LDS was 5.02(0.37). The plans had an average gamma-index passing rate of 99.3(1.3)%. Conclusion: The results reported in this study for HT agree within 1 SD to those previously published by our group for VMAT FF and FFF lung SBRT treatments. This suggests that HT delivers lung SBRT treatments of comparable quality and delivery accuracy as VMAT using both FF and FFF beams.

  14. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma

    Science.gov (United States)

    Badawi, Ashraf M; Osman, Mai Abdelraouf

    2018-01-01

    Background Melasma is a difficult-to-treat hyperpigmentary disorder. Ablative fractional laser (AFL)-assisted delivery of topically applied drugs to varied targets in the skin has been an area of ongoing study and research. Objective The objective of this study was to evaluate the efficacy and safety of fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser as an assisted drug delivery for enhancing topical hydroquinone (HQ) permeation into the skin of melasma patients. Patients and methods Thirty female patients with bilateral melasma were randomly treated in a split-face controlled manner with a fractional Er:YAG laser followed by 4% HQ cream on one side and 4% HQ cream alone on the other side. All patients received six laser sessions with a 2-week interval. The efficacy of treatments was determined through photographs, dermoscopic photomicrographs and Melasma Area Severity Index (MASI) score, all performed at baseline and at 12 weeks of starting therapy. The patient’s level of satisfaction was also recorded. Results Er:YAG laser + HQ showed significantly better results (plaser + HQ side vs HQ side. Minor reversible side effects were observed on both sides. Conclusion AFL-assisted delivery of HQ is a safe and effective method for the treatment of melasma. PMID:29379308

  15. Implants as drug delivery devices for the treatment of eye diseases

    Directory of Open Access Journals (Sweden)

    Gisele Rodrigues da Silva

    2010-09-01

    Full Text Available The treatment of diseases affecting the posterior segment of the eye is limited by the difficulty in transporting effective doses of drugs to the vitreous, retina, and choroid. Topically applied drugs are poorly absorbed due to the low permeability of the external ocular tissues and tearing. The blood-retina barrier limits drug diffusion from the systemic blood to the posterior segment, thus high doses of drug are needed to maintain therapeutic levels. In addition, systemic side effects are common. Intraocular injections could be an alternative, but the fast flowing blood supply in this region, associated with rapid clearance rates, causes drug concentration to quickly fall below therapeutic levels. To obtain therapeutic levels over longer time periods, polymeric sustained-drug release systems implanted within the vitreous are being studied for the treatment of vitreoretinal disorders. These systems are prepared using different kinds of biodegradable or non-biodegradable polymers. This review aims to demonstrate the main characteristics of these drug delivery implants and their potential for clinical application.O tratamento de doenças do segmento posterior do olho é limitado pela dificuldade no transporte de doses efetivas de fármacos para o vítreo, retina e coróide. Os fármacos aplicados topicamente são pouco absorvidos por causa da baixa permeabilidade dos tecidos oculares externos e ao lacrimejamento. Embora a administração sistêmica seja capaz de transportar fármacos para o segmento posterior do olho, as barreiras hemato-aquosa e hematorretiniana dificultam a absorção e, normalmente, são necessárias doses elevadas, as quais estão geralmente associadas a potenciais efeitos adversos. Injeções intravitreais são capazes de transportar fármacos para o segmento posterior do olho, mas é uma técnica invasiva, pouco tolerada pelos pacientes e apresenta riscos de infecções oculares e danos aos tecidos. Visando a obtenção de

  16. Verification and disarmament

    Energy Technology Data Exchange (ETDEWEB)

    Blix, H. [IAEA, Vienna (Austria)

    1998-07-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed.

  17. Verification and disarmament

    International Nuclear Information System (INIS)

    Blix, H.

    1998-01-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed

  18. Monitoring, Verification, and Treatment of Infectious Wastes and Their Optimal Management in the Hospitals of Qom City, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2016-08-01

    Full Text Available Background and Objectives: Given that no comprehensive studies have yet been conducted on treatment of infectious wastes in hospitals of Qom City, this research was performed with the purpose of investigating the treatment methods used in these hospitals and monitoring the performance of waste elimination devices. Methods: Required information was obtained through in-person visit and observing the current situation, and the variables affecting waste treatment were extracted based on the type of treatment systems, and were collected, and accordingly, biological monitoring tests were designed for the studied hospitals. The data were analyzed using Fisher's exact test. Results: In this study, from 9 active hospitals in Qom Province, only 3 hospitals were equipped with waste treatment system. In hospital A, growth of Bacillus stearothermophilus spore were observed in 6.25% of the samples, while no microbial growth was recorded in hospital B. The initial investment to buy the machine in hospital A was about four times than that of hospital B. Conclusion: The findings of this study showed that treatment device of hospital B is more appropriate compared to the devices of hospital A due to complete destruction of spores, lower cost (for purchase, and maintenance. .

  19. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    Science.gov (United States)

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  20. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  1. Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...

    African Journals Online (AJOL)

    Delivery System for Improved Delivery to Heart ... Conclusion: Microparticulate floating (gastroretentive) oral drug delivery system of diltiazem prepared ..... treatment of cardiac disease. ... hydrochloride-loaded mucoadhesive microspheres.

  2. SU-F-R-56: Early Assessment of Treatment Response During Radiation Therapy Delivery for Esophageal Cancer Using Quantitative CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, D [Henan Province Tumor Hospital, Zhengzhou, Henan (China); Chen, X; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States); Wu, H [Medical college of Wisconsin, Milwaukee, WI (United States); Wang, J [Henan province Tumor hospital, Zhengzhou, Henan (China)

    2016-06-15

    Purpose: To investigate the feasibility of assessing treatment response using CTs during delivery of radiation therapy (RT) for esophageal cancer. Methods: Daily CTs acquired using a CT-on-Rails during the routine CT-guided RT for 20 patients with stage II to IV esophageal cancers were analyzed. All patients were treated with combined chemotherapy and IMRT of 45–50 Gy in 25 fractions, and were followed up for two years. Contours of GTV, spinal cord, and non-specified tissue (NST) irradiated with low dose were generated on each daily CT. A series of CT-texture metrics including Hounsfield Unit (HU) histogram, mean HU, standard derivation (STD), entropy, and energy were obtained in these contours on each daily CT. The changes of these metrics and GTV volume during RT delivery were calculated and correlated with treatment outcome. Results: Changes in CT texture (e.g., HU histogram) in GTV and spinal cord (but not in NST) were observed during RT delivery and were consistently increased with radiation dose. For the 20 cases studied, the mean HU in GTV was reduced on average by 4.0HU from the first to the last fractions, while 8 patients (responders) had larger reductions in GTV mean HU (average 7.8 HU) with an average GTV reduction of 51% and had increased consistently in GTV STD and entropy with radiation dose. The rest of 12 patients (non-responders) had lower reductions in GTV mean HU (average 1.5HU) and almost no change in STD and entropy. For the 8 responders, 2 experienced complete response, 7 (88%) survived and 1 died. In contrast, for the 12 non-responders, 4 (33%) survived and 8 died. Conclusion: Radiation can induce changes in CT texture in tumor (e.g., mean HU) during the delivery of RT for esophageal cancer. If validated with more data, such changes may be used for early prediction of RT response for esophageal cancer.

