WorldWideScience

Sample records for treating domestic wastewater

  1. Kinetic rates and mass balance of COD, TKN, and TP using SBR treating domestic and industrial wastewater.

    Science.gov (United States)

    Warodomrungsimun, Chaowalit; Fongsatitkul, Prayoon

    2009-12-01

    To assess the performance of SBR to treat three different types of wastewater from domestic, hospital, slaughterhouse and investigate the kinetic rates of active biomass. Mass balance calculation of COD, TKN and TP was further performed to explain the mechanisms of the biological nutrient removals processed in the SBR system. The measured kinetic rates were in turn used to evaluate the process performances under different types of wastewater. Experimental research involving 3 similar SBR lab-scales were installed and operated at the Sanitary Engineering Laboratory. The reactors were seeded with sludge biomass obtained from the Sri-Phraya Domestic Wastewater Treatment Plant in Bangkok. The slaughterhouse, hospital and domestic wastewaters were treated by SBR system for biological organic carbon (COD), nitrogen (TKN) and phosphorus removals. Biological methods for kinetic rates evaluation were conducted in five replicated batch tests. The removal efficiencies of COD and TKN were greater than 90% for all three types of wastewater while the biological phosphorus removal for domestic and hospital wastewaters were less than 60% and phosphorus removal for slaughterhouse exceeded 95%. The kinetic rates of nitrification and denitrification of hospital wastewater was lower than those the domestic and slaughterhouse wastewaters. Phosphorus release and uptake rates of slaughterhouse wastewater were high but domestic and hospital wastewaters were very low. The result of system removal efficiency and batch test for kinetic rates confirmed that the domestic and hospital wastewaters were in deficiency of organic carbon with respect to its ability to support successful biological phosphorus removal.

  2. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  3. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process.

    Science.gov (United States)

    Ghorbel, L; Coudert, L; Gilbert, Y; Mercier, G; Blais, J F

    2016-10-01

    This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

  4. Estimated discharge of treated wastewater in Florida, 1990

    Science.gov (United States)

    Marella, R.L.

    1994-01-01

    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  5. Removal of faecal bacteria and nutrients from domestic wastewater ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the removal of faecal bacteria and nutrients from domestic wastewater, in surface flow wetlands vegetated with Echinochloa pyramidalis. Horizontal surface flow (HSF) wetlands were fed with primarily treated domestic wastewater at organic loading rates varying from 20.74 to 27.15 g ...

  6. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  7. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  8. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  9. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    Science.gov (United States)

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  10. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  11. Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium

    Science.gov (United States)

    Permatasari, R.; Rinanti, A.; Ratnaningsih, R.

    2018-01-01

    This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.

  12. Inactivation of microorganisms in treated municipal wastewater and biosolids by gamma irradiation

    International Nuclear Information System (INIS)

    2009-01-01

    Increasing growth of the world's population, waste minimization policies and agricultural needs make the recycling of domestic wastewater quite a desirable practice. Factors like environmental and public health risks must be taken into account when considering treated wastewater for field irrigation and biosolids for land application. Pathogens present in wastewater and biosolids may remain active after treatment and there is always a great risk of transmission of infections via consuming crop and vegetables. Therefore it is very important to treat domestic wastewater properly before using it as an irrigation water and as a fertilizer. The work reported herein represents an evaluation of the variations in the population densities of below indicated pathogens monitored during a one year study in Ankara Central Municipal Wastewater Treatment Plant, and the efficiency of gamma irradiation for the inactivation of these important waterborne pathogens. Parasitological investigation Treated wastewater and biosolids - Cryptosporidium sp. - Giardia lamblia - Entamoeba histolytica - Cyclospora cayetanensis - Helminth ova Bacteriological investigation Treated wastewater - Total coliforms - Salmonella sp. - Fecal streptococci - Enterococcus sp. Biosolids - Fecal coliforms - Salmonella sp. (Includes 12 tables, 16 figures)

  13. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    Science.gov (United States)

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; van Vleet, E. S.; Breitbart, M.

    2015-03-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  14. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  15. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  16. Fate and behaviour of ZnO engineered nanoparticles in a simulated domestic wastewater treatment plant

    CSIR Research Space (South Africa)

    Chaúquea, EFC

    2013-08-01

    Full Text Available Wastewater treatment plants (WWTPs) employ activated sludge processes to treat domestic wastewater using a consortium of bacteria essentially to degrade organic matter. However, bacteria activity is inhibited by toxic substances; thus, potentially...

  17. Review of pre-treated peat applied in treating domestic wastewaters and oily waters

    International Nuclear Information System (INIS)

    Jiang, X.; Coles, C.A.; Asapo, E.S.

    2008-01-01

    This paper discussed recent research related to the use of peat in removing contaminants from domestic wastewater, oil-contaminated water, and soil. The review also discussed methods of pretreating peat before its application to polluted area. Pretreatment processes are needed to remove components in peat that interfere with treatment mechanisms. Polymers are added to peat in order to encourage the aggregation of the peat particles into larger colloidal particles that are easy to dewater. Phosphoric acid treatments are also applied to increase the swelling capacity of peat. Hydrogen peroxide is used to break down oil-contaminated peat in order to facilitate its subsequent decomposition. Experiments have demonstrated that peat is an effective adsorbent for many different types of oil. Studies have demonstrated that the removal rate for standard mineral and crude oils from wastewater using peat was 83 and 70 per cent. Applications of commercial peat to the surface of oily contaminated waters resulted in oil removal efficiencies of 99.998 per cent. It was concluded that peat is an effective, low-cost material for removing contaminants from domestic waste water and oil-contaminated water. The peat can also be used as a secondary energy source after the sorption process. While peat is an abundant resource in Canada, the resource is found mainly in wetlands. Effective harvesting strategies should be used to ensure the environmental sustainability of peat filtration systems. 38 refs., 1 tab

  18. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  19. Technical note The formulation of synthetic domestic wastewater ...

    African Journals Online (AJOL)

    Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory. ... Journal Home > Vol 42, No 2 (2016) > ... Domestic wastewater sludge is however highly variable in its composition, making laboratory experimentation difficult.

  20. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods

    Directory of Open Access Journals (Sweden)

    José de Anda

    2018-01-01

    Full Text Available This paper describes the preliminary monitoring results of an onsite pilot wastewater treatment plant consisting of a septic tank, an anaerobic up-flow filter, and a horizontal subsurface flow wetland system planted with Agapanthus africanus. The system was designed to treat heavily polluted domestic wastewater produced in a research and development (R&D center, reaching additional goals of zero energy consumption and eliminating the use of chemical additives. First water quality data shows that organic load in the treated sewage were removed achieving more than 95% efficiency. Nutrients were removed by almost 50%, and fecal and total coliform counts decreased by 99.96%. The results were compared to official Mexican regulations for wastewater discharged into lakes and reservoirs complied with all of them except for nutrients. In this pilot project, the resulting treated wastewater was directly reused for watering the green areas of the R&D center. The result was that the excess of nutrients improved the quality of the grass, avoiding the use of synthetic fertilizers, and created a wetland habitat for small wildlife species living in the area.

  1. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  3. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  4. Design in Domestic Wastewater Irrigation

    NARCIS (Netherlands)

    Huibers, F.P.; Raschid-Sally, L.

    2005-01-01

    When looking at the domestic wastewater streams, from freshwater source to destination in an agricultural field, we are confronted with a complexity of issues that need careful attention. Social and economic realities arise, along with technical, biological and institutional issues. Local realities

  5. Removal of Escherichia coli in treated wastewater used for food production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, J. O.; Mdegela, R. H.; Kusiluka, L. J. M.

    2016-01-01

    The aim of this study was to assess the removal efficiency of Escherichia coli at Mafisa and Mzumbe domestic wastewater treatment ponds in Morogoro, Tanzania. The study was done from October, 2013 to April, 2014. A total of 125 water samples from inlets and subsequent anaerobic, facultative......, April and August. To conclude, the simple wastewater treatment ponds in the study sites were effective and demonstrated potential for reduction of public health risks associated with use of treated wastewater in agricultural irrigation and aquaculture....... and maturation ponds as well as treated wastewater were collected and analysed for E. coli. The estimated retention times of the wastewater treatment units were 19 and 22 days in Mafisa and Mzumbe ponds, respectively. The concentration of E. coli ranged from 4.70 to 5.60 log cfu/mL in untreated wastewater...

  6. Treatment of domestic wastewater using conventional and baffled septic tanks.

    Science.gov (United States)

    Nasr, Fayza Aly; Mikhaeil, Basem

    2013-01-01

    The main theme of the study was a comparative study of domestic wastewater treatment using conventional and baffled septic tanks. The septic tanks were fed continuously with domestic wastewater at three different hydraulic retention times (HRTs). The HRTs chosen were 24, 48 and 72 h with corresponding organic loads of 0.321, 0.436 and 0.885 kg chemical oxygen demand (COD) per m3 per day, respectively. The performance of the septic tanks at the three HRTs gave satisfactory results. For the conventional septic tank, COD removal was 53.4%, 56% and 65.3%, at an HRT of 24, 48 and 72 h, respectively, with residual COD of 412, 380 and 334mg/l, respectively. At HRTs of 72, 48 and 24 h, the following percentages removals were realized for: biochemical oxygen demand (BOD), 68.4%, 57, 53.5%; total suspended solid (TSS), 65.3%, 58.3, 55%; phosphorus, 29.3%, 26.9, 25.6%; total Kjeldahl nitrogen 26.8%, 20.8, 17.7%, respectively. On the contrary, ammonia concentrations increased by 7.1%, 5.2 and 4.2% under the same conditions. Consequently, the results showed that the removal of fecal coliform at all HRTs was less than one log. The two baffled septic tanks exhibited superior results at HRTs of 72, 48 and 24 h. Comparing the treated domestic wastewater quality produced by the two types of septic tanks in terms of physico-chemical and biological characteristics, better results were obtained using the two baffles type.

  7. Managed aquifer recharge using quaternary-treated wastewater: an economic perspective

    KAUST Repository

    Zekri, Slim Mohamed

    2013-10-11

    An excess of 31 million m3/y of tertiary-treated wastewater is expected in Muscat, Oman, by 2015. This paper addresses the technical and cost estimation of managed aquifer recharge after reverse-osmosis treatment. The results indicate that the project is appealing from an economic perspective. The total cost varies between USD 0.353 and USD 0.550 per cubic metre, depending on the cost of electricity, the interest rate and the life span of the project. The project may face rejection from domestic users, who may be unwilling to accept mixing treated wastewater with the current water supply due to health risks. An alternative to indirect potable reuse is the installation of a separate network to service industrial users. © 2013 Taylor & Francis.

  8. Effect of HRT on SBR Performance for Treatability of Combined Domestic and Textile Wastewaters

    International Nuclear Information System (INIS)

    Nawaz, M.S.; Khan, S.J.; Khan, S.J.

    2013-01-01

    Textile wastewater contains organics and color dyes which need to be treated before discharging into receiving water bodies. Sequencing batch reactor (SBR) is proved promising against textile wastewater due to its high organic and nutrient removal efficiencies. In this study the influence of variable hydraulic retention time (HRT) on the performance of SBR in treating combined textile and domestic wastewater was evaluated. Six SBRs were operated in parallel at 12 and 8 hrs HRTs respectively, three for synthetic and three for real textile plus domestic wastewater. SBRs were operated at constant temperature 25 +- 1 degree C and pH 7 +- 1 to avoid seasonal effects. The biological oxygen demand (BOD) removal efficiency was consistent at 73% while, total suspended solids (TSS) removal efficiency increased from 52 to 63% in SBRs with decrease in HRT from 12 to 8 hrs. The organic loading rate (OLR) increased from 0.45 to 0.68 Kg/m3/d, SVI decreased from 94 to 84 mL/g and chemical oxygen demand (COD) removal efficiency increased in real waste water (RWW) SBRs from 59 to 63% with decrease in HRT from 12 to 8 hrs. Low COD removal at 12 hr HRT can be attributed to poor settling characteristics of sludge due to possible filamentous growth at low F/M (0.03) and greater SRT (28 days) as compared to 8 hr HRT condition, where F/M was 0.05 and SRT of 20 days. (author)

  9. Contribution of domestic wastewater to the total pollutant loading influent to a municipal wastewater treatment plant; Contribuciond e las aguas residuales domesticas a la carga total que accede a una EDAr municipal

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Perez de Siles, L. A.; Rojas Moreno, F. J.; Gonzalez Jimenez, M. M.

    2004-07-01

    A study on the purely domestic wastewater from Cordoba city (Abril to july 2003) has found a pollutant loading very high on these domestic wastewaters, by showing mean values of suspended solid, BOD{sub 5} and COD equal to respectively 452 mg/l, 505 mg/1 and 793 mg/l. This pollutants power probably emanates from the products for domestic cleaning used in our homes and must be associated to chemicals as citrates, oxalates, surfactants, polialcohols, organics complexing, ammonium compounds..., which show high value of pollutant loading up to 200 mg/l of BOD{sub 5} per ml of product have been measured on a commercial domestic dishwasher, and 9.000 mg/l of DQO for a domestic smoothing. Furthermore, the increasing use of pre-cooked foods can add to domestic wastewater fats, oils, and flours which can also increase the BOD:5 and COD values of these effluents. On the other hand, the measured pollutant loading or domestic wastewater from monofamily homes has been lower than those from multifamily buildings. Finally, due to the fact that the Golondrina's WWTP (Cordoba, 1991) was designed for treat values of suspended solids, BOD, and COD lower than those actually detected, its treatment processes should be probably modified in a near future. (Author) 24 refs.

  10. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Science.gov (United States)

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    Science.gov (United States)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  12. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  13. Soil Chemistry after Irrigation with Treated Wastewater in Semiarid Climate

    Directory of Open Access Journals (Sweden)

    Pedro Carlos Pacheco de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Soil irrigation using treated wastewater in the Brazilian semiarid region is a promising practice as this area currently faces water scarcity and pollution of water resources by domestic sewage. The aim of this study was to evaluate the use of treated wastewater in drip irrigation and its effect on the chemistry of soil cultivated with squash (Cucurbita maxima Duch. Coroa IAC and to verify whether there was an increase in soil salinity under a semiarid climate. The experiment was conducted for 123 days on a farm close to the sewage treatment plant, in a randomized block design with five treatments and four replications. The treatments consisted of two irrigation water depths (100 and 150 % of the evapotranspiration, two applications of gypsum to attenuate wastewater sodicity (0 and 5.51 g per plant, and a control treatment with no application of wastewater or gypsum. During the experiment, treated wastewater and soil gravitational water, at a depth of 0.40 m, were collected for measurement of Na+, K+, Ca2+, Mg2+, NO−3, NH4+, Cl− , alkalinity, electrical conductivity, pH and sodium adsorption ratio. At the end of the experiment, soil samples were collected at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m; and pH, total N, organic C, exchangeable cations and electrical conductivity of the saturation extract (CEs were analyzed. Besides an increase in pH and a reduction in total N, the irrigation with wastewater reduces soil salinity of the naturally salt-rich soils of the semiarid climate. It also led to soil sodification, in spite of the added gypsum, which indicates that irrigation with wastewater might require the addition of greater quantities of gypsum to prevent physical degradation of the soil.

  14. Impacts on sewer performance due to changes to inputs in domestic wastewater

    OpenAIRE

    Mattsson, Jonathan

    2015-01-01

    The impacts of changes in domestic wastewater inputs on sewer performance have been debated since the dawn of the great sewer construction movement in the 1850s. Nowadays, typical household wastewater that enters sewers can generally be divided into streams from the WC, shower and/or bathtub, kitchen sink, washing machine and dishwasher. Changes in thecomposition of domestic wastewater entering a sewer will depend on inter alia the properties of the appliances used in the households and house...

  15. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    Science.gov (United States)

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  17. Domestic wastewater treated for agricultural reuse

    African Journals Online (AJOL)

    *

    Four post-treatment systems of an upflow anaerobic sludge blanket (UASB) reactor were ... efficiency in organic matter removal, exception made for polishing ponds (PP) (155 mg.L-1) due ... ption and the domestic sewage discharge into water.

  18. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.

    Science.gov (United States)

    Alcántara, Cynthia; Muñoz, Raúl; Norvill, Zane; Plouviez, Maxence; Guieysse, Benoit

    2015-02-01

    This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Ataullah,; Shaheen, A; Ahmad, I; Malik, F; Shahid, H A [Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300 (Pakistan). Research Laboratory of Bioenergy, Department of Chemistry

    2011-04-15

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  20. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    International Nuclear Information System (INIS)

    Khan, A.M.; Ataullah; Shaheen, A.; Ahmad, I.; Malik, F.; Shahid, H.A.

    2011-01-01

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  1. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian

    2010-01-01

    with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...... at large scale for nitrogen removal from low C/N domestic wastewater, (2) further method logic are explored to introduce the Anammox pathway into domestic wastewater treatment, and (3) alternative carbon sources are explored and optimized for supporting the denitrification. With these efforts, cost...

  2. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Science.gov (United States)

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  3. Pilot-scale comparison of constructed wetlands operated under high hydraulicloading rates and attached biofilm reactors for domestic wastewater treatment

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.

    2009-01-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a freewater surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor...

  4. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis.

    Science.gov (United States)

    Ferraz, F M; Bruni, A T; Povinelli, J; Vieira, E M

    2016-01-15

    Multivariate analysis was used to identify the variables affecting the performance of pilot-scale activated sludge (AS) reactors treating old leachate from a landfill and from domestic wastewater. Raw leachate was pre-treated using air stripping to partially remove the total ammoniacal nitrogen (TAN). The control AS reactor (AS-0%) was loaded only with domestic wastewater, whereas the other reactor was loaded with mixtures containing leachate at volumetric ratios of 2 and 5%. The best removal efficiencies were obtained for a ratio of 2%, as follows: 70 ± 4% for total suspended solids (TSS), 70 ± 3% for soluble chemical oxygen demand (SCOD), 70 ± 4% for dissolved organic carbon (DOC), and 51 ± 9% for the leachate slowly biodegradable organic matter (SBOM). Fourier transform infrared (FTIR) spectroscopic analysis confirmed that most of the SBOM was removed by partial biodegradation rather than dilution or adsorption of organics in the sludge. Nitrification was approximately 80% in the AS-0% and AS-2% reactors. No significant accumulation of heavy metals was observed for any of the tested volumetric ratios. Principal component analysis (PCA) and partial least squares (PLS) indicated that the data dimension could be reduced and that TAN, SCOD, DOC and nitrification efficiency were the main variables that affected the performance of the AS reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing; Croue, Jean-Philippe

    2012-01-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  6. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  7. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  8. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  9. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution

    Science.gov (United States)

    Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.

    2016-01-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if

  10. Hydrolysis rates of domestic wastewater sludge using biochemical ...

    African Journals Online (AJOL)

    Domestic wastewater treatment can be improved by reducing energy consumption and increasing carbon recovery, which can be achieved using anaerobic digestion of sludge with methane recovery at ambient temperature. Hydrolysis can be a limiting step in anaerobic digestion, and characterisation of hydrolysis rates ...

  11. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  12. Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wu, Yin-Hu; Hu, Hong-Ying

    2014-01-01

    Cultivation of microalgae for biomass production is a promising way to dispose of wastewater and recover nutrients simultaneously. The properties of nutrient removal and biomass production in domestic wastewater of a newly isolated microalga Scenedesmus sp. ZTY1 were investigated in this study. Scenedesmus sp. ZTY1, which was isolated from a wastewater treatment plant in Beijing, grew well in both the primary and secondary effluents of a wastewater treatment plant during the 21-day cultivation, with a maximal algal density of 3.6 × 10(6) and 1.9 × 10(6) cells · mL(-1), respectively. The total phosphorus concentrations in both effluents could be efficiently removed by over 97% after the cultivation. A high removal rate (over 90%) of total nitrogen (TN) was also observed. After cultivation in primary effluent for 21 days, the lipid content of Scenedesmus sp. ZTY1 in dry weight had reached about 32.2%. The lipid and triacylglycerol (TAG) production of Scenedesmus sp. ZTY1 was increased significantly with the extension of cultivation time. The TAG production of Scenedesmus sp. ZTY1 increased from 32 mg L(-1) at 21 d to 148 mg L(-1) at 45 d in primary effluent. All the experiments were carried out in non-sterilized domestic wastewater and Scenedesmus sp. ZTY1 showed good adaptability to the domestic wastewater environment.

  13. Effect of Seasonal Temperature on the Performance and on the Microbial Community of a Novel AWFR for Decentralized Domestic Wastewater Pretreatment

    Directory of Open Access Journals (Sweden)

    Juanhong Li

    2017-06-01

    Full Text Available Due to environmental burden and human health risks in developing countries, the treatment of decentralized domestic wastewater has been a matter of great concern in recent years. A novel pilot-scale three-stage anaerobic wool-felt filter reactor (AWFR was designed to treat real decentralized domestic wastewater at seasonal temperature variations of 8 to 35 °C for 364 days. The results showed that the average chemical oxygen demand (COD removal efficiencies of AWFR in summer and winter were 76 ± 7.2% and 52 ± 5.9% at one day and three days Hydraulic Retention Time (HRT, respectively. COD mass balance analysis demonstrated that even though COD removal was lower in winter, approximately 43.5% of influent COD was still converted to methane. High-throughput MiSeq sequencing analyses indicated that Methanosaeta, Methanobacterium, and Methanolinea were the predominant methanogens, whereas the genus Bacillus probably played important roles in fermentation processes throughout the whole operation period. The performance and microbial community composition study suggested the application potential of the AWFR system for the pretreatment of decentralized domestic wastewater.

  14. Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater.

    Science.gov (United States)

    Wu, Su-qing; Chang, Jun-jun; Dai, Yanran; Wu, Zhen-bin; Liang, Wei

    2013-06-01

    In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH4 (+)-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH4 (+)-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p=0.388), N (p=0.236), and TP (p=0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.

  15. Two years of the operation of a domestic MBR wastewater treatment plant

    Science.gov (United States)

    Pikorová, Tina

    2012-06-01

    The paper evaluates the results of data obtained from two years of observing an actual domestic wastewater treatment plant (WWTP) with an immersed membrane module. The domestic MBR (membrane bioreactor) WWTP was linked to a dwelling with four residents. Two different commercial flat sheet membrane modules were investigated. The membrane modules, as well as the whole WWTP, were tested with different fluxes as well as the response of the membrane and activated sludge to different conditions, such as actual peak wastewater flows, extremes temperatures (a winter below 5 °C), and high pH values.

  16. Addressing the role of earthworms in treating domestic wastewater by analyzing biofilm modification through chemical and spectroscopic methods.

    Science.gov (United States)

    Wang, Yin; Xing, Mei-Yan; Yang, Jian; Lu, Biao

    2016-03-01

    Vermifiltration eco-friendly system is an alternative and low-cost artificial ecosystem for decentralized wastewater treatment and excess sludge reduction. The biofilm characteristics of a vermifilter (VF) with earthworms, Eisenia fetida, for domestic wastewater treatment were studied. A conventional biofilter (BF) without earthworms served as the control. Pore number in VF biofilm was significantly more than BF biofilm, and VF biofilm showed a better level-administrative structure through scanning electron microscope. VF biofilms had lower levels of protein and polysaccharide, but phosphoric acids and humic acid showed the opposite results. Furthermore, in the presence of earthworms, VF biofilms contained higher total organic carbon (TOC) percentage composition in the condition of less volatile suspended substances (VSS) contents. Dehydrogenase activity (DHA) and adenosine triphosphate (ATP) contents along VF showed better results than BF by increment of 12.84 ∼ 16.46 %. Overall findings indicated that the earthworms' presence remarkably decreases biofilm contests but increases enzyme activity and improves the community structure of VF biofilms, which is beneficial for the wastewater disposal.

  17. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  18. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  19. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    Science.gov (United States)

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality.

  20. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions.

    Science.gov (United States)

    Kayikcioglu, Huseyin Husnu

    2012-07-15

    Approximately 70% of the world water use, including all the water diverted from rivers and pumped from underground, is used for agricultural irrigation, so the reuse of treated domestic wastewater (TWW) for purposes such as agricultural and landscape irrigation reduces the amount of water that needs to be extracted from natural water sources as well as reducing discharge of wastewater to the environment. Thus, TWW is a valuable water source for recycling and reusing in arid and semi-arid regions which are frequently confronting water shortages. In this regard, this study was planned to reveal the short-term effects of advanced-TWW irrigation on microbial parameters of Vertic xerofluvent soil. For this purpose, certain parameters were measured in the study, including soil total organic carbon (C(org)), N-mineralization (N(min)), microbial biomass carbon (C(mic)), soil microbial quotient (C(mic)/C(org)) and the activities of the enzymes dehydrogenase (DHG), urease (UA), alkaline phosphatase (ALKPA), β-glucosidase (GLU) and aryl sulphatase (ArSA) in soils irrigated with TWW and fresh water (FW). All of the microbial parameters were negatively affected by TWW irrigation. Microbial parameters decreased by 10.1%-54.1% in comparison with the FW plots. This decrease especially in enzymatic activities of soil irrigated with TWW, presumably due to some heavy metals inhibited their activity associated with the soil types and the concentrations of heavy metals in wastewater. In contrast, C(mic)/C(org) was found higher in the plots irrigated with TWW at the end of the experiment. The addition of organic matter to soil by irrigation with TWW is cause for the increase in this ratio. The dose of irrigation should be modified to reduce the quantity and to increase the frequency of application to avoid the loss of aggregation and salt accumulation. TWW irrigation is a strategy with many benefits to agricultural land management; however, long-term studies should be implemented to

  1. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata.

    Science.gov (United States)

    Akinbile, Christopher O; Ogunrinde, Temitope A; Che Bt Man, Hasfalina; Aziz, Hamidi Abdul

    2016-01-01

    Two constructed wetlands, one with Azolla pinnata plant (CW1) and the other without (CW2) for treating domestic wastewaters were developed. Fifteen water parameters which include: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Total Phosphorus (TP), Total Nitrogen (TN), Ammoniacal Nitrogen (NH3N), Turbidity, pH, Electrical Conductivity (EC), Iron (Fe), Magnesium (Mg), Manganese (Mn), and heavy metals such as Lead (Pb) and Zinc (Zn) were analyzed using standard laboratory procedures. The experiments were conducted in two (dry and wet) seasons simultaneously. Results showed considerable reductions in all parameters and metals including Zn in CW1 compared with CW2 in the two seasons considered while Pb and Mn were not detected throughout the study. Zn concentration levels reduced significantly in both seasons just as removal efficiencies of 70.03% and 64.51% were recorded for CW1 while 35.17% and 33.45% were recorded for CW2 in both seasons. There were no significant differences in the removal efficiencies of Fe in both seasons as 99.55%, 59.09%, 88.89%, and 53.56% were recorded in CW1 and CW2 respectively. Azolla pinnata has proved effective in domestic wastewater phytoremediation studies.

  2. Decentralized domestic wastewater systems in developing countries: the case study of Harare (Zimbabwe)

    Science.gov (United States)

    Chirisa, Innocent; Bandauko, Elmond; Matamanda, Abraham; Mandisvika, Gladys

    2017-06-01

    Until recently there has been little, if any, concern over revamping let alone improving wastewater management system in Zimbabwe's urban areas given the dominance and institutionalised water-borne system. Yet, the current constraints in this system and the immensity of urbanisation in the country begs and compels planners, engineers and systems thinkers to rethink what best can work as a sustainable wastewater system. With particular reference to the ever-expanding Harare metropolitan region, this article provides an evaluative analysis on the potentiality, risks and strategies that can be adopted by Harare and its satellites in addressing the problems of the conventional wastewater management system. The suggested framework of operation is a decentralised domestic wastewater collection and treatment system which however has its own multifarious risks. Using systems dynamics conceptualisation of the potentiality, opportunities, risks and strategies, the paper seeks to model the path and outcomes of this decentralised domestic wastewater collection and treatment system and also suggests a number of policy measures and strategies that the city of Harare and its satellites can adopt.

  3. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: septic tank - upflow anaerobic filter

    DEFF Research Database (Denmark)

    Arrubla, Juan Pablo; Cubillos, Janneth A.; Ramírez Vargas, Carlos Andrés

    2016-01-01

    of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia). Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filter and its ef uent is discharged into the Otún River, upstream of the water intake of the supply system...

  4. Quantum leap for treating wastewaters

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: For many Australian food manufacturers there is increasing pressure from government agencies to reach higher standards of wastewater treatment for environmental discharge. In fact, throughout the western wolrd industrual water users are facing a similar challenge. One of the big problems is ageing pipe networks, particularly sewage pipes. Also, industrial wastewaters with high sugar-nutrient loads can cause serious damage to pipelines. This is because fermentation occurs within the wastewater, eroding and degrading the pipes, causing numerous cracks and fractures. This in turn leads to water ingress, which puts a strain on treatment plants because of the higher volume of water, especially in wet weather. Food manufacturing produces large volumes of mostly biodegradable liquid and solid waste. Wastewaters released from food manufacturing can be 'muddy', with high concentrations of suspended solids, fats, oils and grease (FOGs), and, usually, nutrients such as nitrogen. The issue for many food manufacturers is that existing wastewater treatment systems are unable to reduce the nutrient load in the biological treatment stage to a level allowing acceptable discharge. In addition, most rely on large tanks housing bacteria that are submerged in water and aerated. Aeration is energy-hungry and can create a 'sludge-cake' on top of the water, which is difficult to treat. Most existing technologies also use filters, but they foul easily and require ongoing maintenance. According to BioGill chief executive John West, the BioGill technology is groundbreaking and radically different from conventional bioreactors because the 'gills' are not submerged. Instead, the gills, composed of Nano-Ceramic Membrane sheets arranged vertically in pairs, are suspended in the air, above ground, with wastewater travelling down between them. “Fungi and bacteria, known as biomass, grow on the membranes in direct contact with the air, eating nutrients much faster than other systems

  5. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Feng, Chuanping; Chen, Nan; Tong, Shuang; Zhang, Baogang; Hao, Chunbo; Chen, Kun

    2014-05-01

    To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    OpenAIRE

    Pietro Rubino; Maurizia Catalano; Antonio Lonigro

    2007-01-01

    In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being coll...

  7. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  8. Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    M.A. Moharram

    2016-04-01

    The efficiencies of Total nitrogen removal ranged between 2.23 and 10.83% with an apparent decrease during the low temperature high rate stages. Nitrite removal was in the range of (23.08–77% with up to the 2 mg/L in the effluent water when obtaining high organic loading and warm temperature. These results demonstrated that the domestic wastewater could be anaerobically treated in a fluidized bed UASB reactor with very low HRT reaching 2.5 h.

  9. The influence of al-madinah al-munawwara treated and untreated domestic wastewater on growth and physiology of three tomato (lycopersicon esculentum mill.) genotypes

    International Nuclear Information System (INIS)

    Akhkha, A.; Boutraa, T.; Shoaibi, A.K.

    2017-01-01

    The impact of irrigation with Al-Madinah Al-Munawwara domestic wastewater on three tomato genotypes (AL, P and VF) was investigated. Five treatments including Tap water, untreated (TN), primary (T1), secondary (T2) and tertiary (T3) treated wastewaters were used for irrigation. The physico-chemical characteristics of wastewater were determined. Leaves were analysed for N, P, K and heavy metals (Copper, Cadmium, Lead and Nickel). The growth parameters assessed were % germination, plant height, shoot and root dry weights, and total leaf dry weight. Some physiological parameters such as photosynthetic light response curve, maximum gross photosynthesis (Amax), dark respiration (DR), chlorophyll fluorescence parameters (Fo, Fm and Fv / Fm), chlorophyll content index and stomatal conductance were detected. % germination was decreased in both A1 and P genotype, with no effect on VF genotype. Most growth parameters were increased in genotype A1, followed by VF then P genotype which had a sensitive leaf dry weight to T2 and T3. Photosynthesis was mainly increased in A1 genotype with a decrease in VF genotype. DR was negatively affected in VF genotype with no response of A1 genotype. Chlorophyll fluorescence showed an increase in Fo in VF genotype but a decrease in Fv / Fm in both A1 and VF genotypes. Chlorophyll content index was decreased but only in A1 and VF genotypes under TN. Treatment with TN and / or T1 decreased stomatal conductance in all genotypes. The levels of heavy metals in wastewaters used were lower than the standard limits; however, plant chemical analysis showed that the leaves of the three tomato genotypes accumulated heavy metals but differently with higher levels at TN and lower levels at T3. (author)

  10. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  11. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Herto Dwi Ariesyady

    2016-02-01

    Full Text Available The Bojongsoang Wastewater Treatment Plant (WWTP serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.

  13. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    Science.gov (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  14. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  15. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  16. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    2014-01-01

    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...... production has been found higher with the latter. The tuber dry matter content as well as reducing sugars were not affected by reused water. Total sugars content was higher with MBR and FTS water. Water use efficiency (WUE) was significantly higher with reused water. Compared to tap water, crop gross margin...

  17. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment.

    Science.gov (United States)

    Healy, M G; Burke, P; Rodgers, M

    2010-10-01

    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  19. EFFECT OF TREATED DOMESTIC WASTEWATER USED AS CULTURE MEDIUM ON THE GROWTH AND PRODUCTIVITY OF Chlamydomonas sp. STRAIN ISOLATED FROM LANDFILL LEACHATE

    Directory of Open Access Journals (Sweden)

    Fábio de Farias Neves

    2013-07-01

    Full Text Available Microalgae have been culturing to fix carbon and produce biofuels from the biomass. However, it is important to develop low cost strategies for microalgae production in orther to make it a viable alternative of renewable energy. The present research studied the effect of treated wastewater used as an alternative culture medium for growth and productivity of a Chlamydomonas sp. strain isolated from landfills leachate of a treatment pond located in Southern Brazil. Three culture media were evaluated, the control consisted of synthetic TAP medium, other, consisting of 50% TAP medium and 50% wastewater, and another consisting of 100% wastewater. The growth parameters do not have significant difference among the three culture media. Also, productivity do not have significant difference among the cultures with TAP medium and with 100% wastewater, resulting in dry weight values of 1,4±0,14g/L and 1,3±0,19g/L respectively. The culture with 50% TAP medium and 50% wastewater showed the highest productivity, showing an average dry weight value of 1,7±0,07g/L. The results indicate that treated wastewater can be used as an alternative culture medium for Chlamydomonas sp. strain without negative effects on growth and productivity, and possible leading to a decrease in production costs.

  20. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  1. Status of domestic wastewater management in relation to drinking-water supply in two states of India.

    Science.gov (United States)

    Pandey, R A; Kaul, S N

    2000-01-01

    In India, supply of drinking water, treatment and disposal of domestic wastewater including faecal matter are managed by local bodies. The existing status of water supply, characteristics of domestic wastewater, modes of collection, treatment and disposal system for sewage and faecal matter in 82 municipalities and 4 municipal corporations were assessed in the States of Bihar and West Bengal in India. Domestic wastewater in the municipal areas is collected and discharged through open kachha (earthen), pucca (cement-concrete) and natural drains and discharged into water courses or disposed on land. Scavenger carriage system for night soil disposal is in-vogue at several places in the surveyed States. Open defecation by the inhabitants in some of the municipalities also occurs. The existing methods of collection, treatment and disposal of sewage impairs the water quality of different water sources. Techno-economically viable remedial measures for providing basic amenities, namely safe drinking-water supply and proper sanitation to the communities of these two States of India are suggested and discussed.

  2. Towards sustainable and robust on-site domestic wastewater treatment for all citizens

    NARCIS (Netherlands)

    Mgana, S.

    2003-01-01

    In most developing countries commonly practiced domestic wastewater treatment systems predominantly constitute anaerobic treatment process. The anaerobic treatment units mostly installed are on-site at residential dwellings.

    However the commonly installed units, viz., traditional pit

  3. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  4. Effect of Using Effective Microorganisms EM-1 on the Performance of Extended Aeration Activated Sludge in Treating Domestic Wastewater

    Directory of Open Access Journals (Sweden)

    Waleed M. Sheet

    2013-05-01

    Full Text Available       This research concerning with the effect of using the effective microorganisms on the efficiency of extended Aeration Activated Sludge Units which consist from many strain of Bacteria, Fungi and Actinomycetes  in addition to board spectrum of nutrient and elements which important to growth, The use of this product is practically applied by using two bench scale laboratory units where they are operated to treat the wastewater after completing and preparing the activated sludge units to work under the same conditions of temperature and detention time (DT.54One bench scale is fed with wastewater and the other is operated by using a mixture of EM-1 along with the wastewater. It is noticed that the use of EM-1 with wastewater has reduced the smell resulting from disintegration in the aeration basin. Further, the color of sludge in the unit where EM-1 is added is light brown which means more activity and vitality. Besides, the concentration of mixed liquor volatile suspended solids (MLVSS is increased by using EM-1 by 30% due to the increase of nutrients and a reduction in the sludge volume index (SVI which is an important factor in the performance of the secondary settling basins which means a reduction in bulking of sludge, which is considered one of the most notable operating problem in activated sludge units. As a result bulking of sludge reduced by25% when EM-1 is used. Thus, EM-1 has participated in solving three important operating problems suffered by operators of these treatment units easily and without using complicated technologies or appliances. Further, EM-1 improves the removal efficiency of the units about 6-8% due to the reduction in chemical oxygen demand in the treated wastewater leaving the unit by 32%.

  5. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae

    2014-03-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  6. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae; Hatzell, Marta C.; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  7. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  8. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Cusick, Roland D.; Kiely, Patrick D.; Logan, Bruce E. [Department of Civil and Environmental Engineering, H2E Center, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of 4.51/kg-H{sub 2} for winery wastewater and 3.01/kg-H{sub 2} for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen (6/kg-H{sub 2}). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective. (author)

  9. Integrated real-time control strategy in multi-tank A2O process for biological nutrient removal treating real domestic wastewater

    Directory of Open Access Journals (Sweden)

    Saad Abualhail

    2017-02-01

    Full Text Available An integrated real-time anaerobic–anoxic/oxic (A2O operated with multi-tank called IMT–A2O process was designed and operated with fluctuating influent loads for biological nutrient removal for treating real domestic wastewater. IMT–A2O process, a “phased isolation tank” technology, varies both aeration pattern and flow path in a continuous flow multi-tank system to force fluctuation of organic and nutrient concentrations in process reactors. Using an eight-phase cycle, desired biochemical transformations, are accomplished at different times in the same tank. On-line sensors (pH, ORP, and DO were used as real-time control parameters to adjust the duration of each operational phase in the IMT–A2O process. The control system is an algorithm that automatically adjusts the cycle length to the influent wastewater characteristics according to the end points. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviors of nutrient concentrations in IMT–A2O. The algorithm acts in the reaction phases of the IMT–A2O cycle using ORP and pH break points of tank one to distinguish the end of denitrification and the beginning of phosphorus release, pH break point of tank two to control the end of denitrification and beginning of phosphorus release and a sudden increase in DO pattern, pH break point and ORP to control phosphorus uptake and the end of the nitrification process. Although the fluctuations in raw wastewater concentration are extreme; an influent with a low C/N ratio is deficient in organic carbon, and a low carbon source level can limit the overall biological denitrification process, the average removal efficiencies achieved for COD, ammonia–nitrogen, total nitrogen and total phosphorus were not less than 76.11%, 87.78%, 76.45% and 83.75%, respectively, using the integrated real-time control strategy. The integrated IMT–A2O exhibited a better performance in nutrient removal than the

  10. Costs and benefits of biogas recovery from communal anaerobic digesters treating domestic wastewater: Evidence from peri-urban Zambia.

    Science.gov (United States)

    Laramee, Jeannette; Tilmans, Sebastien; Davis, Jennifer

    2018-03-15

    Communal anaerobic digesters (ADs) have been promoted as a waste-to-energy strategy that can provide sanitation and clean energy co-benefits. However, little empirical evidence is available regarding the performance of such systems in field conditions. This study assesses the wastewater treatment efficiency, energy production, greenhouse gas (GHG) emissions, and financial costs and benefits of communal ADs used for domestic wastewater treatment in Zambia. Primary data on the technical performance of 15 ADs were collected over a 6-month period and in-person interviews were conducted with heads of 120 households. Findings from this study suggest that ADs offer comparable wastewater treatment efficiencies and greater GHG emission reduction benefits relative to conventional septic tanks (STs), with the greatest benefits in settings with reliable access to water, use of low efficiency solid fuels and with sufficient demand for biogas in proximity to supply. However, absent a mechanism to monetize additional benefits from biogas recovery, ADs in this context will not be a financially attractive investment relative to STs. Our financial analysis suggests that, under the conditions in this study, a carbon price of US$9 to $28 per tCO 2 e is necessary for positive investment in ADs relative to STs. Findings from this study contribute empirical evidence on ADs as a sanitation and clean energy strategy, identify conditions under which the greatest benefits are likely to accrue and inform international climate efforts on the carbon price required to attract investment in emissions reduction projects such as ADs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: septic tank - upflow anaerobic filter

    OpenAIRE

    Arrubla, Juan Pablo; Cubillos, Janneth A.; Ramírez Vargas, Carlos Andrés; Arredondo, Jhon Alexander; Arias, Carlos A.; Paredes, Diego

    2016-01-01

    In several countries around the world, Pharmaceutical and Personal Care Products (PPCPs) exist in aquatic environments, a fact that increases the awareness within the scientific community with respect to their possible fate and environment effects. This research presents a preliminary monitoring of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia). Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filte...

  12. PROCESS DESIGN MANUAL: SURFACE DISPOSAL OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    Science.gov (United States)

    Human domestic activities generate wastewater that is piped into municipal sewer systems, underground septic tanks, or portable sanitation devices. Wastewater in municipal systems is treated before being discharged into the environment, as required under the Clean Water Act. This...

  13. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    Science.gov (United States)

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles 5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities. The results of this study highlight the

  14. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  15. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  16. Clinoptilolite and palygorskite as sorbents of neutral emerging organic contaminants in treated wastewater: Sorption-desorption studies.

    Science.gov (United States)

    Leal, María; Martínez-Hernández, Virtudes; Meffe, Raffaella; Lillo, Javier; de Bustamante, Irene

    2017-05-01

    Water reuse for aquifer recharge could be an important route for the introduction of emerging organic contaminants (EOCs) into the environment. The installation of a Horizontal Permeable Reactive Barrier (H-PRB) could constitute a tertiary treatment process to remove EOCs from treated domestic wastewater prior to recharge activities. The sorption-desorption behaviour of six neutral EOCs present in treated domestic wastewater (acetaminophen, caffeine, carbamazepine, cotinine, 4-acetamidoantipyrine (4-AAA) and 4-formylaminoantipyrine (4-FAA)) has been evaluated. Clinoptilolite and palygorskite have been studied as sorbents to be installed in the H-PRB. Batch tests were carried out using an EOC initial concentration ranging from 5 to 100 μg L -1 . Apart from acetaminophen and caffeine, both materials showed a limited sorption capacity of neutral EOCs (K d  = 0.63-5.42 L kg -1 ). In general, the experimental results show that EOCs exhibit a higher sorption affinity for clinoptilolite than for palygorskite. With the exception of carbamazepine, the sorption of the compounds occurs mainly by interactions with mineral surfaces as indicated by the comparison of the partition coefficients into organic matter and into mineral surfaces. According to the molecular geometry of the compounds and the sorption sequences observed, it appears that the dimensions of the organic molecules play a key role in the sorption process. All the studied EOCs exhibit irreversible sorption and sorption-desorption hysteresis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.

    Science.gov (United States)

    Jamal Khan, S; Ilyas, Shazia; Javid, Sadaf; Visvanathan, C; Jegatheesan, V

    2011-05-01

    The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Platforms for energy and nutrient recovery from domestic wastewater: A review.

    Science.gov (United States)

    Batstone, D J; Hülsen, T; Mehta, C M; Keller, J

    2015-12-01

    Alternative domestic wastewater treatment processes that recover energy and nutrients while achieving acceptable nutrient limits (650mgCODL(-1). PRR offers the possibility for recovery of nitrogen and other nutrients (including potassium) through assimilative recovery. However, the energetic overhead of this is substantial, requiring 5kWhkgN(-1) as electricity, which compares to ammonia fixation costs. The lower energy costs, and near to market status of LEM treatment make it likely as a recovery platform in the shorter term, while ability to recover other elements such as nitrogen and potassium, as well as enhance favourability on concentrated wastewaters may enhance the desirability of partitioning in the longer term. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Submerged membrane bioreactor for domestic wastewater treatment and reuse

    International Nuclear Information System (INIS)

    Feki; Firas; Jraou, Mouna; Loukil, Slim; Kchaou, Sonia; Sayadi, Sami; Arnolt, Tom

    2009-01-01

    The Mediterranean basin (and particularly North African countries) is one of the poorest regions in the world in terms of water resources. In Tunisia, treated municipal wastewater is becoming one of the main alternative sources of water. Indeed, in 2007, 99 municipal wastewater treatment plants (WWTP) has treated a quantity of 215 millions of m 3 from which more than 30 pour cent are reused. The treated volume in 2011 is expected to be 266 millions m 3 , whereas the reused wastewaters should reach more than 50 pour cent. However, especially in the eastern and northern Mediterranean regions, wastewaters are inefficiently treated and re-used for irrigation or sanitary purposes, serving as a carrier for diseases or causing water pollution when discharged to water bodies. In the last decade, several water treatment technologies have been used in the region with little success in pathogen removal. Membrane bioreactor (MBR) technology is a very promising alternative to those conventional water treatments as membranes act as a barrier against bacteria and viruses achieving a high degree of water purification. However, most membrane bioreactors currently in use have very high running costs because of the high pressure drop and high air-flushing rate required for their operation. The objective of this PURATREAT FP 6 EU project was to study a new approach to the operation of membrane bioreactors. This study was included a comparison of three leading membrane technologies. The operating procedure to be studied is expected to yield very low energy consumption and reduced maintenance costs. After the start up period, the MBR3 was operated with a MLSS concentration of 4.5 and 9 g/L, respectively. Different fluxes as 16, 18, 20 and 22 Lh -1 m -2 were tested. When the flux increase from 16 to 22 Lh -1 m -2 , the treatment energy consumption decreased from 7 to 5 kWh/m 3 . However the increases of MLSS concentration from 4.5 and 9 g/L raise the membrane fouling frequency from 1

  20. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater.

    Science.gov (United States)

    Christgen, Beate; Yang, Ying; Ahammad, S Z; Li, Bing; Rodriquez, D Catalina; Zhang, Tong; Graham, David W

    2015-02-17

    Effective domestic wastewater treatment is among our primary defenses against the dissemination of infectious waterborne disease. However, reducing the amount of energy used in treatment processes has become essential for the future. One low-energy treatment option is anaerobic-aerobic sequence (AAS) bioreactors, which use an anaerobic pretreatment step (e.g., anaerobic hybrid reactors) to reduce carbon levels, followed by some form of aerobic treatment. Although AAS is common in warm climates, it is not known how its compares to other treatment options relative to disease transmission, including its influence on antibiotic resistance (AR) in treated effluents. Here, we used metagenomic approaches to contrast the fate of antibiotic-resistant genes (ARG) in anaerobic, aerobic, and AAS bioreactors treating domestic wastewater. Five reactor configurations were monitored for 6 months, and treatment performance, energy use, and ARG abundance and diversity were compared in influents and effluents. AAS and aerobic reactors were superior to anaerobic units in reducing ARG-like sequence abundances, with effluent ARG levels of 29, 34, and 74 ppm (198 ppm influent), respectively. AAS and aerobic systems especially reduced aminoglycoside, tetracycline, and β-lactam ARG levels relative to anaerobic units, although 63 persistent ARG subtypes were detected in effluents from all systems (of 234 assessed). Sulfonamide and chloramphenicol ARG levels were largely unaffected by treatment, whereas a broad shift from target-specific ARGs to ARGs associated with multi-drug resistance was seen across influents and effluents. AAS reactors show promise for future applications because they can reduce more ARGs for less energy (32% less energy here), but all three treatment options have limitations and need further study.

  1. Use of hydroponics culture to assess nutrient supply by treated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Adrover, M.; Moya, G.; Vadell, J.

    2009-07-01

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. (Author)

  2. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2012-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD

  3. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study.

    Science.gov (United States)

    Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

    2015-01-01

    The ecological threat associated with emerging pollutants detected in wastewater was estimated in country level. Treated wastewater was analyzed for pharmaceuticals and illicit drugs; whereas the concentrations of all emerging contaminants determined in Greek Sewage Treatment Plants were recorded through literature review. Toxicity data was collected after literature review or using ECOSAR and risk quotients (RQs) were calculated for treated wastewater and 25 Greek rivers, for 3 different aquatic organisms (fish, daphnia magna, algae). According to the results, monitoring data was available for 207 micropollutants belonging to 8 different classes. RQ>1 was calculated for 30 compounds in secondary treated wastewater. Triclosan presented RQ>1 (in algae) for all studied rivers; decamethylcyclopentasilane (in daphnia magna), caffeine (in algae) and nonylphenol (in fish) presented RQ>1 in rivers with dilution factors (DF) equal or lower to 1910, 913 and 824, respectively. The class of emerging contaminants that present the greatest threat due to single or mixture toxicity was endocrine disrupters. The mixture of microcontaminants seems to pose significant ecological risk, even in rivers with DF equal to 2388. Future national monitoring programs should include specific microcontaminants that seem to possess environment risk to surface water. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing; Plume, Stephan; Ernst, Mathias; Croue, Jean-Philippe; Jekel, Martin R.

    2012-01-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  6. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing

    2012-06-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  7. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  8. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    International Nuclear Information System (INIS)

    Schaider, Laurel A.; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-01-01

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO_3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame (artificial

  9. A novel eductor-based MBR for the treatment of domestic wastewater.

    Science.gov (United States)

    Mitra, Shibam; Daltrophe, Naphtali Claude; Gilron, Jack

    2016-09-01

    A novel aeration device has been developed that combines the mechanism of a venturi aerator with the flow multiplier effect of an eductor used for pump driven mixing. The performance of this novel eductor was evaluated in a flat-sheet immersed MBR and compared with the same MBR equipped with a conventional diffuser for the treatment of domestic wastewater. The eductor showed a higher rate of oxygen transfer both in clean and wastewater compared to the diffuser. The α value with the eductor (0.91) was also found to be more than that of the diffuser (0.75). Higher recirculation rate through the eductor resulted in a higher mixing/turbulance inside the MBR tank and thus alleviated membrane fouling significantly compared to the diffuser. The performance of the MBR in terms of organics removal was also found to be higher with the eductor than the diffuser. The eductor could have significant potential as a combined aerator and mixer in the field of wastewater treatment by MBR. Copyright © 2016. Published by Elsevier Ltd.

  10. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    Science.gov (United States)

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  11. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature.

    Science.gov (United States)

    Xu, Zhenzhen; Ben, Yue; Chen, Zhonglin; Jiang, Anxi; Shen, Jimin; Han, Xiaoyun

    2018-01-01

    The feasibility of a bunch of screened psychrotrophs being applied to low-temperature wastewater treatment was investigated. The screened psychrophillic strains are capable of growth at a broad temperature-range from 0 to 40 °C and exhibit a preferable TTC-dehydrogenase activity at low temperature (4-10 °C). Along the sharply fluctuant temperatures (25-4-25 °C), the screened psychrotrophs (compared with the indigenous mesophiles) demonstrate less fluctuations of COD removal and more rapid recovery after temperature shocks. COD removal of approximate 80% was recorded by single psychrotrophs (while only 10% by single mesophiles) at low temperature (4 °C). Soft polyurethane foam showed better performance for psychrotrophs immobilization, with the optimal filling rate of 30% (v/v) in the bioreactor. The observation shows that the immobilized psychrotrophs demonstrated a relatively high performance on both conventional and emerging organic contaminants removals at low temperature. In order to check the feasibility of the screened psychrotrophs in treating actual domestic wastewater, a pilot-scale ICABR bioreactor was operated firstly at low temperature (4 °C) and then at seasonal varying temperatures (0-30 °C) for one year, the influent COD of 150-600 mg L -1 was efficiently reduced to 40 ± 18 mg L -1 under the conditions of an overall hydraulic retention time of 10 h. Furthermore, psychrotrophs performed stably as the predominant bacteria family during the whole operation. This study provides evidence that microbial intensification with psychrotrophs was a feasible strategy to improve the efficiency of conventional wastewater treatment process at low temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Treatment and reuse for irrigation of wastewater in Cagliari

    International Nuclear Information System (INIS)

    Bragadin, G.L.; Franco, D.; Mancini, M.L.

    2006-01-01

    D.M. 12 June 2003 n. 185 gives national rules about wastewater recycling and reuse. Increasing in water consumption for new agricultural practise and uncertainty about availability of water resource in summer due to climatic instability make necessary to search new available fonts. In most part of Italian territory surface water volumes are taken into civil water distribution system for domestic use and, in summer, rivers are often in dry condition before arriving in urban tracts and in quality condition typical of domestic wastewater more or less treated in downstream. This work explains an experience in reclamation and irrigation reuse of a large flowrate of domestic wastewater carried out in Cagliari and discuss results in order to test reliability and efficiency with reference to existent Italian laws about discharge (D.Lgs n. 152/99) and reuse (D.M. n. 185/2003). Simbrizzi artificial basin make possible agricultural recycling and reuse realizing adequate retention basins for storage and final finishing of wastewater, at the same time permits to avoid every discharge in seawater during summer [it

  13. Chemical properties of a Haplustalf soil under irrigation with treated wastewater and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Leda V. B. D. Silva

    2016-04-01

    Full Text Available ABSTRACT The objective of this research was to investigate the effects of irrigation with treated wastewater and nitrogen (N fertilization on the chemical characteristics of a Haplustalf soil cultivated with cotton. An experiment was conducted in a greenhouse in a completely randomized design with four replicates, and arranged in a 5 x 4 factorial. Five doses of N fertilization (0, 45, 90, 135 and 180 kg ha-1 and four sources of irrigation water (freshwater, wastewater treated by an anaerobic reactor, wastewater treated by an anaerobic reactor and post-treated by intermittent sand filter in series, wastewater treated in a septic tank and post-treated by an intermittent sand filter were tested. Irrigation was daily performed from July 2011 to January 2012 according to the water demand of cotton resulting in a water depth of 620 mm. It was found that, compared with the conventional management with freshwater irrigation, treated wastewater provides greater accumulation of micronutrient, potassium and sodium in the soil, increasing the risk of sodification in irrigated areas.

  14. Constructed wetland: an alternative for wastewater treatment; Humedales construidos: una alternativa a considerar para el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Plaza de los Reyes del Rio, C.; Vidal Saez, G.

    2007-07-01

    Research and trends dealing with sewage and industrial wastewaters treated by constructed wetlands are shown in this paper. Plant and constructed wetlands configurations are also described. Sewage domestic wastewaters from individual houses or villages have used constructed wetlands as wastewater treatment. On the other hand, constructed wetlands as finally treatment working together with conventional technologies could be a good alternative for improving the treated quality wastewater. (Author) 56 refs.

  15. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  16. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.

    Science.gov (United States)

    Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge

    2018-06-08

    A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.

  17. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Treated wastewater and Nitrate transport beneath irrigated fields near Dodge city, Kansas

    Science.gov (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; Ashok, K.C.

    2010-01-01

    Use of secondary-treated municipal wastewater for crop irrigation south of Dodge City, Kansas, where the soils are mainly of silty clay loam texture, has raised a concern that it has resulted in high nitratenitrogen concentrations (10-50 mg/kg) in the soil and deeper vadose zone, and also in the underlying deep (20-45 m) ground water. The goal of this field-monitoring project was to assess how and under what circumstances nitrogen (N) nutrients under cultivated corn that is irrigated with this treated wastewater can reach the deep ground water of the underlying High Plains aquifer, and what can realistically be done to minimize this problem. We collected 15.2-m-deep cores for physical and chemical properties characterization; installed neutron moisture-probe access tubes and suction lysimeters for periodic measurements; sampled area monitoring, irrigation, and domestic wells; performed dye-tracer experiments to examine soil preferential-flow processes through macropores; and obtained climatic, crop, irrigation, and N-application rate records. These data and additional information were used in the comprehensive Root Zone Water Quality Model (RZWQM2) to identify key parameters and processes that influence N losses in the study area. We demonstrated that nitrate-N transport processes result in significant accumulations of N in the thick vadose zone. We also showed that nitrate-N in the underlying ground water is increasing with time and that the source of the nitrate is from the wastewater applications. RZWQM2 simulations indicated that macropore flow is generated particularly during heavy rainfall events, but during our 2005-06 simulations the total macropore flow was only about 3% of precipitation for one of two investigated sites, whereas it was more than 13% for the other site. Our calibrated model for the two wastewater-irrigated study sites indicated that reducing current levels of corn N fertilization by half or more to the level of 170 kg/ha substantially

  19. Banana fertigation with treated sanitary wastewater: postharvest and microbiological quality

    Directory of Open Access Journals (Sweden)

    Pablo Fernando Santos Alves

    2017-06-01

    Full Text Available Sewage may serve as a source of water and nutrients for plants. In this study, the effects of fertigation with treated sanitary wastewater from Janaúba Sewage Treatment Plant were evaluated on the postharvest and microbiological quality of ‘Prata-Anã’ banana. A randomized block experimental design was used. Four concentrations of wastewater were tested (70, 130, 170, and 200% of 150 kg ha-1 sodium. A wastewater-free control treatment was used for comparison. Two crop cycles were assessed for postharvest and microbiological quality. The parameters measured included total soluble solids, titratable acidity, total soluble solids/titratable acidity ratio, pH, total coliforms, and fecal coliforms on both the peel and the pulp. In the first crop cycle, both soluble solids and fruit pulp pH decreased as wastewater level increased up to a maximum of 141.5%. These correlations were not observed in the second cycle. Wastewater management did not affect the titratable acidity of the soluble solids. The agricultural application of treated sanitary wastewater provided banana fruits with a microbiological profile similar to that obtained with the control (pure water and with mineral fertilizers. A microbial balance is necessary to maintain the nutritional status of the banana crop.

  20. A pilot study to investigate the impacts of agro-food discharges on a domestic WWTP

    International Nuclear Information System (INIS)

    Fernandez, F. J.; Villasenor, J.; Rodriguez, L.

    2009-01-01

    The approval of Directive 91/271CE, which limits the concentration of nutrients (N and P) in treated wastewater discharges, has led to majority of WWTP in Europe to work with nutrient removal processes. These WWTP for BNR are usually optimized to remove nutrients for domestic wastewater, but in some cases a significant discharge of industrial wastewater can modify the influent wastewater composition. (Author)

  1. Água residuária de esgoto doméstico tratado na atividade microbiana do solo e crescimento da mamoneira Treated wastewater from domestic sewage on soil microbial activity and growth of castor bean

    Directory of Open Access Journals (Sweden)

    Karine da S. Simões

    2013-05-01

    Full Text Available Os resíduos de esgoto doméstico apresentam teores de macro e micro nutrientes suficientes para atender a uma grande parte das culturas. Além de ser uma alternativa viável para aumentar a disponibilidade hídrica é uma forma efetiva de controle de poluição e preservação do meio ambiente. Neste contexto, realizou-se um experimento para avaliar a influência da aplicação de diferentes diluições de água residuária proveniente de esgoto doméstico tratado, na atividade microbiana de um Latossolo Amarelo Distrocoeso do Recôncavo Baiano e no crescimento inicial de plantas de mamoneira anã MPB 01. Avaliaram-se a atividade microbiana do solo e as características de crescimento da planta: altura, diâmetro do colo, biomassa seca da parte aérea, biomassa seca da raiz e volume de raízes. De acordo com os resultados, o efluente de esgoto doméstico tratado sem diluição estimula a atividade microbiana do Latossolo Amarelo Distrocoeso e prejudica o crescimento inicial da mamoneira anã MPB 01.Wastewater from domestic sewage presents levels of macro and micro nutrients sufficient to support a large part of the crops. Besides being a viable alternative to increase water availability, it is an effective way to control pollution and preserve the environment. In this context, an experiment was carried out to evaluate the influence of applying different dilutions of treated wastewater from domestic sewage on the microbial activity of a distrophic cohesive yellow Latosol in the Recôncavo of Bahia. Its effect on early growth of dwarf castor bean plants MPB 01 were also evaluated. Soil microbial activity and growth characteristics such as plant height, stem diameter, shoot dry weight, root dry weight and root volume were evaluated. According to the results, the effluent of treated wastewater without dilution, stimulates microbial activity of distrophic cohesive yellow Latosol and impairs the early growth of dwarf castor bean MPB 01.

  2. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  3. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Logan, Bruce E

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  4. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  5. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  6. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  7. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L

    2013-01-01

    A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.

  8. [Study on subsurface wastewater infiltration system covered by different turfgrass for domestic sewage treatment].

    Science.gov (United States)

    Zhang, Xiao-Hui; Cui, Jian-Yu; Lan, Yan; Zhao, Yang-Yang; Hu, Lin

    2011-01-01

    Domestic sewage was treated with subsurface wastewater infiltration system covered by two different turfgrass, namely, Festuca arundinacea Schres. and Zoysia japonica Steud.. The result shows that all the different systems have good removal rates to COD. The concentration of COD decreased to less than 48 mg x L(-1) from 97-357 mg x L(-1) which achieve the second class criteria specified in Integrated Wastewater Discharge Standard, and there are no prominent difference among different systems. The concentration of NH4(+) -N decreased to less than 0.5 mg x L(-1) from 76.3-125.8 mg x L(-1) which achieve the IV criteria (Groundwater Quality Standard, the effluent concentration of NH4(+) -N in naked system are prominently higher than that in system covered by Festuca arundinacea Schres., and there are no prominent difference compared with system covered by Zoysia japonica Steud.. The concentration of TP in different systems decreased to less than 0.05 mg x L(-1) from 3.70-18.42 mg x L(-1) which achieve the II criteria (rates of TN and nitrate were all not good enough, the probability which achieve the III criteria (Groundwater Quality Standard are less than one third, and the effluent concentration of TN and nitrate in naked system are prominently higher than that in systems covered by Festuca arundinacea Schres. and Zoysia japonica Steud..

  9. Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test

    Directory of Open Access Journals (Sweden)

    Ofman Piotr

    2017-01-01

    Full Text Available Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3–4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.

  10. Appropriate technology for domestic wastewater management in under-resourced regions of the world

    Science.gov (United States)

    Oladoja, Nurudeen Abiola

    2017-11-01

    Centralized wastewater management system is the modern day waste management practice, but the high cost and stringent requirements for the construction and operation have made it less attractive in the under-resourced regions of the world. Considering these challenges, the use of decentralized wastewater management system, on-site treatment system, as an appropriate technology for domestic wastewater treatment is hereby advocated. Adopting this technology helps save money, protects home owners' investment, promotes better watershed management, offers an appropriate solution for low-density communities, provides suitable alternatives for varying site conditions and furnishes effective solutions for ecologically sensitive areas. In the light of this, an overview of the on-site treatment scheme, at the laboratory scale, pilot study stage, and field trials was conducted to highlight the operational principles' strength and shortcomings of the scheme. The operational requirements for the establishing and operation of the scheme and best management practice to enhance the performance and sustenance were proffered.

  11. Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual Wastewater: Influence of Biocatalyst Type on Electricity Production

    Directory of Open Access Journals (Sweden)

    Zainab Z. Ismail

    2013-01-01

    Full Text Available Microbial fuel cells (MFCs have the potential to simultaneously treat wastewater for reuse and to generate electricity. This study mainly considers the performance of an upflow dual-chambered MFC continuously fueled with actual domestic wastewater and alternatively biocatalyzed with aerobic activated sludge and strain of Bacillus Subtilis. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied. After 45 days of continuous operation, the biofilms on the anodic electrode were well developed. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the COD removal efficiency was 84% and 90% and the stabilized power outputs were clearly observed achieving a maximum value of 120 and 270 mW/m2 obtained for MFCs inoculated with mixed cultures and Bacillus Subtilis strain, respectively.

  12. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  13. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Qualitative monitoring of a treated wastewater reuse extensive ...

    African Journals Online (AJOL)

    Qualitative monitoring of a treated wastewater reuse extensive distribution system: ... region where 80 % of the freshwater resources are consumed by agriculture. ... the reuse limits for orchard irrigation, being 80 mg/ℓ and 25 mg/ℓ respectively.

  15. Production and characterization of scum and its role in odour control in UASB reactors treating domestic wastewater.

    Science.gov (United States)

    Souza, C L; Silva, S Q; Aquino, S F; Chernicharo, C A L

    2006-01-01

    There are few studies in the literature that have aimed at characterizing the physical, chemical, and microbial aspects of scum produced in UASB reactors. In addition, there is little information on the influence of operational conditions of UASB reactors on scum formation, and the present work addresses these issues. Three demo-scale UASB reactors, fed on domestic wastewater, were employed to monitor the formation and its characteristics. Scum production was periodically assessed during different operational phases, and its characterization involved analyses of BOD, COD, solids, sulfide, sulfate, microscopic observations, as well as biodegradability tests. The results show that the scum formed was physically, chemically, and microscopically similar in both geminated reactors, being comprised mainly of organic material of low biodegradability. Several bacterial morphotypes, mainly filaments and rods, with internal sulfur granules, were observed, and the aerobic microorganisms that developed at the scum layer as a result of photosynthetic activity of cyanobacteria, seemed to play an important role in sulfide removal and odour control. Scum production rates were similar in both reactors, but the imposed higher upflow velocities resulted in a higher production rate and in a reduced biodegradability of the scum.

  16. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse.

    Science.gov (United States)

    Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah

    2018-03-01

    Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.

  17. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    Science.gov (United States)

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  18. The functional and physiological status of Gammarus fossarum (Crustacea; Amphipoda) exposed to secondary treated wastewater

    International Nuclear Information System (INIS)

    Bundschuh, Mirco; Zubrod, Jochen P.; Schulz, Ralf

    2011-01-01

    Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder Gammarus fossarum was exposed to natural stream water (n = 34) and secondary treated wastewater (n = 32) for four weeks in a semi-static test system under laboratory conditions. G. fossarum exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of G. fossarum. - Micropollutants in wastewater cause functional and physiological alteration in a leaf-shredding amphipod.

  19. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  20. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.