  3. Tetracycline as local drug delivery in treatment of chronic periodontitis: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Prasad Shyamrajan Nadig

    2016-01-01

    Full Text Available Background: The aim of the present meta-analysis is to determine the efficacy of tetracycline group of antibiotics as local drug delivery agents in the treatment of chronic periodontitis. Materials and Methods: MEDLINE, EBSCO, Cochrane database, and Google Scholar were used to identify studies in English published up to January 31, 2017. An additional hand search of relevant journals and of the bibliographies of the paper identified was also performed. Articles retrieved were screened using specific inclusion criteria by two independent reviewers. Randomized control trials investigating the effect of tetracycline group of antibiotics as local drug delivery agents in chronic periodontitis were included in the study. Results: Ten relevant articles were selected for the meta-analysis, of which five articles were retrieved after electronic search, three articles were included after hand search, and two unpublished articles were included. The number of patients in studies ranged from 13 to 140 sites with mean age ranging from 20 to 75. A total of 588 sites were treated using tetracycline group of antibiotics as local drug delivery agents in the treatment of chronic periodontitis. The meta-analysis showed standard difference in mean −1.02 mm (95% confidence interval [CI] 0.28, 1.75 for clinical gain in attachment in favor of tetracycline group. Standard difference in mean for probing depth (PD was 1.20 mm (95% CI 0.57, 1.87 in tetracycline group. Conclusion: The results of this meta-analysis showed a significant improvement in periodontal parameters such as CAL, PD, and sulcular bleeding index in favor of tetracycline as local drug delivery compared to placebo.

  4. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor.

    Science.gov (United States)

    Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D

    2016-09-01

    This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.

  5. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    Science.gov (United States)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  6. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Nguyen, Hoai Nam; Do, Hai Doan; Phan, Quoc Thong; Thi, Minh Nguyet Tran; Nguyen, Xuan Phuc; Thi, My Nhung Hoang; Le, Mai Huong; Nguyen, Linh Toan; Bui, Thuc Quang; Phan, Van Hieu

    2016-01-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50–100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment. (paper)

  7. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  8. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    International Nuclear Information System (INIS)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-01-01

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations were computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments

  9. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N; DiCostanzo, D; Fullenkamp, M [Ohio State University, Columbus, OH (United States)

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations were computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.

  10. A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification

    International Nuclear Information System (INIS)

    Yin Fangfang; Guan Huaiqun; Lu Wenkai

    2005-01-01

    The technologies with kilovoltage (kV) and megavoltage (MV) imaging in the treatment room are now available for image-guided radiation therapy to improve patient setup and target localization accuracy. However, development of strategies to efficiently and effectively implement these technologies for patient treatment remains challenging. This study proposed an aggregated technique for on-board CT reconstruction using combination of kV and MV beam projections to improve the data acquisition efficiency and image quality. These projections were acquired in the treatment room at the patient treatment position with a new kV imaging device installed on the accelerator gantry, orthogonal to the existing MV portal imaging device. The projection images for a head phantom and a contrast phantom were acquired using both the On-Board Imager TM kV imaging device and the MV portal imager mounted orthogonally on the gantry of a Varian Clinac TM 21EX linear accelerator. MV projections were converted into kV information prior to the aggregated CT reconstruction. The multilevel scheme algebraic-reconstruction technique was used to reconstruct CT images involving either full, truncated, or a combination of both full and truncated projections. An adaptive reconstruction method was also applied, based on the limited numbers of kV projections and truncated MV projections, to enhance the anatomical information around the treatment volume and to minimize the radiation dose. The effects of the total number of projections, the combination of kV and MV projections, and the beam truncation of MV projections on the details of reconstructed kV/MV CT images were also investigated

  11. Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Wei eChen

    2016-04-01

    Full Text Available Abstract: Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson’s disease is the second most common neurodegenerative disorder and severely influences the patients’ life quality. Current gene therapy clinical trials for Parkinson’s disease employing viral vectors didn’t achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier and specific targeting to diseased brain cells.

  12. Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment

    OpenAIRE

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-01-01

    Inflammation mediated by tumor necrosis factor-α (TNF-α) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-α in the central nervous system (CNS). Here, we show that suppression of TNF-α by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because ma...

  13. Chitosan and Glyceryl Monooleate Nanostructures Containing Gemcitabine: Potential Delivery System for Pancreatic Cancer Treatment

    OpenAIRE

    Trickler, William J.; Khurana, Jatin; Nagvekar, Ankita A.; Dash, Alekha K.

    2010-01-01

    The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytot...

  14. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  15. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Hrvoje Brzica

    2017-03-01

    Full Text Available Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA. A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps and organic cation transporters (Octs. In addition, multidrug resistance proteins (Mrps are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.

  16. Monte Carlo investigation of collapsed versus rotated IMRT plan verification.

    Science.gov (United States)

    Conneely, Elaine; Alexander, Andrew; Ruo, Russell; Chung, Eunah; Seuntjens, Jan; Foley, Mark J

    2014-05-08

    IMRT QA requires, among other tests, a time-consuming process of measuring the absorbed dose, at least to a point, in a high-dose, low-dose-gradient region. Some clinics use a technique of measuring this dose with all beams delivered at a single gantry angle (collapsed delivery), as opposed to the beams delivered at the planned gantry angle (rotated delivery). We examined, established, and optimized Monte Carlo simulations of the dosimetry for IMRT verification of treatment plans for these two different delivery modes (collapsed versus rotated). The results of the simulations were compared to the treatment planning system dose calculations for the two delivery modes, as well as to measurements taken. This was done in order to investigate the validity of the use of a collapsed delivery technique for IMRT QA. The BEAMnrc, DOSXYZnrc, and egs_chamber codes were utilized for the Monte Carlo simulations along with the MMCTP system. A number of different plan complexity metrics were also used in the analysis of the dose distributions in a bid to qualify why verification in a collapsed delivery may or may not be optimal for IMRT QA. Following the Alfonso et al. formalism, the kfclin,frefQclin,Q correction factor was calculated to correct the deviation of small fields from the reference conditions used for beam calibration. We report on the results obtained for a cohort of 20 patients. The plan complexity was investigated for each plan using the complexity metrics of homogeneity index, conformity index, modulation complexity score, and the fraction of beams from a particular plan that intersect the chamber when performing the QA. Rotated QA gives more consistent results than the collapsed QA technique. The kfclin,frefQclin,Qfactor deviates less from 1 for rotated QA than for collapsed QA. If the homogeneity index is less than 0.05 then the kfclin,frefQclin,Q factor does not deviate from unity by more than 1%. A value this low for the homogeneity index can only be obtained

  17. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    International Nuclear Information System (INIS)

    Thoelking, J; Yuvaraj, S; Jens, F; Lohr, F; Wenz, F; Wertz, H; Wertz, H

    2015-01-01

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference) and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan

  18. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thoelking, J; Yuvaraj, S; Jens, F; Lohr, F; Wenz, F; Wertz, H; Wertz, H [University Medical Center Mannheim, University of Heidelberg, Mannheim, Baden-Wuerttemberg (Germany)

    2015-06-15

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference) and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan

  19. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging

    Directory of Open Access Journals (Sweden)

    Estrada Giovani

    2010-03-01

    Full Text Available Abstract Nanotechnology has brought a variety of new possibilities into biological discovery and clinical practice. In particular, nano-scaled carriers have revolutionalized drug delivery, allowing for therapeutic agents to be selectively targeted on an organ, tissue and cell specific level, also minimizing exposure of healthy tissue to drugs. In this review we discuss and analyze three issues, which are considered to be at the core of nano-scaled drug delivery systems, namely functionalization of nanocarriers, delivery to target organs and in vivo imaging. The latest developments on highly specific conjugation strategies that are used to attach biomolecules to the surface of nanoparticles (NP are first reviewed. Besides drug carrying capabilities, the functionalization of nanocarriers also facilitate their transport to primary target organs. We highlight the leading advantage of nanocarriers, i.e. their ability to cross the blood-brain barrier (BBB, a tightly packed layer of endothelial cells surrounding the brain that prevents high-molecular weight molecules from entering the brain. The BBB has several transport molecules such as growth factors, insulin and transferrin that can potentially increase the efficiency and kinetics of brain-targeting nanocarriers. Potential treatments for common neurological disorders, such as stroke, tumours and Alzheimer's, are therefore a much sought-after application of nanomedicine. Likewise any other drug delivery system, a number of parameters need to be registered once functionalized NPs are administered, for instance their efficiency in organ-selective targeting, bioaccumulation and excretion. Finally, direct in vivo imaging of nanomaterials is an exciting recent field that can provide real-time tracking of those nanocarriers. We review a range of systems suitable for in vivo imaging and monitoring of drug delivery, with an emphasis on most recently introduced molecular imaging modalities based on optical

  20. Enhanced dynamic wedge and independent monitor unit verification

    International Nuclear Information System (INIS)

    Howlett, SJ.

    2005-01-01

    Some serious radiation accidents have occurred around the world during the delivery of radiotherapy treatment. The regrettable incident in Panama clearly indicated the need for independent monitor unit (MU) verification. Indeed the International Atomic Energy Agency (IAEA), after investigating the incident, made specific recommendations for radiotherapy centres which included an independent monitor unit check for all treatments. Independent monitor unit verification is practiced in many radiotherapy centres in developed countries around the world. It is mandatory in USA but not yet in Australia. This paper describes development of an independent MU program, concentrating on the implementation of the Enhanced Dynamic Wedge (EDW) component. The difficult case of non centre of field (COF) calculation points under the EDW was studied in some detail. Results of a survey of Australasian centres regarding the use of independent MU check systems is also presented. The system was developed with reference to MU calculations made by Pinnacle 3 D Radiotherapy Treatment Planning (RTP) system (ADAC - Philips) for 4MV, 6MV and 18MV X-ray beams used at the Newcastle Mater Misericordiae Hospital (NMMH) in the clinical environment. A small systematic error was detected in the equation used for the EDW calculations. Results indicate that COF equations may be used in the non COF situation with similar accuracy to that achieved with profile corrected methods. Further collaborative work with other centres is planned to extend these findings

  1. Investigation of Pitch and Jaw Width to Decrease Delivery Time of Helical Tomotherapy Treatments for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Moldovan, Monica; Fontenot, Jonas D.; Gibbons, John P.; Lee, Tae Kyu; Rosen, Isaac I.; Fields, Robert S.; Hogstrom, Kenneth R.

    2011-01-01

    Helical tomotherapy plans using a combination of pitch and jaw width settings were developed for 3 patients previously treated for head and neck cancer. Three jaw widths (5, 2.5, and 1 cm) and 4 pitches (0.86, 0.43, 0.287, and 0.215) were used with a (maximum) modulation factor setting of 4. Twelve plans were generated for each patient using an identical optimization procedure (e.g., number of iterations, objective weights, and penalties, etc.), based on recommendations from TomoTherapy (Madison, WI). The plans were compared using isodose plots, dose volume histograms, dose homogeneity indexes, conformity indexes, radiobiological models, and treatment times. Smaller pitches and jaw widths showed better target dose homogeneity and sparing of normal tissue, as expected. However, the treatment time increased inversely proportional to the jaw width, resulting in delivery times of 24 ± 1.9 min for the 1-cm jaw width. Although treatment plans produced with the 2.5-cm jaw were dosimetrically superior to plans produced with the 5-cm jaw, subsequent calculations of tumor control probabilities and normal tissue complication probabilities suggest that these differences may not be radiobiologically meaningful. Because treatment plans produced with the 5-cm jaw can be delivered in approximately half the time of plans produced with the 2.5-cm jaw (5.1 ± 0.6 min vs. 9.5 ± 1.1 min), use of the 5-cm jaw in routine treatment planning may be a viable approach to decreasing treatment delivery times from helical tomotherapy units.

  2. Review of deep inspiration breath-hold techniques for the treatment of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Latty, Drew, E-mail: drew.latty@health.nsw.gov.au [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Stuart, Kirsty E [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Westmead Breast Cancer Institute, Sydney, New South Wales (Australia); Wang, Wei [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Westmead Breast Cancer Institute, Sydney, New South Wales (Australia); Nepean Cancer Care Centre, Sydney, New South Wales (Australia); Ahern, Verity [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia)

    2015-03-15

    Radiation treatment to the left breast is associated with increased cardiac morbidity and mortality. The deep inspiration breath-hold technique (DIBH) can decrease radiation dose delivered to the heart and this may facilitate the treatment of the internal mammary chain nodes. The aim of this review is to critically analyse the literature available in relation to breath-hold methods, implementation, utilisation, patient compliance, planning methods and treatment verification of the DIBH technique. Despite variation in the literature regarding the DIBH delivery method, patient coaching, visual feedback mechanisms and treatment verification, all methods of DIBH delivery reduce radiation dose to the heart. Further research is required to determine optimum protocols for patient training and treatment verification to ensure the technique is delivered successfully.