    Science.gov (United States)

    Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C

    2014-08-01

    This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Potential Use of Microbial Electrolysis Cells in Domestic Wastewater Treatment Plants for Energy Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Escapa, Adrián; San-Martín, María Isabel; Morán, Antonio, E-mail: amorp@unileon.es [Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León (Spain)

    2014-06-06

    Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW) treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical systems (BESs) in general and microbial electrolysis cells (MECs) in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in domestic wastewater treatment plants (dWWTPs) to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1–4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it need not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  2. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  3. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...... removed at 5 mg/l ClO2 dose. Removal of the same APIs from the high COD effluent was observed when the ClO2 dose was increased to 1.25 mg/l and an increase in API removal only after treatment with 8 mg/l ClO2. This illustrates that treatment of wastewater effluents with chlorine dioxide has potential...

  4. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV - 25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  5. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV -25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  6. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    Science.gov (United States)

    Sampa, M. H. O.; Borrely, S. I.; Silva, B. L.; Vieira, J. M.; Rela, P. R.; Calvo, W. A. P.; Nieto, R. C.; Duarte, C. L.; Perez, H. E. B.; Somessari, E. S.; Lugão, A. B.

    1995-09-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV-25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m3/h was built.

  7. Study of soil bacterial and crop quality irrigated with treated municipal wastewater

    DEFF Research Database (Denmark)

    Alinezhadian, A; Karim, A; Mohammadi, J

    2014-01-01

    Background and Objectives: In arid and semi-arid regions, wastewater reuse has become an important element in agriculture. However, irrigation with this resource can be either beneficial or harmful, depending on the wastewater characteristics. The aim of this research was to investigate the soil...... bacterial and crops quality irrigated with treated wastewater. Material and Methods: This research was conducted on a maize field near the wastewater treatment plant in Shahr-e-kord in summer,2011. Plots were arranged in a randomized complete block design in 3 replications and 2 treatments, well water (W1...

  8. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  9. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  10. Treatment of segregated black/grey domestic wastewater using constructed wetlands in the Mediterranean basin: the zer0-m experience.

    Science.gov (United States)

    Masi, F; El Hamouri, B; Abdel Shafi, H; Baban, A; Ghrabi, A; Regelsberger, M

    2010-01-01

    Concerns about water shortage and pollution have received increased attention over the past few years, especially in developing countries with warm climate. In order to help local water management in these countries, the Euro-Mediterranean Regional Programme (MEDA) has financed the Zer0-m project (E-mail: www.zer0-m.org). As a part of this project, several constructed wetland (CW) pilot systems with different pre-treatments have been implemented in four Technological Demonstration Centres in Egypt, Morocco, Tunisia and Turkey. The aim of this research was to establish appropriate designs for treatment of segregated domestic black (BW) and grey water (GW). We tested several different multistage CW configurations, consisting of horizontal and vertical subsurface flow CW for secondary treatment and free water systems as tertiary stage. CW removal efficiencies of TSS, COD, BOD(5), N-NH(4)(+), N-NO(3)(-), N(tot), total coliforms (TC) were evaluated for each of the implemented systems. The results from this study demonstrate the potential of CWs as a suitable technology for treating segregated domestic wastewater. A very efficient COD reduction (up to 98%) and nitrification (92-99%) was achieved for BW and GW in all systems. CW effluent concentrations were below 15 mg/L for BOD(5), 1 mg/L for N-NO(3)(-) and 0.5 mg/L for N-NH(4)(+) together with acceptable TC counts. Based on these results, we suggest adopting the design parameters used in this study for the treatment of segregated wastewater in the Mediterranean area.

  11. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    Science.gov (United States)

    Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief

    2018-02-01

    Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  12. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    Directory of Open Access Journals (Sweden)

    Faustina Patricia Maria

    2018-01-01

    Full Text Available Chemical oxygen demand (COD in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  13. Soil and minespoil fill as media for renovation of nitrogen and phosphorus in domestic wastewater

    International Nuclear Information System (INIS)

    Peterson, C.E.; Reneau, R.B. Jr.; Hagedorn, C.

    1998-01-01

    Development of US Appalachian coal mining regions has been hampered by lack of domestic waste disposal technologies suited to fills. The suitability of on-site wastewater treatment and disposal systems (OSWTDS) in fill material is uncertain due to the effects of surface mining on soil physical properties. This research evaluated the potential for renovation of N and P present in domestic wastewater by fills from mining operations. N and P were chosen because of their potential adverse environmental impacts. Soil-fill (a mixture of Jefferson, fine-loamy, siliceous, mesic Typic Hapludult and Muskingom, fine-loamy, mixed, mesic Typic Dystrochrept soils) and minespoil (spoil)-fill (blasted rock material associated with the Taggart Marker and Low Splint Bench coal seams of the Upper Middle Wise Formation) were used. Septic tank effluent (STE) and sand filter effluent (SFE) were applied to spoil-fill columns at four loading rates and spoil-fill columns at one loading rate for a period of 20 wk. Renovation of wastewater was assessed by determining the concentration of N and P present in column leachate. Reduction of inorganic N(NO 3 - + NH 4 + ), based on N/Cl ratios ranged from 14.9 to 32.1% after the varying application rates of STE and SFE passed through the soil columns. However, leachate NO 3 - -N concentrations were still above the 10 mg -1 drinking water standard. The quantity of P emerging from the spoil-fill columns (3.0 mg PL -1 ) was higher than anticipated and may be related to the indigenous P present in the minespoil. Sorption of P in the spoil-fill column decreased with increased STE and SFE application (reduction ranged from 99.1 to 74.4%). Results from this study indicate that there is potential for renovating wastewater in OSWTDS in selected soil-fill areas in reclaimed minelands. 33 refs., 2 figs., 4 tabs

  14. Qualitative monitoring of a treated wastewater reuse extensive ...

    African Journals Online (AJOL)

    2006-01-01

    Jan 1, 2006 ... limited and threatened by pollution from various human activi- ties. ... The problem with treated wastewater sampling, which will ... since any alternative solution (such as discharge into the sea) is not permitted, due to the extensive tour- ism. Hersonissos is famous for its crystal-clean sea and beaches.

  15. A social choice-based methodology for treated wastewater reuse in urban and suburban areas.

    Science.gov (United States)

    Mahjouri, Najmeh; Pourmand, Ehsan

    2017-07-01

    Reusing treated wastewater for supplying water demands such as landscape and agricultural irrigation in urban and suburban areas has become a major water supply approach especially in regions struggling with water shortage. Due to limited available treated wastewater to satisfy all water demands, conflicts may arise in allocating treated wastewater to water users. Since there is usually more than one decision maker and more than one criterion to measure the impact of each water allocation scenario, effective tools are needed to combine individual preferences to reach a collective decision. In this paper, a new social choice (SC) method, which can consider some indifference thresholds for decision makers, is proposed for evaluating and ranking treated wastewater and urban runoff allocation scenarios to water users in urban and suburban areas. Some SC methods, namely plurality voting, Borda count, pairwise comparisons, Hare system, dictatorship, and approval voting, are applied for comparing and evaluating the results. Different scenarios are proposed for allocating treated wastewater and urban runoff to landscape irrigation, agricultural lands as well as artificial recharge of aquifer in the Tehran metropolitan Area, Iran. The main stakeholders rank the proposed scenarios based on their utilities using two different approaches. The proposed method suggests ranking of the scenarios based on the stakeholders' utilities and considering the scores they assigned to each scenario. Comparing the results of the proposed method with those of six different SC methods shows that the obtained ranks are mostly in compliance with the social welfare.

  16. COD fractions changes in the SBR-type reactor treating municipal wastewater with controlled percentage of dairy sewage

    Directory of Open Access Journals (Sweden)

    Struk-Sokołowska Joanna

    2017-01-01

    Full Text Available The aim of study was to investigate the influence of percentage of dairy wastewater in the municipal wastewater on the changes of COD fractions during the cycle of SBR-type reactor. The scope of the research included physicochemical analyses of municipal wastewater without dairy wastewater, dairy wastewater, mixture of municipal and dairy wastewater as well as treated sewage. Both the concentrations and the proportions between COD fractions changed in the SBR cycle. In raw municipal and dairy wastewater - XS, insoluble hardly bio-degradable fraction of COD dominated (49.6 and 64.5% respectively. In treated wastewater SI, COD for dissolved compounds that are not biologically decomposed (inert (from 62.1 to 74.6% dominated, while XS fraction was from 19.1 to 24.4%. The consumption rate of organic compounds depended on the type of COD fraction, SBR cycle phase and the percentage of dairy wastewater. The highest rates of organic compounds consumption were noted in the phase of mixing. In the case of fraction SI, no differences in concentration in the SBR cycle time, were found. Concentration of COD in treated wastewater was from 34.8 to 58.9 mgO2·L-1 (efficiency wastewater treatment from 96.0 to 98.6%.

  17. Wastewater reuse in the countries of the Gulf Cooperation Council (GCC): the lost opportunity.

    Science.gov (United States)

    Aleisa, Esra; Al-Zubari, Waleed

    2017-10-12

    Reuse of treated wastewater is not only environmentally and financially sound, it is becoming indispensable for meeting the staggering water demand in certain regions, especially under conditions of alarming water scarcity. Reusing treated wastewater will help in reducing the pressure on expensive desalinated water production and depleting groundwater withdrawal, thereby reducing associated harmful environmental impacts. Reuse of wastewater in general and in the countries of the Gulf Cooperation Council (GCC) in particular has been a priority research area and has been in the media spotlight for some time, especially the use of tertiary quality water resources for agricultural purposes. However, reuse of treated wastewater is still in its primitive stage in terms of implementation in GCC. In addition, the overall volume of tertiary treated water that outflows unutilized to the sea is much greater than the volume reused. This paper provides a general review of and statistics on current practices of treatment of domestic wastewater in the GCC. The review highlights water resources, sanitation service coverage, wastewater treatment, effluent types, treated and reuse quantities, costs, and tariffs. The paper provides recommendations to improve wastewater treatment in the GCC to alleviate the stress on the scarce groundwater resources, provide a relatively inexpensive alternative to desalination, reduce the environmentally adverse impacts and externalities of desalination plants, and eliminate the discharge of untreated wastewater in coastal areas or terrestrial landfills.

  18. Construction and operation costs of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2014-01-01

    Design data from nine constructed wetlands (CW) facilities of various capacities (population equivalent (PE)) are used to estimate construction and operation costs, and then to derive empirical equations relating the required facility land area and the construction cost to PE. In addition, comparisons between the costs of CW facilities based on various alternative construction materials, i.e., reinforced concrete and earth structures (covered with either high density polyethylene or clay), are presented in relation to the required area. The results show that earth structures are economically advantageous. The derived equations can be used for providing a preliminary cost estimate of CW facilities for domestic wastewater treatment.

  19. Effect of Treated Wastewater Irrigation on Heavy Metals Distribution in a Tunisian Soil

    Directory of Open Access Journals (Sweden)

    K. Khaskhoussy

    2015-06-01

    Full Text Available Treated wastewater (TWW may contain toxic chemical constituents that pose negative environmental and health impacts. In this study, soil samples under treated wastewater irrigation were studied. For this purpose, six plots were made in an irrigated area in north of Tunisia and treated with two water qualities: fresh water (FW and treated wastewater (TWW. Five soil depths were used: 0-30, 30-60, 60-90, 90-120 and 120-150 cm. The TWW irrigation increased significantly (P≤0.05 the soils’ EC, Na, K, Ca, Mg, Cl, SAR, Cu, Cd and Ni and had no significant (P ≤0.05 effect on the soils’ pH, Zn, Co and Pb contents. EC, Na, Cl, SAR, Zn and Co increased significantly with soil depth. The results for K, Ca, Mg, Cd, Pb and Ni exhibited similar repartition in different layers of soil. It was also shown that the amount of different elements in soil irrigated with fresh water (FW were less compared with the control soil

  20. Applications of Natural Coagulants to Treat Wastewater − A Review

    Directory of Open Access Journals (Sweden)

    Kumar Vicky

    2017-01-01

    Full Text Available The natural water falls from the mountain is merging into the oceans. This water is preserved by humans that are consumed for agriculture, industrial, and municipal use. This water become wastewater after different usage, and finally, completes the hydrological cycle. The water becomes wastewater due to population growth, urbanization, industrialization, sewage from household, institutions, hospitals, industries and etc. Wastewater can be destructive for the public because it contains a variety of organic and inorganic substances, biological substances, toxic inorganic compounds and the presence of toxic materials. The coagulant chemicals and its associated products are resourceful but these may change the characteristics of water in terms of physical and chemical characteristics, this make matters worse in the disposal of sludge. An option of natural polymer can be used in water and wastewater in this review. The natural polymers are most efficient that provide several benefits such as; prolific, exempt from physical and chemical changes from the treated water.

  1. Plants in constructed wetlands help to treat agricultural processing wastewater

    Directory of Open Access Journals (Sweden)

    Mark Grismer

    2008-05-01

    Full Text Available Over the past three decades, wineries in the western United States and sugarcane processing for ethanol in Central and South America have experienced problems related to the treatment and disposal of process wastewater. Both winery and sugarcane (molasses wastewaters are characterized by large organic loadings that change seasonally and are detrimental to aquatic life. We examined the role of plants for treating these wastewaters in constructed wetlands. In the greenhouse, subsurface-flow flumes with volcanic rock substrates and plants steadily removed approximately 80% of organic-loading oxygen demand from sugarcane process wastewater after about 3 weeks of plant growth; unplanted flumes removed about 30% less. In field studies at two operational wineries, we evaluated the performance of similar-sized, paired, subsurface constructed wetlands with and without plants; while both removed most of the oxygen demand, removal rates in the planted system were slightly greater and significantly different from those of the unplanted system under field conditions.

  2. Sustainability study of domestic communal wastewater treatment plant in Surabaya City

    Science.gov (United States)

    Bahar, E.; Sudarno; Zaman, B.

    2017-06-01

    Sanitation is one of the critical infrastructure sectors in order to improve community health status. The Ministry of Public Works of the Republic of Indonesia to define that word sanitation include: domestic waste water management, solid waste management, rain water management (drainage management) as well as the provision of clean water. Surabaya city as the capital of East Java province and Indonesia’s second largest city with a population of 2,853,661 inhabitants in 2014 (the second largest after Jakarta), but the people who have been served by the sanitation infrastructure systems were expected at 176,105 families or about 26.95 % of the population of the city is already using sanitation facilities. In the White Book Sanitation of Surabaya City in 2010, Surabaya City sanitation development mission is to realize the wastewater management of settlements in a sustainable and affordable by the community. This study aims to assess the sustainability of the wastewater treatment plant (WWTP) domestic communal in the city of Surabaya. The method in this research is quantitative method through observation, structured interviews and laboratory testing of the variables analyzed. Analyses were performed using a technique Multidisciplinary rapid appraisal (Rap-fish) to determine the level of sustainability of the management of communal WWTP based on a number of attributes that easy scored. Attributes of each dimension includes the technical, environmental quality, institutional, economic, and social. The results of this study are sustainability index of environmental quality dimension at 84.32 with highly sustainable status, technical dimension at 62.61 with fairly sustainable status, social dimension at 57.98 with fairly sustainable status, economic dimension at 43.24 with less sustainable status, and institutional dimension at 39.67 with less sustainable status.

  3. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  4. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  5. Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique

    Science.gov (United States)

    Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.

    2018-04-01

    Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.

  6. Managed aquifer recharge using quaternary-treated wastewater: an economic perspective

    KAUST Repository

    Zekri, Slim Mohamed; Ahmed, Mushtaque; Chaieb, Randa; Ghaffour, NorEddine

    2013-01-01

    An excess of 31 million m3/y of tertiary-treated wastewater is expected in Muscat, Oman, by 2015. This paper addresses the technical and cost estimation of managed aquifer recharge after reverse-osmosis treatment. The results indicate

  7. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  8. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  9. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  10. Performance of a UASB reactor treating coffee wet wastewater

    International Nuclear Information System (INIS)

    Guardia Puebla, Yans; Rodríguez Pérez, Suyén; Janet Jiménez Hernández; Sánchez Girón, Víctor

    2014-01-01

    The present work shows the results obtained in the anaerobic digestion process of coffee wet wastewater processing. An UASB anaerobic reactor was operated in single-stage in mesophilic temperature controlled conditions (37±1ºC). The effect of both organic loading rate (OLR) and hydraulic retention time (HRT) in the anaerobic digestion of coffee wet wastewater was investigated. The OLR values considered in the single-stage UASB reactor varied in a range of 3,6-4,1 kgCOD m-3 d-1 and the HRT stayed in a range of 21,5-15,5 hours. The evaluation results show that the best performance of UASB reactor in single-stage was obtained at OLR of 3,6 kg COD m-3 d-1 with an average value of total and soluble COD removal of 77,2% and 83,4%, respectively, and average methane concentration in biogas of 61%. The present study suggests that the anaerobic digestion is suitable to treating coffee wet wastewater. (author)

  11. Fertigação do algodoeiro utilizando efluente doméstico tratado Fertigation of cotton with treated domestic sewage

    Directory of Open Access Journals (Sweden)

    Osvaldo N Sousa Neto

    2012-02-01

    Full Text Available Conduziu-se um experimento no Campus da Universidade Federal Rural do Semiárido em Mossoró, RN, com o objetivo de avaliar o comportamento do algodoeiro (Gossypium hirsutum L. raça latifolium Hatch cultivar 8H, quanto ao aspecto crescimento, quando irrigado com efluentes domésticos tratados. O delineamento experimental adotado foi o de blocos casualizados com parcelas subdivididas e sendo testadas, nas parcelas, as diluições do efluente doméstico [25% - T1, 50% - T2, 75% - T3 e 100% de água residuária- T4 e água de abastecimento + adubação mineral do solo - T5] em dois solos de texturas contrastantes (Latossolo Vermelho Amarelo - S1 e Cambissolo - S2. A irrigação com água residuária influenciou significativamente o crescimento das plantas de algodoeiro, em referência ao índice de velocidade de emergência, à percentagem de germinação à altura de plantas, ao diâmetro caulinar e número de folhas e à área foliar e massa seca de parte aérea, crescendo com o aumento da proporção de uso do efluente doméstico. Houve efeito positivo do acúmulo de nutrientes no solo aplicados via fertirrigação sobre as variáveis estudadas. A fertirrigação com efluente doméstico tratado pode substituir a adubação convencional do algodoeiro.An experiment was conducted at the Universidade Federal Rural do Semi-arid in Mossoró, RN with the aim of evaluating the behavior of cotton (Gossypium hirsutum L. race latifolium Hatch 8H cultivar, in terms of growth when irrigated with treated domestic sewage. The experimental design was in randomized blocks with split plots and in plots were tested dilutions of wastewater [25% - T1, 50% - T2, 75% - T3 and 100% of wastewater - T4 and supply water with mineral fertilizer - T5] in two soils of contrasting textures. Irrigation with wastewater significantly influenced the growth of cotton plants, the rate of emergence, the germination percentage, plant height, stem diameter and leaf area, growing

  12. EFFECT OF STARCH ADDITION ON THE PERFORMANCE AND SLUDGE CHARACTERIZATION OF UASB PROCESS TREATING METHANOLIC WASTEWATER

    Science.gov (United States)

    Yan, Feng; Kobayashi, Takuro; Takahashi, Shintaro; Li, Yu-You; Omura, Tatsuo

    A mesophilic(35℃) UASB reactor treating synthetic wastewater containing methanol with addition of starch was continuously operated for over 430 days by changing the organic loading rate from 2.5 to 120kg-COD/m3.d. The microbial community structure of the granules was analyzed with the molecular tools and its metabolic characteristics were evaluated using specific methanogenic activity tests. The process was successfully operated with over 98% soluble COD removal efficiency at VLR 30kg-COD/m3.d for approximately 300 days, and granulation satisfactory proceeded. The results of cloning and fluorescence in situ hybridization analysis suggest that groups related the genus Methanomethylovorans and the genus Methanosaeta were predominant in the reactor although only the genus Methanomethylovorans was predominant in the reactor treating methanolic wastewater in the previous study. Abundance of the granules over 0.5 mm in diameter in the reactor treating methanolic wastewater with addition of starch was 3 times larger than that in the reactor treating methanolic wastewater. Specific methanogenic activity tests in this study indicate that the methanol-methane pathway and the methanol-H2/CO2-methane pathway were predominant, and however, there was a certain level of activity for acetate-methane pathway unlike the reactor treating methanolic wastewater. These results suggest addition of starch might be responsible for diversifying the microbial community and encouraging the granulation.

  13. Application of peat filters for treating milkhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fahie, C.R.; Gagnon, G.A. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Gordon, R.J. [Nova Scotia Agricultural College, Dept. of Engineering, Bible Hill, Nova Scotia (Canada)

    2002-06-15

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm{sup -3} . Parameters that were monitored include BOD, pH, NO{sub 3}-N, SO{sub 4}, TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD{sub 5} of approximately 1500 mg L{sup -1} , an average TSS concentration of 510 mg L{sup -1} and an average SRP concentration of 100 mg L{sup -1} . Removal efficiencies of BOD{sub 5} and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  14. Application of peat filters for treating milkhouse wastewater

    International Nuclear Information System (INIS)

    Fahie, C.R.; Gagnon, G.A.; Gordon, R.J.

    2002-01-01

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm -3 . Parameters that were monitored include BOD, pH, NO 3 -N, SO 4 , TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD 5 of approximately 1500 mg L -1 , an average TSS concentration of 510 mg L -1 and an average SRP concentration of 100 mg L -1 . Removal efficiencies of BOD 5 and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  15. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  16. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei

    2015-01-01

    Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014

  17. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China.

    Science.gov (United States)

    Gao, Yan; Wang, Chengcheng; Zhang, Weiguo; Di, Panpan; Yi, Neng; Chen, Chengrong

    2017-11-01

    Bacterial communities in rivers receiving untreated domestic wastewater may show specific spatial assemblage patterns due to a wide range of physicochemical conditions created by periodic algal bloom. However, there are significant gaps in understanding environmental forces that drive changes in microbial assemblages in polluted rivers. In this study, we applied high-throughput sequencing of 16S rRNA gene amplicons to perform comprehensive spatio-temporal profiling of bacterial community structure in a local river segment receiving domestic wastewater discharge in southeast China. Multivariate statistics were then used to analyse links between bacterial community structure and environmental factors. Non-metric multidimensional scaling (NMDS) plots showed that the bacterial community structure was different between upstream and downstream sections of the river. While the upstream water contained a high proportion of bacteria degrading xenobiotic aromatic compounds, the downstream water experiencing stronger algal bloom had a more diverse bacterial community which included the genus Aeromonas comprising 14 species, most of which are human pathogens. Least discriminant analysis (LDA) effect size revealed that the surface water was mainly inhabited by aerobic microorganisms capable of degrading aromatic compounds, and also contained bacterial genera including pathogenic species. In contrast, in the bottom water we found, along with aromatic compound-degrading species, anaerobic denitrifiers and Fe 3+ -reducing and fermentative bacteria. Variance partitioning canonical correspondence analysis (VPA) showed that nutrient ratios had a stronger contribution to bacterial dissimilarities than other major physicochemical factors (temperature, pH, dissolved oxygen, total organic carbon, and chlorophyll a). These results show that microbial communities in rivers continuously receiving domestic wastewater have specific longitudinal and vertical assemblage patterns and may contain

  18. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate.

    Science.gov (United States)

    Bedbabis, Saida; Ben Rouina, Béchir; Boukhris, Makki; Ferrara, Giuseppe

    2014-01-15

    In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of four years in an olive orchard planted on a sandy soil and subjected to irrigation treatments: a) rain-fed conditions (RF), as control b) well water (WW) and c) treated wastewater (TWW). In WW and TWW treatments, an annual amount of 5000 m(3) ha(-1) of water was supplied to the orchard. Soil samples were collected at the beginning of the study and after four years for each treatment. The main soil properties such as electrical conductivity (EC), pH, soluble cations, chloride (Cl(-)), sodium adsorption ratio (SAR), organic matter (OM) as well as the infiltration rate were investigated. After four years, either a significant decrease of pH and infiltration rate or a significant increase of OM, SAR and EC were observed in the soil subjected to treated wastewater treatment. Copyright © 2013. Published by Elsevier Ltd.

  19. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  20. Heat from domestic and industrial wastewater

    International Nuclear Information System (INIS)

    Gasharov, S.

    2006-01-01

    More than 40% of the energy produced in the world is utilized by the building sector - mainly for heating of buildings and water. Different methods are used for the reduction of this energy - new thermo-isolating materials in the new building process, treating of the already existing buildings with thermo-isolating coverings, new aluminium and PVC frames for the windows, application of different solar equipment. At the same time the energy necessary for the heating of water for domestic usage increases permanently. Besides, the need for hot water is constant - every day, all the years. Here the possibilities for saving energy are more limited - limitation of the quantities of consumed hot water (but the statistics show just the opposite tendency), or recycling of the residual heat that is contained in the sewerage hot water, domestic and industrial. This solution is possible and technologically feasible through the usage of thermo-exchanging devices and thermo-pumps, and a process in which only the heat / thermal energy / of the sewerage water is accumulated, and then returned to the equipment for heating water. The heating module could be repaid for a period of 3.5 - 4 years as a result of the savings of thermal energy, which is economically very advantageous. And last but not least, the process has favourable ecological effect, following the world's latest tendencies. (author)

  1. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    Science.gov (United States)

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  2. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  3. THE EFFECT OF INFLUENT CONCENTRATION AND HYDRAULIC LOADING RATE (HLR TO BOD AND COD REMOVAL ON ARTIFICIAL DOMESTIC WASTEWATER TREATMENT (GREY WATER USING UASB REACTOR

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2014-05-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor is one of anaerobic biological treatment was develop in late 1970’s. UASB reactor is suitable for the tropic areas because it has a high temperature about 20°-30°C. Domestic wastewater is divided into two types, namely black water and grey water. But in this case used domestic grey water. Grey water is household wastewater from showers, sinks and kitchen. Grey water has a total 75% of the domestic wastewater volume. The research was conducted in laboratory scale. This study performed a variation of Hydraulic Loading Rate (HLR and the influent concentration. There were 25 reactors include 5 variations of influent concentration and 5 Hydraulic Loading Rate’s (HLR variation. The research could asses BOD5 and COD removal with treatment in UASB. Efficiency of BOD5 removal by varying the influent concentration and HLR was about 38%-75% and COD was about 40%-77%. The lower concentration could be increase efficiency BOD5 and COD removal. Influent concentration optimum occurred when middle concentration was about 840 mg/L COD and HLR optimum was 0,05 m3/m2/hour.

  4. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  5. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  6. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  7. Determination of the efficiency of sawdust and coco fiber used as Biofilter for pollutant removal for the treatment of wastewater

    Directory of Open Access Journals (Sweden)

    Jimmy Vicente Reyes

    2016-09-01

    Full Text Available Water is a resource used by mankind for industrial and domestic needs, which once used, is discharged into the public sewer system or septic tanks. This project proposes an ecological alternative for the treatment of wastewater from domestic use named Biofilter, which is built of living material (worms and inert material (chip and gravel, which filters the wastewater; the biological filter has shown high efficiency in the removal of organic matter and pathogens. The field work was carried out with experimental biological filters, to ascertain the best composition of inert material, different variants were used. Two experimental Biofilters, one using sawdust and the other coco fiber were used in the treatment of domestic wastewater; treated samples from each reactor were subjected to laboratory analysis. The analysis and interpretation of results showed that the Biofilter using sawdust removed 53.53 % of pollutants and is outside the required norm for wastewater treatment and the Biofilter using coco fiber removed 82.37 % of contaminants and is within the Environmental Quality Norm and Effluent Discharge: Water Resource.

  8. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    Science.gov (United States)

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  9. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System

    Directory of Open Access Journals (Sweden)

    Alireza Valipour

    2015-01-01

    Full Text Available onstructed wetland applications have been limited by a large land requirement and capital investment. This study aimed to improve a shallow pond water hyacinth system by incorporating the advantages of engineered attached microbial growth technique (termed Bio-hedge for on-site domestic wastewater treatment. A laboratory scale continuous-flow system consists of the mesh type matrix providing an additional biofilm surface area of 54 m2/m3. Following one year of experimentation, the process showed more stability and enhanced performance in removing organic matter and nutrients, compared to traditional water hyacinth (by lowering 33%–67% HRT and facultative (by lowering 92%–96% HRT ponds. The wastewater exposed plants revealed a relative growth rate of 1.15% per day, and no anatomical deformities were observed. Plant nutrient level averaged 27 ± 1.7 and 44 ± 2.3 mg N/g dry weight, and 5 ± 1.4 & 9±1.2 mg P/g dry weight in roots and shoots, respectively. Microorganisms immobilized on Bio-hedge media (4.06 × 107 cfu/cm2 and plant roots (3.12 × 104 cfu/cm were isolated and identified (a total of 23 strains. The capital cost was pre-estimated for 1 m3/d wastewater at 78 US$/m3inflow and 465 US$/kg BOD5 removed. This process is a suitable ecotechnology due to improved biofilm formation, reduced footprint, energy savings, and increased quality effluent.

  10. Application of three tailing-based composites in treating comprehensive electroplating wastewater.

    Science.gov (United States)

    Liu, Hongbo; Zhu, Mengling; Gao, Saisai

    2014-01-01

    Heavy metals and chemical oxygen demand (COD) are major challenging pollutants for most electroplating wastewater treatment plants. A novel composite material, prepared with a mixture of calcium and sodium compounds and tailings, was simply mixed by ratios and used to treat a comprehensive electroplating wastewater with influent COD, total copper (T-Cu), and total nickel (T-Ni) respectively as 690, 4.01, and 20.60 mg/L on average. Operational parameters, i.e. the contact time, pH, mass ratio of calcium and sodium compounds and tailings, were optimized as 30 min, 10.0, and 4:2:1. Removal rates for COD, T-Cu, and T-Ni could reach 71.8, 90.5, and 98.1%, respectively. No significant effect of initial concentrations on removal of T-Cu and T-Ni was observed for the composite material. The adsorption of Cu(II) and Ni(II) on the material fitted Langmuir and Freundlich isotherms respectively. Weight of waste sludge from the calcium/sodium-tailing system after reaction was 10% less than that from the calcium-tailing system. The tailing-based composite is cost-effective in combating comprehensive electroplating pollution, which shows a possibility of applying the tailings in treating electroplating wastewater.

  11. Study on treating of low-level radioactive reactor wastewater by combined membrane process (UF-RO)

    International Nuclear Information System (INIS)

    Lu Yunyun; Cao Qiru; Chen Yunming; Huang Lijuan; Bai Xiaofeng; Li Bing; Feng Liang

    2013-01-01

    According to the characteristics of radionuclide exists in the low-level radioactive reactor waste water from HFETR, we use a new combined membrane process separation technology to study the efficient treating of low-lever radioactive reactor wastewater. First, the prepared the simulated wastewater contained Cs + , Sr 2+ , CO 2+ , Ni 2+ , and Fe 3+ . Then, we sequentially investigated the pressure, ion concentration, pH value and EDTA, which have effects on the desalination rate of membrane processing metal ions in wastewater. The results show that: in the condition of pH = 7, and added 0.15 mol/L EDTA, the simulated wastewater separated by UF-RO, desalination rates of Cs + , Sr 2+ , CO 2+ , Ni 2+ and Fe 3+ are all above 95%; In the subsequent trials, adding 0.15 mol/L EDTA into the radioactive residuary solution, and then treating by UF-RO-RO, the decontamination efficiency can reach 95.7%. (authors)

  12. Non linear relationship between change in awareness in municipal solid waste management and domestic wastewater management - A case of the Jodipan and Ksatrian village, Malang, East Java

    Science.gov (United States)

    Zakiyya, Nida Maisa; Sarli, Prasanti Widyasih; Soewondo, Prayatni

    2017-11-01

    In developing countries the awareness on the importance of sanitation facilities, whether it is for municipal solid waste or domestic wastewater treatment, is still very low. Jodipan and Ksatrian Village, in Malang, East Java, are two slum areas that have recently been improved visually by using simple colorful paints. The visual improvement was expected to increase the resident's awareness on the importance of keeping the area clean; adjacent to the project, a new municipal waste management system was also put in place, changing the president's behaviour towards municipal solid waste. This study focuses on the relationship between community awareness in municipal solid waste management and domestic wastewater management. The result is expected to be an input for the government to enhance wastewater infrastructure program and its sustainability, related to its awareness on municipal solid waste. A descriptive model through questionnaire to 48 households of Jodipan sub district in Kampung Warna-warni and 69 households of Ksatrian sub district in Kampung 3D by random sampling, with an error of 0.1, was used to conduct this research. A nonlinear relationship between the change in awareness in municipal solid waste management (MSW) and domestic wastewater management was observed, with only 0.1312 of determination coefficient. Weak Spearman correlation coefficient number was found, ranging from 0.284 to 0.39, indicating another parameter turned into a role on affecting the awareness of wastewater. Further study about another parameter (eg. social and economic parameter) intervension on sanitation awareness could be investigated.

  13. Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater.

    Science.gov (United States)

    Gani, Paran; Sunar, Norshuhaila Mohamed; Matias-Peralta, Hazel; Mohamed, Radin Maya Saphira Radin; Latiff, Ab Aziz Abdul; Parjo, Umi Kalthsom

    2017-07-03

    This study was undertaken to analyze the efficiency of Botryococcus sp. in the phycoremediation of domestic wastewater and to determine the variety of hydrocarbons derived from microalgal oil after phycoremediation. The study showed a significant (p chemical oxygen demand, 69.1% biochemical oxygen demand, 59.9% total nitrogen, 54.5% total organic carbon, and 36.8% phosphate. The average dry weight biomass produce was 0.1 g/L of wastewater. In addition, the dry weight biomass of Botryococcus sp. was found to contain 72.5% of crude oil. The composition analysis using Gas Chromatogram - Mass Spectrometry (GC-MS) found that phthalic acid, 2-ethylhexyltridecyl ester (C 29 H 48 O 4 ), contributed the highest percentage (71.6%) of the total hydrocarbon compounds to the extracted algae oil. The result of the study suggests that Botryococcus sp. can be used for effective phycoremediation, as well as to provide a sustainable hydrocarbon source as a value-added chemical for the bio-based plastic industry.

  14. Quality assessment of treated wastewater to be reused in agriculture

    Directory of Open Access Journals (Sweden)

    M.H. Rahimi

    2018-04-01

    Full Text Available In this study, the quality of a treated wastewater for agricultural and irrigation purposes was investigated. 39 quality parameters were investigated at the entrance of an effluent channel to the destination plain in monthly time intervals during a year. The aim of this study was drawing an analogy between analyses results and the latest standards in the world (nationwide and internationally, the agricultural and irrigation usage indexes and the Wilcox diagram. The results showed that some parameters such as turbidity, total suspended solids, electrical conductivity, sodium, detergents, total coliform and focal coliform, ammonium, residual sodium carbonate, the Kelly’s Ratio and the Wilcox diagram were exceeding the permissible limit and are not suitable for agriculture and irrigation. It was found that the aquifers in the study area were polluted by natural salinity and geogenic source. As a result, application of the treated wastewater from Qom for agriculture and irrigation purposes needs to be revised and monitored. An action plan is also needed to manage a huge source of water and to avoid further environmental and health risks.

  15. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation

  16. Photocatalytic Activity of TiO2 Thin Films Obtained by the Sputtering RF in Wastewater

    Science.gov (United States)

    Cardona Bedoya, Jairo Armando; Sanchez Velandia, Wilmer Asmed; Delgado Rosero, Miguel Iban; Florido Cuellar, Alex Enrique; Zelaya Angel, Orlando; Mendoza Alvarez, Julio G.

    2011-03-01

    The photocatalytic activity of Ti O2 thin films in wastewater, under an UV irradiation, is studied. The films were prepared on corning glass substrates by the sputtering RF technique. We present evidence on the photocatalytic degradation, carried out by advanced oxidation processes (AOPs) in domestic wastewater pretreated with UASB (upflow anaerobic sludge blanket) reactors. Ti O2 films were illuminated with ultraviolet light during a time of 4 hours (λ ≅ 264 nm). We could see the effect of degraded operation in the absorbance measurement using UV-VIS spectrophotometry. The results show an increased rate of degradation of the wastewater by 30% compared to the values reflected biologically treated wastewater by anaerobic reactors.

  17. Effect of the presence of Actinomycetes in the activated sludge on the quality of the treated wastewater

    Directory of Open Access Journals (Sweden)

    Bezak-Mazur Elżbieta

    2017-01-01

    Full Text Available The aim of the study was to determine the effect of the Actinomycetes proliferation in the activated sludge on the quality of the treated wastewater and the sewage receiver. The river which is the sewage receiver flows near the wastewater treatment plant. The study was performed on the wastewater (raw and treated and on the river water samples (collected before and after wastewater discharge. The analysis of the research results, such as the content of total organic carbon (TOC, total phosphorus and oxygen consumption in the examined samples, permit the conclusion that the presence of relatively large population of the Actinomycetes in sewage sludge has a negative impact on the quality of the sewage receiver. Determining the effect of the Actinomycetes in the activated sludge on the wastewater treatment process involved the application of specific analyses, such as Sludge Biotic Index (SBI and the identification of filamentous bacteria in the activated sludge. The analysis of studies indicates that the presence of the Actinomycetes in the activated sludge adversely affects the efficiency of the wastewater treatment process.

  18. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments

    KAUST Repository

    Liu, Guangli

    2011-08-01

    Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118h) was similar to that obtained by adding acetate or fumarate (110-115h), and less than that with glucose (181h) or Fe(III) (353h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149h (25mM) to 251h (50mM) and 526h (100mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600μg/cm2 for all amendments except Fe(Sh{cyrillic}) (1650μg/cm2). Wastewater produced 91mW/m2, with the other MFCs producing 50mW/m2 (fumarate) to 103mW/m2 (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments. © 2011 Elsevier Ltd.

  19. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments.

    Science.gov (United States)

    Liu, Guangli; Yates, Matthew D; Cheng, Shaoan; Call, Douglas F; Sun, Dan; Logan, Bruce E

    2011-08-01

    Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118 h) was similar to that obtained by adding acetate or fumarate (110-115 h), and less than that with glucose (181 h) or Fe(III) (353 h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149 h (25 mM) to 251 h (50 mM) and 526 h (100 mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600 μg/cm(2) for all amendments except Fe(Ш) (1650 μg/cm(2)). Wastewater produced 91 mW/m(2), with the other MFCs producing 50 mW/m(2) (fumarate) to 103mW/m(2) (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments

    KAUST Repository

    Liu, Guangli; Yates, Matthew D.; Cheng, Shaoan; Call, Douglas F.; Sun, Dan; Logan, Bruce E.

    2011-01-01

    Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118h) was similar to that obtained by adding acetate or fumarate (110-115h), and less than that with glucose (181h) or Fe(III) (353h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149h (25mM) to 251h (50mM) and 526h (100mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600μg/cm2 for all amendments except Fe(Sh{cyrillic}) (1650μg/cm2). Wastewater produced 91mW/m2, with the other MFCs producing 50mW/m2 (fumarate) to 103mW/m2 (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments. © 2011 Elsevier Ltd.

  1. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  2. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    Science.gov (United States)

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.

  3. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment

    International Nuclear Information System (INIS)

    Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.; Brix, H.; Kalogerakis, N.; Manios, T.

    2009-01-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a free water surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor (RBC), and (d) a packed bed filter (PBF). All units operated in parallel at various hydraulic loading rates (HLR) ranging from 50% to 175% of designed operating HLR. The study was conducted during an 8 month period and showed that COD removal efficiency of HSF was comparable (> 75%) to that of RBC and PBF, whereas that of the FWS system was only 57%. Average nutrient removal efficiencies for FWS, HSF, RBC and PBF were 6%, 21%, 40% and 43%, respectively for total nitrogen and 21%, 39%, 41% and 42%, respectively for total phosphorus. Removals of total coliforms were lowest in FWS and PBF (1.3 log units) and higher in HSF and RBC (2.3 to 2.6 log units). HSF showed slightly lower but comparable effluent quality to that of RBC and PBF systems, but the construction cost and energy requirements for this system are significantly lower. Overall the final decision for the best non-conventional wastewater treatment system depends on the construction and operation cost, the area demand and the required quality of effluent

  4. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    Science.gov (United States)

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  5. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  6. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: Septic tank – up flow anaerobic filter.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Arrubla Vélez

    2016-01-01

    Full Text Available In several countries around the world, Pharmaceutical and Personal Care Products (PPCPs exist in aquatic environments, a fact that increases the awareness within the scientific community with respect to their possible fate and environment effects. This research presents a preliminary monitoring of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia. Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filter and its effluent is discharged into the Otún River, upstream of the water intake of the supply system of the city. The compounds monitored in this research included ibuprofen, naproxen, diclofenac, aspirin, ketoprofen, caffeine, galaxolide, tonalide and dihydrojasmonate. An adapted method of multi-residue analysis was used, which is based on solid phase extraction with hydrophilic-lipophilic balance cartridges, and determination by gas chromatography-mass spectrometry. The removal efficiencies demonstrated that the treatment plant could eliminate less than 50% of dihydrojasmonate, diclofenac and galaxolide existing in wastewater; concentration of aspirin, naproxen and tonalide could only be reduced in 15%; and caffeine, ibuprofen and ketoprofen were not removed. Results provided basic information to decide over the necessity of complementary treatments for effluents from systems with the mentioned units.

  7. Application of SBR technology for domestic waste water treatment; Aplicacion de la tecnologia SBR para el tratamiento de aguas residuales domesticas

    Energy Technology Data Exchange (ETDEWEB)

    Mace, S.; Mata-Alvarez, J.

    2001-07-01

    The objective of the present study is to give an overall vision of SBR (Sequencing Batch Reactors) technology as an alternative way for treating domestic and municipal wastewaters. This technology has been gaining popularity through years, mainly due to its single-tank design and the ease of its automation. There are a lot of cases in literature dealing with the treatment of this kind of effluents with this technology, whether a lab-scale, pilot scale or industrial scale. Thus, this paper includes relevant experiments found in literature concerning domestic wastewater treatment. There is also a special attention given to an application that has been studied recently: the use of this technology in wastewater treatment plants, concretely for the treatment of the reject water found after anaerobic digesters, which contains high concentrations of ammoniacal nitrogen. (Author)

  8. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  9. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  10. Presence of helminth eggs in domestic wastewater and its removal at low temperature UASB reactors in Peruvian highlands.

    Science.gov (United States)

    Yaya-Beas, Rosa-Elena; Cadillo-La-Torre, Erika-Alejandra; Kujawa-Roeleveld, Katarzyna; van Lier, Jules B; Zeeman, Grietje

    2016-03-01

    This work studied the anaerobic sludge filtration capacity for pathogens reduction in a 29 L and 1.65 m height lab-scale UASB reactor treating domestic wastewater at low temperatures in the city of Puno (Peru). The anaerobic sludge filtration capacity was performed applying upflow velocities of 0.12, 0.14, 0.16, 0.20, 0.27 and 0.41 m/h. Results show that the HE removal varied between 89 and 95% and the most common specie was Ascaris lumbricoides. Faecal coliform and Escherichia coli removal varied in the range of 0.9-2.1 and 0.8-1.6 log10 respectively. Likely related to the low operational temperatures, the total COD removal varied between 37 and 62%. The best performance in terms of removal of HE, total COD and turbidity was obtained at the lowest upflow velocity of 0.12 m/h. In order to meet WHO standards for water reuse a post-treatment unit will be required to polish the effluent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Peat leachmound treatment of on-site domestic septic effluent in cold region environments

    Energy Technology Data Exchange (ETDEWEB)

    Riznyk, Z; Rockwell, J [Alaska Pacific University, Anchorage (Alaska); Reid, L C; Reid, S L [Alaska Pacific University, Anchorage (Alaska). Environmental Control Services

    1990-01-01

    A two-year study of two pilot peat leachmounds has demonstrated that under cold region conditions of subzero temperatures, severe periodic storm events and break-up of winter ice and snow, that domestic septic tank effluent can be treated for subsurface or suface discharge. The quality of the peat leachate is similar to wastewater which has undergone tertiary treatment. It is our contention that peat leachmounds can be designed to treat the wastewater of Alaskan bush communities which to date still rely on privies and honey buckets. Not only could peat leachmounds be used in rural Alaska, but this technology could be extended to other northern tier counties such as the Soviet Union and Canada to improve the living conditions of the area's rural residents.

  12. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent

    International Nuclear Information System (INIS)

    Grantham, Theodore E.; Cañedo-Argüelles, Miguel; Perrée, Isabelle; Rieradevall, Maria; Prat, Narcís

    2012-01-01

    The discharge of wastewater from sewage treatment plants is one of the most common forms of pollution to river ecosystems, yet the effects on aquatic invertebrate assemblages have not been investigated in a controlled experimental setting. Here, we use a mesocosm approach to evaluate community responses to exposure to different concentrations of treated wastewater effluents over a two week period. Multivariate analysis using Principal Response Curves indicated a clear, dose-effect response to the treatments, with significant changes in macroinvertebrate assemblages after one week when exposed to 30% effluent, and after two weeks in the 15% and 30% effluent treatments. Treatments were associated with an increase in nutrient concentrations (ammonium, sulfate, and phosphate) and reduction of dissolved oxygen. These findings indicate that exposure to wastewater effluent cause significant changes in abundance and composition of macroinvertebrate taxa and that effluent concentration as low as 5% can have detectable ecological effects. - Highlights: ► Stream invertebrate communities are altered by exposure to wastewater effluent. ► Principal Response Curves indicate a dose-effect response to effluent treatment. ► Biotic quality indices decline with increasing effluent concentration and exposure time. ► Effluent concentrations as low as 5% have detectable ecological effects. - Exposure to treated effluent in a stream mesocosm caused a dose-dependent response in the aquatic invertebrate community and led to declines in biological quality indices.

  13. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed. IWA Publishing 2008.

  14. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  15. Kinetics of aerobically activated sludge on terylene artificial silk printing and dyeing wastewater treatment.

    Science.gov (United States)

    Guan, Bao-hong; Wu, Zhong-biao; Xu, Gen-liang

    2004-04-01

    Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics parameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the moderate-removal stage with B/Ckinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.

  16. Sequential use of bentonites and solar photocatalysis to treat winery wastewater.

    Science.gov (United States)

    Rodríguez, Eva; Márquez, Gracia; Carpintero, Juan Carlos; Beltrán, Fernando J; Alvarez, Pedro

    2008-12-24

    The sequential use of low-cost adsorbent bentonites and solar photocatalysis to treat winery wastewater has been studied. Three commercial sodium-bentonites (MB-M, MB-G, and MB-P) and one calcium-bentonite (Bengel) were characterized and used in this study. These clay materials were useful to totally remove turbidity (90-100%) and, to a lesser extent, color, polyphenols (PPh), and soluble chemical oxygen demand (CODS) from winery wastewater. Both surface area and cation exchange capacity (CEC) of bentonite had a positive impact on treatment efficiency. The effect of pH on turbidity removal by bentonites was studied in the 3.5-12 pH range. The bentonites were capable of greatly removing turbidity from winery wastewater at pH 3.5-5.5, but removal efficiency decreased with pH increase beyond this range. Settling characteristics (i.e., sludge volume index (SVI) and settling rate) of bentonites were also studied. Best settling properties were observed for bentonite doses around 0.5 g/L. The reuse of bentonite for winery wastewater treatment was found not to be advisable as the turbidity and PPh removal efficiencies decreased with successive uses. The resulting wastewater after bentonite treatment was exposed to solar radiation at oxic conditions in the presence of Fe(III) and Fe(III)/H2O2 catalysts. Significant reductions of COD, total organic carbon (TOC), and PPh were achieved by these solar photocatalytic processes.

  17. Performance Evaluation of Integrated Constructed Wetland for Domestic Wastewater Treatment.

    Science.gov (United States)

    Sehar, Shama; Naz, Iffat; Khan, Sumera; Naeem, Sana; Perveen, Irum; Ali, Naeem; Ahmed, Safia

    2016-03-01

    Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances.

  18. Earthworm-microorganism interactions: a strategy to stabilize domestic wastewater sludge.

    Science.gov (United States)

    Zhao, Limin; Wang, Yayi; Yang, Jian; Xing, Meiyan; Li, Xiaowei; Yi, Danghao; Deng, Dehan

    2010-04-01

    The performance of a conventional biofilter (BF) and a vermifilter containing the earthworm, Eisenia foetida, (VF) for the treatment of domestic wastewater sludge were compared with the earthworm-microorganism interaction mechanisms involved in sludge stabilization. The results revealed that the presence of earthworms in the VF led to significant stabilization of the sludge by enhancing the reduction in volatile suspended solids (VSS) by 25.1%. Digestion by earthworms and the earthworm-microorganism interactions were responsible for 54% and 46% of this increase, respectively. Specifically, earthworms in the VF were capable of transforming insoluble organic materials to a soluble form and then selectively digesting the sludge particles of 10-200 microm to finer particles of 0-2 microm, which led to the further degradation of organic materials by the microorganisms in the reactor. Additionally, denaturing gradient gel electrophoresis (DGGE) profiles showed that there was an intensified bacterial diversity in the vermifilter due to the presence of earthworms, especially in response to the nutrients in their casts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater

    Directory of Open Access Journals (Sweden)

    Heber Martins de Paula

    2016-01-01

    Full Text Available Wastewater from concrete plants has a high pH and a high concentration of suspended solids, necessitating treatment before reuse or discharge into the environment. The objective of this study is to evaluate the efficiency of two chemical coagulants, aluminum sulfate (Al2(SO43 and iron chloride (FeCl3, and a natural coagulant, Moringa oleifera (MO, all in their soluble forms, in the treatment of wastewater from concrete plants. To this end, the efficiencies of the three coagulants, in combinations with different proportions, were tested. The quality parameters of the wastewater obtained after the treatments were compared to the limit values for non-potable water. The use of coagulants in their soluble form potentiates their effect, especially when preparing the MO extract, i.e., greater amounts of the protein responsible for the coagulation is extracted. A mixture with MO and Al2(SO43 in a 20:80 proportion showed the best results, with 97.5% of the turbidity removed at 60 min. of sedimentation, allowing the treated water to be used for washing vehicles and flushing toilets. The FeCl3 treatment produced a high concentration of chlorides, which could cause corrosion problems, and is therefore not recommended for concrete wastewater treatment.

  20. Application of Moringa Oleifera seed extract to treat coffee fermentation wastewater.

    Science.gov (United States)

    Garde, William K; Buchberger, Steven G; Wendell, David; Kupferle, Margaret J

    2017-05-05

    Wastewater generated from wet processing of coffee cherries degrades stream water quality downstream of processing mills and impacts human health. The widespread popularity of coffee as an export makes this a global problem, although the immediate impact is local. Approximately 40% of all coffee around the world is wet processed, producing wastewater rich in organic nutrients that can be hazardous to aquatic systems. Moringa Oleifera Seed Extract (MOSE) offers promise as a local and affordable "appropriate" coagulation technology for aiding in the treatment of coffee wastewater. Field research was conducted at the Kauai Coffee Company to investigate the application of MOSE to treat coffee fermentation wastewater (CFW). Coagulation tests were conducted at five pH CFW levels (3-7) and MOSE doses (0-4g/L). After settling, TSS, COD, nitrate, nitrite, total nitrogen, and pH of supernatant from each test were measured. MOSE reduced TSS, COD, nitrate, and nitrite in CFW to varying degrees dependent on pH and dose applied. TSS removal ranged from 8% to 54%. Insoluble COD removal ranged from 26% to 100% and total COD removal ranged from 1% to 25%. Nitrate and nitrite reduction ranged from 20% to 100%. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water.

    Science.gov (United States)

    Merel, Sylvain; Benzing, Saskia; Gleiser, Carolin; Di Napoli-Davis, Gina; Zwiener, Christian

    2018-08-01

    Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r 2 of 0.32 for cyproconazole and r 2 of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r 2 of 0.86 for carbamazepine and r 2 of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Domestic Waste: Sources, Effects, and Management

    International Nuclear Information System (INIS)

    Saad, A.; Hegazi, N.

    1999-01-01

    Waste is any discarded material. Domestic wastes are those produced by individual activities. In common with other living organisms, humans discharge waste substances to the environment that in turn re-energize the endless cycle of nature. Human activities are closely associated with ambient environment (soil , water, or air) through accumulation of domestic waste. Such household hazardous waste deposit arise from the discharge of domestic activities in the form of municipal solid waste (household, commercial and public street wastes), night soil (human and animal body wastes, excreta, or excrement). In rural areas, night soil is one of several components of the refuse that pollute the land. The surface water may be also directly polluted by domestic wastes or agricultural wastes. But in urbanized areas, household wastes, bathroom and laundry are conveniently flushed away by water as domestic wastewater through sewerage system, and disposed onto land or into receiving water, or in some countries it is treated and re-discharged for domestic usage. Solid waste in the form of kitchen garbage and other household refuse is collected for landfill disposal or for re-industrialization. Many domestic waste influence indoor air quality in urban and rural areas as for example the fuel used for cooking, smoke from cooking and from smoking habits, modern building materials, insulation, fabrics and furniture, cleaning materials, solvents, pesticides, personal care products, organic material or vegetable origin and dander from domestic life

  3. Utilization of Gamma Radiation for Disinfecting Domestic Wastewater

    International Nuclear Information System (INIS)

    Aldehmani, K.; Abokhabta, S.; Rahil, E.; Elammari, M.; Aboudeeb, F.

    2004-01-01

    Wastewater treatment by Gamma radiation is an effective, economic and environmentally friendly as the water produced has the specification to be reused for watering trees, gardens, football fields and golf courses instead of using fresh water that can be saved for drinking purposes as we suffer a severe shortage of fresh water. Sewage water samples were brought from Elhadba Elkhadra wastewater treatment plant which is located in the City of Tripoli. Samples were taken from two places: the inlet of the plant and from the stream coming out from the biological treatment, they are taken in sterile plastic bottles to ensure that cross contamination does not take place. Samples were irradiated at Tajura Research Centre with different doses ranged between 0.5 and 2 kGy with a dose rate of 10 Gy/min. These samples were investigated chemically and microbiologically. A study was carried out on the effect of gamma radiation on pathogenic organisms, and the total suspended solids in the raw and treated samples. Results showed that the doses 2.0 kGy and 1.5 kGy were enough to terminate the total microbial count and Enterobacter ease respectively but only a dose of 1.0 kGy was needed to eliminate total coliform, fecal coliform and spore forming bacteria. There were also higher BOD, pH and E.C. values in raw sewage than the sewage that was subjected to biological treatment which gave a good indication for the efficiency of the biological treatment. (authors)

  4. Phthalates and alkylphenols in industrial and domestic effluents: case of Paris conurbation (France).

    Science.gov (United States)

    Bergé, A; Gasperi, J; Rocher, V; Gras, L; Coursimault, A; Moilleron, R

    2014-08-01

    Phthalates and alkylphenols are toxics classified as endocrine disrupting compounds (EDCs). They are of particular concern due to their ubiquity and generally higher levels found in the environment comparatively to other EDCs. Industrial and domestic discharges might affect the quality of receiving waters by discharging organic matter and contaminants through treated waters and combined sewer overflows. Historically, industrial discharges are often considered as the principal vector of pollution in urban areas. If this observation was true in the past for some contaminants, no current data are today available to compare the quality of industrial and domestic discharges as regards EDCs. In this context, a total of 45 domestic samples as well as 101 industrial samples were collected from different sites, including 14 residential and 33 industrial facilities. This study focuses more specifically on 4 phthalates and 2 alkylphenols, among the most commonly studied congeners. A particular attention was also given to routine wastewater quality parameters. For most substances, wastewaters from the different sites were heavily contaminated; they display concentrations up to 1200 μg/l for di-(2-ethylhexyl) phthalate and between 10 and 100 μg/l for diethyl phthalate and nonylphenol. Overall, for the majority of compounds, the industrial contribution to the flux of contaminant reaching the wastewater treatment plants ranges between 1 and 3%. The data generated during this work constitutes one of the first studies conducted in Europe on industrial fluxes for a variety of sectors of activity. The study of the wastewater contribution was used to better predict the industrial and domestic contributions at the scale of a huge conurbation heavily urbanized but with a weak industrial cover, illustrated by Paris. Our results indicate that specific investigations on domestic discharges are necessary in order to reduce the release of phthalates and alkylphenols in the sewer systems

  5. Ecological risks of home and personal care products in the riverine environment of a rural region in south China without domestic wastewater treatment facilities

    NARCIS (Netherlands)

    Zhang, N.; Liu, Y.; Brink, van den P.J.; Price, O.R.; Ying, G.G.

    2015-01-01

    Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs,

  6. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  7. Preparation, Characterization of Coal Ash Adsorbent and Orthogonal Experimental Rsearch on Treating Printing and Dyeing Wastewater

    Science.gov (United States)

    Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli

    2018-03-01

    Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.

  8. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    Science.gov (United States)

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  9. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment

    Science.gov (United States)

    Ibrahim, N. A.; Wirzal, M. D. H.; Nordin, N. A. H.; Halim, N. S. Abd

    2018-04-01

    Nowadays, the water shortage problem following the urbanization and increasing pollution of natural water source have increased the awareness to treat wastewater. Membrane filtration is often used in wastewater treatment plants to filter out more residual activated sludge from aeration process in the secondary stage. However, fouling is the main concern due to the fact it can happen to any membrane application. Antifouling properties in membrane can be improved by blending membranes with fillers or additives to make them more hydrophilic. This study aims to improve the antifouling properties in polyvinylidene fluoride (PVDF) membranes while optimizing the loading of Zeolitic imidazolate framework-8 (ZIF-8) fillers; at different loading (2.0 wt. %, 4.0 wt. %, 6.0 wt. %, 8.0 wt. % and 10.0 wt. %). Manual hand-casting of flat sheet membrane was done and the fabricated membranes were tested for their filterability against pure water and domestic wastewater. Both permeability tests showed that PVDF with 8% ZIF-8 membrane was the most permeable with a pure water and wastewater permeability of 150 L/m2.h.bar and 94 L/m2.h.bar, respectively. The pure water permeability of PVDF with 8% ZIF-8 membrane increases for about 130% compared to the pure PVDF membrane. The turbidity test of the initial feed and final permeate of wastewater, PVDF with 8% ZIF-8 membrane also gave out the highest reduction rate at 87%, which is 36% higher than that of pure PVDF membrane. It can be deduced that 8% of ZIF-8 is the ideal loading to PVDF in improving its antifouling properties to be used in domestic wastewater treatment.

  10. Groundwater-quality data for a treated-wastewater plume near the Massachusetts Military Reservation, Ashumet Valley, Cape Cod, Massachusetts, 2006-08

    Science.gov (United States)

    Savoie, Jennifer G.; LeBlanc, Denis R.; Fairchild, Gillian M.; Smith, Richard L.; Kent, Douglas B.; Barber, Larry B.; Repert, Deborah A.; Hart, Charles P.; Keefe, Steffanie H.; Parsons, Luke A.

    2012-01-01

    A plume of contaminated groundwater extends from former disposal beds at the Massachusetts Military Reservation's wastewater-treatment plant toward Ashumet Pond, coastal ponds, and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected from monitoring wells, multilevel samplers, and profile borings to characterize the nature and extent of the contaminated groundwater and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected in 2007 from 394 wells (at 121 well-cluster locations) and 780 multilevel-sampler ports (at 42 locations) and in 2006-08 at 306 depth intervals in profile borings (at 20 locations) in and near the treated-wastewater plume. Analyses of these water samples for field parameters (specific conductance, pH, dissolved oxygen and phosphate concentrations, and alkalinity); absorbance of ultraviolet/visible light; and concentrations of nitrous oxide, dissolved organic carbon, methylene blue active substances, selected anions and nutrients, including nitrate and ammonium, and selected inorganic solutes, including cations, anions, and minor elements, are presented in tabular format. The natural restoration of the sand and gravel aquifer after removal of the treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume, have been documented in several published reports that are listed in the references.

  11. Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.

    Science.gov (United States)

    Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa

    2013-01-01

    Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. In-plant testing of membranes to treat electroplating wastewater

    Science.gov (United States)

    Shah, D. B.; Talu, Orhan

    1995-01-01

    This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form.

  13. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic

  14. Salinity effect of irrigation with treated wastewater in basal soil respiration in SE of Spain

    Science.gov (United States)

    Morugan, A.; Garcia-Orenes, F.; Mataix-Solera, J.

    2012-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. Wastewater use in agriculture is not a new practice, all over the world this reuse has been common practice for a long time, but the concept is of greater importance currently because of the global water crisis. Replacement of freshwater by treated wastewater is seen as an important conservation strategy contributing to agricultural production, substantial benefits can derive from using this nutrient-rich waste water but there can also be a negative impact. For this reason it is necessary to know precisely the composition of water before applying it to the soil in order to guarantee minimal impact in terms of contamination and salinization. In this work we have been studying, for more than three years, different parameters in calcareous soils irrigated with treated wastewater in an agricultural Mediterranean area located at Biar (Alicante, SE Spain), with a crop of grape (Vitis labrusca). Three types of waters were used for the irrigation of the soil: fresh water (control) (TC), and treated wastewater from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type during the study period. A soil sampling was carried out every four months. We show the results of the evolution of basal soil respiration (BSR), and its relationship with other parameters. We observed a similar pattern of behavior for BSR between treatments, a decrease at the first eighteen months of irrigation and an increase at the end of study. In our study case, the variations of BSR obtained for all the treatments seem to be closely related to the dose and frequency of irrigation and the related soil wetting and drying cycles. However, the results showed a negative correlation between BSR and

  15. Simultaneous methane production and wastewater reuse by a membrane-based process: Evaluation with raw domestic wastewater

    International Nuclear Information System (INIS)

    Gao Dawen; An Rui; Tao Yu; Li Jin; Li Xinxin; Ren Nanqi

    2011-01-01

    In this study, a membrane-based process was applied to simultaneously reclaim methane and generate reused water from raw domestic wastewater. The system was comprised of up-flow anaerobic sludge fixed bed (UAFB), anoxic sink (AS) and aerobic membrane bioreactor (MBR). The hydraulic retention time of UAFB (HRT U ) was gradually shortened from 8 h to 6 h, 3 h and to 1 h, while the HRT of AS and MBR kept at 8 h. It is found that HRT U of 3 h was more suitable for the balancing production of biogas and volatile fatty acids (VFAs), and the VFAs served as carbon source for denitrification. The trans-membrane pressure (TMP) of the MBR kept lower than 0.04 MPa without wash or change of membrane sheet, however, the scanning electron microscopy (SEM) analysis indicated that microbes attached to the inner-surface of membrane, causing irreversible fouling after 133-day operation. The denaturing gradient gel electrophoresis (DGGE) profiles of amplified 16S rDNA gene fragments proved that more functional bacteria and higher microbial diversity emerged at HRT U of 3 h and 1 h. Most bacteria belonged to Betaproteobacteria and were responsible for carbon and nitrogen removal.

  16. Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil.

    Science.gov (United States)

    Chevremont, A-C; Boudenne, J-L; Coulomb, B; Farnet, A-M

    2013-04-15

    Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of Treated Wastewater Combined with Various Amounts of Manure and Chemical Fertilizers on Nutrient Content and Yield in Corn

    Directory of Open Access Journals (Sweden)

    Abolfazal Tavassoli

    2010-09-01

    Full Text Available In order to study the effects of treated wastewater combined with manure and chemical fertilizers on the nutrients content and forage yield in corn, field experiments were conducted in 2007. The experiments were conducted in a split plot design with three replications. The treatments were comprised of two levels of irrigation water (W1= well water and W2= wastewater in the main plot and five levels of fertilizer (F1= unfertilized, F2 = 100% manure, F3= 50% manure, F4= 100% fertilizer, and F5= 50% fertilizer in the subplot. Results showed that, compared to ordinary water, irrigation with treated wastewater significantly increased fresh and dry forage yield of corn. The treatment using treated wastewater also had a significant effect on N, P, and K contents in corn forage. However, wastewater had no significant effect on plant Fe, Mn, and Zn contents. Among the fertilizer treatments, the highest fresh and dry forage yields and the highest N, P and K contents belonged to the treatments using 100% fertilizer. The highest Fe, Mn, and Zn contents were observed in plants in the treatment with 100% manure.

  18. Environmental life cycle assessment of different domestic wastewater streams: policy effectiveness in a tropical urban environment.

    Science.gov (United States)

    Ng, Bernard J H; Zhou, Jin; Giannis, Apostolos; Chang, Victor W-C; Wang, Jing-Yuan

    2014-07-01

    To enhance local water security, the Singapore government promotes two water conservation policies: the use of eco-friendly toilets to reduce yellow water (YW) disposal and the installation of water efficient devices to minimize gray water (GW) discharge. The proposed water conservation policies have different impacts on the environmental performance of local wastewater management. The main purpose of this study is to examine and compare the impacts of different domestic wastewater streams and the effectiveness of two water conservation policies by means of life cycle assessment (LCA). LCA is used to compare three scenarios, including a baseline scenario (BL), YW-reduced scenario (YWR) and GW-reduced scenario (GWR). The BL is designed based on the current wastewater management system, whereas the latter two scenarios are constructed according to the two water conservation policies that are proposed by the Singapore government. The software SIMPARO 7.3 with local data and an eco-invent database is used to build up the model, and the functional unit is defined as the daily wastewater disposal of a Singapore resident. Due to local water supply characteristics, the system boundary is extended to include the sewage sludge management and tap water production processes. The characterization results indicate that the GWR has a significant impact reduction (22-25%) while the YWR has only a 2-4% impact reduction compared with the BL. The contribution analysis reveals that the GW dominates many impact categories except eutrophication potential. The tap water production is identified as the most influential process due to its high embodied energy demand in a local context. Life cycle costing analysis shows that both YWR and GWR are financially favorable. It is also revealed that the current water conservation policies could only achieve Singapore's short-term targets. Therefore, two additional strategies are recommended for achieving long-term goals. This study provides a

  19. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Nusa-Idaman-Said

    2000-01-01

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  20. Optimizing electrocoagulation and electro-Fenton process for treating car wash wastewater

    Directory of Open Access Journals (Sweden)

    Seyyedali Mirshahghassemi

    2017-02-01

    Full Text Available Background: Car wash wastewater contains several contaminants such as organic matter, oil, grease, detergents and phosphates, all of which are harmful for the environment. In this study, the application of electrocoagulation (EC to treat car wash wastewater has been studied, and the operating parameters optimized. The electro-Fenton (EF for further contaminant removal was also investigated. Methods: In EC process, the effect of pH, current density, and the reaction time of the removal efficiency of chemical oxygen demand (COD, phosphate, and turbidity were investigated using the response surface methodology (RSM. The electrochemical cell consisted of four iron electrodes that were connected to a power supply using a monopolar arrangement. In the EF process, the effect of pH, reaction time, and hydrogen peroxide concentration on COD removal efficiency were probed. Results: The optimum pH, current density, and the reaction time for the EC process were 7.3, 4.2 mA cm-2 and 20.3 minutes, respectively. Under these conditions, the COD, phosphate, and turbidity removal percentages were 80.8%, 94.9% and 85.5%, respectively, and the specific energy consumption was 1.5 kWh m-3. For the EF process, the optimum pH, reaction time, current and hydrogen peroxide dosage were 3, 10 minutes, 2 A and 500 mg L-1, respectively. The EF showed higher COD removal efficiency (85.6% with a lower specific energy consumption (0.5 kWh m-3 and reaction time compared to the EC. Conclusion: This study shows that both EC and EF can effectively treat car wash wastewater with high removal efficiency within a short reaction time.