  3. Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment

    International Nuclear Information System (INIS)

    Vergote, K; Deene, Y de; Duthoy, W; Gersem, W de; Neve, W de; Achten, E; Wagter, C de

    2004-01-01

    Polymer gel dosimetry was used to assess an intensity-modulated arc therapy (IMAT) treatment for whole abdominopelvic radiotherapy. Prior to the actual dosimetry experiment, a uniformity study on an unirradiated anthropomorphic phantom was carried out. A correction was performed to minimize deviations in the R2 maps due to radiofrequency non-uniformities. In addition, compensation strategies were implemented to limit R2 deviations caused by temperature drift during scanning. Inter- and intra-slice R2 deviations in the phantom were thereby significantly reduced. This was verified in an investigative study where the same phantom was irradiated with two rectangular superimposed beams: structural deviations between gel measurements and computational results remained below 3% outside high dose gradient regions; the spatial shift in those regions was within 2.5 mm. When comparing gel measurements with computational results for the IMAT treatment, dose deviations were noted in the liver and right kidney, but the dose-volume constraints were met. Root-mean-square differences between both dose distributions were within 5% with spatial deviations not more than 2.5 mm. Dose fluctuations due to gantry angle discretization in the dose computation algorithm were particularly noticeable in the low-dose region

  4. Reduced prevalence of early preterm delivery in women with Type 1 diabetes and microalbuminuria--possible effect of early antihypertensive treatment during pregnancy

    DEFF Research Database (Denmark)

    Nielsen, L R; Kragh-Müller, Claus; Damm, P

    2006-01-01

    In normotensive women with Type 1 diabetes and microalbuminuria we previously found preterm delivery (treatment was initiated in late pregnancy when preeclampsia was diagnosed and diastolic blood pressure > 90 mmHg. From April 2000 our routine...... treatment in the prevalence of preterm delivery....... was changed and early antihypertensive treatment with methyldopa was initiated if antihypertensive treatment was given prior to pregnancy, if urinary albumin excretion (UAE) was > 2 g/24 h, or blood pressure > 140/90 mmHg. The present study describes the impact of this more aggressive antiypertensive...

  5. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?

    Science.gov (United States)

    Kateb, Babak; Chiu, Katherine; Black, Keith L; Yamamoto, Vicky; Khalsa, Bhavraj; Ljubimova, Julia Y; Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose Antonio; Modo, Mike; Moore, David F; Farahani, Keyvan; Okun, Michael S; Prakash, Neal; Neman, Josh; Ahdoot, Daniel; Grundfest, Warren; Nikzad, Shouleh; Heiss, John D

    2011-01-01

    Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such

  6. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    International Nuclear Information System (INIS)

    Yoon, S W; Miles, D; Reinsvold, M; Kirsch, D; Oldham, M; Cramer, C

    2017-01-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage ® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose. (paper)

  7. SU-E-T-77: A Statistical Approach to Manage Quality for Pre-Treatment Verification in IMRT/VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Jassal, K [Fortis Memorial Research Institute, Gurgaon, Haryana (India); Sarkar, B [AMRI Cancer Centre and GLA university, Mathura, Kolkata, West Bengal (India); Mohanti, B; Roy, S; Ganesh, T [FMRI, Gurgaon, Haryana (India); Munshi, A [Fortis Memorial Research Institute, Gurgon, Haryana (India); Chougule, A [SMS Medical College and Hospital, Jaipur, Rajasthan (India); Sachdev, K [Malaviya National Institute of Technology, Jaipur, Rajasthan (India)

    2015-06-15

    Objective: The study presents the application of a simple concept of statistical process control (SPC) for pre-treatment quality assurance procedure analysis for planar dose measurements performed using 2D-array and a-Si electronic portal imaging device (a-Si EPID). Method: A total of 195 patients of four different anatomical sites: brain (n1=45), head & neck (n2=45), thorax (n3=50) and pelvis (n4=55) were selected for the study. Pre-treatment quality assurance for the clinically acceptable IMRT/VMAT plans was measured with 2D array and a-Si EPID of the accelerator. After the γ-analysis, control charts and the quality index Cpm was evaluated for each cohort. Results: Mean and σ of γ ( 3%/3 mm) were EPID γ %≤1= 99.9% ± 1.15% and array γ %<1 = 99.6% ± 1.06%. Among all plans γ max was consistently lower than for 2D array as compared to a-Si EPID. Fig.1 presents the X-bar control charts for every cohort. Cpm values for a-Si EPID were found to be higher than array, detailed results are presented in table 1. Conclusion: Present study demonstrates the significance of control charts used for quality management purposes in newer radiotherapy clinics. Also, provides a pictorial overview of the clinic performance for the advanced radiotherapy techniques.Higher Cpm values for EPID indicate its higher efficiency than array based measurements.

  8. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Science.gov (United States)

    Prankerd, Richard J; Nguyen, Tri-Hung; Ibrahim, Jibriil P; Bischof, Robert J; Nassta, Gemma C; Olerile, Livesey D; Russell, Adrian S; Meiser, Felix; Parkington, Helena C; Coleman, Harold A; Morton, David A V; McIntosh, Michelle P

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG) activity in postpartum ewes following pulmonary (in vivo) administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb). In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s) than intramuscular injection (275 ± 22 s). This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  9. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery.

    Science.gov (United States)

    Gomes, Maria João; Martins, Susana; Sarmento, Bruno

    2015-05-01

    As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Directory of Open Access Journals (Sweden)

    Richard J Prankerd

    Full Text Available Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG activity in postpartum ewes following pulmonary (in vivo administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb. In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s than intramuscular injection (275 ± 22 s. This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  11. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection.

    Science.gov (United States)

    de Ávila, Berta Esteban-Fernández; Angsantikul, Pavimol; Li, Jinxing; Angel Lopez-Ramirez, Miguel; Ramírez-Herrera, Doris E; Thamphiwatana, Soracha; Chen, Chuanrui; Delezuk, Jorge; Samakapiruk, Richard; Ramez, Valentin; Obonyo, Marygorret; Zhang, Liangfang; Wang, Joseph

    2017-08-16

    Advances in bioinspired design principles and nanomaterials have led to tremendous progress in autonomously moving synthetic nano/micromotors with diverse functionalities in different environments. However, a significant gap remains in moving nano/micromotors from test tubes to living organisms for treating diseases with high efficacy. Here we present the first, to our knowledge, in vivo therapeutic micromotors application for active drug delivery to treat gastric bacterial infection in a mouse model using clarithromycin as a model antibiotic and Helicobacter pylori infection as a model disease. The propulsion of drug-loaded magnesium micromotors in gastric media enables effective antibiotic delivery, leading to significant bacteria burden reduction in the mouse stomach compared with passive drug carriers, with no apparent toxicity. Moreover, while the drug-loaded micromotors reach similar therapeutic efficacy as the positive control of free drug plus proton pump inhibitor, the micromotors can function without proton pump inhibitors because of their built-in proton depletion function associated with their locomotion.Nano- and micromotors have been demonstrated in vitro for a range of applications. Here the authors demonstrate the in-vivo therapeutic use of micromotors to treat H. pylori infection.