  1. Achieving partial nitrification in a novel six basins alternately operating activated sludge process treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Rusul Naseer; Arab, Saad; Xiwu, Lu [Southeast University, Nanjing (China)

    2013-11-15

    A novel technology was developed to achieve partial nitrification at moderately low DO and short HRT, which would save the aeration cost and have the capacity to treat a wide range of low-strength real wastewater. The process enables a relatively stable whereas nitrite accumulation rate (NO{sub 2}-AR) was stabilized over 94% in the last aerobic basin on average of each phase through a combination of short HRT and low DO level. Low DO did not produce sludge with poorer settleability. The morphology and internal structure of the granular sludge was observed by using a scanning electron microscope (SEM) analysis during a long-term operation. The images indicated that thick clusters of spherical cells and small rod-shaped cells (NOB and AOB are rod-shaped to spherical cells) were the dominant population structure, rather than filamentous and other bacteria under a combination of low DO and short HRT, which gives a good indication of nitrite accumulation achievement. MPN method was used to correlate AOB numbers with nutrient removal. It showed that an ammonia-oxidizing bacterium (AOB) was the dominant nitrifying bacteria, whereas high NO{sub 2}-AR was achieved at AOB number of 5.33x10{sup 8} cell/g MLSS. Higher pollutant removal efficiency of 86.2%, 98% and 96.1%, for TN, NH{sub 4}{sup +}-N, and TP, respectively, was achieved by a novel six basin activated sludge process (SBASP) at low DO level and low C/N ratio which were approximately equal to the complete nitrification-denitrification with the addition of sodium acetate (NaAc) at normal DO level of (1.5-2.5 mg/L)

  2. Decentralised schemes for integrated management of wastewater and domestic organic waste: the case of a small community.

    Science.gov (United States)

    Lijó, Lucía; Malamis, Simos; González-García, Sara; Moreira, María Teresa; Fatone, Francesco; Katsou, Evina

    2017-12-01

    This study assesses from an environmental perspective two different configurations for the combined treatment of wastewater and domestic organic waste (DOW) in a small and decentralised community having a population of 2000. The applied schemes consist of an upflow anaerobic blanket (UASB) as core treatment process. Scheme A integrates membranes with the anaerobic treatment; while in Scheme B biological removal of nutrients in a sequencing batch reactor (SBR) is applied as a post treatment to UASB effluent. In energy-related categories, the main contributor is electricity consumption (producing 18-50% of the impacts); whereas in terms of eutrophication-related categories, the discharge of the treated effluent arises as a major hotspot (with 57-99% of the impacts). Scheme B consumes 25% more electricity and produces 40% extra sludge than Scheme A, resulting in worse environmental results for those energy categories. However, the environmental impact due to the discharge of the treated effluent is 75% lower in eutrophication categories due to the removal of nutrients. In addition, the quality of the final effluent in Scheme B would allow its use for irrigation (9.6 mg N/L and 2 mg P/L) if proper tertiary treatment and disinfection are provided, expanding its potential adoption at a wider scale. Direct emissions due to the dissolved methane in the UASB effluent have a significant environmental impact in climate change (23-26%). Additionally, the study shows the environmental feasibility of the use of food waste disposers for DOW collection in different integration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown

  4. Evaluating two infiltration gallery designs for managed aquifer recharge using secondary treated wastewater.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Fegg, Wolfgang; Shackleton, Mark; Higginson, Simon

    2013-03-15

    As managed aquifer recharge (MAR) becomes increasingly considered for augmenting water-sensitive urban areas, fundamental knowledge of the achievable scale, longevity and maintenance requirements of different options will become paramount. This paper reports on a 39 month pilot scale MAR scheme that infiltrated secondary treated wastewater through unsaturated sand into a limestone and sand aquifer. Two types of infiltration gallery were constructed to compare their hydraulic performance, one using crushed, graded gravel, the other using an engineered leach drain system (Atlantis Leach System(®)). Both galleries received 25 kL of nutrient-rich, secondary treated wastewater per day. The Atlantis gallery successfully infiltrated 17 ML of treated wastewater over three years. The slotted distribution pipe in the gravel gallery became clogged with plant roots after operating for one year. The infiltration capacity of the gravel gallery could not be restored despite high pressure cleaning, thus it was replaced with an Atlantis system. Reduction in the infiltration capacity of the Atlantis system was only observed when inflow was increased by about 3 fold for two months. The performance of the Atlantis system suggests it is superior to the gravel gallery, requiring less maintenance within at least the time frame of this study. The results from a bromide tracer test revealed a minimum transport time of 3.7 days for the recharged water to reach the water table below 9 m of sand and limestone. This set a limit on the time available for attenuation by natural treatment within the unsaturated zone before it recharged groundwater. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    Science.gov (United States)

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  7. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    International Nuclear Information System (INIS)

    Pendashteh, Ali Reza; Fakhru'l-Razi, A.; Chaibakhsh, Naz; Abdullah, Luqman Chuah; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2011-01-01

    Highlights: → Hypersaline oily wastewater was treated in a membrane bioreactor. → The effects of salinity and organic loading rate were evaluated. → The system was modeled by neural network and optimized by genetic algorithm. → The model prediction agrees well with experimental values. → The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m 3 day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m 3 day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  8. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Pendashteh, Ali Reza [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Environmental Research Institute, Iranian Academic Center for Education, Culture and Research (ACECR), Rasht (Iran, Islamic Republic of); Fakhru' l-Razi, A., E-mail: fakhrul@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Chaibakhsh, Naz [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Abdullah, Luqman Chuah [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Madaeni, Sayed Siavash [Chemical Engineering Department, Razi University, Kermanshah (Iran, Islamic Republic of); Abidin, Zurina Zainal [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia)

    2011-08-30

    Highlights: {yields} Hypersaline oily wastewater was treated in a membrane bioreactor. {yields} The effects of salinity and organic loading rate were evaluated. {yields} The system was modeled by neural network and optimized by genetic algorithm. {yields} The model prediction agrees well with experimental values. {yields} The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m{sup 3} day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m{sup 3} day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  9. Research on safety of reverse osmosis to treat radioactive wastewater

    International Nuclear Information System (INIS)

    Kong Jinsong; Tian Yanjie

    2012-01-01

    The security of reverse osmosis combined with a pretreatment process of disc filtration-ultrafiltration to treat the radioactive wastewater was analyzed and evaluated. Several aspects including reliability and security during operation, maintenance and decommissioning were investigated in this paper. Results showed that safe operation can be ensured by rational process design and scientific management. Estimation on radiation safety showed that the absorbed dose rate is below 0.04 mSv/h on the surface of reverse osmosis module, which can ensure the radiation safety of operators. (authors)

  10. Hydro-geochemical characterization of Treated Domestic Waste Water for possible use in homestead irrigation and managed aquifer recharge in the coastal city of Khulna, Bangladesh

    Science.gov (United States)

    Hamid, T.; Ahmed, K. M.

    2016-12-01

    Bangladesh is among the most densely populated countries in the world. Rapid and unplanned urbanization in Bangladesh has resulted in heterogeneous land use pattern and larger demands for municipal water. To meet the ever-increasing demand of water for such population, the usage of treated domestic waste water (DWW) has become a viable option that can serve specific purposes, i.e. homestead irrigation, managed aquifer recharge (MAR) in major cities like Khulna, the largest city in the southwest coastal region. It is an attractive solution to minimize the deficit between the demand and supply of water in the study area where, in specific parts, city-dwellers suffer year round shortage of potable water due to high salinity in shallow depths. However, certain degree of treatment is mandatory for DWW in order to ensure the compliance of the output water with a set of standards and regulations for the DWW reuse. At present, the DWW is being treated through Constructed Wetlands but the treated water is not used and discharged into the sewer system. Wastewater that has been treated through a constructed wetland is a resource that can be used for productive uses in homestead garden irrigation, artificial aquifer recharge, and other non-potable uses. The study addresses the effectiveness of constructed wetlands in improving the quality of wastewater through on the hydro-geochemical characterization of both raw and treated DWW as well as baseline water quality analysis of surface and ground water in and around the treatment plant with consideration of seasonal variations. The study aims at sustainable development through conservation of water, satisfaction of demands, reliability of water supply, contribution to urban food supply, sustenance of livelihood and replenishment of the depleting aquifer by assessing the suitability of the treated DWW for various non-potable uses and also to provide guidelines for possible uses of treated DWW without adverse impact on environment

  11. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    Science.gov (United States)

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  12. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  13. Simultaneous methane production and wastewater reuse by a membrane-based process: Evaluation with raw domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Gao Dawen, E-mail: dawengao@gmail.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); College of Forestry, Northeast Forestry University, Harbin 150040 (China); An Rui; Tao Yu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Li Jin [Department of Civil Engineering and Mechanics, University of Wisconsin, Milwaukee, Milwaukee, WI 53201 (United States); Li Xinxin; Ren Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2011-02-15

    In this study, a membrane-based process was applied to simultaneously reclaim methane and generate reused water from raw domestic wastewater. The system was comprised of up-flow anaerobic sludge fixed bed (UAFB), anoxic sink (AS) and aerobic membrane bioreactor (MBR). The hydraulic retention time of UAFB (HRT{sub U}) was gradually shortened from 8 h to 6 h, 3 h and to 1 h, while the HRT of AS and MBR kept at 8 h. It is found that HRT{sub U} of 3 h was more suitable for the balancing production of biogas and volatile fatty acids (VFAs), and the VFAs served as carbon source for denitrification. The trans-membrane pressure (TMP) of the MBR kept lower than 0.04 MPa without wash or change of membrane sheet, however, the scanning electron microscopy (SEM) analysis indicated that microbes attached to the inner-surface of membrane, causing irreversible fouling after 133-day operation. The denaturing gradient gel electrophoresis (DGGE) profiles of amplified 16S rDNA gene fragments proved that more functional bacteria and higher microbial diversity emerged at HRT{sub U} of 3 h and 1 h. Most bacteria belonged to Betaproteobacteria and were responsible for carbon and nitrogen removal.

  14. Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment

    NARCIS (Netherlands)

    Xu, Shengnan; Zhang, Lei; Huang, Shengle; Zeeman, Grietje; Rijnaarts, Huub; Liu, Yang

    2018-01-01

    A pilot-scale UASB-Settler-Digester (USD) system was utilized to treat raw municipal wastewater collected from a sewer system at 10 °C. During the reactor operation, UASB sludge was continuously transferred from the UASB to a settler; concentrated sludge in the settler was then transferred to a

  15. Dynamic modelling of a forward osmosis-nanofiltration integrated process for treating hazardous wastewater.

    Science.gov (United States)

    Pal, Parimal; Das, Pallabi; Chakrabortty, Sankha; Thakura, Ritwik

    2016-11-01

    Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R 2  > 0.98), low relative error (osmosis loop at a reasonably high flux of 56-58 l per square meter per hour.

  16. Brackish Water Desalination Coupled With Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Zainab Ziad Ismail

    2015-05-01

    Full Text Available A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC provided with forward osmosis (FO membrane and cation exchange membrane (CEM was evaluated with respect to the chemical oxygen demand (COD removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were 96%, 90%, 30.02 mW/m2, and 107.20 mA/m2, respectively.

  17. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  18. Managing urban wastewater for maximising water resource utilisation

    CSIR Research Space (South Africa)

    Tredoux, G

    1999-10-01

    Full Text Available into components of distinctly different quality, and the separate treatment of domestic and industrial wastewater for different end-uses. The groundwater exploitation strategy is largely controlled by water quality requirements. Reuse of domestic and industrial...

  19. Is the evaluation of "traditional" physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants?

    Science.gov (United States)

    Vasquez, M I; Fatta-Kassinos, D

    2013-06-01

    Water scarcity is one of the most important environmental and public health problems of our century. Treated wastewater reuse seems to be the most attractive option for the enhancement of water resources. However, the lack of uniform guidelines at European and/or Mediterranean level leaves room for application of varying guidelines and regulations, usually not based on risk assessment towards humans and the environment. The benefits of complementing the physicochemical evaluation of wastewater with a biological one are demonstrated in the present study using Cyprus, a country with extended water reuse applications, as an example. Four organisms from different trophic levels were used for the biological assessment of the wastewater, namely, Pseudokirchneriella subcapitata, Daphnia magna, Artemia salina and Vibrio fischeri. The physicochemical assessment of wastewater based on "traditional" chemical parameters indicated that the quality of the wastewater complies with the limits set by the relevant national guidelines for disposal. The ecotoxicological assessment, however, indicated the presence of toxicity throughout the sampling periods and most importantly an increase of the toxicity of the treated wastewater during summer compared to winter. The resulting poor correlation between the physicochemical and biological assessments demonstrates that the two assessments are necessary and should be performed in parallel in order to be able to obtain concrete results on the overall quality of the treated effluent. Moreover, a hazard classification scheme for wastewater is proposed, which can enable the comparison of the data sets of the various parameters deriving from the biological assessment in a comprehensive way.

  20. Performance of slow rate systems for treatment of domestic wastewater.

    Science.gov (United States)

    Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N

    2007-01-01

    The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.

  1. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  2. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  3. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  4. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    OpenAIRE

    A. Almasi

    2005-01-01

    Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cr...

  5. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    KAUST Repository

    Zhang, Fang

    2014-01-01

    The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics removal. The SEA configuration produced a higher maximum power density (280±6mW/m2; 16.3±0.4W/m3) than the SPA arrangement (255±2mW/m2) due to lower internal resistance. Power production in both configurations was lower than that obtained with the domestic wastewater (positive control) due to less favorable (more positive) anode potentials, indicating poorer biodegradability of the RW. MFCs with RW achieved up to 84% total COD removal, 73% soluble COD removal and 92% HBOD removal. These removals were higher than those previously obtained in mini-MEC tests, as oxygen crossover from the cathode enhanced degradation in MFCs compared to MECs. © 2013 Elsevier Ltd.

  6. Enhancing anaerobic treatment of wastewaters containing oleic acid

    NARCIS (Netherlands)

    Hwu, C.S.

    1997-01-01

    INTRODUCTION

    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater

  7. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi; He, Weihua; Zhu, Xiuping; Yang, Wulin; Ren, Nanqi; Logan, Bruce E.

    2016-01-01

    by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed

  8. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    Science.gov (United States)

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  9. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation

    International Nuclear Information System (INIS)

    Yetilmezsoy, Kaan; Sakar, Suleyman

    2008-01-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (±0.2) and a total COD of 12,100 (±910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32 ± 2 deg. C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m 3 day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe 2+ and H 2 O 2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H 2 O 2 and Fe 2+ dosages, and the ratio of H 2 O 2 /Fe 2+ . Preliminary tests conducted with the dosages of 100 mg Fe 2+ /L and 200 mg H 2 O 2 /L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe 2+ and H 2 O 2 were investigated. Under the condition of 400 mg Fe 2+ /L and 200 mg H 2 O 2 /L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe 2+ /L and 1200 mg H 2 O 2 /L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit

  10. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Sakar, Suleyman

    2008-03-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.

  11. Purification and treatment of industrial wastewater by electron beam process: it's potential and effectiveness evaluation

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khomsaton Abu Bakar; Ting Teo Ming; Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Demand for water has grown dramatically globally. We have seen how acute is the demand for treated water in Malaysia during dry spell of late. Between 1900 and 1995, water consumption increased by over six times, globally, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industries, and the increasing use for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Electron beam treatment (E-Beam treatment) is a comparatively new method of wastewater purification. E-beam treatment is also an environment-friendly approach for the cleanup of contaminated groundwater and industrial wastewater. E-beam treatment treats multi-components waste streams and does not require any hazardous chemical additives nor does it create any secondary wastes. It uses fast formation of short-lived reactive particles, which are capable of efficient decomposition of pollutants inside wastewater. This paper highlights the practical treatment of wastewater using E-Beam method that gives essential conveniences and advantages of the followings: - strongest reducing and oxidizing agents; - universality and interchangeability of redox agents; - variety of paths for pollutant conversion; - process controllability; - wide choice of equipment and technological regimes; - compatibility with conventional methods. (Author)

  12. Environmental footprint of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2015-01-01

    The aim of the study is to determine environmentally friendlier construction materials for constructed wetland facilities treating wastewater. This is done by computing the environmental footprint of the facility based on the methodology of life cycle assessment (LCA). This methodology reveals the dominant aggravating processes during the construction of a constructed wetland (CW) and can help to create alternative environmentally friendlier solutions. This methodology was applied for the determination of the overall environmental profile of a hybrid CW facility. The LCA was applied first to the facility as originally designed, where reinforced concrete was used in some components. Then, alternative construction materials to reinforced concrete were used, such as earth covered with high density polyethylene (HDPE) or clay, and LCA was applied again. Earth structures were found to have reduced environmental impact compared to concrete ones, and clay was found environmentally friendlier compared to HDPE. Furthermore, estimation of the construction costs of the three scenarios indicate that the last scenario is also the least expensive.

  13. Odor control in evaporation ponds treating olive mill wastewater through the use of Ca(OH)2.

    Science.gov (United States)

    Lagoudianaki, E; Manios, T; Geniatakis, M; Frantzeskaki, N; Manios, V

    2003-01-01

    Different amounts of Ca(OH)2 were added in 2 L beakers containing 1 L of olive mill wastewater (OMW). The mixture was stirred for 45 min and left to settle. Wastewater analysis was used in order to determine the effect of the different amounts of calcium hydroxide in the treating process, three days after the application. The Odor Detection Threshold was used for determining the effect of the treatment in the odors produced in the beakers, three and 30 days after. Both sets of measurements indicated an important reduction in wastewater pollutants and odor emission when 10 g/L of Ca(OH)2 were added. In order to evaluate these results in more realistic conditions. 10 L plastic containers were filled with 6 L of OMW, relevant amounts of Ca(OH)2 were added, the mixture was stirred manually and left to settle in the open. Again, 10 g/L of calcium hydroxide produced the best results in odor reduction and wastewater treatment.

  14. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing.

    Science.gov (United States)

    Mansoorian, Hossein Jafari; Mahvi, Amir Hossein; Jafari, Ahmad Jonidi; Amin, Mohammad Mehdi; Rajabizadeh, Ahmad; Khanjani, Narges

    2013-05-10

    Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527mA/m(2) and 230mW/m(2) in the anode area, respectively, at operation organic loading (OLR) of 0.364g COD/l.d. At OLR of 0.182g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  16. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Science.gov (United States)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  17. Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes

    International Nuclear Information System (INIS)

    Li, Shuai; Zhang, Shenghua; Ye, Chengsong; Lin, Wenfang; Zhang, Menglu; Chen, Lihua; Li, Jinmei; Yu, Xin

    2017-01-01

    Antibiotics are heavily used in Chinese mariculture, but only a small portion of the added antibiotics are absorbed by living creatures. Biofilm processes are universally used in mariculture wastewater treatment. In this study, removal of antibiotics (norfloxacin, rifampicin, and oxytetracycline) from wastewater by moving bed biofilm reactors (MBBRs) and the influence of antibiotics on reactor biofilm were investigated. The results demonstrated that there was no significant effect of sub-μg/L–sub-mg/L concentrations of antibiotics on TOC removal. Moreover, the relative abundance of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in MBBR biofilm increased because of selective pressure of antibiotics. In addition, antibiotics decreased the diversity of the biofilm bacterial community and altered bacterial community structure. These findings provide an empirical basis for the development of appropriate practices for mariculture, and suggest that disinfection and advanced oxidation should be applied to eliminate antibiotics, ARGs, and ARB from mariculture wastewater. - Highlights: • The removal of antibiotics by Moving Bed Biofilm Reactors (MBBR) was investigated. • Biofilm process such as MBBR had little effect on the removal of the antibiotics. • The antibiotics decreased the diversity of biofilm bacterial community and altered bacterial community structure. • Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes.

  18. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    Science.gov (United States)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  19. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-04-25

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations.

  20. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  1. Use of cattails in treating wastewater from a Pb/Zn mine

    Science.gov (United States)

    Lan, Chongyu; Chen, Guizhu; Li, Liuchun; Wong, M. H.

    1992-01-01

    This article describes the use of a combined treatment system, which includes an aquatic treatment pond with Typha latifolia Linn. (Typhaceae) as the dominant species and a stabilization pond, to treat the wastewater from a Pn/Zn mine at Shaoguan, Guangdong Province, China. In 1983, it was noted that T. latifolia bloomed in areas affected by the wastewater emitted from the mine, hence a combined purification system was subsequently built. The influent contained high levels of total suspended solids (4635 mg/liter), chemical oxygen demand (14.5 mg/liter) as well as Pb (1.6 mg/liter) and Zn (1.9 mg/liter). The results of the effluent after treatment showed that the total suspended solids, chemical oxygen demand, Pb, and Zn had been reduced by 99%, 55%, 95%, and 80% respectively. The results of plant tissue analysis indicled that T. latifolia assimilated significant amounts of Pb and Zn, especially in the root portion. During 1986 several species of algae and fish were present in the pond, usually with a higher density in areas containing lower metal concentrations in the water.

  2. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater.

    Science.gov (United States)

    Hu, Qing; Zhang, Xu-Xiang; Jia, Shuyu; Huang, Kailong; Tang, Junying; Shi, Peng; Ye, Lin; Ren, Hongqiang

    2016-09-15

    High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production.

    Science.gov (United States)

    Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G

    2018-01-01

    Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.

  4. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    Science.gov (United States)

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  5. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  6. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land

    Directory of Open Access Journals (Sweden)

    Yulia Domashenko

    2018-01-01

    Full Text Available The objective of this work is the agroecological substantiation of the use of treated wastewater for irrigation of agricultural land. As the result of the experimental research, it was established that the soil microfloraplays an essential role in strengthening or weakening the biological activity of soil. Therefore, with an irrigation rate of 250 m 3 /ha of wastewater, a 1.5 times increase in the number of microbiota colonies is observed on average both in hog farms and cattle breeding complexes; with a rate of 350 m 3 /ha – a 2-fold increase; with a rate of 450 m 3 /ha – a 3.5–4-fold increase. An increase in nitrifying soil features has also been observed. Thus, if the value on the control in the soil layer from 0 cm to 60 cm is 27.2 mg of nitrate per 1 kg of arid soil, in the version with wastewater irrigation it reaches 46.7 mg. According to the research results, the use of defecate, the waste of sugar production, in the treatment of wastewater of livestock farms does not have a negative agroecological impact on the soil. Therefore, the method of wastewater treatment of pig-breeding complexes and farms can be recommended for use in irrigation reclamation, which includes treatment of wastewater with burnt defecate in the dose of 50–200 mg/dm 3 , with the pH value varying in the range of 7.5–8.5. After settling-out of the obtained mixture in settlers, it is divided into a transparent liquid fraction and the sediment, i.e. an organomineral fertilizer. Afterwards, the fluidbody is fed to irrigation of agricultural land, and its excess is discharged into waterways and reservoirs. The sediment is fed to the vortex layer equipment with mobile ferromagnetic particles or thermolized, where their complete disinfection takes place.

  7. Social Innovations in the Field of Wastewater Treatment in Rural Areas

    Directory of Open Access Journals (Sweden)

    Eymontt Andrzej

    2014-12-01

    Full Text Available In order to meet social needs and create new social relations, the EU Commission classified under the concept of social innovations, development and implementation of new ideas (products, services, models. In rural areas, this kind of social needs is represented among others by the need of solving the issue of domestic wastewater treatment. The paper describes the imple-mentation of sewerage development program in Poland, as well as problems derived from large value variation of factors encoun-tered characterising the domestic sewage contamination. In view of the current state, the environmental risks due to improper use of domestic wastewater treatment technologies were specified.

  8. Bioproducts for Sludge Reduction in Activated Sludge Systems Treating Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre V.M.F.

    2016-03-01

    Full Text Available The use of bioproducts that change the cellular metabolism and reduce microbial growth without affecting the organic matter removal is very promising for reducing the amount of sludge in wastewater treatment systems. In this study, two bioproducts were evaluated and compared with a well-known chemical (2,4-DiNitroPhenol – DNP in activated sludge treating petroleum refinery wastewater. In batch experiments, 10 mg/L of DNP, 0.8 mg/L of a bioproduct based on Folic Acid (FA and 10 mg/L of a bioproduct based on Stress Proteins (SP led to 30.6%, 43.2% and 29.8% lower disposal of total solids, respectively. Operating on a continuous regimen, the addition of 10 mg/L of the bioproduct based on SP led to 45.7% lower disposal for 50 days. In all cases, no loss of efficiency in the Chemical Oxygen Demand (COD removal was observed.

  9. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-01-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP Fe-surf ) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENP Fe-surf applied were present in the effluent stream. The stable presence of ENP Fe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP Fe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENP Fe-surf ) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENP Fe-surf . → ∼8.7% of ENP Fe-surf applied was present in the effluent. → ENP Fe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  10. Performance evaluation of membrane bioreactor for treating industrial wastewater: A case study in Isfahan Mourchekhurt industrial estate

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2016-01-01

    Conclusion: The MBR technology was used to treat the combined industrial wastewater was efficient, and its effluent can be perfectly used for water reuse. The MBR performance was improved by applying an anaerobic pretreatment unit.

  11. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  12. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry.

    Science.gov (United States)

    Miyata, M; Ihara, I; Yoshid, G; Toyod, K; Umetsu, K

    2011-01-01

    In animal husbandry, antibiotics are widely used to treat and prevent diseases or to promote growth. The use of antibiotics for domestic animals enables to promote safety of livestock products and enhance productivity. Tetracycline antibiotics (TCs) are one of the primarily used groups of antibiotics for cattle and swine. However, the unintentional spreading of antibiotics from animal waste to the environment may leave out drug residues, promoting resistant strains of bacteria, and will adversely affect the ecosystem and human health. To prevent the spread of veterinary antibiotics in the environment, it is required to treat residual antibiotics in livestock wastewater. In this study, we investigated the electrochemical oxidation of TCs to treat livestock wastewater. The concentrations of TCs in aqueous solutions were reduced from 100 mg/L to less than 0.6 mg/L by 6 h of electrochemical treatment using a Ti/IrO2 anode with Na2SO4 electrolyte. The concentration of oxytetracycline (OTC) in livestock wastewater was also reduced from 100 mg/L to less than 0.7 mg/L by the same treatment. Thus, the electrochemical oxidation using a Ti/IrO2 anode with Na2SO4 electrolyte was found to be effective for degradation of TCs. The results suggest that the electrochemical oxidation method is a promising treatment for TCs in livestock wastewater.

  13. physico-chemical evaluation of wastewater in katsina metropolis ...

    African Journals Online (AJOL)

    pc

    associated sludge and grey water kitchen and bathroom wastewater or the mixture of domestic wastewater from commercial establishments and institutions ... oil mill Ltd and Katsina steel rolling company Ltd. K/Durbi:- It is located on latitude. 59'44.10”N and. 37'00.73”E, the midpoint of the water and irrigational activities ...

  14. Assessment of physicochemical parameters and prevalence of virulent and multiple-antibiotic-resistant Escherichia coli in treated effluent of two wastewater treatment plants and receiving aquatic milieu in Durban, South Africa.

    Science.gov (United States)

    Pillay, Leanne; Olaniran, Ademola O

    2016-05-01

    The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2 × 10(3) CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.

  15. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M.; Logan, Bruce E.

    2013-01-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  16. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  17. Synthetic socioeconomic based domestic wastewater hydrographs for small arid communities

    KAUST Repository

    Elnakar, H.

    2012-06-04

    A model was developed to predict synthetic socioeconomic based domestic wastewater hydrographs for the small arid communities. The model predicts the flow hydrograph for random weekdays and weekends based on the specific socioeconomic characteristics of the community. The main socioeconomic characteristics are the composition of the community, the different user behaviours in using water appliances, and the unit discharges of such appliances. Use patterns of water appliances are assumed to vary for the various members of the community and the type of day. Each community is composed of several social categories such as the employee, working woman, stay home woman, stay home child, students etc. The use patterns account for the stochastic nature of use in terms of number of uses, duration of the use and times of use in the day. Randomly generated hydrographs are generated for weekdays and weekends along with synthetic hydrographs of non-exceedance. The model was verified for a small residential compound in Sharm El Shiekh - Egypt using 11 days of flow measurements performed in summer. The synthetic hydrographs based on assumed water use patterns of the various members of the community compared reasonably with the measured hydrographs. Synthetic hydrographs can be derived for a community under consideration to reflect its socioeconomic conditions and thus can be used to generate probability based peaking factors to be used in the design of sewerage systems pumping facilities, and treatment plants. © 201 WIT Press.

  18. Synthetic socioeconomic based domestic wastewater hydrographs for small arid communities

    KAUST Repository

    Elnakar, H.; Imam, E.; Nassar, K.

    2012-01-01

    A model was developed to predict synthetic socioeconomic based domestic wastewater hydrographs for the small arid communities. The model predicts the flow hydrograph for random weekdays and weekends based on the specific socioeconomic characteristics of the community. The main socioeconomic characteristics are the composition of the community, the different user behaviours in using water appliances, and the unit discharges of such appliances. Use patterns of water appliances are assumed to vary for the various members of the community and the type of day. Each community is composed of several social categories such as the employee, working woman, stay home woman, stay home child, students etc. The use patterns account for the stochastic nature of use in terms of number of uses, duration of the use and times of use in the day. Randomly generated hydrographs are generated for weekdays and weekends along with synthetic hydrographs of non-exceedance. The model was verified for a small residential compound in Sharm El Shiekh - Egypt using 11 days of flow measurements performed in summer. The synthetic hydrographs based on assumed water use patterns of the various members of the community compared reasonably with the measured hydrographs. Synthetic hydrographs can be derived for a community under consideration to reflect its socioeconomic conditions and thus can be used to generate probability based peaking factors to be used in the design of sewerage systems pumping facilities, and treatment plants. © 201 WIT Press.

  19. A Verhulst model for microalgae Botryococcus sp. growth and nutrient removal in wastewater

    Science.gov (United States)

    Jamaian, Siti Suhana; Bakeri, Noorhadila Mohd; Sunar, Norshuhaila Mohamed; Gani, Paran

    2017-08-01

    Microalgae Botryococcus sp. is a colonial green alga found in lakes and reservoirs in Malaysia. Previous studies reported that the potential of Botryococcus sp. photosynthesis as a source of fuel. The Botryococcus sp. contains hydrocarbon up to 75% of dry weight, which can be converted into petrol, diesel or turbine fuel or other liquid or gaseous hydrocarbons. Recently, an experimental study was conducted on phycoremediation technology for wastewater using Botryococcus sp. The phycoremediation technology is useful to remove the excess of nutrients such as nitrogen, phosphorus and also have the ability to remove various pollutants from wastewater. This research implements the Verhulst model to estimate the nutrient removal by microalgae Botryococcus sp. from the wastewater. This model has been validated with the experiments of microalgae Botryococcus sp. grown in domestic and palm oil wastewater. The results suggested that microalgae Botryococcus sp. could be cultured in domestic and palm oil wastewater while nutrients are reduced from these wastewaters.

  20. Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources

    International Nuclear Information System (INIS)

    Wang, Bin; Dai, Guohua; Deng, Shubo; Huang, Jun; Wang, Yujue; Yu, Gang

    2015-01-01

    The environmental loads of pharmaceutical and personal care products (PPCPs) in Beijing were estimated from direct discharge of untreated wastewater and WWTP treated effluent. The annual environmental loads of 15 PPCP components ranged from 16.3 kg (propranolol) to 9.85 tons (caffeine). A fugacity model was developed to successfully estimate the PPCP pollution based on the estimated environmental load. The modeled results approximated the observed PPCP concentrations in Beijing. The untreated wastewater contributed significantly to PPCP pollution in Beijing, ranging from 46% (propranolol) to 99% (caffeine). The total environmental burden of target PPCPs ranged from 0.90 kg (propranolol) to 536 kg (caffeine). Water is the most important media for the fate of PPCPs. Monte Carlo-based concentration distributions of PPCPs are consistent with the observed results. The most important way to reduce the PPCP pollution is to both improve wastewater collection rate and adopt deep treatment technologies. - Highlights: • Annual environmental loads of PPCPs ranged from 16.3 kg to 9.85 tons in Beijing. • The environmental loads can be linked to PPCP pollution by fugacity model. • Untreated wastewater significantly contributed to PPCP pollution in Beijing. • The environmental burden of 15 PPCPs in Beijing ranged from 0.90 kg to 536 kg. • Uncertainty simulation successfully generated PPCP concentration distribution. - The environmental loads from both the treated and untreated wastewater sources contribute to PPCPs pollution in the surface water in Beijing, China

  1. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  2. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method.