  13. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    Science.gov (United States)

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Ploeger, Lennert S.; Brand, Bob; Smitsmans, Monique H.P.; Herk, Marcel van

    2004-01-01

    An independent verification of the leaf trajectories during each treatment fraction improves the safety of IMRT delivery. In order to verify dynamic IMRT with an electronic portal imaging device (EPID), the EPID response should be accurate and fast such that the effect of motion blurring on the detected moving field edge position is limited. In the past, it was shown that the errors in the detected position of a moving field edge determined by a scanning liquid-filled ionization chamber (SLIC) EPID are negligible in clinical practice. Furthermore, a method for leaf trajectory verification during dynamic IMRT was successfully applied using such an EPID. EPIDs based on amorphous silicon (a-Si) arrays are now widely available. Such a-Si flat panel imagers (FPIs) produce portal images with superior image quality compared to other portal imaging systems, but they have not yet been used for leaf trajectory verification during dynamic IMRT. The aim of this study is to quantify the effect of motion distortion and motion blurring on the detection accuracy of a moving field edge for an Elekta iViewGT a-Si FPI and to investigate its applicability for the leaf trajectory verification during dynamic IMRT. We found that the detection error for a moving field edge to be smaller than 0.025 cm at a speed of 0.8 cm/s. Hence, the effect of motion blurring on the detection accuracy of a moving field edge is negligible in clinical practice. Furthermore, the a-Si FPI was successfully applied for the verification of dynamic IMRT. The verification method revealed a delay in the control system of the experimental DMLC that was also found using a SLIC EPID, resulting in leaf positional errors of 0.7 cm at a leaf speed of 0.8 cm/s

  15. Microfluidic platform for dynamic in vitro optimization of methotrexate-loaded lipid nanoparticle delivery for personalized osteosarcoma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Hernando, M.; Macias, P.; Abella, M.; Desco, M.; Sharpe, S.; Vaquero, J.J.; Muñoz-Barrutia, M.

    2016-07-01

    Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment. However, current techniques for in vitro testing of these vehicles have shown little validity due to their static nature, in which nanoparticles sediment onto the bottom of the wells and kill the cells via asphyxiation, hiding the real effect achieved by the nanoparticles. In this work, a microfluidic platform capable of determining the optimum dose of methotrexate-loaded lipid nanoparticles in osteosarcoma treatment is presented as a promising alternative to current nanoparticle characterization assays. (Author)

  16. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    Science.gov (United States)

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  17. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  18. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  19. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chaitali, E-mail: chaitalidey29@gmail.com [Centre for Research in Nanoscience & Nanotechnology, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Baishya, Kaushik [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Arup [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Ajay [Dept. of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Mandal, Kalyan [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  20. Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections.

    Science.gov (United States)

    Aparna, V; Shiva, M; Biswas, Raja; Jayakumar, R

    2018-04-15

    Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Local delivery of hormonal therapy with silastic tubing for prevention and treatment of breast cancer.

    Science.gov (United States)

    Park, Jeenah; Thomas, Scott; Zhong, Allison Y; Wolfe, Alan R; Krings, Gregor; Terranova-Barberio, Manuela; Pawlowska, Nela; Benet, Leslie Z; Munster, Pamela N

    2018-01-08

    Broad use of germline testing has identified an increasing number of women at risk for breast cancer with a need for effective chemoprevention. We report a novel method to selectively deliver various anti-estrogens at high drug levels to the breast tissue by implanting a device comprised of silastic tubing. Optimized tubing properties allow elution of otherwise poorly bioavailable anti-estrogens, such as fulvestrant, into mammary tissue in vitro and in vivo with levels sufficient to inhibit estrogen receptor activation and tumor cell proliferation. Implantable silastic tubing delivers fulvestrant selectively to mouse mammary fat tissue for one year with anti-tumor effects similar to those achieved with systemic fulvestrant exposure. Furthermore, local delivery of fulvestrant significantly decreases cell proliferation, as assessed by Ki67 expression, most effectively in tumor sections adjacent to tubing. This approach may thereby introduce a potential paradigm shift and offer a promising alternative to systemic therapy for prevention and early interception of breast cancer.

  2. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    Science.gov (United States)

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  3. Energy modulated electron therapy: Design, implementation, and evaluation of a novel method of treatment planning and delivery

    Science.gov (United States)

    Al-Yahya, Khalid

    Energy modulated electron therapy (EMET) is a promising treatment modality that has the fundamental capabilities to enhance the treatment planning and delivery of superficially located targets. Although it offers advantages over x-ray intensity modulated radiation therapy (IMRT), EMET has not been widely implemented to the same level of accuracy, automation, and clinical routine as its x-ray counterpart. This lack of implementation is attributed to the absence of a remotely automated beam shaping system as well as the deficiency in dosimetric accuracy of clinical electron pencil beam algorithms in the presence of beam modifiers and tissue heterogeneities. In this study, we present a novel technique for treatment planning and delivery of EMET. The delivery is achieved using a prototype of an automated "few leaf electron collimator" (FLEC). It consists of four copper leaves driven by stepper motors which are synchronized with the x-ray jaws in order to form a series of collimated rectangular openings or "fieldlets". Based on Monte Carlo studies, the FLEC has been designed to serve as an accessory tool to the current accelerator equipment. The FLEC was constructed and its operation was fully automated and integrated with the accelerator through an in-house assembled control unit. The control unit is a portable computer system accompanied with customized software that delivers EMET plans after acquiring them from the optimization station. EMET plans are produced based on dose volume constraints that employ Monte Carlo pre-generated and patient-specific kernels which are utilized by an in-house developed optimization algorithm. The structure of the optimization software is demonstrated. Using Monte Carlo techniques to calculate dose allows for accurate modeling of the collimation system as well as the patient heterogeneous geometry and take into account their impact on optimization. The Monte Carlo calculations were validated by comparing them against output

  4. TomoTherapy MLC verification using exit detector data

    Energy Technology Data Exchange (ETDEWEB)

    Chen Quan; Westerly, David; Fang Zhenyu; Sheng, Ke; Chen Yu [TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States); Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Xinghua Cancer Hospital, Xinghua, Jiangsu 225700 (China); Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California 90095 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States)

    2012-01-15

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scattered radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment

  5. TomoTherapy MLC verification using exit detector data

    International Nuclear Information System (INIS)

    Chen Quan; Westerly, David; Fang Zhenyu; Sheng, Ke; Chen Yu

    2012-01-01

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scattered radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment systems

  6. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    Science.gov (United States)

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  7. Physics Verification Overview

    Energy Technology Data Exchange (ETDEWEB)

    Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.