    Science.gov (United States)

    Bejankiwar, Rajesh S; Lokesh, K S; Gowda, T P Halappa

    2003-05-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode was investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its colour and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and colour during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and colour removal with anode efficiency of 0.118 kgCOD x h(-1) x A(-1) x m(-2) and energy consumption 20.61 kWh x kg(-1) of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD x h(-1) x A(-1) x m(-2) to 0.144 kWh x kg(-1) of COD while decrease the energy consumption from 20.61 kWh x kg(-1) of COD to 12.86 kWh x kg(-1) of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%.

  3. Evaluation of performance in a combined UASB and aerobic contact oxidation process treating acrylic wastewater.

    Science.gov (United States)

    Li, Anfeng; Dong, Na; He, Manni; Pan, Tao

    2015-01-01

    The lab-scale and full-scale performance of a combined mesophilic up-flow anaerobic sludge blanket (UASB) and aerobic contact oxidation (ACO) process for treating acrylic wastewater was studied. During lab-scale experiment, the overwhelmed volumetric load for UASB was above 6 kg chemical oxygen demand (COD) ·(m(-3)·d(-1)) since COD removal efficiency dropped dramatically from 73% at 6 kg COD·(m(-3)·d(-1)) to 61% at 7 kg COD·(m(-3)·d(-1)) and 53% at 8 kg COD·(m(-3)·d(-1)). Further results showed that an up-flow fluid velocity of 0.5 m h(-1) for UASB obtained a highest COD removal efficiency of 75%, and the optimum COD volumetric load for the corresponding ACO was 1.00 kg COD·(m(-3)·d(-1)). Based on the configuration of the lab-scale experiment, a full-scale application with an acrylic wastewater treatment capacity of 8 m3 h(-1) was constructed and operated at a volumetric load of 5.5 kg COD·(m(-3)·d(-1)), an up-flow fluid velocity of 0.5 m h(-1) for UASB and a volumetric load of 0.9 kg COD·(m(-3)·d(-1)) for ACO; and the final effluent COD was around 740 mg L(-1). The results suggest that a combined UASB-ACO process is promising for treating acrylic wastewater.

  4. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale UASB reactor treating brewery wastewater

    NARCIS (Netherlands)

    Diaz, E.E.; Stams, A.J.M.; Amils, R.; Sanz, J.L.

    2006-01-01

    Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient

  5. Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2017-12-01

    Full Text Available Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

  6. Obstruction and uniformity in drip irrigation systems by applying treated wastewater

    Directory of Open Access Journals (Sweden)

    Patrícia Ferreira da Silva

    Full Text Available ABSTRACT The use of wastewater in agriculture is an alternative to control surface water pollution, and helps to promote the rational use of water. Therefore, the objective of this study was to evaluate the obstruction and uniformity of application of treated wastewater in drip irrigation systems. The study was conducted in a greenhouse at the Universidade Federal de Campina Grande. The treatments were composed by the factorial combination of two factors: three types of water (supply water-ABAST, effluent of a constructed wetland system -WETLAND and upflow of anaerobic reactor effluent followed by constructed wetland system -UASB + WETLAND, and two drip irrigation systems (surface and subsurface, set in a completely randomized design, with four replications. The results indicated that the pH, suspended solids, total iron and coliforms of the WETLAND and UASB + WETLAND treatments represented a severe risk of clogging of drippers; the flow of the emitters increased as the service pressure was increased; values of CUC and CUD in surface and subsurface drip were classified as excellent in ABAST and WETLAND treatments. The degree of clogging reduced as pressure under surface and subsurface drip was increased.

  7. Chromium fate in constructed wetlands treating tannery wastewaters.

    Science.gov (United States)

    Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel

    2009-06-01

    Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.

  8. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain).

    Science.gov (United States)

    Cabeza, Y; Candela, L; Ronen, D; Teijon, G

    2012-11-15

    The occurrence of 166 emerging compounds and four heavy metals (Cd, Ni, Hg and Pb) in treated wastewater and groundwater has been monitored at the Llobregat delta (Barcelona, Spain) over a period of 3 years. Selected compounds were pharmaceuticals, personal care products (PCPs), dioxins, polycyclic aromatic hydrocarbons (PAHs) and priority substances included in the 2008/105/CE Directive. Analysis was performed in tertiary treated wastewater (TWW), after an additional treatment of ultrafiltration reverse osmosis and UV disinfection, and groundwater from a deep confined aquifer. This aquifer is artificially recharged with TWW through injection wells. After the advanced treatment, 38 pharmaceuticals, 9 PCPs, 9 pesticides and 7 PAHs still showed a frequency of detection higher than 25% in the TWW, although at low concentration levels (ng/l). Not all active compounds found in the TWW were present in groundwater, indicating possible degradation within the aquifer media after the injection. A number of chemicals, mainly 10 pesticides and 10 pharmaceuticals were only present in groundwater samples, confirming a different origin than the injected TWW, probably agricultural activities and/or infiltration of poorly treated wastewater. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China.

    Science.gov (United States)

    Chen, Kunlun; Liu, Xiaoqiong; Ding, Lei; Huang, Gengzhi; Li, Zhigang

    2016-12-09

    Based on the increasing pressure on the water environment, this study aims to clarify the overall status of wastewater discharge in China, including the spatio-temporal distribution characteristics of wastewater discharge and its driving factors, so as to provide reference for developing "emission reduction" strategies in China and discuss regional sustainable development and resources environment policies. We utilized the Exploratory Spatial Data Analysis (ESDA) method to analyze the characteristics of the spatio-temporal distribution of the total wastewater discharge among 31 provinces in China from 2002 to 2013. Then, we discussed about the driving factors, affected the wastewater discharge through the Logarithmic Mean Divisia Index (LMDI) method and classified those driving factors. Results indicate that: (1) the total wastewater discharge steadily increased, based on the social economic development, with an average growth rate of 5.3% per year; the domestic wastewater discharge is the main source of total wastewater discharge, and the amount of domestic wastewater discharge is larger than the industrial wastewater discharge. There are many spatial differences of wastewater discharge among provinces via the ESDA method. For example, provinces with high wastewater discharge are mainly the developed coastal provinces such as Jiangsu Province and Guangdong Province. Provinces and their surrounding areas with low wastewater discharge are mainly the undeveloped ones in Northwest China; (2) The dominant factors affecting wastewater discharge are the economy and technological advance; The secondary one is the efficiency of resource utilization, which brings about the unstable effect; population plays a less important role in wastewater discharge. The dominant driving factors affecting wastewater discharge among 31 provinces are divided into three types, including two-factor dominant type, three-factor leading type and four-factor antagonistic type. In addition, the

  10. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J

    2012-01-01

    Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures

  11. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    International Nuclear Information System (INIS)

    Mahdi-Ahmed, Moussa; Chiron, Serge

    2014-01-01

    Highlights: • UV/PMS more efficient than UV/H 2 O 2 for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H 2 O 2 . In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H 2 O 2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H 2 O 2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity

  12. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi-Ahmed, Moussa; Chiron, Serge, E-mail: Serge.Chiron@msem.univ-montp2.fr

    2014-01-30

    Highlights: • UV/PMS more efficient than UV/H{sub 2}O{sub 2} for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H{sub 2}O{sub 2}. In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H{sub 2}O{sub 2} while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H{sub 2}O{sub 2} mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity.

  13. Wastewater reclamation using discarded reverse osmosis membranes for reuse in irrigation in Djibouti, an arid country.

    Science.gov (United States)

    Awaleh, Mohamed Osman; Ahmed, Moussa Mahdi; Soubaneh, Youssouf Djibril; Hoch, Farhan Bouraleh; Bouh, Samatar Mohamed; Dirieh, Elias Said

    2013-01-01

    The purpose of this paper is to establish the feasibility of recovering discarded reverse osmosis (RO) membranes in order to reduce the salinity of domestic treated wastewater. This study shows that the reuse of RO membranes is of particular interest for arid countries having naturally high mineralized water such as Djibouti. The pilot desalination unit reduces the electrical conductivity, the turbidity and the total dissolved salt respectively at 75-85, 96.7 and 95.4%. The water produced with this desalination unit contains an average of 254 cfu/100 mL total coliforms and 87 cfu/100 mL fecal coliforms. This effluent meets the World Health Organization standards for treated wastewater reuse for agricultural purposes. The annual cost of the desalination unit was evaluated as US $/m(3) 0.82, indicating the relatively high cost of this process. Nevertheless, such processes are required to produce an effluent, with a high reuse potential.

  14. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  15. POTENTIAL USE OF MICROBIAL ELECTROLYSIS CELLS (MECs IN DOMESTIC WASTEWATER TREATMENT PLANTS FOR ENERGY RECOVERY

    Directory of Open Access Journals (Sweden)

    Adrian eEscapa

    2014-06-01

    Full Text Available Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical Systems (BESs in general and microbial electrolysis cells (MECs in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in dWW treatment plants (dWWTPs to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWW treatment plants (dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1-4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it needs not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  16. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  17. Evaluation of on-site wastewater treatment systems

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a program designed to conduct a third-party group evaluation of wastewater denitrification technologies appropriate for low-flow systems, partially funded by a grant from the Pennsylvania Department of Environmental Protection (PADEP). The objective of this program is to verify the performance of products that provide nutrient reduction in wastewater from a variety of sources, including domestic wastewater, agricultural runoff, or other waste streams. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the potential energy savings of using nutrient reducing technologies scaled to treat low flows - larger than an individual septic tank but smaller than that of a conventional wastewater treatment plant - will be assessed. The energy savings realized by reduced construction and equipment transport costs alone could make low-flow nutrient reduction technologies viable options for rural communities, small farms, and other low-flow settings. The evaluation is being funded in part by PADEP, which is sponsoring this evaluation due to its interest in developing low-cost wastewater treatment technologies for Pennsylvania's rural communities. However, the evaluation is national in scope, and participants will come from all areas of the country. The presentation will include a description of the process for establishing the testing protocol, testing results from various nutrient reducing technologies, and obstacles encountered and lessons learned during the process. (author)

  18. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater.

    Science.gov (United States)

    Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare

    2018-02-15

    Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fertigation with domestic wastewater: Uses and implications | Silva ...

    African Journals Online (AJOL)

    Fertigation with wastewater will be a nutritive support for the cultivation of Brachiaria brizantha cv Marandu in cerrado soil that is considered as low fertility soil. Soil microorganisms are fertility indicators. For example, nitrogen fixing bacteria (NFB) and arbuscular mycorrhizal fungi (AMF) has great potential to assist in the ...

  20. Impact of use of treated wastewater for irrigation on soil and quinoa crop in South of Morocco

    Science.gov (United States)

    El Youssfi, Lahcen; Choukr-Allah, Redouane; Zaafrani, Mina; Hirich, Aziz; Fahmi, Hasna; Abdelatif, Rami; Laajaj, Khadija; El Omari, Halima

    2015-04-01

    This work was conducted at the experimental station of the IAV Hassan II-CHA-Agadir in southwest Morocco between 2010 and 2012. It aimed the assessment of the effects of use of treated wastewater on soil properties and agronomic parameters by adopting crop rotation introducing quinoa (Chenopodium quinoa Willd.) as a new crop under semi-arid climate. Biomass production, yield, nutrient accumulation in leaves and the level of electrical conductivity and soil nitrate are the evaluated parameters during three growing seasons. Results show that quinoa has a performing behavior when it is preceded by fabae bean in term of water use efficiency; in addition, the recorded level of salt accumulation in the soil was the lowest in comparison with that of the combinations bean>quinoa and fallow>quinoa. Concerning growth and yield, it was found that growing quinoa after chickpea was more beneficial in terms of biomass productivity and yield. Keywords: Quinoa, soil, treated wastewater semi-arid

  1. Advanced technology for treating wastewater generated in small communities; Tecnologia avanzada en depuracion de aguas residuales demosticas en pequenos nucleos de poblacion

    Energy Technology Data Exchange (ETDEWEB)

    Bao Iglesias, M.; Bobe Vazquez, J.; Simal Campos, P.; Otero Lopez, M.; Alfonsin Solino, G.

    2009-07-01

    public bodies of water management, along with private developers and companies, are faced with a wide range of possibilities for treating wastewater generated in small communities. The economic and demographic environments in small populations determine the choice between different technical solutions in the market. This document introduce a study on characteristics of the wastewater generated in small rural communities in Galicia, and its impact on the installed wastewater treatment systems, as well as possibilities of obtaining a reusable water that can be used in these populations, thereby facilitating water and economical savings. (Author) 6 refs.

  2. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  3. Renovation of food-processing wastewater by a Riparian wetland

    Science.gov (United States)

    Baillie, Priscilla W.

    1995-01-01

    Treated wastewater from a food-processing plant, together with intermittent outflow from a hypereutrophic pond, were discharged over a 20-year period to a cattail-dominated wetland and hence to a small stream. Organics and nutriet levels in the effluent were comparable to levels in domestic wastewater. Fifteen variables were monitored upstream and downstream from the plant over 18 months. Means for most variables were slightly higher downstream, but differences between stations were not statistically significant. Wetland processing of nitrogen was markedly affected by a change from drought to flood conditions. After accounting for dilution, the overall effect of the wetland on the effluent was to reduce biological oxygen demand 43.7%, ammonia N 46.3%, nitrate/nitrite N 17.4%, and conductivity 15.6%. However, total suspended solids were increased 41.4%, total organic nitrogen 28.8%, and total phosphorus 24.7%. It was concluded that the wetland effectively renovated the effluent but the removal efficiency would be improved if the effluent were pretreated to reduce phosphorus and dispersed to increase residence time in the wetland.

  4. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  5. Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2017-11-01

    Full Text Available This study applied a multi-level contact oxidation process system in a pilot-scale experiment to treat automobile painting wastewater. The experimental wastewater had been pre-treated through a series of physicochemical methods, but the water still contained a high concentration of chemical oxygen demand (COD and had poor biodegradability. After the biological treatment, the COD concentration of effluent could stay below 300 mg/L. The study analyzed the effects of hydraulic residence time (HRT on COD, ammonia nitrogen (NH4+-N, and total nitrogen (TN. The optimal HRT was 8 h; at that time, removal efficiencies of COD, ammonia nitrogen, and total nitrogen were 83.8%, 86.3%, and 65%, respectively. The system also greatly reduced excess sludge production; the removal efficiency was 82.8% with a HRT of 8 h. The study applied high-throughput pyrosequencing technology to evaluate the microbial diversity and community structures in distinct stages of the biological reactor. The relevance between process performance and microbial community structure was analyzed at the phylum and class level. The abundant Firmicutes made a large contribution to improving the biodegradability of painting wastewater through hydrolysis acidification and reducing sludge production through fermentation in the biological reactor.

  6. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin

    2002-08-01

    Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan

  7. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  8. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  9. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2013-12-01

    The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    Science.gov (United States)

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this

  11. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Directory of Open Access Journals (Sweden)

    Daniel Stalter

    Full Text Available Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn, 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in

  12. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Science.gov (United States)

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this

  13. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Sakar, Suleyman [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2008-03-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 ({+-}0.2) and a total COD of 12,100 ({+-}910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32 {+-} 2 deg. C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m{sup 3} day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe{sup 2+} and H{sub 2}O{sub 2} solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H{sub 2}O{sub 2} and Fe{sup 2+} dosages, and the ratio of H{sub 2}O{sub 2}/Fe{sup 2+}. Preliminary tests conducted with the dosages of 100 mg Fe{sup 2+}/L and 200 mg H{sub 2}O{sub 2}/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe{sup 2+} and H{sub 2}O{sub 2} were investigated. Under the condition of 400 mg Fe{sup 2+}/L and 200 mg H{sub 2}O{sub 2}/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe{sup 2+}/L and 1200 mg H{sub 2}O{sub 2}/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a

  14. Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.).

    Science.gov (United States)

    Basiglini, E; Pintore, M; Forni, C

    2018-05-30

    The efficacy of the removal of contaminants from wastewater depends on physico-chemical properties of pollutants and the efficiency of treatment plant. Sometimes, low amounts of toxic compounds can be still present in the treated sewage. In this work we considered the effects of contaminant residues in treated wastewaters and of temperatures on Lemna minor L. Treated effluent waters were collected, analyzed and used as duckweed growth medium. In order to better understand the effects of micropollutants and seasonal variation, the plants were grown under ambient conditions for seven days in summer and winter. Relative growth rate, pigments and phenolic compounds concentrations were determined, as well as the activities of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD) and polyphenol oxidase (PPO). The pollutant concentrations varied in the two seasons, depending on the industrial and municipal activities and efficiency of treatments. Treated waters contained heavy metals, nitrogenous and phosphorus compounds, surfactants and hydrocarbons. Compared to the control, duckweed growth of treated plants decreased by 25% in summer, while in the winter due to the lower temperatures and the presence of pollutants was completely impeded. The amounts of photosynthetic pigments of treated plants were not significantly affected in the summer, while they were higher than the control in the winter when the effluent had a high nitrogen amount. High CAT activity was registered in both seasons. Treated plants had significantly lower APX activity in the summer (53%) and winter (59%) respect to the controls. The observed inhibition of the peroxidase activities in the exposed plants, confirms the controversy existing in the literature about the variability of enzymatic response in stress condition. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    Science.gov (United States)

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  16. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production

    Directory of Open Access Journals (Sweden)

    S. Hena

    2015-06-01

    Full Text Available Dairy farm wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of production of biodiesel from consortium of native microalgae culture in dairy farm treated wastewater. Native algal strains were isolated from dairy farm wastewaters collection tank (untreated wastewater as well as from holding tank (treated wastewater. The consortium members were selected on the basis of fluorescence response after treating with Nile red reagent. Preliminary studies of two commercial and consortium of ten native strains of algae showed good growth in wastewaters. A consortium of native strains was found capable to remove more than 98% nutrients from treated wastewater. The biomass production and lipid content of consortium cultivated in treated wastewater were 153.54 t ha−1 year−1 and 16.89%, respectively. 72.70% of algal lipid obtained from consortium could be converted into biodiesel.

  17. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  18. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    Existing wastewater treatment plants (WWTP) need retrofitting in order to better handle changes in the wastewater flow and composition, reduce operational costs as well as meet newer and stricter regulatory standards on the effluent discharge limits. In this study, we use an optimization based...... technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  19. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination.

    Science.gov (United States)

    Yang, Yuan-Yuan; Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Zhang, Qian-Qian; Yao, Li; Hu, Li-Xin; Zhang, Jin-Na; Jiang, Yu-Xia; Ying, Guang-Guo

    2018-03-01

    We systematically investigated the occurrence and distribution of 93 pharmaceuticals and personal care products (PPCPs) and 5 artificial sweeteners (ASs) in surface water and groundwater of Dongjiang River basin in south China. In surface water, 52 compounds were detected with median concentrations ranging from 0.06ng/L to 504ng/L, while in groundwater, 33 compounds were detected with concentrations up to 4580ng/L for acesulfame. PPCPs and ASs were widely detected in the surface water and groundwater samples, which indicated contamination by domestic wastewater in the surface water and groundwater of Dongjiang River basin. Temporal and spatial variations of the detected chemicals were observed in surface water. Acesulfame, sucralose and cyclamate can be used as wastewater indicators to imply contamination in groundwater caused by domestic wastewater due to their hydrophilicity, anthropogenic sources and ubiquity in groundwater. Moreover, the detection of the readily degradable ASs, cyclamate, was a strong indication of untreated wastewater in groundwater. Sucralose was found to be a suitable wastewater indicator to reflect domestic wastewater contamination in surface water and groundwater qualitatively and quantitatively, and it can be used to evaluate wastewater burden in surface water and groundwater of Dongjiang River basin. The wastewater burden data from this survey implied serious contamination in surface water and groundwater by domestic wastewater at Shima River, a tributary of the Dongjiang River. The findings from this study suggest that the selected labile and conservative chemicals can be used as indication of wastewater contamination for aquatic environments qualitatively and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  1. Biodegradation of di-n-Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater

    Directory of Open Access Journals (Sweden)

    Decai Jin

    2015-10-01

    Full Text Available A bacterial strain W-1, isolated from rural domestic wastewater, can utilize the environmental hormone di-n-butyl phthalate (DBP as the sole carbon and energy source. The isolated bacterium species was confirmed to belong to the genus Achromobacter based on its 16S rRNA gene sequence. The results of substrate utilization tests showed that the strain W-1 could utilize other common phthalates and phenol. High-performance liquid chromatography analysis revealed that the optimal conditions for DBP degradation were pH 7.0, 35 °C, and an agitation rate of 175 rpm. Under these conditions, 500 mg/L of DBP was completely degraded within 30 h. The effects of heavy metals (50 mg/L Cu2+ and 500 mg/L Pb2+ and surfactants (100 mg/L SDS and 500 mg/L Tween 20 on DBP degradation were investigated. The results demonstrated that Cu2+ and SDS severely inhibited DBP degradation and Pb2+ weakly inhibited DBP degradation, while Tween 20 greatly enhanced DBP degradation. Furthermore, phthalate degradation genes were found to be located on a plasmid present in Achromobacter sp. W-1.

  2. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    application and technology applied are ​​significantly dependent on socio-economic circumstances, industry structure, climate and politics. Reuse of water for irrigation of agricultural crops Fourty-one percent of the recycled water in Japan, 60% in California (USA, and 15% in Tunisia is used for irrigation of crops. In China, at least 1.33 million hectares of agricultural land is irrigated with untreated or partially treated wastewater (http://www.eolss.net. Agricultural irrigation is essential to improve the quality and quantity of production. By 2025, agriculture is expected to increase its water requirements by 1.2 times (http://www.unep.or.jp. If wastewater originatines from industrial sources, the presence of toxic chemicals, salts and heavy metals may limit its reuse. Such materials can change soil properties and may affect the growth of crops, so that appropriate treatment and supervision should be practiced. Recycled water that is important for agriculture must contain nitrogen, potassium, zinc, boron and sulfur. However, excess nitrogen can lead to overgrowth, delayed crop maturity and poor quality. Boron is an essential element for plant growth, and the excess boron becomes toxic. Tunisia is one of a few countries that have implemented a national policy for the reuse of wastewater. Since 1960., the wastewater in Tunisia has been used for irrigation of orchards. Since 1989, after a secondary treatment, the wastewater has been used for the cultivation of various crops (olives, fodder, cotton, etc., except for growing vegetables. In countries such as Morocco, Jordan, Egypt, Malta, Cyprus and Spain, wastewater is either used or being considered for irrigation, while in Israel, the percentage of the use of wastewater for irrigation is the highest in the region, with 24.4% and should be increased to 36% in the future (http://www.eolss.net. Depending on the country, socio-economic conditions, may be different,  starting from the shortage of money for capital

  3. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    Science.gov (United States)

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  4. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    Science.gov (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  6. The application of zero-water discharge system in treating diffuse village wastewater and its benefits in community afforestation

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yonghong, E-mail: yhwu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China); College of Resource and Environment, Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Xia Lizhong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China); Hu Zhengyi [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China); College of Resource and Environment, Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Liu Shuzhi [Kunming Institute of Environmental Sciences, Kunming Environmental Protection Agency, Kunming 650000 (China); Liu, Hongbin [Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Nath, Bibhash [School of Geosciences, The University of Sydney, Sydney, NSW 2006 (Australia); Zhang Naiming [College of Resource and Environment, Yunnan Agriculture University, Kunming 650201 (China); Yang, Linzhang, E-mail: Lzyang@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing 210008 (China)

    2011-10-15

    The proposed on-site zero-water discharge system was comprised of four main components: anaerobic tank, aerobic bioreactor, activated soil filter and water-collecting well. The results demonstrate that at 350 m{sup 3} day{sup -1} of hydraulic load, the system can effectively remove pollutants from the wastewater, e.g., 86% removal of COD; 87% removal of SS; 80% removal of TP and 71% removal of TN. The growth states of the grasses, macrophytes and arbors in the activated soil filter were better than the control. The life of the activated soil filter was estimated to be {approx}12-15 yrs, based on the laboratory microcosm studies. However, humic acid contents and soil porosity have suggested that the activated soil filter was able to regenerate itself and thereby prolonging its life by reducing clogging of the pores. The results suggest that the zero-water discharge system was a promising bio-measure in treating diffuse village wastewater and benefiting community afforestation. - Highlights: > No wastewater discharges out of the zero-water discharge system during this system running. > The zero-water discharge system can efficiently remove COD, SS, TP, and TN from wastewater. > The zero-water discharge system can benefit the community afforestation. - A zero-water discharge system has proven highly-effective for removing COD, SS, TP, and TN from diffuse village wastewater and benefiting the community afforestation.

  7. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    Science.gov (United States)

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  8. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  9. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  10. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  11. Chemical procedures to detect carcinogenic compound in domestic wastewater

    International Nuclear Information System (INIS)

    Abd Manan T S; Malakahmad A

    2013-01-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  12. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    Science.gov (United States)

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  13. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  14. Determination of aromatic and PAH content of oily wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I. (Rockwell International, Canoga Park, CA); Russell, E.C.

    1978-08-01

    A method for analysis of oil and grease in water is described. The method is used to provide data on total, dissolved, and suspended organic content of wastewater sample and the concentration of hydrocarbons. Additionally, volatile and water soluble fractions which contain many organic compounds critical to the environment are characterized both qualitatively and quantitatively. A number of real-life treated and untreated bilge waste samples were collected at the U.S. Army Fort Eustis facility and analyzed using this method. It was found that untreated bilge wastewater contained both suspended and dissolved organic matter. The suspended organics ranged between 10 and 300 ppM, while the dissolved organics were in the 10 to 150 ppM range. Treated bilge wastewater usually contained no suspended organics but did contain rather high levels of dissolved organic matter 700 to 200 ppM). Up to 70% of the dissolved organics in untreated bilge wastewater were chloroform extractable, while less than 10% of the dissolved organis in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater is biologically derived from the degradation of petroleum, while smaller portions consist of refractory, petroleum derived, water-soluble organic compounds.

  15. De-domestication

    DEFF Research Database (Denmark)

    Gamborg, Christian; Gemmen, Bart; Christiansen, Stine Billeschou

    2010-01-01

    as wild or non-wild and the effect this has on questions about how they should be treated. It also concerns the value of nature, and the kind and degree of nature management considered appropriate. The paper first describes actual de-domestication practices and considers the character of human duties...... to animals in process of de-domestication. Secondly, the paper explores the implications of de-domestication for nature management, focusing on notions of naturalness and wildness. Finally, because the current division of ethical topics, with its dependence upon whether animals and nature are domesticated...

  16. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation

    Science.gov (United States)

    Asgari, Kamran; Najafi, Payam; Cornelis, Wim M.

    2014-05-01

    Constant use of treated wastewater for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. However, application of treated wastewater on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates on a sandy loam soil, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m a.s.l.. A two-crop rotation of wheat [Triticum spp.] and corn [Zea mays]) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting (initial value) and after harvesting (final value) for each crop in each year. Edible grain samples of corn and wheat were also collected. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. The concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P>0.05) compared with the freshwater-irrigated soils. The results showed no significant difference (P>0.05) of soil heavy metal content between different depths of emitters. A pollution load index PLI showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to

  17. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment; Teknologi Biofilter Anaerob-Aerob Tercelup untuk Pengolahan Air Limbah Domestik

    Energy Technology Data Exchange (ETDEWEB)

    Nusa-Idaman-Said, [The Agency for the Assessment and Application of Technology, Jakarta (Indonesia)

    2000-02-15

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  18. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  19. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  1. Understanding farmers' preferences for wastewater reuse ...

    African Journals Online (AJOL)

    Wastewater has emerged as an alternative source of water. Since the agricultural sector remains the largest water user world-wide, it is the main potential user of treated wastewater. However, while there are trade-offs in using wastewater, it may be the only option in water scarce regions. South Africa has included water ...

  2. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids

    International Nuclear Information System (INIS)

    Yang, J.-J.; Metcalfe, Chris D.

    2006-01-01

    Synthetic musks are widely used as fragrance ingredients in personal care products, and they enter domestic wastewater treatment plants (WWTPs) through discharges into municipal sewage systems. Samples of aqueous sewage and biosolids collected from the Peterborough Wastewater Treatment Plant (WWTP), Ontario, Canada were analyzed for 11 synthetic musk compounds using GC/MS. The results showed that 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta[g]-2-benzopyrane (HHCB, 173.1 ± 43.4 ng/L) and 7-acetyl-1,1,3,4,4,6-hexamethyl-tetrahydronaphthalene (AHTN, 41.6 ± 15.8 ng/L) were the dominant fragrances in sewage, but other polycyclic musks and nitro musks were present at lower concentrations. The concentrations of HHCB and AHTN in the aqueous phase of the sewage were highly correlated with both BOD 5 and TOC. The overall removal efficiency of synthetic musks from the aqueous sewage in the WWTP ranged from 43.3% to 56.9%, but removal occurred mainly by partitioning into the biosolids. Based on a mass balance model, the daily input and output of HHCB and AHTN in the Peterborough WWTP were 47 g and 46 g, respectively. In an agricultural field amended with biosolids from the Peterborough WWTP, HHCB and AHTN were detected in soil immediately after application at mean concentrations of 1.0 and 1.3 μg/kg, respectively, but concentrations declined relatively rapidly over the next 6 weeks, post-application

  3. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    Science.gov (United States)

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nitrate-N movement in groundwater from the land application of treated municipal wastewater and other sources in the Wakulla Springs springshed, Leon and Wakulla Counties, Florida, 1966-2018

    Science.gov (United States)

    Davis, J. Hal; Katz, Brian G.; Griffin, Dale W.

    2010-01-01

    The City of Tallahassee began a pilot study in 1966 at the Southwest Farm sprayfield to determine whether disposal of treated municipal wastewater using center pivot irrigation techniques to uptake nitrate-nitrogen (nitrate-N) is feasible. Based on the early success of this project, a new, larger Southeast Farm sprayfield was opened in November 1980. However, a recent 2002 study indicated that nitrate-N from these operations may be moving through the Upper Floridan aquifer to Wakulla Springs, thus causing nitrate-N concentrations to increase in the spring water. The increase in nitrate-N combined with the generally clear spring water and abundant sunshine may be encouraging invasive plant species growth. Determining the link between the nitrate-N application at the sprayfields and increased nitrate-N levels is complicated because there are other sources of nitrate-N in the Wakulla Springs springshed, including atmospheric deposition, onsite sewage disposal systems, disposal of biosolids by land spreading, creeks discharging into sinks, domestic fertilizer application, and livestock wastes.

  5. Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in theNew Jersey Coastal Plain, with Emphasis on theHammonton Land Application Facility

    Science.gov (United States)

    Reilly, Timothy J.; Romanok, Kristin M.; Tessler, Steven; Fischer, Jeffrey M.

    2010-01-01

    A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.

  6. Application of subsurface wastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate

    Directory of Open Access Journals (Sweden)

    Ying-hua Li

    2015-01-01

    Full Text Available In order to enhance the hydraulic loading rate (HLR of a subsurface wastewater infiltration system (SWIS used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RWD was 1.0, the pollutant removal rate increased by (13.6 ± 0.3% for NH3-N, (20.7 ± 1.1% for TN, (18.6 ± 0.4% for TP, (12.2 ± 0.5% for BOD, (10.1 ± 0.3% for COD, and (36.2 ± 1.2% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water – Water Quality Standard for Scenic Environment Use (GB/T 18921-2002 even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP, the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p < 0.05 under different RWDs. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWIS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.

  7. THE EFFECT OF WASTEWATER OF DOMESTIC AND MEAT PROCESSING PLANT ON THE RIVER OF KARASU

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    1996-01-01

    Full Text Available The wastewaters of the slaughterhouse and meat processing plant in Erzurum city, which don't have any wastewater treatment plant is discharged to the Karasu river. The wastewater, especially occured during slaughtering and processing of meat, contained high level of COD, BOD5, total suspended solid, fat and grease and total solid. Therefore these wastewaters cause some environmental problems in the city. This paper presents the effect of wastewaters from resident area slaughterhouse, and meat processing plants on the river of Karasu. For this purpose some samples taken from eight different points around the river were analysed in order to obtain values of dissolved oxygen, BOD5, COD, total phosphorus, total kjeldahl nitrojen, total suspended solid, total solid, total volatile suspended solid, fat and grease, chlorides and coliform. From the results obtained, it is found out that the wastewaters from the slaughterhouse has the biggest pollutant effect in the river.

  8. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  9. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 251C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  10. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  11. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi

    2016-11-01

    A new three-electrode electrocoagulation reactor was investigated to increase the rate of removal of phosphate from domestic wastewater. Initially, two electrodes (graphite plate and air cathode) were connected with 0.5 V of voltage applied for a short charging time (∼10 s). The direction of the electric field was then reversed, by switching the power supply lead from the anode to the cathode, and connecting the other lead to a sacrificial aluminum mesh anode for removal of phosphate by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed up to 98% of phosphate in 15 min (inert electrode working time of 10 s, current density of 1 mA/cm2, and 15 min total electrocoagulation time), which was 6% higher than that of the control (no inert electrode). The energy demand varied from 0.05 kWh/m3 for 85% removal in 5 min, to 0.14 kwh/m3 for 98% removal in 15 min. These results indicate that the REAEC can reduce the energy demands and treatment times compared to conventional electrocoagulation processes for phosphate removal from wastewater.

  12. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  13. Desenvolvimento de Heliconia psittacorum e Gladiolus hortulanus irrigados com águas residuárias tratadas Growth of Heliconia psittacorum and Gladiolus hortulanus irrigated with treated domestic wastewater

    Directory of Open Access Journals (Sweden)

    Lousane L. Cerqueira

    2008-12-01

    Full Text Available O objetivo primordial com este trabalho é avaliar o impacto do uso de águas residuárias domésticas tratadas (ART no desenvolvimento de espécies ornamentais, razão por que se instalou o ensaio no município de Simões Filho, BA, em delineamento experimental de blocos casualizados, com parcelas subdivididas, cultivadas com Heliconia psittacorum e Gladiolus hortulanus e irrigadas por gotejamento com ART e com água de riacho; avaliaram-se o comprimento das hastes, número de botões florais (helicônia e gladíolo, altura das plantas, número de perfilhos, diâmetro da touceira e nutrientes (somente helicônia. Dentre os fatores que afetam o desenvolvimento das plantas, avaliaram-se a porosidade e a salinidade (condutividade elétrica - CE do solo, de 0 a 0,3 m. Não se observaram diferenças significativas no desenvolvimento das plantas; ressalta-se que micro e macroporosidade, CE e sodicidade, também não indicaram diferenças entre os tratamentos depois de 180 dias de irrigação, mas se observou início de salinização do solo após 1 ano de experimento, o que significa possíveis alterações dos parâmetros avaliados a médio e longo prazos.This research aims to evaluate the impact of irrigation with treated domestic wastewater (TDW on the growth of ornamental plant species. The experiment was installed in the town of Simões Filhos (BA, in a randomized block design with sub-divided plots, cultivated with Heliconia psittacorum and Gladiolus hortulanus using surface drip irrigation with TDW and river water. The evaluated parameters were: stem length, button number (parakeet flower and gladiola, and plant height, number of tillers, plant diameter and nutriment content (only parakeet flower. Among the factors which affect the growth of the plant, soil porosity and soil salinity (electrical conductivity - EC were measured for 0 to 0.3 m soil depth. No significant difference was observed for the plant morphology. Changes in soil micro and

  14. Disinfection of septic tank and cesspool wastewater with peracetic acid.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Savolainen, Ritva

    2003-08-01

    Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.

  15. Environmental and public health implications of wastewater quality ...

    African Journals Online (AJOL)

    The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. This paper is aimed at reviewing the environmental and health impacts of untreated or inadequately treated wastewater effluents. The quality of wastewater effluents is ...

  16. Assessment of the contamination with domestic wastewater in supply wells over sandbank area

    Directory of Open Access Journals (Sweden)

    Micheli Rocha Cordeiro

    2012-04-01

    Full Text Available The purpose of this study was to investigate the contamination of septic tanks in the supply wells of a population settled over a sandbank area, the Lagomar neighborhood, in the city of Macaé (RJ. The neighborhood is located in the macro areas of the northern border, adjacent and buffer zone of Restinga de Jurubatiba National Park, with great ecological relevance and scenic beauty, and shelter for numerous coastal lagoons and endemic species. The studied area has low-income population, and no systems of wastewater treatment and public water supply, thus increasing the risk of diseases related to poor environmental sanitation. The presence of fecal coliforms in all samples, including a sample of treated water, indicates health risks to the local population, as well as risks of ecosystem change in the National Park and its surroundings.

  17. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25�1�C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  18. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  19. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry.

    Science.gov (United States)

    Xue, Wenchao; Tobino, Tomohiro; Nakajima, Fumiyuki; Yamamoto, Kazuo

    2015-02-01

    Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  1. Impact of treated wastewater for irrigation on soil microbial communities.

    Science.gov (United States)

    Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L

    2018-05-01

    The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.

  2. Durability of visitable concrete sewer gallery under the effect of domestic wastewater

    Science.gov (United States)

    Salhi, Aimed; Kriker, Abdelouahed; Tioua, Tahar; Abimiloud, Youcef; Barluenga, Gonzalo

    2016-07-01

    The durability of concrete structures for the disposal of wastewater depends on their behavior when faced to different aggressions such as mechanics, chemical and biological, causing a deterioration often cementing matrix. The deterioration of recent evacuations wastewater infrastructure, made of reinforced concrete less than 15 years ago, has become an important concern. The aim of this study was to investigate the degradation and the factors responsible for the deterioration of the concrete visitable gallery of sewage from the town of Touggourt (south-east of Algeria). Thus, samples from different parts of the gallery were extracted and unaltered samples were selected as a reference. A degraded sample exposed to H2S gas and another sample of the gallery submerged into wastewater were analyzed to characterize the internal and external damage to the gallery as well as the chemical and mineralogical changes. These tests were complemented by a physical and mechanical characterization of the samples. The experimental results showed the strong anisotropy of both internal and external damage.

  3. Liquid manna? Treating urban wastewater for local gardening ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-02-02

    Feb 2, 2011 ... “Before, we had no proper sewage system and people were forced to empty ... Conventional sewage treatment is beyond the means of the municipality, ... Researchers found that some vegetables irrigated with wastewater ...

  4. Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2016-12-01

    Full Text Available With the aim at enhancing the sustainability of biomass production in the Mediterranean area, this paper analyzes, for the first time, the production of sorghum (Sorghum bicolor (L. Moench biomass for bioenergy production using urban treated wastewaters and bio-fertilization. For this purpose, the effects on biomass production of three different fertilizations (no-nitrogen control, biofertilizer, and mineral ammonium nitrate, four levels of constructed wetland (CW wastewater restitutions (0%, 33%, 66% and 100% of crop evapotranspiration (ETc and three harvesting dates (at full plant maturity, at the initial senescence stage, and at the post-senescence stage were evaluated in a two year trial. For bio-fertilization, a commercial product based on arbuscular mycorrhizal fungi was used. Mineral nitrogen (N fertilization significantly increased dry biomass (+22.8% in the first year and +16.8% in the second year compared to the control (95.9 and 188.2 g·plant−1, respectively. The lowest and highest biomass production, in 2008 and 2009, was found at 0% (67.1 and 118.2 g·plant−1 and 100% (139.2 and 297.4 g·plant−1 ETc restitutions. In both years, the first harvest gave the highest biomass yield (124.3 g·plant−1 in the first year and 321.3 g·plant−1 in the second, followed by the second and the third one. The results showed that in Mediterranean areas, constructed wetlands treated wastewaters, when complying with the European restrictions for their use in agriculture, may represent an important tool to enhance and stabilize the biomass of energy crops by recycling scarce quality water and nutrients otherwise lost in the environment.

  5. [Domestic and family violence against women: a case-control study with victims treated in emergency rooms].

    Science.gov (United States)

    Garcia, Leila Posenato; Duarte, Elisabeth Carmen; Freitas, Lúcia Rolim Santana de; Silva, Gabriela Drummond Marques da

    2016-01-01

    This study aimed to identify factors associated with treatment of victims of domestic and family violence in emergency rooms in Brazil. This is a case-control study based on the Surveillance System for Violence and Accidents (VIVA), 2011. Women ≥ 18 years who were victims of family and domestic violence were selected as cases and compared to accident victims (controls). Adjusted odds ratios were estimated by unconditional logistic regression. 623 cases and 10,120 controls were included. Risk factors according to the adjusted analysis were younger age (18-29 years), low schooling, lack of paid work, alcohol consumption, having sought treatment in a different health service, and violence on weekends or at night or in the early morning hours. The study concludes that domestic and family violence shows alcohol consumption as a strongly associated factor. Days and hours with the highest ocurrence reveal the need to adjust emergency services to treat victims.

  6. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  7. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies.

    Science.gov (United States)

    Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L

    2017-01-01

    Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nitrogen removal in Northern peatlands treating mine wastewaters

    Science.gov (United States)

    Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile

    2015-04-01

    Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland

  10. Impact of treated wastewater on organismic biosensors at various levels of biological organization

    International Nuclear Information System (INIS)

    Topić Popović, Natalija; Strunjak-Perović, Ivančica; Klobučar, Roberta Sauerborn; Barišić, Josip; Babić, Sanja; Jadan, Margita; Kepec, Slavko; Kazazić, Snježana P.; Matijatko, Vesna; Beer Ljubić, Blanka; Car, Ivan; Repec, Siniša; Stipaničev, Draženka

    2015-01-01

    Relating the treated wastewater quality and its impact on organismic biosensors (Prussian carp, Carassius gibelio and earthworm, Eisenia fetida) was the main objective of the study. The impact on health status of fish living downstream, microbiological contamination and antimicrobial resistance, fish tissue structure, blood biochemistry, oxidative stress, genotoxic effects, as well as multixenobiotic resistance mechanism (MXR) was assessed. Treated wastewater discharged from the WWTP modified the environmental parameters and xenobiotic concentrations of the receiving surface waters. Potential bacterial pathogens from fish and respective waters were found in relatively low numbers, although they comprised aeromonads with a zoonotic potential. High resistance profiles were determined towards the tested antimicrobial compounds, mostly sulfamethoxazole and erythromycin. Histopathology primarily revealed gill lamellar fusion and reduction of interlamellar spaces of effluent fish. A significant increase in plasma values of urea, total proteins, albumins and triglycerides and a significant decrease in the activity of plasma superoxide dismutase were noted in carp from the effluent-receiving canal. Micronucleus test did not reveal significant differences between the examined groups, but a higher frequency of erythrocyte nuclear abnormalities was found in fish sampled from the effluent-receiving canal. Earthworms indicated to the presence of MXR inhibitors in water and sludge samples, thus proving as a sensitive sentinel organism for environmental pollutants. The integrative approach of this study could serve as a guiding principle in conducting evaluations of the aquatic habitat health in complex bio-monitoring studies. - Highlights: • Bacteria from fish and water have a zoonotic potential and might pose a health risk • High antimicrobial resistance profiles were determined; particularly to SMX • The sediment total antibiotic concentrations decreased with distance

  11. Impact of treated wastewater on organismic biosensors at various levels of biological organization

    Energy Technology Data Exchange (ETDEWEB)

    Topić Popović, Natalija, E-mail: ntopic@irb.hr [Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb (Croatia); Strunjak-Perović, Ivančica; Klobučar, Roberta Sauerborn; Barišić, Josip; Babić, Sanja; Jadan, Margita [Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb (Croatia); Kepec, Slavko [Virkom d.o.o, Public Water Supply and Wastewater Services, Kralja Petra Krešimira IV 30, Virovitica. Croatia (Croatia); Kazazić, Snježana P. [Laboratory for Chemical Kinetics and Atmospheric Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb (Croatia); Matijatko, Vesna; Beer Ljubić, Blanka [Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb (Croatia); Car, Ivan [Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb (Croatia); Repec, Siniša; Stipaničev, Draženka [Croatian Waters, Main Water Management Laboratory, Ul. grada Vukovara 220, Zagreb (Croatia); and others

    2015-12-15

    Relating the treated wastewater quality and its impact on organismic biosensors (Prussian carp, Carassius gibelio and earthworm, Eisenia fetida) was the main objective of the study. The impact on health status of fish living downstream, microbiological contamination and antimicrobial resistance, fish tissue structure, blood biochemistry, oxidative stress, genotoxic effects, as well as multixenobiotic resistance mechanism (MXR) was assessed. Treated wastewater discharged from the WWTP modified the environmental parameters and xenobiotic concentrations of the receiving surface waters. Potential bacterial pathogens from fish and respective waters were found in relatively low numbers, although they comprised aeromonads with a zoonotic potential. High resistance profiles were determined towards the tested antimicrobial compounds, mostly sulfamethoxazole and erythromycin. Histopathology primarily revealed gill lamellar fusion and reduction of interlamellar spaces of effluent fish. A significant increase in plasma values of urea, total proteins, albumins and triglycerides and a significant decrease in the activity of plasma superoxide dismutase were noted in carp from the effluent-receiving canal. Micronucleus test did not reveal significant differences between the examined groups, but a higher frequency of erythrocyte nuclear abnormalities was found in fish sampled from the effluent-receiving canal. Earthworms indicated to the presence of MXR inhibitors in water and sludge samples, thus proving as a sensitive sentinel organism for environmental pollutants. The integrative approach of this study could serve as a guiding principle in conducting evaluations of the aquatic habitat health in complex bio-monitoring studies. - Highlights: • Bacteria from fish and water have a zoonotic potential and might pose a health risk • High antimicrobial resistance profiles were determined; particularly to SMX • The sediment total antibiotic concentrations decreased with distance

  12. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  13. Crescimento e produtividade da mamoneira irrigada com diferentes diluições de esgoto doméstico tratado Growth and production of castor bean irrigated with different dilutions of domestic wastewater

    Directory of Open Access Journals (Sweden)

    Mário C. de F. Ribeiro

    2012-06-01

    Full Text Available Objetivou-se avaliar, neste trabalho, os efeitos da irrigação com água de esgoto doméstico sobre as variáveis de crescimento e produtividade da mamoneira, genótipo EBDA MPB 01, em condições de campo. A pesquisa foi realizada no período de dezembro de 2009 a junho 2010, na Universidade Federal do Recôncavo da Bahia, Campus de Cruz das Almas. Foram estudadas quatro diferentes proporções de diluição de esgoto doméstico tratado em comparação com o tratamento testemunha (adubação e irrigação convencional, da seguinte forma: T1 - 100% do efluente tratado; T2 - 75% do efluente tratado mais 25% de água de poço artesiano; T3 - 50% do efluente tratado mais 50% de água de poço artesiano; T4 - 25% do efluente tratado mais 75% de água de poço artesiano e T5 - manejo convencional (adubação química e irrigação suplementar com água de poço artesiano. O delineamento experimental foi em blocos casualizados (DBC com quatro blocos cada tratamento, constituindo de 20 parcelas experimentais. A produtividade da mamoneira não apresentou diferença estatística entre os tratamentos. O uso de água residuária de esgoto doméstico na cultura da mamoneira, não afetou as variáveis de crescimento analisadas.The effects of the irrigation with domestic wastewater effluent on the growth variables and the productivity of castor bean, genotyps EBDA MPB 01, were evaluated under field conditions. The research was carried out from December 2009 to June 2010, at UFRB experimental area, in Cruz das Almas, BA. Four different proportions of dilution of domestic wastewater effluent in comparison with the conventional treatment were studied, in the following way: T1 - 100% of the treated effluent; T2 - 75% of the effluent +25% of artesian well water; T3 - 50% of the efluent +50% of artesian well water; T4 - 25% of the effluent +75% of artesian well water; T5 - conventional treatment (chemical fertilization and supplementary irrigation with water of

  14. Anaerobic treatment of domestic wastewater in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.

    2004-01-01

    In this thesis, the application of upflow anaerobic sludge bed (UASB) reactors for the treatment of low-strength domestic sewage was studied for the city ofSalta

  15. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater.

    Science.gov (United States)

    Tang, Mei; Dou, Xiaomin; Wang, Chunyan; Tian, Zhe; Yang, Min; Zhang, Yu

    2017-12-01

    The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P  0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2  = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  16. Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique.

    Science.gov (United States)

    Alslaibi, Tamer M; Kishawi, Yasser; Abunada, Ziyad

    2017-05-01

    The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0-2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl - and NO 3 - levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.

  17. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda

    2016-02-01

    This study aims to evaluate the removal efficiency of microbial contaminants from two hospitals on-site Wastewater Treatment Plants (WWTPs) in Saudi Arabia. Hospital wastewaters often go untreated in Saudi Arabia as in many devolving countries, where no specific regulations are imposed regarding hospital wastewater treatment. The current guidelines are placed to ensure a safe treated wastewater quality, however, they do not regulate for pathogenic bacteria and emerging contaminants. Results from this study have detected pathogenic bacterial genera and antibiotic resistant bacteria in the sampled hospitals wastewater. And although the treatment process of one of the hospitals was able to meet current quality guidelines, the other hospital treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive investigation is needed that will facilitate and guide suggestions for more detailed guidelines and monitoring.

  18. An evaluation of a mesophilic reactor for treating wastewater from a ...

    African Journals Online (AJOL)

    An evaluation of anaerobic treatment of potato-processing wastewater using an up flow Anaerobic Sludge Bed (UASB) reactor at 37°C was conducted. Wastewater from a potato-processing plant in Harare, with an average of 6.8 g COD/l, (COD = chemical oxygen demand) a high concentration of total solids (up to 6725 ...

  19. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    Science.gov (United States)

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Electron beam application for studies carried out with real domestic sewage from Sao Paulo wastewater treatment plants

    International Nuclear Information System (INIS)

    Borrely, S.I.; Sampa, M.H.O.; Duarte, C.L.

    2001-01-01

    The incompatibility between industrial development and clean environment requires intensive search for waste mitigation technology. Since the aquatic resources have been the most impacted from the environments, improvements on wastewater treatment technologies have been considered. The Nuclear Research Institute has dedicated attention to this problem since 1990. According to the Governmental Sewage Company, SABESP, Sao Paulo Metropolitan Region, RMSP, is treating 18 cubic meters of sewage per second at five stations. The throughput of each station is: ETE Barueri - 9.5 m 3 /s; ETE ABC - 3.0 m 3 /s; ETE Sao Miguel - 1.5 m 3 /s; ETE Parque Novo Mundo - 2.5 m 3 /s and ETE Suzano - 1.5 m 3 /s. Real effluents from the municipalities have been submitted to electron beam accelerator for different purposes, and using batch system. The samplings were composite and the wastewater were irradiated at Pyrex vessels, 246 mL per sample. The radiation doses were defined by current variation and the energy was fixed in 1.4MeV. The conveyor velocity was 6,72 m/min. A Dynamitron EBA, 37,5kW was the electron source

  1. Effect of activated sludge culture conditions on Waxberry wastewater

    Science.gov (United States)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  2. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it

  3. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  4. Bacteria in non-woven textile filters for domestic wastewater treatment.

    Science.gov (United States)

    Spychała, Marcin; Starzyk, Justyna

    2015-01-01

    The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found.

  5. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater

    International Nuclear Information System (INIS)

    Salgado, R.; Pereira, V.J.; Carvalho, G.; Soeiro, R.; Gaffney, V.; Almeida, C.; Cardoso, V. Vale; Ferreira, E.; Benoliel, M.J.

    2013-01-01

    Highlights: ► Direct UV photolysis of 3 pharmaceuticals in pure and waste water was investigated. ► Ketoprofen has higher photodegradion kinetics, followed by diclofenac and atenolol. ► MP/UV photodegradation products were identified for the 3 compounds. ► Photodegradation pathways were proposed to explain the obtained products. ► The persistent photoproducts were identified for each compound. -- Abstract: Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis

  6. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J. [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB) – Universidade Nova de Lisboa (UNL), Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, 5 Portugal (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Soeiro, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Gaffney, V.; Almeida, C. [Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia da Universidade de Lisboa (FFUL), Av. Prof. Gama Pinto, 1600-049 Lisboa (Portugal); Cardoso, V. Vale; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Águas Livres, S.A., Direcção de Controlo de Qualidade da Água, Laboratório Central, Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); and others

    2013-01-15

    Highlights: ► Direct UV photolysis of 3 pharmaceuticals in pure and waste water was investigated. ► Ketoprofen has higher photodegradion kinetics, followed by diclofenac and atenolol. ► MP/UV photodegradation products were identified for the 3 compounds. ► Photodegradation pathways were proposed to explain the obtained products. ► The persistent photoproducts were identified for each compound. -- Abstract: Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.

  7. Determination of aromatic and PAH (polycyclic aromatic hydrocarbons) content of oily wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I.; Russell, E.C.

    1978-08-01

    An analytical scheme was developed for determining the total organic content and hydrocarbon concentration from a one-liter portion of a wastewater sample, and determining the volatile, suspended, and water-soluble fractions from a second, two-liter portion. Analyses of untreated and treated bilge wastewater from the U.S. Army Fort Eustis, Va., facility showed 10-300 ppm suspended organics and 10-300 ppm dissolved organics in the untreated bilge, and no suspended matter, but 700-2000 ppm dissolved organics, in the treated bilge wastewaters. Of the dissolved organics in untreated and treated wastewater, 70 and 10%, respectively, were extracted with chloroform; the organics in the treated water were probably biologically derived from petroleum degradation. Gas chromatographic/mass spectroscopic and high-pressure liquid chromatographic analyses of the chloroform extracts showed about equal parts of phenolic compounds and aromatic hydrocarbons, small amounts of heterocyclics, and traces of polycyclic aromatics in the untreated wastewater, and mainly phenolics in the treated water.

  8. Recent (2008-10) concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone, south-central Texas, and their potential relation to urban development in the contributing zone

    Science.gov (United States)

    Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.

    2011-01-01

    contributing watersheds. An isotopic composition of nitrate (delta nitrogen–15) greater than 8 per mil in many of the samples indicated there was a contribution of nitrate with a biogenic (human and or animal waste, or both) origin. Wastewater compounds measured in routine samples were detected infrequently (3 percent of cases), and concentrations were very low (less than the method reporting level in most cases). There was no correlation between nitrate concentrations and the frequency of detection of wastewater compounds, indicating that wastewater compounds might be undergoing removal during such processes as infiltration through soil. Three potential sources of biogenic nitrate to the contributing zone were considered: septic systems, land application of treated wastewater, and domesticated dogs and cats. During 2001–10, the estimated densities of septic systems and domesticated dogs and cats (number per acre) increased in the watersheds of all five creeks, and the rate of land application of treated wastewater (gallons per day per acre) increased in the watersheds of Barton, Bear, and Onion Creeks. Considering the timing and location of the increases in the three sources, septic systems were considered a likely source of increased nitrate to Bear Creek; land application of treated wastewater a likely source to Barton, Bear, and Onion Creeks; and domestic dogs and cats a potential source principally to Williamson Creek. The results of this investigation indicate that baseline water quality, in terms of nitrate, has shifted upward between 2001 and 2010, even without any direct discharges of treated wastewater to the creeks.

  9. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  10. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  11. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  12. Effects of pharmaceutical micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: case of continuous pollution by carbamazepine.

    Science.gov (United States)

    Li, Chengcheng; Cabassud, Corinne; Reboul, Bernard; Guigui, Christelle

    2015-02-01

    Membrane bioreactor (MBR) is increasingly used for municipal wastewater treatment and reuse and great concerns have been raised to some emerging trace pollutants found in aquatic environment in the last decade, notably the pharmaceuticals. As a consequence the removal of pharmaceutical micropollutants by MBRs has been extensively investigated. But there is still a lack of knowledge on the effects of the current presence of pharmaceutical micropollutants in domestic wastewaters on MBR fouling. Among the different pharmaceuticals, it was decided to focus on carbamazepine (CBZ), an anti-epileptic drug, because of its occurrence in domestic wastewaters and persistency in biological processes including MBRs. This paper focuses on the effects of continuous carbamazepine pollution on MBR fouling. A continuous introduction of CBZ into the MBR via the feed (about 90 μg L(-1) CBZ in the feed) provoked a TMP jump. It occurred just 1 day after the addition of CBZ in MBR and a significantly higher increase rate of TMP was also observed after 1 day after addition of CBZ in MBR, as compared to that before addition of CBZ. This indicates that the pharmaceutical stress induced by CBZ causes more severe membrane fouling. Addition of CBZ was shown to induce a significant increase of the concentration of proteins in the supernatant at the beginning several days then stabilized to original level whereas no significant change was found for polysaccharides. HPLC-SEC analysis showed that addition of CBZ induced a decrease of 100-1000 kDa protein-like SMPs and a more significant increase of 10-100 kDa protein-like SMPs in the supernatant. Moreover it was found that addition of CBZ in the MBR affected the sludge microbial activities, as a slight inhibition (about 20%) of the exogenous respiration rate was observed. The increased membrane fouling could be related to the change in biomass characteristics and supernatant quality after addition of CBZ in MBR. This study allows also

  13. A multicomponent ion-exchange equilibrium model for chabazite columns treating ORNL wastewaters

    International Nuclear Information System (INIS)

    Perona, J.J.

    1993-06-01

    Planned near-term and long-term upgrades of the Oak Ridge National Laboratory (ORNL) Process Waste Treatment Plant (PWTP) will use chabazite columns to remove 90 Sr and 137 Cs from process wastewater. A valid equilibrium model is required for the design of these columns and for evaluating their performance when influent wastewater composition changes. The cations exchanged, in addition to strontium and cesium, are calcium, magnesium, and sodium. A model was developed using the Wilson equation for the calculation of the solid-phase activity coefficients. The model was tested against chabazite column runs on two different wastewaters and found to be valid. A sensitivity analysis was carried out for the projected wastewater compositions, in which the model was used to predict changes in relative separation factors for strontium and cesium subject to changes in calcium, magnesium, and sodium concentrations

  14. Domestic wastewater treated for agricultural reuse | de Sousa ...

    African Journals Online (AJOL)

    Four post-treatment systems of an upflow anaerobic sludge blanket (UASB) reactor were evaluated regarding chemical and sanitary qualities. At an experimental station for biological treatment of sewage (EXTRABES) located in Campina Grande - PB, Brazil, the physical, chemical and biological parameters of the effluents ...

  15. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2014-09-01

    Full Text Available The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. The photo-reactors were designed to act on the liquid surface, as the lamp does not get into contact with the liquid. To increase the efficiency of UV radiation, photo-reactors were coated with aluminum foil. The lamp used in the reactors was germicidal fluorescent, with band wavelength of 230 nm, power of 30 Watts and manufactured by Techlux. In this research, the HRT with the highest removal efficiency was 0.063 days (90.6 minutes, even treating an effluent with veryhigh turbidity due to dissolved solids. It was concluded that the sterilization method using UV has proved to be an effective and appropriate process, among many other procedures.

  16. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Colantuono, A.; Kokkinidou, S.; Peterson, D.G.; Fogliano, V.

    2014-01-01

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at

  17. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  18. Practical application of wastewater reuse in tourist resorts.

    Science.gov (United States)

    Antakyali, D; Krampe, J; Steinmetz, H

    2008-01-01

    A medium-scale membrane bioreactor was tested in a large tourist resort on the south-western coast of Turkey with the treated wastewater subsequently being used for irrigational purposes. The wastewater treatment system was designed to eliminate carbonaceous and nitrogenous substances. Treatment efficiency was monitored by means of regular chemical and microbiological analyses. Information was collected on water use at different locations of the hotel. Specific values based on the number of guests were determined. Wastewater streams from kitchen, laundry and rooms were analysed to investigate the various contribution from these points. The social acceptance of the guests concerning the on-site wastewater treatment and reuse in the hotel was analysed using a questionnaire. The investigations indicated that the treated wastewater provides the required chemical and hygienic conditions to satisfy requirement for its reuse in irrigation. The acceptance by guests was encouraging for such applications. IWA Publishing 2008.

  19. Study on the Development of Household Wastewater Treatment Unit

    Directory of Open Access Journals (Sweden)

    Ali Hadi Ghawi

    2018-03-01

    Full Text Available The cities of Iraq in general and the city of Al Diwaniyah in particular are characterized by the fact that the majority of households use septic tank to dispose of sewage, leading to contamination of ground and surface water and a disturbance to the environment. The objective of this study is to protect the water and soil sources from the risk of pollution, eliminate the process of perfusion and thus, reduce costs, maintain public health, as well as design and implement the proposed purification unit for domestic wastewater treatment. A domestic wastewater treatment unit has been improved to meet the standard specifications for the quality of the effluent wastewater. In this study, a compact non-electric sewage treatment unit was improved and implemented. Treatment is based on an effective modern biological purification process. Experimental verification and analysis of results were performed to demonstrate the improvement of physical and chemical parameters. The performance of the septic tanks-bioreactor gave satisfactory results. The removal efficiencies of Total Biochemical Oxygen Demand (BOD, Total Chemical Oxygen Demand (COD, NH4-N, Total Nitrogen and Total Suspended Solid (TSS were 96.9%, 84.6%, 78.8%, 79.9% and 95.3%, respectively.

  20. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  1. Kinetics of biological treatment of phenolic wastewater in a three ...

    African Journals Online (AJOL)

    Phenolic wastewater was treated in a three-phase draft tube fluidized bed reactor containing biofilm. Phenol removal rate with biofilm was evaluated both theoretically and experimentally. The results indicate that biodegradation of phenolic wastewater by biofilm process could be treated as a zero order reaction.

  2. The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in Southern Ontario, Canada

    International Nuclear Information System (INIS)

    Brown, Carolyn J.M.; Knight, Brendan W.; McMaster, Mark E.; Munkittrick, Kelly R.; Oakes, Ken D.; Tetreault, Grald R.; Servos, Mark R.

    2011-01-01

    Fish community changes associated with a tertiary treated municipal wastewater effluent outfall in the Speed River, Ontario, Canada, were evaluated at nine sites over two seasons (2008) using standardized electrofishing. Habitat evaluations were conducted to ensure that the riffle sites selected were physically similar. The fish community was dominated by several species of darters that differed in their response to the effluent outfall. There was a significant decrease in Greenside Darter (Etheostoma blennioides) but an increase in Rainbow Darter (E. caeruleum) abundance directly downstream of the outfall. Stable isotope signatures (δ 13 C and δ 15 N), which indicate shifts in energy utilization and flow, increased in Rainbow Darter downstream, but showed no change in Greenside Darter. Rainbow Darter may be exploiting a food source that is not as available at upstream sites giving them a competitive advantage over the Greenside Darter immediately downstream of the outfall. - Highlights: → Fish communities are altered by tertiary treated municipal wastewater exposure. → Relative abundance of the two dominant fish (darter) species changed downstream. → Differing stable isotope signatures in fish suggests shifting energy flow and diet. → The altered environment may allow resilient species a competitive advantage. → The system recovers quickly downstream. - Tertiary treated effluent altered fish community composition in a small receiving stream possibly as a result of altered availability of resources (diet) as indicated by stable isotopes.

  3. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  4. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  5. OPTIMISATION OF HIBISCUS SABDARIFFA AS A NATURAL COAGULANT TO TREAT CONGO RED IN WASTEWATER

    Directory of Open Access Journals (Sweden)

    MUN Y. YONG

    2016-02-01

    Full Text Available The process of coagulation is commonly practiced in water and wastewater treatment to reduce level of dissolved chemical, turbidity and so on with the usage of coagulant. Aluminium sulphate (alum is the most commonly used coagulant, however, recent studies show that residual aluminium in drinking water and sludge may induce Alzheimer’s disease and environmental issues. Natural coagulant which is environmental friendly and non-toxic is developed as an alternative to overcome these issues. In this work, Hibiscus Sabdariffa was studied as natural coagulant to treat dye wastewater containing Congo red. The seeds were extracted with different solvent such as distilled water, 0.5 M NaCl and 0.05 M NaOH to extract the coagulation agent. The working parameters were optimised using Response Surface Methodology (RSM. 0.5 M NaCl was found to have highest colour removal of 95.1 % among the solvents. In addition, Hibiscus Sabdariffa seed was found to be an effective coagulant that has 91.2 % colour removal at the optimal working condition of pH 2, 190 mg/L coagulant dosage at 400 ppm of dye concentration. It was also been identified that the performance of natural coagulant is comparable with conventional coagulant, aluminium sulphate with colour removal of 91.2 % and 92.3 % respectively.

  6. Start-up of a free water surface constructed wetland for treating olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Michailides Michail

    2015-01-01

    Full Text Available An olive mill's existing evaporation pond was separated into five cells and transformed into a free water surface constructed wetland. The constructed wetland was used as a post-treatment stage for olive mill wastewater (OMW. Wastewater was previously treated by an aerobic trickling filter. The influent concentrations in the constructed wetland were 27400 mg.L-1, 4800 mg.L-1, 105 mg.L-1 and 770 mg.L-1 for COD, phenols, ortho-phosphate and TKN, respectively. Despite the rather high influent concentrations, the performance of the constructed wetland was very good since after the 60-day start-up operation period it achieved removal rates of about 94%, 95%, 95% and 98% for COD, phenols, ortho-phosphate and TKN, respectively. The major pollutant removal processes can be attributed to both biological processes occurring in the wetland and photo-oxidation. Laboratory-scale experiments with OMW from fifth cell of the wetland revealed that the net contribution of photo-oxidation after 112 hours of simulated solar radiation at 765 W/m2 (i.e. about 38 days of sunlight irradiation was 18% and 31% removal for COD and phenols, respectively. In the constructed wetland, the total removal reached 81% and 86% for COD and phenols, respectively, for the same time period (38 days.

  7. Municipal water reclamation of industrial water use in Mexico; Recuperacion de aguas municpales para su uso como aguas industrailes en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gamez, G.; Ramos, R.; Aerts, P.; Guzman, E.; Pachecho, J. c.