  8. Telehealth Delivery of Rapid Syllable Transitions (ReST) Treatment for Childhood Apraxia of Speech

    Science.gov (United States)

    Thomas, Donna C.; McCabe, Patricia; Ballard, Kirrie J.; Lincoln, Michelle

    2016-01-01

    Background: Rapid Syllable Transitions (ReST) treatment uses pseudo-word targets with varying lexical stress to target simultaneously articulation, prosodic accuracy and coarticulatory transitions in childhood apraxia of speech (CAS). The treatment is efficacious for the acquisition of imitated pseudo-words, and generalization of skill to…

  9. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM

    Directory of Open Access Journals (Sweden)

    Shengwu Ma

    2017-04-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a gastrointestinal (GI peptide hormone that stimulates insulin secretion, gene expression and β-cell proliferation, representing a potentially novel and promising therapeutic agent for the treatment of T2DM. DPP-IV-resistant, long-acting GLP-1 analogs have already been approved by FDA as injectable drugs for treating patients with T2DM. Oral delivery of therapeutic peptides and proteins would be preferred owing to advantages of lower cost, ease of administration and greater patient adherence. However, oral delivery of proteins can be affected by rapid enzymatic degradation in the GI tract and poor penetration across the intestinal membrane, which may require amounts that exceed practical consideration. Various production strategies have been explored to overcome challenges associated with the oral delivery of therapeutic peptides and proteins. The goal of this review is to provide an overview of the current state of progress made towards the oral delivery of GLP-1 and its analogs in the treatment of T2DM, with special emphasis on the development of plant and food-grade bacterial delivery systems. Recently, genetically engineered plants and food-grade bacteria have been increasingly explored as novel carrier systems for the oral delivery of peptide and protein drugs. These have a largely unexplored potential to serve both as an expression system and as a delivery vehicle for clinically relevant, cost effective therapeutics. As such, they hold great promise for human biopharmaceuticals and novel therapies against various diseases.

  10. Inspector measurement verification activities

    International Nuclear Information System (INIS)

    George, R.S.; Crouch, R.

    e most difficult and complex activity facing a safeguards inspector involves the verification of measurements and the performance of the measurement system. Remeasurement is the key to measurement verification activities. Remeasurerements using the facility's measurement system provide the bulk of the data needed for determining the performance of the measurement system. Remeasurements by reference laboratories are also important for evaluation of the measurement system and determination of systematic errors. The use of these measurement verification activities in conjunction with accepted inventory verification practices provides a better basis for accepting or rejecting an inventory. (U.S.)

  11. Effect of a community-based delivery of intermittent preventive treatment of malaria in pregnancy on treatment seeking for malaria at health units in Uganda

    DEFF Research Database (Denmark)

    Mbonye, A K; Schultz Hansen, K; Bygbjerg, I C

    2008-01-01

    whether traditional birth attendants, drug-shop vendors, community reproductive health workers and adolescent peer mobilizers can administer IPTp with sulphadoxine-pyrimethamine (SP) to pregnant women, reach those at greatest risk of malaria, and increase access and compliance with IPTp. STUDY DESIGN...... of the intervention on access to malaria treatment, antenatal care, other services and related costs. RESULTS: More women (67.5%) received two doses of SP through the community approach compared with health units (39.9%; P... in the community had sought malaria treatment (70.3%), suggesting the possibility that the novel approach had a positive impact on care seeking for malaria. Similarly, utilization of antenatal care, insecticide-treated nets and delivery care by women in the community was high. The total costs per woman receiving...

  12. Effect of a community-based delivery of intermittent preventive treatment of malaria in pregnancy on treatment seeking for malaria at health units in Uganda

    DEFF Research Database (Denmark)

    Mbonye, Anthony; Hansen, Kristian Schultz; Bygbjerg, Ib

    2008-01-01

    whether traditional birth attendants, drug-shop vendors, community reproductive health workers and adolescent peer mobilizers can administer IPTp with sulphadoxine-pyrimethamine (SP) to pregnant women, reach those at greatest risk of malaria, and increase access and compliance with IPTp. Study design...... of the intervention on access to malaria treatment, antenatal care, other services and related costs. Results: More women (67.5%) received two doses of SP through the community approach compared with health units (39.9%; P... in the community had sought malaria treatment (70.3%), suggesting the possibility that the novel approach had a positive impact on care seeking for malaria. Similarly, utilization of antenatal care, insecticide-treated nets and delivery care by women in the community was high. The total costs per woman receiving...

  13. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    International Nuclear Information System (INIS)

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-01-01

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  14. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Wei

    Full Text Available The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI-monitored focused ultrasound (FUS-induced blood-brain barrier (BBB disruption to enhance Temozolomide (TMZ delivery for improving Glioblastoma Multiforme (GBM treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI, animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

  15. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.

    Science.gov (United States)

    Zhang, Rui Xue; Ahmed, Taksim; Li, Lily Yi; Li, Jason; Abbasi, Azhar Z; Wu, Xiao Yu

    2017-01-26

    Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.

  16. Monitoring and verification R and D

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.; Fearey, Bryan L.

    2011-01-01

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R and D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existing energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R and D required to address these gaps and other monitoring and verification challenges.

  17. An EPID-based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; McGarry, Conor K; Barnes, Michael P; Sabet, Mahsheed; Ebert, Martin A

    2014-01-01

    In modern radiotherapy, it is crucial to monitor the performance of all linac components including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method has been introduced in conjunction with an algorithm to investigate the stability of these systems during arc treatments with the aim of ensuring the accuracy of linac mechanical performance. The Varian EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in MLC carriages as a result of linac rotation were separately investigated by acquisition of EPID images of a simple phantom comprised of 5 ball-bearings during arc delivery. A fast and robust software package was developed for automated analysis of image data. Twelve Varian linacs of different models were investigated. The average EPID sag was within 1 mm for all tested linacs. All machines showed less than 1 mm gantry sag. Changes in SDD values were within 1.7 mm except for three linacs of one centre which were within 9 mm. Values of EPID skewness and tilt were negligible in all tested linacs. The maximum sag in MLC leaf bank assemblies was around 1 mm. The EPID sag showed a considerable improvement in TrueBeam linacs. The methodology and software developed in this study provide a simple tool for effective investigation of the behaviour of linac components with gantry rotation. It is reproducible and accurate and can be easily performed as a routine test in clinics

  18. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.

    Science.gov (United States)

    Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen

    2017-11-01

    A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.

  19. Inhaled antibiotics in the treatment of non-cystic fibrosis bronchiectasis: clinical and drug delivery perspectives.

    Science.gov (United States)

    Sugianto, Tiffanie Daisy; Chan, Hak-Kim

    2016-01-01

    Non-cystic fibrosis bronchiectasis (NCFB) is a chronic, progressive, suppurative lung disease characterized by permanent dilatation of bronchial subdivisions, which further causes accumulation of sputum and bacterial infections. The advent of inhaled antibiotics over the past two decades has been expected to effectively attenuate the problem of chronic bacterial infections in CF and NCFB subjects with higher, local drug concentrations and minimal systemic side effects. This review summarizes and evaluates current clinical evidence of efficacy and adverse effects of inhaled antibiotics in NCFB, as well as ongoing preclinical and clinical studies, followed by a discussion of issues and challenges in clinical practice and drug delivery strategies, together with future research directions. The evidence base of the clinical efficacy of inhaled antibiotics in NCFB is limited and the degrees of reported clinical benefits have been modest and conflicting. Challenges surrounding inhaled antibiotics application and development include the lack of knowledge of disease factors and optimum management strategies, unreceptive lung pathophysiology and the lack of factors that support compliance and tolerability. Nonetheless, research continues to give birth to new clinical findings and novel formulations such as combination antibiotics and sustained-release formulations, which add great value to the development of efficacious, safe and convenient inhalable antibiotics of the future.

  20. Coverage, adherence and costs of intermittent preventive treatment of malaria in children employing different delivery strategies in Jasikan, Ghana.

    Directory of Open Access Journals (Sweden)

    Edith Patouillard

    Full Text Available Intermittent preventive treatment of malaria in children (IPTc involves the administration of a course of anti-malarial drugs at specified time intervals to children at risk of malaria regardless of whether or not they are known to be infected. IPTc provides a high level of protection against uncomplicated and severe malaria, with monthly sulphadoxine-pyrimethamine plus amodiaquine (SP&AQ and sulphadoxine-pyrimethamine plus piperaquine being the most efficacious regimens. A key challenge is the identification of a cost-effective delivery strategy.A community randomized trial was undertaken in Jasikan district, Ghana to assess IPTc effectiveness and costs using SP&AQ delivered in three different ways. Twelve villages were randomly selected to receive IPTc from village health workers (VHWs or facility-based nurses working at health centres' outpatient departments (OPD or EPI outreach clinics. Children aged 3 to 59 months-old received one IPT course (three doses in May, June, September and October. Effectiveness was measured in terms of children covered and adherent to a course and delivery costs were calculated in financial and economic terms using an ingredient approach from the provider perspective.The economic cost per child receiving at least the first dose of all 4 courses was US$4.58 when IPTc was delivered by VHWs, US$4.93 by OPD nurses and US$ 5.65 by EPI nurses. The unit economic cost of receiving all 3 doses of all 4 courses was US$7.56 and US$8.51 when IPTc was delivered by VHWs or facility-based nurses respectively. The main cost driver for the VHW delivery was supervision, reflecting resources used for travelling to more remote communities rather than more intense supervision, and for OPD and EPI delivery, it was the opportunity cost of the time spent by nurses in dispensing IPTc.VHWs achieve higher IPTc coverage and adherence at lower costs than facility-based nurses in Jasikan district, Ghana.ClinicalTrials.gov NCT00119132.

  1. A system for the quality audit of treatment dose delivery in radiotherapy

    International Nuclear Information System (INIS)

    Williams, J.R.; Bradnam, M.S.; McCurrach, G.M.; Deehan, C.; Johnston, S.

    1991-01-01

    Treatment planning is a process requiring the cooperation of a number of different staff groups. The possibility for error is well recognised and quality control procedures are necessary to ensure that the chances of errors in planning leading to incorrect treatments are as low as possible. An audit system is described which is based on the calculation of the dose delivered to the patient using the parameters set for treatment as input data. The calculated dose is compared with the prescribed dose and errors greater than a defined limit are flagged. During a period of 19 months during which this audit procedure has been operating a total of 14 errors in excess of 5 percent were discovered and corrected, this is approximately 0.5 percent of the total number of plans checked. (author). 10 refs.; 1 fig.; 1 tab

  2. An Overview of the Percutaneous Antibiotic Delivery Technique for Osteomyelitis Treatment and a Case Study of Calcaneal Osteomyelitis.

    Science.gov (United States)

    Karr, Jeffrey C

    2017-11-01

    A percutaneous antibiotic delivery technique (PAD-T) used for the adjunctive management of osteomyelitis is presented. This surgical technique incorporates a calcium sulfate and hydroxyapatite (calcium phosphate) bone void filler acting as a carrier vehicle with either an antibiotic or an antifungal medicine, delivering this combination directly into the area of osteomyelitis. The benefit of the PAD-T is reviewed with a case presentation of a successfully treated calcaneal osteomyelitis. No previously reported PAD-T using a simple bone cortex incision in the adjunctive treatment of osteomyelitis has been reported. The PAD-T safely and effectively uses a calcium sulfate and hydroxyapatite bone void filler carrier vehicle to deliver either an antibiotic or an antifungal medicine directly into the area of osteomyelitis.

  3. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis

    International Nuclear Information System (INIS)

    McGrath, Samuel D.; Matuszak, Martha M.; Yan Di; Kestin, Larry L.; Martinez, Alvaro A.; Grills, Inga S.

    2010-01-01

    Purpose/objective(s): Volumetric modulated arc therapy (VMAT) allows for intensity-modulated radiation delivery during gantry rotation with dynamic MLC motion, variable dose rates and gantry speed modulation. We compared VMAT plans with 3D-CRT for hypofractionated lung radiotherapy. Materials/methods: Twenty-one 3D-CRT plans for Stage IA lung cancer previously treated stereotactically were selected. VMAT plans were generated by optimizing machine aperture shape and radiation intensity at 10 deg. intervals. A partial arc range of 180 deg. was manually selected to coincide with tumor location. The arc was resampled down to 5 deg. intervals to ensure dose calculation accuracy. Identical planning objectives were used for VMAT/3D-CRT. Parameters assessed included dose to PTV and organs-at-risk (OAR), monitor units, and multiple conformity and homogeneity indices. Plans were delivered to a phantom for time comparison. Results: Lung V 20/12.5/10/5 were less with VMAT (relative reduction 4.5%, p = .02; 3.2%, p = .01; 2.6%, p = .01; 4.2%, p = .03, respectively). Mean/maximum-doses to PTV, dose to additional OARs, 95% isodose line conformity, and target volume homogeneity were equivalent. VMAT improved conformity at both the 80% (1.87 vs. 1.93, p = .08) and 50% isodose lines (5.19 vs. 5.65, p = .01). Treatment times were reduced significantly with VMAT (mean 6.1 vs. 11.9 min, p < .01). Conclusions: Single arc VMAT planning achieves highly conformal dose distributions while controlling dose to critical structures, including significant reduction in lung dose volume parameters. Employing a VMAT technique decreases treatment times by 37-63%, reducing the chance of error introduced by intrafraction variation. The quality and efficiency of VMAT is ideally suited for stereotactic lung radiotherapy delivery.

  4. Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis

    Directory of Open Access Journals (Sweden)

    AG Bajpayee

    2017-12-01

    Full Text Available Disease-modifying osteoarthritis drugs (DMOADs should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT. Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.

  5. Verification Account Management System (VAMS)

    Data.gov (United States)

    Social Security Administration — The Verification Account Management System (VAMS) is the centralized location for maintaining SSA's verification and data exchange accounts. VAMS account management...

  6. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    Science.gov (United States)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  7. The case for intraocular delivery of PPAR agonists in the treatment of diabetic retinopathy.

    LENUS (Irish Health Repository)

    Treacy, Maxwell P

    2012-09-01

    Systemic therapeutics targeting the peroxisome proliferator-activated receptors have been found to be beneficial in the treatment of diabetic retinopathy. In this paper, we provide a rationale for the use of these therapeutics as intraocular agents. In addition, we introduce the peroxisome proliferator-activated receptors and describe their functions in response to the drugs.

  8. Improving CT quality with optimized image parameters for radiation treatment planning and delivery guidance

    Directory of Open Access Journals (Sweden)

    Guang-Pei Chen

    2017-10-01

    Conclusion: CT image quality can be improved with the IQE protocols created in this study, to provide better soft tissue contrast, which would be beneficial for use in radiation therapy, e.g., for planning data acquisition or for IGRT for hypo-fractionated treatments.