    2009-07-01

    This article describes how treated domestic wastewater in a Mexican desert area is reused by a local mining and metallurgical company for process water make-up. With increasing production of treated domestic wastewater, the company's water reuse facilities were continuously expanded over the last ten years. Today, four water reuse plants run with reverse osmosis membranes. With water being a limiting factor, they have enabled the scale-up of mining operations. (Author)

  8. Municipal water reclamation of industrial water use in Mexico

    International Nuclear Information System (INIS)

    Gamez, G.; Ramos, R.; Aerts, P.; Guzman, E.; Pachecho, J. c.

    2009-01-01

    This article describes how treated domestic wastewater in a Mexican desert area is reused by a local mining and metallurgical company for process water make-up. With increasing production of treated domestic wastewater, the company's water reuse facilities were continuously expanded over the last ten years. Today, four water reuse plants run with reverse osmosis membranes. With water being a limiting factor, they have enabled the scale-up of mining operations. (Author)

  9. Managed aquifer recharge of treated wastewater: water quality changes resulting from infiltration through the vadose zone.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Higginson, Simon

    2011-11-01

    Secondary treated wastewater was infiltrated through a 9 m-thick calcareous vadose zone during a 39 month managed aquifer recharge (MAR) field trial to determine potential improvements in the recycled water quality. The water quality improvements of the recycled water were based on changes in the chemistry and microbiology of (i) the recycled water prior to infiltration relative to (ii) groundwater immediately down-gradient from the infiltration gallery. Changes in the average concentrations of several constituents in the recycled water were identified with reductions of 30% for phosphorous, 66% for fluoride, 62% for iron and 51% for total organic carbon when the secondary treated wastewater was infiltrated at an applied rate of 17.5 L per minute with a residence time of approximately four days in the vadose zone and less than two days in the aquifer. Reductions were also noted for oxazepam and temazepam among the pharmaceuticals tested and for a range of microbial pathogens, but reductions were harder to quantify as their magnitudes varied over time. Total nitrogen and carbamazepine persisted in groundwater down-gradient from the infiltration galleries. Infiltration does potentially offer a range of water quality improvements over direct injection to the water table without passage through the unsaturated zone; however, additional treatment options for the non-potable water may still need to be considered, depending on the receiving environment or the end use of the recovered water. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  11. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater.

    Science.gov (United States)

    Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M

    2008-01-01

    The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.

  12. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    Science.gov (United States)

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  14. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  15. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    Science.gov (United States)

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  17. Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH

    Science.gov (United States)

    Increasing scarcity of fresh water in arid and semi arid regions means that we must utilize alternative water supplies for irrigation if we are to sustain agricultural production in these regions. Treated municipal wastewaters are being increasingly utilized for irrigation. In general only the salin...

  18. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  19. REVIEW OF WASTEWATER FROM THE CITY OF OUAGADOUGOU: SELF-PURIFICATION CAPACITY FOR THE PRODUCTION OF BIOGAS / BILAN DES EAUX USEES DE LA VILLE DE OUAGADOUGOU : CAPACITE AUTO-EPURATOIRE EN VUE DE LA PRODUCTION DE BIOGAZ

    Directory of Open Access Journals (Sweden)

    INOUSSA ZONGO

    2012-06-01

    Full Text Available The two tests realized in this study show that the anaerobic conditions are better than the aerobic ones in order to treat most of the effluents of Ouagadougou in Burkina Faso. This essay allows 95% reduction of greenhouse gases specifically CO2 by anaerobic way. The survey of effluent gives 14456000 m3•yr-1 with 3.716 mg O2•L-1 COD and 790520 m3 yr-1 of industrial wastewater with 2238 mg O2•L-1. The potential of biogas based on the domestic wastewater is evaluated to 30.256 m3 per day

  20. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  1. Start-up phase assessment of a UASB-Septic tank system treating domestic septage

    International Nuclear Information System (INIS)

    Ali, M.; Al-Saed, R.; Mahmoud, N.

    2007-01-01

    About 65% of the annual domestic waste water in Palestine is currently collected in cesspits, where inadequate disposal might cause cumulative public health risks and annual environmental degradation. This research presents the preliminary results for the start-up period of a pilot-scale UASB-septic tank system treating domestic septage of Birzet town. Under different operational conditions, the performance of the pretreatment system for the removal of organic matter and nutrients was evaluated. Initial results showed that organic pollutants removal was mainly due to biophysical processes including sedimentation and microbial degradation. During start-up phase, the system attained removal efficiency for COD total of about 80% compared to removal for COD col, and COD dis of 71% and 43% respectively. Similarly, the continuous operation mode demonstrated that the system was quite effective in removing organic pollutants. Operational experience from the initial results revealed that seeding the USAB reactor with activated sludge during the start up period was not practical. Finally, the advantage of USAB-septic tank application appeared to be achievable if adequate system operation and control over a long monitoring period were maintained. (author)

  2. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  3. Plans for treating the liquid wastes from an ammonia/urea/sulfur plant

    Energy Technology Data Exchange (ETDEWEB)

    Padula, R.C.; Amaral, S.P.

    1980-03-01

    Plans for treating the liquid wastes from an ammonia/urea/sulfur plant under construction near the Araucaria Refinery of Petroleo Brasileiro S.A. include sending the clean rain water directly to the Barigui River (A Class 3 river suitable for domestic water supply after corrective treatment, preservation of fauna and flora, and animal drinking water); collecting contaminated and process wastewater and subjecting them to equilization, flocculation, flotation, nitrification, decantation, denitrification, rapid aeration, and decantation treatments; and disposing of the sludge in a sanitary landfill. The sewage will undergo biological treatment or be sent to an oxidation poond. The pollution load and the allowed pollutant levels in the effluents are given.

  4. Vegetable coagulants as alternative for treatment of wastewater in Mexico

    Directory of Open Access Journals (Sweden)

    Servando López-León

    2017-11-01

    Full Text Available This review addresses the various properties of natural coagulants, water, the chemical substance essential for life and the ideal solvent for a large number of compounds, it is commonly used with domestic, commercial and industrial purposes. After its use, it presents sewage to be retired before use it once again. To remove pollutant, water is subject to different physical, chemical and biological processes. Here, the clarification process uses aluminum and iron materials to remove the solids present; these materials are reported as health hazardous and toxic. In Mexico, regulatory frame work stablish that treated wastewater should do not exceed 0.2 mg/L of aluminum even though has been reported an increased risk of Alzheimer's in populations when water exceeds 0.1 mg/L. Natural coagulants have showed coagulation properties when are used in the clarification process, proven its advantages over traditional ones; such as low cost, good coagulant properties and safe health and non-toxic properties. Here, we enlist some vegetable species as alternatives to the traditional based on aluminum and iron. Additionally, these species are known to have origins on Mexico or being present extensively in the territory, making possible to think about them as alternative coagulants in the clarification process of the wastewater treatment process.

  5. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  6. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  7. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    Science.gov (United States)

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  8. Toxicity identification evaluation of cosmetics industry wastewater.

    Science.gov (United States)

    de Melo, Elisa Dias; Mounteer, Ann H; Leão, Lucas Henrique de Souza; Bahia, Renata Cibele Barros; Campos, Izabella Maria Ferreira

    2013-01-15

    The cosmetics industry has shown steady growth in many developing countries over the past several years, yet little research exists on toxicity of wastewaters it generates. This study describes a toxicity identification evaluation conducted on wastewater from a small Brazilian hair care products manufacturing plant. Physicochemical and ecotoxicological analyses of three wastewater treatment plant inlet and outlet samples collected over a six month period revealed inefficient operation of the treatment system and thus treated wastewater organic matter, suspended solids and surfactants contents consistently exceeded discharge limits. Treated wastewater also presented high acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. This toxicity was associated with suspended solids, volatile or sublatable and non-polar to moderately polar organic compounds that could be recovered in filtration and aeration residues. Seven surfactants used in the largest quantities in the production process were highly toxic to P. subcapitata and D. similis. These results indicated that surfactants, important production raw materials, are a probable source of toxicity, although other possible sources, such as fragrances, should not be discarded. Improved treatment plant operational control may reduce toxicity and lower impact of wastewater discharge to receiving waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Simulating Effects of Long Term Use of Wastewater on Farmers Health Using System Dynamics Modeling (Case Study: Varamin Plain

    Directory of Open Access Journals (Sweden)

    Hamzehali Alizadeh

    2017-06-01

    (supplying 90 percent of the demand, 368 MCM of which was supplied through groundwater and 252 MCM was supplied by surface water. In recent years supplying water from Latyan Dam to the agriculture in Varamin Plain due to water supply of Tehran and the recent droughts has been reduced to lower than half (the average 68.8 MCM. On the other hand, shortage of surface water resources has caused an additional pressure to the groundwater resources of the Plain. Excessive groundwater withdrawal and use of brackish reused waters in the southern parts of the plain has caused the quality loss in groundwater resources, so that groundwater salinity has increased about 0.5 dS/m from the year 2000 to 2011. Obviously, by continuing the present situation, in less than two decades the groundwater resources in Varamin will be either quite destroyed or unable to be used due to inappropriate quality. Another source of surface water is allocated to the Varamin Plain is treated wastewater produced from Tehran Wastewater Treatment Plant. Utilizing the phases 1 to 4 of this treatment plant, about 80 MCM (2.5 up to 4 m3/s of wastewater is annually transferred to Varamin Plain. According to the projections, it is assumed that wastewater will be used in near future as the most important water resource to Varamin Plain. In this study, SD was applied as the system analysis method for the Varamin wastewater management. The spatial boundary of the SD model for Varamin model was the whole Varamin area, which is 1584 km2. The historical review period was from 2001 to 2011, the simulated period was from 2011 to 2036, and the simulation time interval was one year. The most important scenarios evaluated consisted of four wastewater allocation scenarios [(i keeping the excising condition, (ii complete allocation of Latian dam reservoir water to Tehran domestic use, allocation of 200 MCM treated wastewater during growing season to agricultural sector and 40 MCM to artificial aquifer recharge during non

  10. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  11. 26 CFR 1.401(a)-50 - Puerto Rican trusts; election to be treated as a domestic trust.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Puerto Rican trusts; election to be treated as a domestic trust. 1.401(a)-50 Section 1.401(a)-50 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(a)-50 Puerto Rican trusts...

  12. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  13. Fluidized bed anaerobic biodegration of food industry wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Toldra, F.; Flors, A.; Lequerica, J.L.; Valles, S.

    1987-01-01

    Anaerobic fluidized bed reactors were used to reduce the COD of low-strength food industry wastewaters. Soluble organic removal efficiencies of 75%, 80% and 50% were obtained for hog slaughterhouse, dairy and brewery wastewaters, respectively, at 35 degrees C and 8 hours hydraulic retention time. Removal efficiencies decreased with decreasing temperature (35 degrees C to 20 degrees C); no detrimental effect of temperature was observed when treating the slaughterhouse wastewater. Methane production rate was only relevant on brewery wastewater treatment. (Refs. 17).

  14. Impact Assessment and Multicriteria Decision Analysis of Alternative Managed Aquifer Recharge Strategies Based on Treated Wastewater in Northern Gaza

    Directory of Open Access Journals (Sweden)

    Mohammad Azizur Rahman

    2014-12-01

    Full Text Available For better planning of a managed aquifer recharge (MAR project, the most promising strategies should analyze the environmental impact, socio-economic efficiency, and their contribution to the existing or future water resource conditions in the region. The challenge of such studies is to combine and quantify a wide range of criteria from the environment and society. This necessity leads to an integrated concept and analysis. This paper outlines an integrated approach considering environmental, health, social and economic aspects to support in the decision-making process to implement a managed aquifer recharge project as a potential response to water resource problems. In order to demonstrate the approach in detail, this paper analysed several water resources management strategies based on MAR implementation, by using treated wastewater in the Northern Gaza Strip and the potential impacts of the strategies on groundwater resources, agriculture, environment, health, economy and society. Based on the Palestinian water policy (Year 2005–2025 on wastewater reuse, three MAR strategies were developed in close cooperation with the local decision makers. The strategies were compared with a base line strategy referred to as the so-called “Do Nothing Approach”. The results of the study show that MAR project implementation with treated wastewater at a maximum rate, considered together with sustainable development of groundwater, is the best and most robust strategy amongst those analyzed. The analysis shows the defined MAR strategies contribute to water resources development and environmental protection or improvement including an existing eutrophic lake. The integrated approach used in this paper may be applicable not only to MAR project implementation but also to other water resources and environmental development projects.

  15. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  16. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  17. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin

    Science.gov (United States)

    Katz, Brian G.; Griffin, Dale W.

    2008-08-01

    Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (δ18O and δ2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have δ18O and δ2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (δ15N NO3) values above 10 ‰ in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (δ15N NO3 = 4.6 4.9 ‰), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N, N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil’s Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer

  18. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  19. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    Science.gov (United States)

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Coagulation increased the growth potential of various species bacteria of the effluent of a MBR for the treatment of domestic wastewater.

    Science.gov (United States)

    Yu, Tong; Li, Guoqiang; Lin, Wenqi; Hu, Hong-Ying; Lu, Yun

    2017-02-01

    Microbial regrowth in reclaimed water is an important issue restricting water reclamation and reuse. Previous studies about the effect of coagulation on microbial growth in reclaimed water were limited and inconsistent. In this study, microbial growth potentials of the effluent of a membrane bioreactor (MBR) for the treatment of domestic wastewater after coagulation was evaluated by using bacteria of various phyla, classes (α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Actinobacteriaa) or species isolated from wastewater treatment plants (WWTPs) and assimilable organic carbon (AOC) test strains. Bacterial growth increased considerably after coagulation with polyaluminum for the samples investigated in this study. The results revealed that the microbial growth potentials in the effluent of the MBR evidently increased after coagulation. The increase ratio of bacterial growth could reach up to 929 %. Specific UV absorbance (SUVA) of the samples averagely decreased 16.3 %, but the removal efficiencies of the excitation emission matrices (EEMs) were less than 5 % after coagulation. It is suggested that the organic matter which affected the bacterial growth might be substances having aromaticity (i.e., UV 254 absorbance) but little fluorescence. According to molecular weight (MW) distribution analysis, the coagulation was indeed effective in removing organic matters with large MW. The removal of large MW organic matters might be related to bacterial growth increase. The results indicated that posttreatments are needed after coagulation to maintain the biological stability of reclaimed water.

  1. The efficiency of electrocoagulation using aluminum electrodesin treating wastewater from a dairy industry

    Directory of Open Access Journals (Sweden)

    Gerson de Freitas Silva Valente

    2015-09-01

    Full Text Available This research deals with the investigation of electrocoagulation (EC treatment of wastewater from a dairy plant using aluminum electrodes. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD, total solids (TS and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and 3 repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using aluminum electrodes showed that electric current application for 21 minutes, an initial sample pH near 5.0 and a current density of 61.6A m-2 resulted in a significant reduction in COD by 57%; removal of turbidity by 99%, removal of total suspended solids by 92% and volatile suspended solids by 97%; and a final treated effluent pH of approximately 10. Optimum operating condition was used for cost calculations show that operating cost is approximately 3.48R$ m-3.

  2. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  4. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  5. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.; Bradley, I. M.; Cusick, R. D.; Guest, J. S.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy

  7. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  8. Monitoring of carbamazepine concentrations in wastewater and groundwater to quantify sewer leakage.

    Science.gov (United States)

    Fenz, R; Blaschke, A P; Clara, M; Kroiss, H; Mascher, D; Zessner, M

    2005-01-01

    Monitoring of carbamazepine concentrations in wastewater and groundwater enables us to identify and quantify sewer exfiltration. The antiepileptic drug carbamazepine is hardly removed in wastewater treatment plants and not or just slightly attenuated during bank infiltration and subsoil flow. Concentrations in wastewater are generally 1000 times higher than the limit of quantification. In contrast to . many other wastewater tracers carbamazepine is discharged to the environment only via domestic wastewater. The results from this study carried out in Linz, Austria indicate an average exfiltration rate of 1%, expressed as percentage of the dry weather flow that is lost to the groundwater on the city-wide scale. This rate is lower than sewage losses reported in most other studies which attempted to quantify exfiltration on the basis of groundwater pollution. However, it was also possible to identify one area with significantly higher sewage losses. This method seems to be very suitable for the verification of leakage models used to assess sewer exfiltration on a regional scale.

  9. Nutrient content in maize fertilized with tannery sludge vermicompost and irrigated with domestic wastewater

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2016-11-01

    Full Text Available This study analyzed the macro and micronutrient content of maize leaves (Zea mays L. grown in soil containing tannery sludge vermicomposting and irrigated with wastewater. The arrangement of the treatments consisted of a factorial 2x6 (two types of irrigation and six kinds of fertilizer in a completely randomized design, with five repetitions, totaling sixty experimental units. The following experimental units, irrigated with supply water (A and household wastewater (R, were established: (T1 Control Soil, with no chemical fertilization and no vermicomposting; (T2 Soil + NPK; (T3 Soil + primary sludge vermicompost; (T4 Soil + P + primary sludge vermicompost; (T5 Soil + P + liming sludge vermicompost; and (T6 Soil + liming sludge vermicompost. For the leaf-tissue analysis, the opposite whole leaf below the first (upper ear was collected from each plant, excluding the midrib at the onset of the female inflorescence. The results showed that both wastewater and the tannery sludge vermicomposts can be a good source of nutrients for maize plants, since the macro and micronutrients in the leaves of plants were satisfactory and no signs or symptoms of toxicity were observed. While leaf analysis alone is insufficient to assess the nutritional status of plants, this study innovatively suggests the potential beneficial use of a combination of wastewater and tannery sludge vermicompost in the cultivation of corn, motivating new research.

  10. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    International Nuclear Information System (INIS)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-01-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  12. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    Energy Technology Data Exchange (ETDEWEB)

    Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  13. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    Directory of Open Access Journals (Sweden)

    Linda Jabari

    2016-03-01

    Full Text Available Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens, and msbl6 (candidate division were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published.

  14. Development of a decision support system for precision management of conjunctive use of treated wastewater for irrigation in Oman

    Directory of Open Access Journals (Sweden)

    Hemanatha P. W. Jayasuriya

    2018-01-01

    Full Text Available This research aimed at finding alternative options for conjunctive use of treated wastewater (TW with groundwater (GW minimizing the irrigation water from aquifers in the Al-Batinah region with the assistance of a Decision Support System (DSS. Oman is facing a three-facet problem of lowering of GW table, wastewater over-production and excess TW. Approved guidelines for use of TW with tertiary treatments are of two classes: class-A (for vegetables consumed raw, class-B (after cooking. The developed DSS is comprised of four management subsystems: (1 data management in Excel, (2 model and knowledge management by macro programming in Excel, (3 with linear programming (LP optimization models including transportation algorithms, and (4 user interface with Excel or Visual Basic (VB. The results are based on two extreme scenarios: zero TW excess, and zero GW used for irrigation. The DSS could predict water balance for number of crop rotations, and based on adjustable cost variables farmer profit margins could be created. Crop selections and rotation could be done using LP optimizations while transportation algorithm could organize best locations and capacities for treatment plants and the wastewater collection and transportation to farming areas via treatment plants. The developed DSS will be very useful as a water management, optimization and planning tool.

  15. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  16. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant

    KAUST Repository

    He, Weihua; Wallack, Maxwell J.; Kim, Kyoung-Yeol; Zhang, Xiaoyuan; Yang, Wulin; Zhu, Xiuping; Feng, Yujie; Logan, Bruce

    2016-01-01

    and power generation. Domestic wastewater was fed either in parallel (raw wastewater to each individual anode module) or series (sequentially through the chambers), with the flow direction either alternated every one or two days or kept fixed in a single

  17. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    Science.gov (United States)

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  18. Green Approach in the Bio-removal of Heavy Metals from wastewaters

    Directory of Open Access Journals (Sweden)

    Gani Paran

    2017-01-01

    Full Text Available Cultivation of microalgae has been suggested as a green approach for a sustainable wastewater treatment especially heavy metal bioremediation. This study investigated the bio-removal of zinc (Zn, iron (Fe, cadmium (Cd and manganese (Mn from domestic wastewater (DW and food processing wastewater (FW using green microalgae, Botryococcus sp.. The total of five treatments represented by five different cell concentrations (1×103, 1×104, 1×105, 1×106 and 1×107 cells/mL of Botryococcus sp. in the wastewaters medium. The results revealed high removal efficiency of Zn, Fe, Cd and Mn after 18 days of the culture compared to control (wastewaters without algae. In DW , Zn, Fe, Cd and Mn were successfully removed at the highest efficiencies up to 71.5%, 51.2%, 83.5% and 97.2%, respectively while in FW, the same metal concentrations were reduced by up to 64.4%, 53.3%, 52.9% and 26.7%, respectively. Overall, most of the algae cell concentrations tested were successfully reducing the metals contaminant presence in both wastewaters and provides a baseline for further phycoremediation coupled with biomass production.

  19. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin.

    Science.gov (United States)

    Chen, Zhiqiang; Wang, Hongcheng; Chen, Zhaobo; Ren, Nanqi; Wang, Aijie; Shi, Yue; Li, Xiaoming

    2011-01-30

    A full-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) pre-treating pharmaceutical wastewater containing 6-aminopenicillanic acid (6-APA) and amoxicillin. The aim of the study is to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 12.57 to 21.02 kgm(-3)d(-1) and a wide pH from 5.57 to 8.26, in order to provide a reference for treating the similar chemical synthetic pharmaceutical wastewater containing 6-APA and amoxicillin. The results demonstrated that the UASB average percentage reduction in COD, 6-APA and amoxicillin were 52.2%, 26.3% and 21.6%, respectively. In addition, three models, built on the back propagation neural network (BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing 6-APA and amoxicillin. The average error of COD, 6-APA and amoxicillin were -0.63%, 2.19% and 5.40%, respectively. The results indicated that these models built on the BPNN theory were well-fitted to the detected data, and were able to simulate and predict the removal of COD, 6-APA and amoxicillin by UASB. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  20. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2011-01-01

    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  1. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    Science.gov (United States)

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  2. 40 CFR 63.135 - Process wastewater provisions-containers.

    Science.gov (United States)

    2010-07-01

    ...-containers. 63.135 Section 63.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...

  3. Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid

    DEFF Research Database (Denmark)

    Hey, G.; Ledin, Anna; La Cour Jansen, Jes

    2012-01-01

    l and clofibric acid, a metabol i te of clofibrate) were used as target substances at 40 (g/L ini tial concentration. Three di fferent wastewaters types originating from two WWTPs were used. One wastewater was col lected after extended ni trogen removal in activated sludge, one after treatment wi th...

  4. Decision making tools for selecting sustainable wastewater treatment technologies in Thailand

    Science.gov (United States)

    Wongburi, Praewa; Park, Jae K.

    2018-05-01

    Wastewater consists of valuable resources that could be recovered or reused. Still it is under threat because of ineffective wastewater management and systems. In Thailand, less than 25% of wastewater generated may be treated while then rest is inadequately treated and sent back directly into waterbodies or the environment. Furthermore, the technologies that have been applied may be inefficient and unsustainable. Efficiency, sustainability, and simplicity are important concepts when designing an appropriate wastewater treatment system in developing countries. The objectives of this study were to review and evaluate wastewater treatment technologies and propose a method to improve or select an appropriate technology. An expert system in Excel® program was developed to determine the best solution. Sensitivity analysis was applied to compare and assess uncertainty factors. Due to the different conditions of each area, the key factor of interest was varied. Furthermore, Robust Decision Making tool was applied to determine the best way to improve existing wastewater treatment facility and to choose the most appropriate wastewater treatment technology.

  5. Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater - A review.

    Science.gov (United States)

    Mattsson, Jonathan; Hedström, Annelie; Ashley, Richard M; Viklander, Maria

    2015-09-15

    Ever since the advent of major sewer construction in the 1850s, the issue of increased solids deposition in sewers due to changes in domestic wastewater inputs has been frequently debated. Three recent changes considered here are the introduction of kitchen sink food waste disposers (FWDs); rising levels of inputs of fat, oil and grease (FOG); and the installation of low-flush toilets (LFTs). In this review these changes have been examined with regard to potential solids depositional impacts on sewer systems and the managerial implications. The review indicates that each of the changes has the potential to cause an increase in solids deposition in sewers and this is likely to be more pronounced for the upstream reaches of networks that serve fewer households than the downstream parts and for specific sewer features such as sags. The review has highlighted the importance of educational campaigns directed to the public to mitigate deposition as many of the observed problems have been linked to domestic behaviour in regard to FOGs, FWDs and toilet flushing. A standardized monitoring procedure of repeat sewer blockage locations can also be a means to identify depositional hot-spots. Interactions between the various changes in inputs in the studies reviewed here indicated an increased potential for blockage formation, but this would need to be further substantiated. As the precise nature of these changes in inputs have been found to be variable, depending on lifestyles and type of installation, the additional problems that may arise pose particular challenges to sewer operators and managers because of the difficulty in generalizing the nature of the changes, particularly where retrofitting projects in households are being considered. The three types of changes to inputs reviewed here highlight the need to consider whether or not more or less solid waste from households should be diverted into sewers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  7. Phytoremediation of kitchen wastewater by Spirulina platensis (Nordstedt Geiteler: pigment content, production variable cost and nutritional value

    Directory of Open Access Journals (Sweden)

    Siripen Traichaiyaporn1

    2008-01-01

    Full Text Available Phytoremediation of domestic wastewater by Spirulina platensis was carried out using kitchen wastewater. A complete randomised design (CRD was created for the experiment which was performed on modified Zarrouk’s medium (Zm, 100% kitchen wastewater (100%Kw and 90% kitchen wastewater (90%Kw. Water quality, biomass production, pigment content and nutritional value of Spirulina platensis were determined from cultures harvested every 5 days for a period of 15 days. The physico-chemical properties of cultivated wastewater were: water temperature 27-28 oC, pH 8.73-9.77 and DO 0.20-7.20 mg L-1. The 100%Kw and 90%Kw produced lower BOD, COD, TP, NH3-N, ON, TKN, NO3-N, NO2-N, TON and TN compared to Zm with p< 0.05. After cultivation, the treated kitchen wastewater met the standards for safe discharge in Thailand. The highest level of -carotene of S. platensis was achieved in Zm (0.29 mg g-1 and 100%Kw (0.29 mg g – 1 while the highest levels of C-phycocyanin were obtained in 100%Kw (17.95 mg g -1 and 90%Kw (16.31 mg g-1. The highest production variable cost for dry weight of S. platensis was in Zm (310.6 Baht kg -1 and 90%Kw (303.6 Baht kg -1 as compared to 100%Kw (276.6 Baht kg -1, with p<0.05. The highest biomass production of S. platensis was achieved in Zm (0.84 g L-1 and 100%Kw (0.82 g L-1, with protein content of 54.44% and 35.86%, respectively. Implications for the use of S. platensis for phytoremediation and C-phycocyanin production using of 100%Kw and 90% Kw are discussed.

  8. Applying a Modified Triad Approach to Investigate Wastewater lines

    International Nuclear Information System (INIS)

    Pawlowicz, R.; Urizar, L.; Blanchard, S.; Jacobsen, K.; Scholfield, J.

    2006-01-01

    Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

  9. Digested livestock wastewater treatment using gamma-ray irradiation and struvite crystallization

    International Nuclear Information System (INIS)

    Kim, Tak Hyun; Lee, Sang Ryul; Nam, Youn Ku; Lee, Myun Joo

    2009-01-01

    Livestock wastewater generally contains high strength of organics (COD), ammonia nitrogen (NH 4 + -N), phosphate phosphorus (PO 4 3- -P) and suspended solids. It is very difficult to treat by conventional wastewater treatment techniques. In this study, struvite crystallization was carried out to treat the digested livestock wastewater. 1.0 :1.2 :1.2 was determined as an optimal NH 4 + :Mg 2+ : PO 4 3- mol ratio of struvite crystallization. For the digested livestock wastewater, COD, NH 4 + -N and PO 4 3- -P removal efficiencies by struvite crystallization were 72.4%, 98.9%, and 74.8%, respectively. Gamma-ray irradiation was carried out prior to struvite crystallization of livestock wastewater. The enhancement of struvite crystallization efficiency could be obtained by the pretreatment of gamma-ray irradiation due to the decrease of COD, NH 4 + -N and PO 4 3- -P concentration

  10. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Chronic shortages of water in arid and semi-arid regions of the world and environmental policy regulations have stimulated the search for appropriate technologies capable of treating wastewater for reuse or safe discharge. Industrial effluents often carry chemical contaminants such as organics, petrochemicals, pesticides, dyes and heavy metal ions. The standard biological treatment processes commonly used for wastewater treatment are not capable of treating some of these complex organic chemicals that are found in varying quantities in the wastewaters. Another emerging problem is the increasing presence of pharmaceuticals and endocrine disruptor compounds in municipal wastewater entering into the receiving stream, for which new treatment techniques and procedures are needed to remove excreted drugs before releasing the effluent into public waterways or reuse. Radiation-initiated degradation of organics helps to transform various pollutants into less harmful substances or reduced to the levels below the permissible concentrations. Studies in several Member States (MS) have demonstrated the usefulness and efficiency of radiation technology for treatment of different organic pollutants. The lack of comparative data in pilot scale studies using radiation technique (alone or in combination with other methods) has been a major issue in further utilization of this method for wastewater treatment. There is a need to study further the radiation effects, evaluate reliability and cost of treating specific group of organic pollutants in cooperation with other stakeholders who are involved in using other technologies. The Co-ordinated Research Project (CRP) on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” has been launched with the objective to study the effectiveness, reliability and economics of radiation processing technology to treat wastewater contaminated with low and high concentration of organic

  11. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    Chronic shortages of water in arid and semi-arid regions of the world and environmental policy regulations have stimulated the search for appropriate technologies capable of treating wastewater for reuse or safe discharge. Industrial effluents often carry chemical contaminants such as organics, petrochemicals, pesticides, dyes and heavy metal ions. The standard biological treatment processes commonly used for wastewater treatment are not capable of treating some of these complex organic chemicals that are found in varying quantities in the wastewaters. Another emerging problem is the increasing presence of pharmaceuticals and endocrine disruptor compounds in municipal wastewater entering into the receiving stream, for which new treatment techniques and procedures are needed to remove excreted drugs before releasing the effluent into public waterways or reuse. Radiation-initiated degradation of organics helps to transform various pollutants into less harmful substances or reduced to the levels below the permissible concentrations. Studies in several Member States (MS) have demonstrated the usefulness and efficiency of radiation technology for treatment of different organic pollutants. The lack of comparative data in pilot scale studies using radiation technique (alone or in combination with other methods) has been a major issue in further utilization of this method for wastewater treatment. There is a need to study further the radiation effects, evaluate reliability and cost of treating specific group of organic pollutants in cooperation with other stakeholders who are involved in using other technologies. The Co-ordinated Research Project (CRP) on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” has been launched with the objective to study the effectiveness, reliability and economics of radiation processing technology to treat wastewater contaminated with low and high concentration of organic

  12. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    OpenAIRE

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chlorid...

  13. Contribution of Arab countries to pharmaceutical wastewater literature: a bibliometric and comparative analysis of research output

    OpenAIRE

    Zyoud, Sa?ed H.; Zyoud, Shaher H.; Al-Jabi, Samah W.; Sweileh, Waleed M.; Awang, Rahmat

    2016-01-01

    Background Recently, the pharmaceutical manufacturing industry has been growing rapidly in many countries in the world, including in Arab countries. Pharmaceuticals reach aquatic environments and are prevalent at small concentrations in wastewater from the drug manufacturing industry and hospitals. Such presence also occurs in domestic wastewater and results from the disposal of unused and expired medicines. Therefore, the objective of this study was to analyze and compare the quantity and qu...

  14. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  15. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    SWEET

    soil contamination and the cumulative impact of wastewater, we compared two plots, all under orange- ... A slight increase in the concentration of soil enteric bacteria and soil fungal densities was ..... could be used for fruit tree irrigation.

  16. Wastewater treatment and reuse. Indian power plant turns sewage into process water

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.; Schroedter, F.; Demmerle, C. [ERM Lahmeyer International, Neu-Isenburg (Germany)

    2000-07-01

    Lahmeyer International provided consulting services for a private Indian investor of a 200 MW diesel engine power plant, in reviewing and controlling the EPC Contractor from Korea with regard to the treatment plant for dosmestic wastewater and the reverse osmosis plant for desalination. The wastewater treatment and subsequent water treatment for cooling water production comprised: mechanical treatment, biological treatment of domestic wastewater, lime softening, sand filtration, disinfection, micro-filtration, reverse osmosis. The services as Owner's Engineer included: (1) the review of the EPC Contractor's treatment concept, (2) the selection of internationally renowned manufacturer, (3) the review of the detailed design (including civil, mechanical, electrical and I and C work), and (4) onsite technical assistance to the Client during construction and commissioning phase. (orig.)

  17. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  18. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  19. Governing the reuse of treated wastewater in irrigation : the case study of Jericho, Palestine

    NARCIS (Netherlands)

    Al-Khatib, Nasser; Shoqeir, Jawad A.H.; Özerol, Gül; Majaj, Linda

    2017-01-01

    Wastewater reuse in irrigation provides additional water supply for agriculture and saves freshwater resources for human consumption. Through these benefits, wastewater reuse can significantly alleviate the water scarcity in Palestine and fit to the complexity of the geopolitical context. However,

  20. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)