  9. Optimising treatment resources for OCD: a review of the evidence base for technology-enhanced delivery.

    Science.gov (United States)

    Lovell, Karina; Bee, Penny

    2011-12-01

    Obsessive-compulsive disorder (OCD) is a chronic and disabling mental health problem. Only a minority of people receive evidence-based psychological treatments, and this deficit has prompted an increasing focus on delivering cognitive behaviour therapy (CBT) in new and innovative ways. To conduct a scoping review of the published evidence base for CBT-based interventions incorporating a health technology in the treatment of OCD. The questions posed by the review were (a) are technology-assisted treatments clinically effective, (b) are patient outcomes durable and (c) are more innovative services deemed acceptable by those individuals who engage in them? Scoping review of published studies using any study design examining CBT interventions incorporating a health technology for OCD. Electronic databases searched included MEDLINE (1966-2010), PsycInfo (1967-2010), EMBASE (1980-2010) and CINAHL databases (1982-2010). Thirteen studies were identified, of these, five used bibliotherapy, five examined computerised CBT (cCBT), two investigated telephone delivered CBT and one evaluated video conferencing. Overall studies were small and methodologically flawed, which precludes definitive conclusions of clinical effectiveness, durability or stakeholder satisfaction. To date the evidence base for technology-enhanced OCD treatments has undergone limited development. Future research should seek to overcome the methodological shortcomings of published work by conducting large-scale trials that incorporate clinical, cost and acceptability outcomes.

  10. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer.

    Science.gov (United States)

    Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R; Guterres, Silvia S; Collares, Tiago; Seixas, Fabiana Kömmling

    2017-01-01

    Mycobacterium bovis bacillus Calmette-Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.

  11. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Julieti Huch Buss

    2018-01-01

    Full Text Available Mycobacterium bovis bacillus Calmette–Guerin (BCG remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1 controlling drug release for extended time frames, (2 combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3 reducing systemic side effects, (4 increasing bioavailability, (5 and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.

  12. SU-E-T-442: Sensitivity of Quality Assurance Tools to Delivery Errors On a Magnetic Resonance-Imaging Guided Radiation Therapy (MR-IGRT) System

    International Nuclear Information System (INIS)

    Rodriguez, V; Li, H; Yang, D; Kashani, R; Wooten, H; Mutic, S; Green, O; Dempsey, J

    2014-01-01

    Purpose: To test the sensitivity of the quality assurance (QA) tools actively used on a clinical MR-IGRT system for potential delivery errors. Methods: Patient-specific QA procedures have been implemented for a commercially available Cobalt-60 MR-IGRT system. The QA tools utilized were a MR-compatible cylindrical diode-array detector (ArcCHECK) with a custom insert which positions an ionization chamber (Exradin A18) in the middle of the device, as well as an in-house treatment delivery verification program. These tools were tested to investigate their sensitivity to delivery errors. For the ArcCHECK and ion chamber, a baseline was established with a static field irradiation to a known dose. Variations of the baseline were investigated which included rotated gantry, altered field size, directional shifts, and different delivery time. In addition, similar variations were tested with the automated delivery verification program that compared the treatment parameters in the machine delivery logs to the ones in the plan. To test the software, a 3-field conformal plan was generated as the baseline. Results: ArcCHECK noted at least a 13% decrease in passing rate from baseline in the following scenarios: gantry rotation of 1 degree from plan, 5mm change in field size, 2mm lateral shift, and delivery time decrease. Ion chamber measurements remained consistent for these variations except for the 5 second decrease in delivery time scenario which resulted in an 8% difference from baseline. The delivery verification software was able to detect and report the simulated errors such as when the gantry was rotated by 0.6 degrees, the beam weighting was changed by a percent, a single multileaf collimator was moved by 1cm, and the dose was changed from 2 to 1.8Gy. Conclusion: The results show that the current tools used for patient specific QA are capable of detecting small errors in RT delivery with presence of magnetic field

  13. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  14. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas.

    Science.gov (United States)

    Freeman, A Courtenay; Platt, Simon R; Holmes, Shannon; Kent, M; Robinson, Kelsey; Howerth, Elizabeth; Eagleson, Joe; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Constantinos G

    2018-05-01

    Cetuximab conjugated iron-oxide nanoparticles (cetuximab-IONPs) have shown both in-vitro and in-vivo anti-tumor efficacy against gliomas. The purpose of this pilot study was to evaluate the safety and potential efficacy of cetuximab-IONPs for treatment of spontaneously occurring intracranial gliomas in canines after convection-enhanced delivery (CED). The use of CED allowed for direct infusion of the cetuximab-IONPs both intratumorally and peritumorally avoiding the blood brain barrier (BBB) and limiting systemic effects. A total of eight dogs participated in the study and only two developed mild post-operative complications, which resolved with medical therapy. All canines underwent a single CED treatment of the cetuximab-IONPs over 3 days and did not receive any further adjuvant treatments. Volumetric analysis showed a median reduction in tumor size of 54.9% by MRI at 1-month (4-6 weeks) follow-up. Five dogs were euthanized due to recurrence of neurological signs other than seizures, two due to recurrent seizures, and one dog died in his sleep. Median survival time after surgery was 248 days (mean 367 days).

  15. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  16. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  17. SU-F-T-303: Quantification of MLC Positioning Accuracy in VMAT Delivery of Head and Neck Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Yang, F [University Of Miami, Miami, FL (United States)

    2016-06-15

    Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio of the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.

  18. TH-CD-202-05: DECT Based Tissue Segmentation as Input to Monte Carlo Simulations for Proton Treatment Verification Using PET Imaging

    International Nuclear Information System (INIS)

    Berndt, B; Wuerl, M; Dedes, G; Landry, G; Parodi, K; Tessonnier, T; Schwarz, F; Kamp, F; Thieke, C; Belka, C; Reiser, M; Sommer, W; Bauer, J; Verhaegen, F

    2016-01-01

    Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrose and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification

  19. TH-CD-202-05: DECT Based Tissue Segmentation as Input to Monte Carlo Simulations for Proton Treatment Verification Using PET Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, B; Wuerl, M; Dedes, G; Landry, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen, Garching, DE (Germany); Tessonnier, T [Ludwig-Maximilians-Universitaet Muenchen, Garching, DE (Germany); Universitaetsklinikum Heidelberg, Heidelberg, DE (Germany); Schwarz, F; Kamp, F; Thieke, C; Belka, C; Reiser, M; Sommer, W [LMU Munich, Munich, DE (Germany); Bauer, J [Universitaetsklinikum Heidelberg, Heidelberg, DE (Germany); Heidelberg Ion-Beam Therapy Center, Heidelberg, DE (Germany); Verhaegen, F [Maastro Clinic, Maastricht (Netherlands)

    2016-06-15

    Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrose and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification

  20. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2015-11-01

    Full Text Available Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration.