WorldWideScience

Sample records for treated wheat straw

  1. Sodium hydroxide treated wheat straw for sheep | Pienaar | South ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 2 (1980) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Sodium hydroxide treated wheat straw for sheep.

  2. Growth of bacteria and yeast on enzymically degraded alkali treated rice and wheat straws

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J.K.; Shirkot, C.K.; Dhawan, S.

    1981-01-01

    An enzyme filtrate of Trichoderma viride QM 9414 was used to saccharify rice and wheat straw. Delignification of the straw by alkali treatment increased the enzymic saccharification of both materials to approximately 70%. The optimum conditions for delignification were autoclaving at 120 degrees for 30 minutes with 2% Sodium Hydroxide. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Lactobacillus acidophilus, Bacillus megaterium, and Saccharomyces cerevisiae grew very well on enriched hydrolyzates of rice and wheat straws. Even nonenriched straw hydrolyzates supported better growth of L. acidophilus, B. megaterium, and E. coli on rice straw than the enriched synthetic medium containing equivalent glucose. S. cerevisiae grown in shake flasks containing 25 mL of enriched rice and wheat straw hydrolyzates yielded 0.595 g and 0.450 g of dry cells, respectively. The corresponding yield was 0.396 g from enriched synthetic medium containing equal amounts of glucose.

  3. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development......’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic...... acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new...

  4. Comparison of mechanistic models in the initial rate enzymatic hydrolysis of AFEX-treated wheat straw

    Directory of Open Access Journals (Sweden)

    Agbogbo Frank K

    2010-03-01

    Full Text Available Abstract Background Different mechanistic models have been used in the literature to describe the enzymatic hydrolysis of pretreated biomass. Although these different models have been applied to different substrates, most of these mechanistic models fit into two- and three-parameter mechanistic models. The purpose of this study is to compare the models and determine the activation energy and the enthalpy of adsorption of Trichoderma reesei enzymes on ammonia fibre explosion (AFEX-treated wheat straw. Experimental enzymatic hydrolysis data from AFEX-treated wheat straw were modelled with two- and three-parameter mechanistic models from the literature. In order to discriminate between the models, initial rate data at 49°C were subjected to statistical analysis (analysis of variance and scatter plots. Results For three-parameter models, the HCH-1 model best fitted the experimental data; for two-parameter models Michaelis-Menten (M-M best fitted the experimental data. All the three-parameter models fitted the data better than the two-parameter models. The best three models at 49°C (HCH-1, Huang and M-M were compared using initial rate data at three temperatures (35°, 42° and 49°C. The HCH-1 model provided the best fit based on the F values, the scatter plot and the residual sum of squares. Also, its kinetic parameters were linear in Arrhenius/van't Hoff's plots, unlike the other models. The activation energy (Ea is 47.6 kJ/mol and the enthalpy change of adsorption (ΔH is -118 kJ/mol for T. reesei enzymes on AFEX-treated wheat straw. Conclusion Among the two-parameter models, Michaelis-Menten model provided the best fit compared to models proposed by Humphrey and Wald. For the three-parameter models, HCH-1 provided the best fit because the model includes a fractional coverage parameter (ϕ which accounts for the number of reactive sites covered by the enzymes.

  5. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Río, del José C.; Rencoret, Jorge; Gutiérrez, Ana; Ruijter, de Norbert C.A.; Cone, John W.

    2017-01-01

    Wheat straw and oak wood chips were incubated with Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks. Samples from the fungal treated substrates were collected every week for chemical characterization. L. edodes continuously grew during the 8 weeks on both wheat straw and oak wood chips,

  6. [15N-flow after in sacco incubation and feeding of sheep and goats with untreated wheat straw or straw treated with 15N horse urine].

    Science.gov (United States)

    Schubert, R; Flachowsky, G; Bochröder, B

    1994-01-01

    Chopped wheat straw was homogeneously mixed with urine of horses (5.75 gN per 1, 16.88 atom-% 15N-excess) and airtightly stored in plastic containers for 6 months. Three rumen fistulated sheep and goats each were fed with untreated or urine treated straw. Concentrate was added to straw. Untreated and urine treated straw were given in nylon bags and incubated in the rumen of sheep and goats for 1, 3, 6, 12, 24, 48 and 72 hours. A three compartment exponential function was used to fit the measurements of 15N-excess and 15N-amount of bag content. The curves and the calculated partial Y-values of the three compartments show the inflow and outflow of 15N into or from the bags and allow conclusions about the binding of urine N. Most N of urine was not compactly bound by straw during storage. Primarily microbial N was attached to the straw in the rumen. About 6% of urine N were bound more compact to the straw. Similar curves were calculated for 15N-excess and 15N-amount of nylon bags. The curves allow conclusions about tracer flows without quantitative knowledge. There were no significant differences between animal species.

  7. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Samad Sadeghi

    2016-04-01

    Full Text Available Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for their potential to improve the feeding value of wheat straw. Upgrading of wheat straw by ammoniation has been known for a long time, but application of this method of wheat straw treatment has received the least attention in the area (Khorasan Province, Iran. Therefore, the object of the present study was to evaluate the effect of gaseous and liquid ammonia on nutritive value of wheat straw through in vitro techniques. Material and Methods One kg dry wheat straw was placed into the plastic cylinders with dimension of 1 m (diameter and 1.8 m (height and 0.8 mm (thickness. Gaseous and liquid commercial ammonia was injected or added to the wrapped straw at the rate of 2, 4 and 6 percent. The treatment time was 1 month at room temperature (20-25 ºC. At the end of treatment period the cylinders were opened and the ammoniated straw exposed to the air for 4 days. The treated straws were sampled for the subsequent analyses. Dry matter degradability of the samples was done by using nylon bags (10x20 cm with pore size of 40 micron. About 2 g ground samples (2 mm were placed into the nylon bags and incubated in rumen of 4 permanently fistulated steers for 3, 6, 12, 24, 36, 48, 72, 96 and 120 hrs. The experimental steers were fed by the ordinary diet containing 65% forage and 35% concentrate twice daily. The Menke and Steingass method was followed for the in vitro gas production method. Result and discussion Crude protein (CP content of the treated wheat straw samples

  8. Effects of Varying Levels of Fungal ( sp. Treated Wheat Straw as an Ingredient of Total Mixed Ration on Growth Performance and Nutrient Digestibility in Nili Ravi Buffalo Calves

    Directory of Open Access Journals (Sweden)

    F. Shahzad

    2016-03-01

    Full Text Available The study was carried out to explore the effects of replacing wheat straw with fungal treated wheat straw as an ingredient of total mixed ration (TMR on the growth performance and nutrient digestibility in Nili Ravi buffalo male calves. Fungal treated wheat straw was prepared using Arachniotus sp. Four TMRs were formulated where wheat straw was replaced with 0 (TMR1, 33 (TMR2, 67 (TMR3, and 100% (TMR4 fungal treated wheat straw in TMR. All TMRs were iso-caloric and iso-nitrogenous. The experimental TMRs were randomly assigned to four groups of male calves (n = 6 according to completely randomized design and the experiment continued for four months. The calves fed TMR2 exhibited a significant improve in dry matter intake, average daily weight gain, feed conversion ratio and feed economics compared to other groups. The same group also showed higher digestibility of dry matter, crude protein, neutral-, and acid detergent fibers than those fed on other TMRs. It is concluded that TMR with 33% fungal-treated wheat straw replacement has a potential to give an enhanced growth performance and nutrient digestibility in male Nili Ravi buffalo calves.

  9. Feeding value of urea molasses-treated wheat straw ensiled with fresh cattle manure for growing crossbred cattle calves.

    Science.gov (United States)

    Sarwar, Muhammad; Shahzad, Muhammad A; Nisa, Mahr U; Afzal, Danish; Sharif, Muhammad; Saddiqi, Hafiz A

    2011-03-01

    The study was carried out to evaluate the influence of urea plus molasses-treated wheat straw (WS) ensiled with cattle manure (CM) on nutrients intake, their digestibilities, and growth performance of crossbred (Sahiwal × Holstein Friesian) cattle calves. The CM was mixed with ground WS in a ratio of 30:70 on dry matter (DM) basis. The WS-CM mixture treated with urea (4% DM) and molasses (4% DM) was allowed to ferment for 40 days in a cemented pit. Four iso-nitrogenous and iso-energetic fermented wheat straw (FWS)-based experimental diets were formulated. The FWS0, FWS20, FWS30, and FWS40 diets contained 0%, 20%, 30%, and 40% FWS, respectively. Twenty calves (9-10 months of age) were randomly allocated to four dietary treatments in a randomized complete block design, five in each group. Increasing trends for DM, organic matter, crude protein, and neutral detergent fiber intakes by calves were observed with increasing dietary FWS level. Weight gain was significantly different among calves fed different levels of FWS. The highest weight gain (491.8 g/day) was observed in calves fed FWS40 diet, while calves fed FWS0 and FWS20 diets gained 350.0 and 449.6 g/day, respectively. The results from this study imply that the FWS can be added up to 30% in the diet of growing crossbred calves without any detrimental effect on their performance.

  10. FEEDING COMPLETELY MIXED RATIONS BASED ON UNTREATED, UREA OR AMMONIUM BICARBONATE TREATED WHEAT STRAW TO BUFFALO CALVES

    Directory of Open Access Journals (Sweden)

    Amanat Ali, M. Fatahullah Khan and Muhmmad Ayaz

    2002-03-01

    Full Text Available Eight young male buffalo calves of Nili-Ravi breed, randomly divided into two groups A and B (4 animals in each with a mean initial body weight of 115.3 ± 12.4 and 117.0 ± 7.3 kg respectively, were used for this study. Three is nitrogenous and is energetic completely mixed rations based on untreated (UWSR, urea-treated (Ur- TWSR and ammonium bicarbonate treated (Am- TWSR wheat straw, were prepared. Treatment of chopped wheat straw in mud houses with either urea or ammonium bicarbonate increased its crude protein content tom 3.2 (untreated to 8.7 and 9.5% (for treated respectively. The feeding trials were conducted in the 2 phases. During the Fist phase, the animals were fed Ur- TWSR and Am- TWSR for a period of 63 days. In the 2nd phase UWSR and Ur- TWSR were compared for a period of 76 days. At the end of each experimental phase a digestion trial was conducted. The results indicated that the animals fed Ur- TWSR showed the best average daily live weight gain (0.72 kg as compared to both the UWSR (0.59 kg and Am- TWSR (0.41 kg. The performance of the animals on Am- TWSR was the poorest. No significant differences were observed in the average daily teed intake of animals fed UWSR and Ur- TWSR. The animals fed Am- TWSR consumed; significantly (P <0.05 less feed as compared to UWSR and Ur- TWSR. The best feed conversion ratio was observed for the Ur- TWSR. The apparent digestibility coefficients for dry matter, crude protein, crude fibre and ether extract measured by total collection method indicated that Ur- TWSR was significantly (P<0.05 better digestible as compared to other rations. The cost per kg live weight gain in animals fed Ur- TWSR was significantly (P <0.05 less as compared to other rations. It is concluded that buffalo calves can efficiently and. economically be raised on completely mixed urea treated wheat straw based rations.

  11. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.; Jansen, M.L.A.; Visser, D.; Jong, de E.; Eggink, G.; Weusthuis, R.A.

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314.

  12. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  13. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    Science.gov (United States)

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( butyric acids concentrations. When PWSS was treated with molasses, LAB, or both, the contents of CP and lactic and acetic acids increased, whereas NDFom, ammonia-N, and butyric acid decreased ( fermentation quality of PWSS was lesser than that of CS. However, addition of molasses and molasses + LAB improved fermentation quality of PWSS.

  14. Use of Pleurotus pulmonarius to change the nutritional quality of wheat straw. I. effect on chemical composition

    OpenAIRE

    Oziel Dante Montañez-Valdez

    2008-01-01

    The effect of Pleurotus pulmonarius on the chemical composition of wheat straw was evaluated. Wheat straw, treated and untreated with P. pulmonarius, was obtained from a commercial facility. Ten samples plastic bags of wheat straw used previously as substrate to culture edible fungus were collected at random. The negative control group consisted of the pasteurized wheat straw untreated with P. pulmonarius. All samples were analyzed to determine dry matter, organic matter, crude protein, neutr...

  15. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  16. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined...... with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  17. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1 t of manure increase the methane production by 10%. Thus, wheat straw can be considered...

  18. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    Science.gov (United States)

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion.

    Science.gov (United States)

    Maas, Ronald Hw; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-08-12

    The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis).

  20. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    Directory of Open Access Journals (Sweden)

    de Jong Ed

    2008-08-01

    Full Text Available Abstract Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae. After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52% in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (inorganic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane, whereas the solid fraction functioned as fuel for thermal conversion (combustion, yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per

  1. Intake and utilization of energy from ammonia-treated and untreated wheat straw by steers and wether sheep given a basal diet of grass pellets and hay.

    NARCIS (Netherlands)

    Oosting, S.J.; Boekholt, H.A.; Los, M.J.N.; Leffering, C.P.

    1993-01-01

    Two experiments, experiment 1 with six steers in a 3 × 3 Latin-square design and experiment 2 with four wether sheep in a cross-over design, were conducted to study the effect of species and ammonia treatment on intake and utilization of the energy of untreated wheat straw. Treatments were: (1)

  2. Ammonia treatment of wheat straw. 2. Efficiency of microbial protein synthesis, rumen microbial protein pool size and turnover, and small intestinal protein digestion in sheep.

    NARCIS (Netherlands)

    Oosting, S.J.; Viets, T.C.; Lammers-Wienhoven, S.C.W.; Bruchem, van J.

    1993-01-01

    Ammonia-treated wheat straw (AWS) was compared with untreated wheat straw (UWS) and untreated wheat straw supplemented with urea (SWS) in an experiment with 6 wether sheep. Microbial protein synthesis increased after ammonia treatment due to the higher intake of rumen degradable organic matter (OM).

  3. Ethanol production from mixtures of wheat straw and wheat meal

    Directory of Open Access Journals (Sweden)

    Galbe Mats

    2010-07-01

    Full Text Available Abstract Background Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G or lignocellulosic (second generation; 2G raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS was mixed with presaccharified wheat meal (PWM and converted to ethanol in simultaneous saccharification and fermentation (SSF. Results Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68% or PWM alone (91%. Conclusions Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  4. Ethanol production from mixtures of wheat straw and wheat meal.

    Science.gov (United States)

    Erdei, Borbála; Barta, Zsolt; Sipos, Bálint; Réczey, Kati; Galbe, Mats; Zacchi, Guido

    2010-07-02

    Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  5. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment.

    Science.gov (United States)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia; Meyer, Anne S

    2013-01-01

    Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage of the produced organic acids. Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0.5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly increased. Subsequent enzymatic hydrolysis of the solid fractions showed that ensiling significantly improved the effect of pretreatment, especially at the lower temperatures of 170 and 180°C. The overall glucose yields after pretreatments of ensiled wheat straw were higher than for non-ensiled wheat straw hydrothermally treated at 190°C, namely 74-81% of the theoretical maximum glucose in the raw material, which was ~1.8 times better than the corresponding yields for the non-ensiled straw pretreated at 170 or 180°C. The highest overall conversion of combined glucose and xylose was achieved for ensiled wheat straw hydrothermally treated at 180°C, with overall glucose yield of 78% and overall conversion yield of xylose of 87%. Ensiling of wheat straw is shown to be an effective pre-step to hydrothermal treatment, and can give rise to a welcomed decrease of process temperature in hydrothermal treatments, thereby potentially having a positive effect on large scale pretreatment costs.

  6. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia

    2013-01-01

    BACKGROUND: Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage...... of the produced organic acids. RESULTS: Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0.......5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly...

  7. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...... these conditions two transitions arising from the glass transition of lignin and hemicelluloses have been identified. Key transitions attributed to softening of lignin were found at 53, 63 and 91 °C for moist samples of wheat straw, extracted straw and spruce, respectively. Transitions for hemicelluloses were...

  8. Changes of chemical and mechanical behavior of torrefied wheat straw

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    The purpose of the study was to investigate the influence of torrefaction on the grindability of wheat straw. Straw samples were torrefied at temperatures between 200 °C and 300 °C and with residence times between 0.5 and 3 h. Spectroscopic information obtained from ATR-FTIR indicated that below ...... Weight Loss (AWL%) of the wheat straw sample was 30% on dry and ash free basis (daf), and the higher heating value of the torrefied wheat straw was 24.2 MJ kg−1 (daf). The energy loss compared to the original material was 15% (daf)....

  9. Thermal transitions of the amorphous polymers in wheat straw

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  10. Yield response of mushroom (Agaricus bisporus) on wheat straw ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... The study was conducted to investigate yields of mushroom (Agaricus bisporus) on wheat straw and waste tea leaves ... waste tea leaves based composts, the highest mushroom yield (24.90%) were recorded on wheat straw and pigeon ... kg then filled into plastic bags at 7 kg wet weight basis. During.

  11. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Key words: Wheat straw, waste tea leaves, dry matter, protein, carbohydrate. INTRODUCTION. Cultivation of edible mushrooms with agricultural residues, such as rice and wheat straw, is a value-added process to convert these materials, which are otherwise considered to be wastes, into human food ...

  12. Wheat straw as ruminant feed : effect of supplementation and ammonia treatment on voluntary intake and nutrient availability

    NARCIS (Netherlands)

    Oosting, S.J.

    1993-01-01

    This thesis describes the results of experiments with goats, sheep and cattle fed untreated or ammonia-treated wheat straw. Aim of the experiments was to identify factors limiting voluntary intake and digestion of these low-quality feeds. Supplementation of urea to untreated wheat straw

  13. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  14. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials Part III: Dry matter, protein, and carbohydrate contents of Agaricus bisporus.

  15. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    African Journals Online (AJOL)

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  16. producing dairy cows fed conventional forages, wheat straw

    African Journals Online (AJOL)

    Chewing activity, metabolic profile and performance of high- producing dairy cows fed conventional forages, wheat straw or rice straw. ... South African Journal of Animal Science ... Twelve lactating Holstein cows were used in a replicated (n = 4) 3 × 3 Latin square design experiment with three periods of 21 days. Cows were ...

  17. Microbial production of biopolymers from the renewable resource wheat straw.

    Science.gov (United States)

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  18. The effect of temperature on the ammoniation of wheat straw by urea

    African Journals Online (AJOL)

    wheat straw. Urea was added at 75 g/kg throughout. Treated straw was sealed in 96 airtight plastic bottles of. 1000 ml for periods of 0, 1,2,4,6 and 8 weeks. Samples were dried at 59°Cin a fan-oven and subsequently analysed according to the in vitro technique (Engels & Van der. Merwe, 1967) for organic matter digestibility ...

  19. Reprint of: Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter K.; Hansen, Hans Ove

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  20. Wheat-straw as roughage component in finishing diets of growing ...

    African Journals Online (AJOL)

    to use wheat-straw in diets, this study was conducted (i) to determine the degree whereto the inclusion of wheat-straw in finishing diets for lambs affected digestibility, N retention and animal performance, and (ii) to evaluate ammoniated wheat straw as roughage component in a balanced diet, containing. >60% concentrates ...

  1. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    Science.gov (United States)

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  3. Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale.

    Science.gov (United States)

    Gao, Chongfeng; Xiao, Weihua; Ji, Guanya; Zhang, Yang; Cao, Yaoyao; Han, Lujia

    2017-10-01

    To investigate the change of structure and physicochemical properties of wheat straw in ball milling process at cellular scale, a series of wheat straws samples with different milling time were produced using an ultrafine vibration ball mill. A multitechnique approach was used to analyze the variation of wheat straw properties. The results showed that the characteristics of wheat straw powder displayed regular changes as a function of the milling time, i.e., the powder underwent the inversion of breakage to agglomerative regime during wheat straw ball milling process. The crystallinity index, bulk density and water retention capacity of wheat straw were exponential relation with ball milling time. Moreover, ball milling continually converted macromolecules of wheat straw cell wall into water-soluble substances resulting in the water extractives proportional to milling time. Copyright © 2017. Published by Elsevier Ltd.

  4. Pre-process desilication of wheat straw with citrate

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    Effects of treatment time, citrate concentration, temperature, and pH on Si extraction from wheat straw prior to hydrothermal pretreatment were investigated for maximising Si removal and biomass recovery before biomass refining. With citrate, an almost linear negative correlation between Si content...

  5. Characteristics and community diversity of a wheat straw-colonizing ...

    African Journals Online (AJOL)

    A microbial community named WSD-5 was successfully selected from plant litter and soil after longterm directed acclimation at normal temperature. After 15 days of cultivation at 30°C, the degradation rate of wheat straw by WSD-5 was 75.6%. For cellulose, hemicellulose and lignin, the degradation rates were 94.2, 81.9 ...

  6. Substitution of lucerne hay by ammoniated wheat straw in growth ...

    African Journals Online (AJOL)

    Lucerne hay (LH) was substituted by urea-ammoniated wheat straw (AWS) in four lamb-growth diets, all containing 60% roughage. ... Die ekonomiese voordeel van die verplasing van 'n hoë kwaliteit ruvoer, soos LH, met'n goedkoper bron (AKS), moet opgeweeg word teen die laer DMI en GDT, sowel as die nadelige effek ...

  7. Dehalogenation and decolorization of wheat straw- basedbleachery ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... efficiency was also in accord with gas chromatography analysis indicating drastic reductions at low molecular weight adsorbable organic halogen compounds. Key words: Straw, bleaching, adsorbable organic halogens, pulping, Penicillium camemberti. INTRODUCTION. Compared with wood; hemp, ramie ...

  8. Digestibility, nitrogen utilization, and voluntary intake of ensiled crab waste-wheat straw mixtures fed to sheep.

    Science.gov (United States)

    Abazinge, M D; Fontenot, J P; Allen, V G

    1994-03-01

    Crab waste and wheat (Triticum aestivum L.) straw mixtures, ensiled with different additives, were evaluated in metabolism and palatability trials. Crab waste and straw were mixed in proportions of 1:1, wet basis, with 20% water and different additives, and ensiled in 210-L metal drums double-lined with polyethylene bags. Thirty crossbred wethers (40 kg initial BW) were fed a 1) basal diet consisting of 75% orchardgrass (Dactylis glomerata L.) hay and 25% concentrate, 2) ensiled crab waste-wheat straw, with 16% (vol/wt) added glacial acetic acid, 3) crab waste-wheat straw ensiled with 20% dry molasses, 4) crab waste-wheat straw ensiled with 20% dry molasses and a microbial inoculant, and 5) ensiled wheat straw supplemented with urea. Apparent digestibility of DM and CP was lower (P < .05) for acetic acid-treated silages than for silages containing molasses. Nitrogen retention was higher (P < .05) for molasses-inoculant-treated silage than for the molasses-treated silage (5.4 vs 3.9 g/d). Ruminal NH3 N and blood urea N were higher (P < .05) for lambs fed the molasses-treated silages than for those receiving the acetic acid-treated crab waste mixture. Among the wethers fed crab waste silages, intake was lower (P < .01) for wethers receiving the acetic acid-treated silage than for those fed the molasses-treated mixtures. Treatment of crab waste-straw mixtures with molasses produced a palatable silage that was efficiently utilized by wethers.

  9. Lightweight composites from long wheat straw and polypropylene web.

    Science.gov (United States)

    Zou, Yi; Huda, Shah; Yang, Yiqi

    2010-03-01

    Whole and split wheat straws (WS) with length up to 10 cm have been used with polypropylene (PP) webs to make lightweight composites with properties superior to jute-PP composites with the same density. The effect of WS concentration, WS length, and split configuration (half, quarter, and mechanically split) on flexural and tensile properties of the composites has been investigated. The sound absorption properties of composites from whole straw and split straw have been studied. Compared with whole WS-PP composites, mechanically split WS-PP composites have 69% higher flexural strength, 39% higher modulus of elasticity, 18% higher impact resistance properties, 69% higher tensile strength and 26% higher Young's modulus. Compared with jute-PP composites, mechanically split WS-PP composites have 114% higher flexural strength, 38% higher modulus of elasticity, 10% higher tensile strength, 140% higher Young's modulus, better sound absorption properties and 50% lower impact resistance. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  11. Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus.

    Science.gov (United States)

    Zheng, Zhiqiang; Li, Huazhong; Li, Lun; Shao, Weilan

    2012-03-01

    The recombinant laccase from Thermus thermophilus was applied to the biobleaching of wheat straw pulp. The best bleaching effect was when the pulp was treated with 3 U laccase g(-1) dry pulp at 90°C, pH 4.5, 8% consistency for 1.5 h. Under these conditions, the pulp brightness was increased by 3.3% ISO, and the pulp kappa number was decreased by 5.6 U. Enzymatic treatment improved the bleachability of wheat straw pulp but caused no damage to the pulp fibers. The use of enzyme-treated pulp saved 25% H(2)O(2) consumption in subsequent peroxide bleaching without decreasing the final brightness. Pulp biobleaching in the presence of 5 mM ABTS further increased the pulp brightness by 1.5% ISO. This is the first report on the application of laccase from T. thermophilus in the pulp and paper sector.

  12. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  13. Plastic timber with wheat straw and polymer matrix

    OpenAIRE

    García-Velázquez, Ángel; Amado-Moreno, María Guadalupe; Campbell-Ramírez, Héctor Enrique; Brito-Páez, Reyna Arcelia; Toscano-Palomar, Lydia

    2013-01-01

    The objective of the research was to develop plastic timber with wheat straw and polymer matrix. In the Mexicali Valley in Baja California, Mexico, the agricultural activities and the maquiladora industry are the main source of income in the region.  However, agricultural activities generate wastes that contribute heavily to pollution of Mexicali and its valley. The burning of agricultural waste is a traditional practice in the Valley, and is done in order to prepare the soil for the next cro...

  14. Intrinsic kinetics and devolatilization of wheat straw during torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2013-01-01

    Torrefaction is a mild thermal treatment (200–300 °C) in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the degradation kinetics and devolatilization of wheat straw was studied in a thermogravimetric...... of water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, methyl chloride, traces of hydrogen sulfide and carbonyl sulfide were found at torrefaction temperatures of 250 and 300 °C. --------------------------------------------------------------------------------...

  15. Synthesis of magnetic wheat straw for arsenic adsorption

    International Nuclear Information System (INIS)

    Tian, Ye; Wu, Min; Lin, Xiaobo; Huang, Pei; Huang, Yong

    2011-01-01

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe 3 O 4 . → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe 3 O 4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe 3 O 4 . Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe 3 O 4 content and initial pH value influenced its adsorption behavior. Higher Fe 3 O 4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L -1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  16. Induction of wheat straw delignification by Trametes species.

    Science.gov (United States)

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-05-24

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains.

  17. Fibres and energy from wheat straw by simple practice

    Energy Technology Data Exchange (ETDEWEB)

    Leponiemi, A.

    2011-06-15

    The overall purpose of this work is to evaluate the possibilities of wheat straw for fibre and energy production and address the question of whether or not it is possible to develop a cost-effective process for producing good quality pulp from wheat straw for current paper or paperboard products. In addition, in light of the green energy boom, the question of whether fibre production could give added value to energy production using wheat straw is addressed. Due to the logistics of the bulky raw material, the process should be applied on a small scale that determines the requirements for the process. The process should be simple, have low chemical consumption and be environmentally safe. The processes selected for the study were based on an initial hot water treatment. Actual defibration in the 'chemical' approach was then performed using a subsequent alkaline peroxide bleaching process or in the 'mechanical' approach through mechanical refining. In both approaches, energy can be produced from lower quality material such as dissolved solids or fines. In this work, one of the primary aims besides the development of the above-mentioned process is to investigate the chemical storage of wheat straw which decays easily between harvesting periods and examine its effects on pulping and pulp properties. In addition, the aim of this work is to determine the market potential for non-wood pulp and evaluate non-wood pulp production. The results showed that the 'chemical' approach produced fibres for printing and writing. The quality of the pulp was relatively good, but the chemical consumption at the target brightness of 75% was high, indicating that a chemical recovery would be needed unless the brightness target could be significantly reduced. The 'mechanical' approach produced unbleached fibres for fluting and the energy production from fines and dissolved solids generated additional income. The results also showed that it is possible

  18. Cavitation assisted delignification of wheat straw: a review.

    Science.gov (United States)

    Iskalieva, Asylzat; Yimmou, Bob Mbouyem; Gogate, Parag R; Horvath, Miklos; Horvath, Peter G; Csoka, Levente

    2012-09-01

    Wheat is grown in most of the Indian and Chinese regions and after harvesting, the remaining straw offers considerable promise as a renewable source most suitable for papermaking and as a pulping resource. Delignification of wheat straw offers ample scope for energy conservation by way of the application of the process intensification principles. The present work reviews the pretreatment techniques available for improving the effectiveness of the conventional approach for polysaccharide component separation, softening and delignification. A detailed overview of the cavitation assisted delignification process has been presented based on the earlier literature illustrations and important operational guidelines have been presented for overall low-cost and amenable energy utilization in the processes. The effectiveness of the methods has been evaluated according to yield and properties of the isolated fibers in comparison to the conventional treatment. Also the experimental results of one such non-conventional treatment scheme based on the use of hydrodynamic cavitation have been presented for the pulping of wheat straw. The effect of hydrodynamically induced cavitation on cell wall matrix and its components have been characterized using FT-IR analysis with an objective of understanding the cavitation assisted digestion mechanism on straws. It has been observed that the use of hydrodynamic cavitation does not degrade the fibrillar structure of cellulose but causes relocalisation and partial removal of lignin. Overall it appears that considerable improvement can be obtained due to the use of pretreatment or alternate techniques for delignification, which is an energy intensive step in the paper making industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Improved Production of Thermostable Cellulase from Thermoascus aurantiacus RCKK by Fermentation Bioprocessing and Its Application in the Hydrolysis of Office Waste Paper, Algal Pulp, and Biologically Treated Wheat Straw.

    Science.gov (United States)

    Jain, Kavish Kumar; Kumar, Sandeep; Deswal, Deepa; Kuhad, Ramesh Chander

    2017-02-01

    Thermostable cellulases have wide variety of applications and distinctive advantages, but their low titer becomes the hurdle in their commercialization. In the present work, an assessment of optimum levels of significant factors (temperature, moisture ratio, inoculum size, and ammonium sulfate) and the effect of their interactions on production of thermostable CMCase, FPase, and β-glucosidase by Thermoascus aurantiacus RCKK under solid-state fermentation (SSF) was carried out using central composite design (CCD) of response surface methodology (RSM). The study revealed 33, 13, and 8 % improvement in FPase, CMCase, and β-glucosidase production, respectively. Moreover, crude cellulase from T. aurantiacus RCKK efficiently hydrolyzed office waste paper, algal pulp (Gracillaria verulosa), and biologically treated wheat straw at 60 °C with sugar release of about 830 mg/ml, 285 mg/g, and 260 mg/g of the substrate, respectively. The thermostable enzyme from T. aurantiacus RCKK holds potential to be used in biofuel industry.

  20. Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability.

    Science.gov (United States)

    Liu, Xiaoying; Zicari, Steven M; Liu, Guangqing; Li, Yeqing; Zhang, Ruihong

    2015-06-01

    The pretreatment of wheat straw with potassium hydroxide (KOH) at ambient temperature (20°C) was investigated. The pretreatment effects on chemical composition and physical structures, and subsequent enzymatic hydrolysis and anaerobic digestion were evaluated. Wheat straw at 10% total solids (TS) was treated with KOH solution for 24h at a wide range of KOH loadings from 2% to 50% (w/w dry basis). Higher KOH loading resulted in higher lignin reduction from the straw and chemical oxygen demand (COD) in the resulting black liquor. Maximum lignin reduction of 54.7% was observed at 50% KOH loading. In comparison to untreated straw, specific hydrolysis yields achieved 14.0-92.3% over the range of 2-50% KOH loading, and methane yields increased 16.7-77.5% for KOH loadings of 10-50%, respectively. Accounting for losses during pretreatment, 20% KOH loading resulted in maximum overall reducing sugar yield and methane yield and therefore is the recommended loading for pretreatment under these conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Delignification of Wheat Straw by Pleurotus spp. under Mushroom-Growing Conditions †

    Science.gov (United States)

    Tsang, Linda J.; Reid, Ian D.; Coxworth, Ewen C.

    1987-01-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. PMID:16347363

  2. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  3. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  4. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... isotherms, which showed that the amount of cell wall water was not affected by the briquetting process and that the sugar yield was similar after a combined hydrothermal pretreatment and enzymatic hydrolysis. The factors which offset the benefits introduced by the briquetting process need to be further...

  5. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed...... addition of hemicellulase activities to complement the cellulase activities found in Celluclast. Further improving the hydrolysis process in relation to the Babilafuente Bioethanol process might be achieved applying a substrate fed-batch strategy, if optimised in relation to timing of the substrate...

  6. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  7. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; van Elsas, Jan Dirk

    2014-01-01

    Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith's phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose degradation, was indicated

  8. [Effects of straw mulching and irrigation on solar energy utilization efficiency of winter wheat farmland].

    Science.gov (United States)

    Li, Quanqi; Chen, Yuhai; Wu, Wei; Yu, Shunzhang; Zhou, Xunbo; Dong, Qingyu; Yu, Songlie

    2006-02-01

    The study showed that straw mulching decreased the basic seedlings and tillers of winter wheat and the leaf area index (LAI) at earlier growth stage, but increased the LAI at latter growth stage. Straw mulching and irrigation reduced the transmittance and reflectance of PAR, resulting in the increase of PAR capture ratio mainly at the height of 40-60 cm. The solar energy utilization ratio of grain was decreased by straw mulching, while that of stem and leaf was increased. The total solar energy utilization efficiency of winter wheat could also be increased by straw mulching.

  9. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  10. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation....... To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml(-1)) and cellulases (0...

  11. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification....... Two scenarios (S1 and S2) were examined assuming a plant with an annual capacity of 10,000 tonnes of product installed in India (due to significantly lower feedstock prices). S1 resulted in a product of 89% butyric acid mixed with acetic acid and S2 produced butyric acid of 99% purity. Unit production...... cost was estimated at 2.75 and 3.31 $ per kg product for S1 and S2 respectively. The main part of production cost was attributed to steam for the purification step and electricity for the in-situ acids separation. This unit production cost combined with an estimated butyric acid selling price (year...

  12. Simulation of the ozone pretreatment of wheat straw.

    Science.gov (United States)

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high...... with a 15-min reaction time. Under these conditions, 55% of the lignin and 80% of the hemicellulose were solubilized, while 95% of the cellulose remained in the solid fraction. At 185 degrees C, the reaction kinetics was of pseudo first-order. The rate constant for hemicellulose solubilization was higher...... than that for lignin, whereas the rate for cellulose was very low. The cellulose recovery (95-100%) was significantly higher than that for hemicellulose (60%). At temperatures above 185 degrees C, recoveries decreased due to increased degradation. Only half of the COD-content could be accounted...

  14. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... isotherms, which showed that the amount of cell wall water was not affected by the briquetting process and that the sugar yield was similar after a combined hydrothermal pretreatment and enzymatic hydrolysis. The factors which offset the benefits introduced by the briquetting process need to be further...

  15. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  16. Use of wheat straw, soybean trash and nitrogen fertiliser for maize ...

    African Journals Online (AJOL)

    Use of wheat straw, soybean trash and nitrogen fertiliser for maize production in the Kenyan highlands. J R Okalebo, C A Palm, M Gichuru, J O Owuor, C O Othieno, A Munyampundu, R M Muasya, P L Woolmer ...

  17. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    Science.gov (United States)

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characteristics of Wheat Straw Lignins from Ethanol-based Organosolv Treatment

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Telysheva, G.; Arshanitsa, A.; Gosselink, R.J.A.; Wild, de P.J.

    2014-01-01

    Non-purified lignins resulting from ethanol-based organosolv fractionation of wheat straw were characterized for the presence of impurities (carbohydrates and ash), functional groups (hydroxyl, carboxyl and methoxyl), phenyl-propanoid structural moieties, molar mass distribution and thermal

  19. Effect of gamma ray radiation pretreatment on enzymatic hydrolysis of wheat straw to produce sugar

    International Nuclear Information System (INIS)

    Yang Chunping; Shen Zhiqiang; Yu Guoce; Wang Jianlong

    2009-01-01

    The effect and aftereffect of radiation pretreatment of wheat straw with gamma ray were studied. It is shown that irradiation can cause significant breakdown of the structure of wheat straw. The mass loss of wheat straw increases and the size distribution after crushing moves to fine particles at elevated irradiation doses. A synergistic effect between irradiation and crushing was observed, with a glucose yield of 10.2% at a dose of 500 kGy with powder of 0.109 mm. The aftereffect of irradiation has important impact on enzymatic hydrolysis of wheat straw. The aftereffect of 400 kGy irradiation accounts for 20.1% of the initial effect for glucose production, and the aftereffects of 50, 100, 200 and 300 kGy account for 12.9%, 14.9%, 8.9% and 9.1%, respectively, for reducing sugar production. (authors)

  20. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis,

  1. Impact of removing straw from wheat and barley fields: A literature review

    Science.gov (United States)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  2. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules. - Highlights: • Pretreatment of wheat straw by gamma radiation and NaOH was investigated. • Irradiation pretreatment can significantly decrease NaOH consumption. • Reducing sugar yield reached 72.67% at 100 kGy and 2% NaOH treatment for 1 h.

  3. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    Science.gov (United States)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  4. Characteristics of Greenhouse Gas Emissions from the Wheat Fields with Different Returning Methods of Maize Straws

    Directory of Open Access Journals (Sweden)

    LI Xin-hua

    2016-03-01

    Full Text Available In order to investigate the effect of different returning methods of maize straw on the greenhouse gas emissions from the wheat fields, we explored the greenhouse gas CO2, N2O and CH4 emissions from the wheat fields using static chamber-gas chromatograph technique from December 2013 to May 2014. The experiments set four treatments including no maize straw returning(CK, direct maize straw returning directly(CS, maize straw-rumen-cattle dung returning(CGS and maize straw-mushroom residue returning(CMS, and the four treatments were investigated under the same watering and fertilizing conditions. The results showed that the greenhouse gas emissions from the wheat fields all had distinct seasonal variations and the cumulative emissions of greenhouse gas emissions were different. During the maize growing season, the cumulative emissions of both CO2 and N2O were emitted and in the order of CK >CGS >CS >CMS while the cumulative absorptions of CH4 were in the order of CS >CGS >CK >CMS with the significant difference between different treatments(PCGS >CK >CMS under the different returning methods of maize straw, which indicated that direct straw returning could significantly increase the global warming potential of greenhouse gases from the wheat field, followed by CGS while the straw-mushroom residue returning(CMS could decrease the global warming potential of greenhouse gases from the wheat field. The method of straw-mushroom residue returning should be recommended from the viewpoint of reducing GWP of the greenhouse gas. In all, our study could provide the scientific foundation for the efficiency straw recycle and reducing greenhouse gas emission.

  5. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  6. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  7. The Effect of wheat straw particle size on the mechanical and water absorption properties of wheat straw/low density polyethylene biocomposites for packaging applications

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2017-08-01

    Full Text Available Natural composites with biodegradability properties can be used as a renewable alternative to replacing conventional plastics. Thus, to reduce the plastics applications in the packaging industry, biocomposites content of wheat straw (with 40, 100, 140 mesh as a natural biodegradable composite and low density polyethylene (LDPE as a common synthetic polymer in the packaging industry were prepared and characterized by the mechanical and water absorption properties. Polyethylene-graft-maleic anhydride was used as a compatibilizer material. Morphology of wheat straw flour was studied by optical microscope to obtain the aspect ratio (L/D. The tensile and flexural tests were applied for determining mechanical properties and scanning electron microscope (SEM was used for particles distribution and sample structures. The water absorption of the samples was calculated by weight difference. The results indicated that the particle size of wheat straw four and the L/D amount are Significantly affected on the tensile strength and water absorption of the samples. However, the effect of wheat sraw particle size on the flexural strength was not significant. Overall conclusions show that by increasing the particle size of the filler (wheat straw, can prepare the biocomposite with better tensile strength and less water absorption compared with smaller particle size.

  8. SODIUM HYDROXIDE TREATED WHEAT STRAW FOR SHEEP

    African Journals Online (AJOL)

    Wannuer behandclde - mel onbehandeldc stroor vergelyk word, blyk dit dat bytsoda dteinvitro l'ermenteerbaarhcid (O,) en die tempo van organiese matcriaal urtvloer ... minerals in the feed troughs. Rumen ammonia determina- ... acid according to Scott (1921). By this method the hydroxyl, carbonate and bicarbonate.

  9. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    The degradability of cereal straw is of importance when it is used for animal feed, biological means of bioenergy production such as bioethanol production and when it is incorporated in soil. We examined wheat straw from 106 different winter wheat cultivars representing the northwest European...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...

  10. External nitrogen input affects pre- and post-harvest cell wall composition but not the enzymatic saccharification of wheat straw

    DEFF Research Database (Denmark)

    Baldwin, Laetitia Andrée; Glazowska, Sylwia Emilia; Mravec, Jozef

    2017-01-01

    . To investigate this, we conducted a large scale field experiment in which wheat plants were cultivated at three levels of externally applied N. The plants were harvested at different stages of maturation, spanning green straw at heading (ear emergence) to fully yellow straw at final maturity. Defined parts...... the different N treatments. Nitrogen fertilization partially alters the cell wall composition in wheat straw but is not a limiting factor in wheat biomass refinery....

  11. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose...... procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L (R) from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw...... concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, similar to 48% (g g(-1)), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing...

  12. Preparation and characterization of long natural cellulose fibers from wheat straw.

    Science.gov (United States)

    Reddy, Narendra; Yang, Yiqi

    2007-10-17

    Long natural cellulose fibers with properties suitable for textile and composite applications have been obtained from wheat straw. This study aims to understand the potential of using wheat straw as a source for long natural cellulose fibers for textile, composite and other fibrous applications. The presence of wax on the outer layer of the straw and a unique zip-like structure that locks individual fibers makes it difficult to obtain fibers from wheat straw using the common methods of fiber extraction. A novel pretreatment with detergent and mechanical force followed by an alkaline treatment was used to obtain high quality fiber bundles. The structure and properties of the fibers are reported in comparison to common cellulose fibers, cotton, linen, and kenaf. Wheat straw fibers have coarser (wider width) single cells and lower crystallinity than cotton, linen, and kenaf. The breaking tenacity (force at break) of wheat straw fibers is similar to kenaf but lower than that of cotton and linen, % breaking elongation is similar to linen and kenaf but lower than cotton, and Young's modulus of the fibers is similar to cotton but lower than that of linen and kenaf.

  13. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    International Nuclear Information System (INIS)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini; Min, Booki; Bjerre, Anne-Belinda

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation and substrate utilization from the hydrolysate was compared with the ones obtained by defined synthetic substrates. The power density increased from 47 mW m −2 to 148 mW m −2 with the hydrolysate:wastewater ratio (R HW in m 3 m −3 ) increasing from 0 to 0.06 (corresponding to 0–0.7 g dm −3 of carbohydrates). The power density with the hydrolysate was higher than the one with only xylan (120 mW m −2 ) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells. -- Highlights: ► Electricity production in microbial fuel cells. ► Hydrolysate from hydrothermal treated wheat straw as fuel. ► Larger electricity production than with simple compounds as fuel. ► No need for detoxification and nutrients to the hydrolysate. ► Effective (95%) microbial utilization of the polymeric carbohydrates.

  14. A new pulping process for wheat straw to reduce problems with the discharge of black liquor.

    Science.gov (United States)

    Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G

    2007-11-01

    Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.

  15. Improvement Enzymatic Hydrolysis of Wheat Straw for Bioethanol Production by Combined Treatment of Radiation and Acid

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Bai, Hyoung Woo; Chung, Byung Yeoup

    2012-01-01

    The cost of ethanol production from starch and sucrose for use as a vehicle fuel is ultimately high. Consequently, it has been suggested that the large-scale use of ethanol as a fuel will require the utilization of cellulosic feedstock. Lignocellulosic biomass has the potential to serve as a low cost and renewable feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. It is estimated that there is over one billion tons of biomass available for conversion into biofuels on a renewable basis to displace a substantial portion of the fossil fuels currently consumed within the transportation sector. Among different pretreatment methods such as biological, physical, chemical, and physic-chemical pretreatments, chemical pretreatment using dilute acid as catalyst, which has been extensively evaluated for treating a variety of lignocellulosic feedstocks, is reported as one of the leading pretreatment technologies. Ionizing radiation can easily penetrate lignocellulosic structure and undoubtedly produce free radicals useful in modification of lignin structure as well as breakdown cellulose crystal regions. Phenoxy radicals appeared to be important radical intermediates that ultimately transformed into o-quinonoid structures in lignin. Therefore, ionizing radiation such as gamma ray and electron beam can be a great alternative. In this study, the effect of ionizing irradiation of wheat straw prior to dilute sulfuric acid treatment is investigated. The combined pretreatment for wheat straw was performed to evaluate the efficiency of enzymatic hydrolysis and compared with that of the effect of enzymatic hydrolysis by individual pretreatment

  16. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres

    International Nuclear Information System (INIS)

    Yu Zhaosheng; Ma Xiaoqian; Liu Ao

    2009-01-01

    By thermogravimetric analysis (TGA) study, the influences of different catalysts on the ignition and combustion of rice and wheat straw in air- and oxygen-enriched atmospheres have been investigated in this paper. Straw combustion is divided into two stages. One is the emission and combustion of volatiles and the second is the combustion of fixed carbon. The existence of catalysts in the first step enhances the emission of volatiles from the straw. The action of catalysts in the second step of straw combustion may be as a carrier of oxygen to the fixed carbon. Two parameters have been used to compare the characteristics of ignition and combustion of straw under different catalysts and in various oxygen concentrations. One is the temperature when the conversion degree combustible (CDC) of straw is 5%, the other is the CDC when the temperature is 900 deg. C. By comparing the different values of the two parameters, the different influences of the catalysts and oxygen concentration on the ignition and combustion of straw have been studied, the action of these catalysts for straw ignition and combustion in air and oxygen-enriched atmosphere is effective except the oxygen-enriched catalytic combustion of wheat straw fixed carbon

  17. Effect of alkaline pretreatment on delignification of wheat straw.

    Science.gov (United States)

    Asghar, Umar; Irfan, Muhammad; Iram, Mehvish; Huma, Zile; Nelofer, Rubina; Nadeem, Muhammad; Syed, Quratulain

    2015-01-01

    This study was conducted to analyse structural changes through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) after alkaline pretreatment of wheat straw for optimum steaming period. During the study, 2 mm size of substrate was soaked in 2.5% NaOH for 1 h at room temperature and then autoclaved at 121°C for various steaming time (30, 60, 90 and 120 min). Results revealed that residence time of 90 min at 121°C has strong effect on substrate, achieving a maximum cellulose content of 83%, delignification of 81% and hemicellulose content of 10.5%. Further SEM and FTIR spectroscopy confirmed structural modification caused by alkaline pretreatment in substrate. Maximum saccharification yield of 52.93% was achieved with 0.5% enzyme concentration using 2.5% substrate concentration for 8 h of incubation at 50°C. This result indicates that the above-mentioned pretreatment conditions create accessible areas for enzymatic hydrolysis.

  18. Pyrolysis Kinetic Modelling of Wheat Straw from the Pannonian Region

    Directory of Open Access Journals (Sweden)

    Ivan Pešenjanski

    2016-01-01

    Full Text Available The pyrolysis/devolatilization is a basic step of thermochemical processes and requires fundamental characterization. In this paper, the kinetic model of pyrolysis is specified as a one-step global reaction. This type of reaction is used to describe the thermal degradation of wheat straw samples by measuring rates of mass loss of solid matter at a linear increase in temperature. The mentioned experiments were carried out using a derivatograph in an open-air environment. The influence of different factors was investigated, such as particle size, humidity levels, and the heating rate in the kinetics of devolatilization. As the measured values of mass loss and temperature functions transform in Arrhenius coordinates, the results are shown in the form of saddle curves. Such characteristics cannot be approximated with one equation in the form of Arrhenius law. For use in numerical applications, transformed functions can be approximated by linear regression for three separate intervals. Analysis of measurement resulting in granulation and moisture content variations shows that these factors have no significant influence. Tests of heating rate variations confirm the significance of this impact, especially in warmer regions. The influence of this factor should be more precisely investigated as a general variable, which should be the topic of further experiments.

  19. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  20. Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Luxa, Jan; Bartůněk, Vilém; Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    In this paper, we would like to demonstrate that biomass ash with appropriate composition can be used for the fabrication of high performance composites. Biomass ash from wooden chips and packed wheat straw was characterized using XRF and XRD. While the biomass ash contained high amount of carbon, it was thermally treated in order to reduce carbon content. The chemical and phase composition of treated biomass ash was again analyzed in detail by XRF and XRD. Moreover, the thermal treatment process was analyzed using STA. In the next step, the pozzolanic activity was analyzed using Frattini test. Potentiometric method was used for pH measurement. Since the both biomass ashes were pozzolana active, they are potentially suitable as a pozzolana active admixture in the cement, lime and alkali activated aluminosilicate composites.

  1. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    Science.gov (United States)

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  3. Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production.

    Science.gov (United States)

    Sambusiti, C; Ficara, E; Rollini, M; Manzoni, M; Malpei, F

    2012-01-01

    The aim of this study was to determine the effect of sodium hydroxide pretreatment on the chemical composition and the methane production of ensiled sorghum forage and wheat straw. NaOH pretreatment was conducted in closed bottles, at 40 °C for 24 h. Samples were soaked in a NaOH solution at different dosages (expressed in terms of total solids (TS) content) of 1 and 10% gNaOH/gTS, with a TS concentration of 160 gTS/L. At the highest NaOH dosage the reduction of cellulose, hemicelluloses and lignin was 31, 66 and 44%, and 13, 45 and 3% for sorghum and wheat straw, respectively. The concentration of soluble chemical oxygen demand (CODs) in the liquid phase after the pretreatment was also improved both for wheat straw and sorghum (up to 24 and 33%, respectively). Total sugars content increased up to five times at 10% gNaOH/gTS with respect to control samples, suggesting that NaOH pretreatment improves the hydrolysis of cellulose and hemicelluloses. The Biochemical Methane Potential (BMP) tests showed that the NaOH pretreatment favoured the anaerobic degradability of both substrates. At 1 and 10% NaOH dosages, the methane production increased from 14 to 31% for ensiled sorghum forage and from 17 to 47% for wheat straw. The first order kinetic constant increased up to 65% for sorghum and up to 163% for wheat straw.

  4. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  5. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay...

  6. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Rio, del José C.; Rencoret, Jorge; Gutiérrez, Ana; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2016-01-01

    Background: The present work investigated the influence of lignin content and composition in the fungal
    treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,
    differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8

  7. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), ali...

  8. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.

    Science.gov (United States)

    Singh, Mandeep; Kaushik, Anupama; Ahuja, Dheeraj

    2016-10-05

    Aggregates of microfibrillated cellulose isolated from wheat straw fibers were subjected to propionylation under different processing conditions of time, temperature and concentration. The treated fibers were then homogenized to obtain surface modified nanofibrillated cellulose. For varying parameters, progress of propionylation and its effects on various characteristics was investigated by FTIR, degree of substitution, elemental analysis, SEM, EDX, TEM, X-ray diffraction, static and dynamic contact angle measurements. Thermal stability of the nanofibrils was also investigated using thermogravimetric technique. FTIR analysis confirmed the propionylation of the hydroxyl groups of the cellulose fibers. The variations in reaction conditions such as time and temperature had shown considerable effect on degree of substitution (DS) and surface contact angle (CA). These characterization results represent the optimizing conditions under which cellulose nanofibrils with hydrophobic characteristics up to contact angle of 120° can be obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    ) and higher productivity. However, very few studies have focused on fermentation of sugars derived from lignocellulogic biomass. The present study investigates butyric acid fermentation from pretreated and enzymatically hydrolyzed wheat straw. The sugars derived from wheat straw consist mainly of glucose...... with C.tyrobutyricum showed that the strain was capable of producing butyric acid from hydrolyzed wheat straw by simultaneous uptake of glucose and xylose. Maximum yield of butyric acid (0,47g/g sugars, 96% of the theoretical yield) was obtained at a pH between 6 and 7 with higher selectivity (>90......%). However, the xylose uptake rate was much lower than that of glucose, implying that further process development is required. Moreover, reduced cell growth rate was observed at higher metal (K+) concentration added during pH control which could be overcome by in-situ separation of butyric acid....

  10. Bioethanol production using genetically modified and mutant wheat and barley straws

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Washington State Univ., Pullman, WA (US). Dept. of Biological Engineering; East China Univ. of Science and Technology, Shanghai (CN). State Key Laboratory of Bioreactor Engineering; Liu, Y. [Michigan State Univ., East Lansing, MI (US). Biosystems and Agricultural Engineering; Chen, S. [Washington State Univ., Pullman, WA (US). Dept. of Biological Systems Engineering; Zemetra, R.S. [Univ. of Idaho, Moscow, ID (US). Plant, Soil, and Entomological Sciences

    2011-01-15

    To improve the performance of wheat and barley straws as feedstocks for ethanol biorefining, the genetic modifications of down regulating Cinnamoyl-CoA reductase and low phytic acid mutation have been introduced into wheat and barley respectively. In this study, total 252 straw samples with different genetic background and location were collected from the field experiment based on a randomized complete block design. The fiber analysis (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) indicated that there were no significant differences between modified and wild type straw lines in terms of straw compositions. However, the difference did exist among straw lines on fiber utilization. 16 straw samples were further selected to conduct diluted acid pretreatment, enzymatic hydrolysis and fermentation. The data indicated that the phytic acid mutant and transgenic straws have changed the fiber structure, which significantly influences their hydrolysibility. These results may lead to a possible solution of mutant or genetic modified plant species that is capable to increase the hydrolysibility of biomass without changing their compositions and sacrificing their agronomy performance. (author)

  11. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  12. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    The combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release...... of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major...

  13. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  14. [Effect of adding different amounts of wheat straw and phosphorus on soil microorganism community].

    Science.gov (United States)

    Zhang, Si-Hai; Huang, Jian; Luo, Zheng-Rong; Dong, Shuguang; Wang, Yi-Kun; Zhu, Qiang-Gen; Zhang, Long; Jin, Ai-Wu

    2014-03-01

    A pot experiment was conducted to study the effects of adding different amounts of wheat straw (0 g x kg(-1), N0; 2.08 g x kg(-1), N1) and phosphorus (0 mg x kg(-1), P0; 100 mg x kg(-1), P1; 200 mg x kg(-1), P2; 400 mg x kg(-1), P3) on microorganism community in a soil of low-phosphorus. Adding straw and phosphorus had significant effects on the soil microbial total biomass (MTB), bacterial biomass (MB), fungal biomass (FB), and fungi to bacteria ratio (F/B), which all decreased in order of N1P1>N1P0>N1P2>N1P3>N0P1>N0P2>N0P3. MTB, MB, FB and F/B ratio of the wheat straw addition treatments were all significantly higher than in the non-straw addition treatments under the same level of phosphorus addition. As for the same wheat straw addition, MTB, MB, FB and F/B ratio increased firstly and then decreased with increasing the level of phosphorus addition, and the combinations of P1 level were optimal.

  15. Modification of wheat straw lignin by solid state fermentation with white-rot fungi

    NARCIS (Netherlands)

    Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M.

    2009-01-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase

  16. Wheat-straw as roughage component in finishing diets of growing ...

    African Journals Online (AJOL)

    Wheat-straw as roughage component in finishing diets of growing lambs. TS Brand, SWP Cloete, F Franck, GD van der Merwe. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL.

  17. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  18. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  19. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Thygesen, Anders; Thomsen, Anne Belinda

    2009-01-01

    A pilot plant for hydrothermal treatment of wheat straw was compared in reactor systems of two steps (first, 80A degrees C; second, 190-205A degrees C) and of three steps (first, 80A degrees C; second, 170-180A degrees C; third, 195A degrees C). Fermentation (SSF) with Sacharomyces cerevisiae...

  20. Evaluation of the nutritive value of apple pulp mixed with different amounts of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Guedes, C.M.; Rodrigues, A.; Cone, J.W.; Gelder, van A.H.; Ferreira, L.M.M.

    2008-01-01

    Given the high amounts of apple rejected for commercialization its use as alternative feed for ruminants should be considered. This study was designed to investigate the nutritive value of apple pulp-wheat straw mixtures. Chemical composition, in vitro organic matter digestibility (IVOMD) and gas

  1. Degradation of Biomacromolecules during High-rate Composting of Wheat Straw-Amended Pig Feces.

    NARCIS (Netherlands)

    Veeken, A.H.M.; Adani, F.; Nierop, K.G.J.; Jager, de P.A.; Hamelers, H.V.M.

    2001-01-01

    Pig (Sus scrofa) feces, separately collected and amended with wheat straw, was composted in a tunnel reactor connected with a cooler. The composting process was monitored for 4 wk and the degradation of organic matter was studied by two chemical extraction methods, 13C cross polarization magic angle

  2. High-performance removal of acids and furans from wheat straw pretreatment liquid by diananofiltration

    DEFF Research Database (Denmark)

    Sueb, Mohd Shafiq Mohd; Zdarta, Jakub; Jesionowski, Teofil

    2017-01-01

    Two model solutions and a real stream from the hydrothermal pretreatment of wheat straw were subjected to nanofiltration, and permeate flux, retention and resistance to fouling were evaluated. Three commercial NF membranes were tested, and a pressure of 4 bars (range: 1–20 bars) and a temperature...

  3. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  4. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, Martin Preuss; Christensen, B.T.

    2016-01-01

    The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations...... included five levels of initial soil C content (1–3% C), three levels of straw incorporation (0, 50 and 100%), +/− catch crop (oil radish) and two sowing dates (1 and 22 September). Exporting the entire straw production reduced soil C stocks by 1.2 to 14% after 100 years, depending on the initial C content...

  5. TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Tsapekos, Panagiotis; Awais, Muhammad

    2017-01-01

    The present study deals with the application of an advanced oxidation process combining UV irradiation in the presence of the photocatalyst titanium dioxide (TiO2), as an effective pretreatment method of wheat straw as means for increasing its biodegradability for increased biogas production by a...... and the products of lignin oxidation did not inhibit the AD process. Finally, a simplified energy assessment showed that all pretreatment conditions become feasible when amounts of substrate to be treated are greater than the threshold value of 1.15 g....

  6. Enhanced ethanol production from wheat straw by integrated storage and pre-treatment (ISP).

    Science.gov (United States)

    Passoth, Volkmar; Tabassum, Muhammad Rizwan; Nair, Harikrishnan A S; Olstorpe, Matilda; Tiukova, Ievgeniia; Ståhlberg, Jerry

    2013-02-05

    Integrated storage and pre-treatment (ISP) combines biopreservation of moist material under airtight conditions and pre-treatment. Moist wheat straw was inoculated with the biocontrol yeast Wickerhamomyces anomalus, the xylan degrading yeast Scheffersomyces stipitis or a co-culture of both. The samples and non-inoculated controls were stored at 4 or 15 °C. The non-inoculated controls were heavily contaminated with moulds, in contrast to the samples inoculated with W. anomalus or S. stipitis. These two yeasts were able to grow on wheat straw as sole source of nutrients. When ethanol was produced from moist wheat straw stored for four weeks at 4 °C with S. stipitis, an up to 40% enhanced yield (final yield 0.15 g ethanol per g straw dry weight) was obtained compared to a dry sample (0.107 g/g). In all other moist samples, stored for four weeks at 4 °C or 15 °C, 6-35% higher yields were obtained. Thus, energy efficient bio-preservation can improve the pre-treatment efficiency for lignocellulose biomass, which is a critical bottleneck in its conversion to biofuels. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    The interest in utilizing biomass as a CO2 neutral fuel by combustion, gasification or pyrolysis processes is increasing due to concern about the emission of green house gases from fossil fuel combustion. In thermal fuel conversion, pyrolysis is an important step which determines the split...... biomass. Combustion of the char remaining after pyrolysis showed that char combustion is catalyzed by the minerals present in wheat straw. Char from the washed straw with KCl added burned with two peaks in the derivative weight loss curve corresponding to a catalyzed and non-catalyzed part, indicating...

  8. Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Moyson, E.; Verachtert, H. (Catholic Univ. of Leuven (Belgium). Faculty of Agriculture)

    1991-12-01

    The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants. (orig.).

  9. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation

    NARCIS (Netherlands)

    Tuyen, Van Dinh; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H.

    2012-01-01

    Eleven white-rot fungi were examined for their potency to degrade lignin and to improve the rumen fermentability of wheat straw. The straw was inoculated with the fungi and incubated under solid state conditions at 24 °C for 0–49 days to determine changes in in vitro gas production and chemical

  11. [Effects of straw mulching on the soil aggregates in dryland wheat field under no-tillage].

    Science.gov (United States)

    Wang, Hai-Xia; Sun, Hong-Xia; Han, Qing-Fang; Wang, Min; Zhang, Rui; Jia, Zhi-Kuan; Nie, Jun-Feng; Liu, Ting

    2012-04-01

    A field experiment was conducted to study the effects of full period and growth period straw mulching with an amount of 3000, 6000, and 9000 kg x hm(-2) on the soil aggregates in a no-tillage dryland wheat field in Weibei Loess Pleateau of Shaanxi Province, taking no full period straw mulching as the control. In the 0-40 cm soil layer, the content of > 5 mm aggregates increased with depth, while that of mulching, the total contents of > 0.25 mm mechanical stable aggregates (DR0.25) and of > 0.25 mm water stable aggregates (WR0.25) were significantly higher than the control, with an increase of 13.0%-26.4% and 18.6%-45.6%, respectively and the largest increment in the treatment 6000 kg x hm(-2) of straw mulching. Straw mulching increased the soil organic matter content, and the latter had a significant positive correlation with the WR0.25 content. All the straw mulching treatments decreased the soil unstable aggregate index (E(LT)) which was the lowest in treatment 6000 kg x hm(-2) of straw mulching. This study showed that straw mulching could increase the >0.25 mm aggregates and organic matter contents in 0-40 cm soil layer and improve the soil structural stability, and mulching with an amount of 6000 kg x hm(-2) had the best effect, being a reasonable straw mulching mode to be applied in the agricultural production in Weibei Loess Plateau.

  12. Fungal pretreatment: An alternative in second-generation ethanol from wheat straw.

    Science.gov (United States)

    Salvachúa, Davinia; Prieto, Alicia; López-Abelairas, María; Lu-Chau, Thelmo; Martínez, Angel T; Martínez, María Jesús

    2011-08-01

    The potential of a fungal pretreatment combined with a mild alkali treatment to replace or complement current physico-chemical methods for ethanol production from wheat straw has been investigated. Changes in substrate composition, secretion of ligninolytic enzymes, enzymatic hydrolysis efficiency and ethanol yield after 7, 14 and 21 days of solid-state fermentation were evaluated. Most fungi degraded lignin with variable selectivity degrees, although only eight of them improved sugar recovery compared to untreated samples. Glucose yield after 21 days of pretreatment with Poria subvermispora and Irpex lacteus reached 69% and 66% of cellulose available in the wheat straw, respectively, with an ethanol yield of 62% in both cases. Conversions from glucose to ethanol reached around 90%, showing that no inhibitors were generated during this pretreatment. No close correlations were found between ligninolytic enzymes production and sugar yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  14. Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes

    OpenAIRE

    Vera, Rodrigo Morales; Bura, Renata; Gustafson, Rick

    2015-01-01

    Background Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated. Considering the seasonal availability of wheat straw and the year r...

  15. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed

    Science.gov (United States)

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (pintake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679

  16. Optimization and kinetic analysis on the sulfuric acid - Catalyzed depolymerization of wheat straw.

    Science.gov (United States)

    Wu, Qian-Qian; Ma, Yu-Long; Chang, Xuan; Sun, Yong-Gang

    2015-09-20

    The objectives of this work were to optimize the experimental condition and to study the kinetic behavior of wheat straw depolymerization with sulfuric acid (2 wt%, 3 wt%, and 4 wt%) at different temperatures (120°C, 130°C, and 140°C). The two-fraction kinetic model was obtained for the prediction of the generations of product and by-product during depolymerization. The kinetic parameters of the two-fraction model were analyzed using an Arrhenius-type equation. Applying the kinetic two-fraction model, the optimum condition for wheat straw depolymerization was 3 wt% H2SO4 at 130°C for 75 min, which yielded a high concentration of fermentable sugars (xylose 8.934 g/L, glucose 1.363 g/L, and arabinose 1.203 g/L) and low concentrations of microbial inhibitors (furfural 0.526 g/L and acetic acid 1.192 g/L). These results suggest that the model obtained in this study can satisfactorily describe the formation of degradation products and the depolymerization mechanism of wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... or indirectly from live or dead parts and cause allelopathic and phytotoxic effects. In Kerman province of Iran, cultivating corn after winter wheat usually causes less ..... compounds which may ultimately reduce plant photo- synthesis and cause reduction of wet and dry weight. These results were similar to ...

  18. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.

    Science.gov (United States)

    Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping

    2016-09-01

    Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.

  19. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    Science.gov (United States)

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  1. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  2. Different physical and chemical pretreatments of wheat straw for enhanced biobutanol production in simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Thirmal, Chumangalah; Dahman, Yaser [Department of Chemical Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2011-07-01

    The objective of this study is to increase butanol product yields using wheat straw as the biomass. First this study examined different pretreatment and saccharification processes to obtain the maximum sugar concentration. Three different physical and chemical pretreatment methods for the wheat straws were examined in the present work in comparison with physical pretreatment alone as a reference. This included water, acidic, and alkaline pretreatment. For all cases, physical pretreatment represented by 1 mm size reduction of the straws was applied prior to each pretreatment. Results showed that 13.91 g/L glucose concentration was produced from saccharification with just the physical pretreatment (i.e., no chemical pretreatment). This represented {approx}5-20 % lower sugar release in saccharification compared to the other three pretreatment processes. Saccharification with acid pretreatment obtained the highest sugar concentrations, which were 18.77 g/L glucose and 12.19 g/L xylose. Second this study produced butanol from simultaneous saccharification and fermentation (SSF) using wheat straw hydrolysate and Clostridium beijerinckii BA101. Water pretreatment was applied to separate lignin and polysaccharides from the wheat straw. Physical pretreatment was applied prior to water pretreatment where, wheat straw was grounded into fine particles less than 1 mm size. Another experiment was conducted where physical pretreatment was applied alone prior to SSF (i.e. no chemical pretreatment was applied). Both processes converted more than 10% of wheat straw into butanol product. This was 2% higher than previous studies. The results illustrated that SSF with physical pretreatment alone obtained 2.61 g/L butanol.

  3. In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass - Effect on biomethane production.

    Science.gov (United States)

    Feng, Lu; Moset, Veronica; Li, Wanwu; Chen, Chang; Møller, Henrik Bjarne

    2017-09-01

    Alkaline pretreatment of lignocellulosic biomass has been intensively investigated but heavy water usage and environmental pollution from wastewater limits its industrial application. This study presents a pretreatment technique by in-situ injection of potassium hydroxide concentrations ranging from 0.8% to 10% (w/w) into the briquetting process of wheat straw and meadow grass. Results show that the biomethane yield and hydrolysis rate was improved significantly with a higher impact on wheat straw compared to meadow grass. The highest biomethane yield from wheat straw briquettes of 353mL.g -1 VS was obtained with 6.27% (w/w) potassium hydroxide injection, which was 14% higher than from untreated wheat straw. The hydrolysis rates of wheat straw and meadow grass increased from 4.27×10 -2 to 5.32×10 -2 d -1 and 4.19×10 -2 to 6.00×10 -2 d -1 , respectively. The low water usage and no wastewater production make this a promising technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  5. Variation in the chemical composition of wheat straw: the role of tissue ratio and composition.

    Science.gov (United States)

    Collins, Samuel Ra; Wellner, Nikolaus; Martinez Bordonado, Isabel; Harper, Andrea L; Miller, Charlotte N; Bancroft, Ian; Waldron, Keith W

    2014-01-01

    Wheat straw is an attractive substrate for second generation ethanol production because it will complement and augment wheat production rather than competing with food production. However, like other sources of lignocellulosic biomass, even from a single species, it is heterogeneous in nature due to the different tissues and cell types, and this has implications for saccharification efficiency. The aim of this study has been to use Fourier transform infrared (FTIR) spectroscopy and Partial least squares (PLS) modelling to rapidly screen wheat cultivars for the levels of component tissues, the carbohydrate composition and lignin content, and the levels of simple cross-linking phenolics such as ferulic and diferulic acids. FTIR spectroscopy and PLS modelling was used to analyze the tissue and chemical composition of wheat straw biomass. Predictive models were developed to evaluate the variability in the concentrations of the cell wall sugars, cell wall phenolics and acid-insoluble lignin. Models for the main sugars, phenolics and lignin were validated and then used to evaluate the variation in total biomass composition across 90 cultivars of wheat grown over two seasons. Whilst carbohydrate and lignin components varied across the varieties, this mainly reflected differences in the ratios of the component tissues rather than differences in the composition of those tissues. Further analysis indicated that on a mol% basis, relative levels of sugars within the tissues varied to only a small degree. There were no clear associations between simple phenolics and tissues. The results provide a basis for improving biomass quality for biofuels production through selection of cultivars with appropriate tissue ratios.

  6. Registration of 'Linkert' spring wheat with good straw strength and field resistance to the Ug99 family of stem rust races

    Science.gov (United States)

    Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...

  7. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  8. Wheat straw lignin degradation induction to aromatics by por Aspergillus spp. and Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Baltierra-Trejo Eduardo

    2016-02-01

    Full Text Available Wheat straw is a recalcitrant agricultural waste; incineration of this material represents an important environmental impact. Different reports have been made regarding the use of the structural components of wheat straw, i.e. cellulose, hemicellulose and lignin; however, lignin has been less exploited because it is largely considered the recalcitrant part. Residual wheat straw lignin (REWSLI has a potential biotech-nological value if depolymerization is attained to produce aromatics. Ligninolytic mitosporic fungus represent an alternative where very little research has been done, even though they are capable of depol-ymerize REWSLI in simple nutritional conditions in relatively short periods, when compared to basidio-mycetes. The aim of this research was to study the depolymerization activity of Aspergillus spp and Penicillium spp on semipurified REWSLI as the sole carbon source to produce aromatics. The depoly-merization capacity was determined by the activity of the laccase, lignin peroxidase and manganese peroxidase enzymes. The generated aromatics derived from the REWSLI depolymerization were identi-fied by gas chromatography. Obtained results revealed that Penicillium chrysogenum depolymerized the lignin material by 34.8% during the 28-day experimentation period. Laccase activity showed the largest activity with 111 U L-1 in a seven-day period, this enzyme induction was detected in a smaller period than that required by basidiomycetes to induce it. Moreover, the enzymatic activity was produced with-out the addition of an extra carbon source as metabolic inductor. Aspergillus spp and Penicillium spp generated guaiacol, vanillin, and hydroxybenzoic, vanillinic, syringic and ferulic acid with a maximum weekly production of 3.5, 3.3, 3.2, 3.3, 10.1 and 21.9 mg mL-1, respectively.

  9. Adsorptive Removal of Toxic Chromium from Waste-Water Using Wheat Straw and Eupatorium adenophorum

    Science.gov (United States)

    Song, Dagang; Pan, Kaiwen; Tariq, Akash; Azizullah, Azizullah; Sun, Feng; Li, Zilong; Xiong, Qinli

    2016-01-01

    Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water. PMID:27911906

  10. Psychrophilic dry anaerobic digestion of cow feces and wheat straw: Feasibility studies

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Saady, N.M.C.; Gilbert, Yan

    2015-01-01

    This paper reports a novel psychrophilic dry anaerobic digestion (PDAD) of cow feces (feces) and wheat straw (WS). Three feeding strategies (WS, feces, and feces plus WS) were assessed in pseudo sequential batch reactors (PSBR) during three successive cycles of around 21 days hydraulic retention time (HRT). Average specific methane yields on VS fed (L kg −1 ) of 129 ± 17 (WS only), 164 ± 23 (feces only (10–11% TS)) and 152 ± 6 (a mixture of feces plus WS (16% TS)) were obtained during the last three successive cycles. The average methane production rates on VS fed were 3.5 ± 1.5 and 3.6 ± 1.3 and 4.1 ± 0.4 L kg −1  d −1 for the three feeding strategies, respectively. The successive cycles revealed that the psychrophilic anaerobic digestion of high-solid content of cow feces and wheat straw is a reproducible process, practically feasible, and as efficient as mesophilic dry anaerobic digestion given that a well-adapted inoculum is developed and maintained. - Highlights: • Cow feces and wheat straw (CFWS) psychrophilic dry anaerobic digestion (PDAD). • PDAD of CFWS (TS 16% mass fraction) is feasible and as efficient as mesophilic DAD. • VS OLR 1.5 g kg −1  d −1 produced VS-based SMY of 152 ± 6 L kg −1 • Inoculum adaptation is a prerequisite to a stable PDAD

  11. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised......Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  12. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose....... Of five different thermophilic bacteria used in this study only two strains produced ethanol with xylan as substrate, one of them being the strain A3 isolated from an Icelandic hot-spring. Probably other degradation products formed in the presence of oxygen might act as inhibitors. Adaptation...

  13. Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion

    DEFF Research Database (Denmark)

    Zhang, Heng; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    . By preparing samples of various leaf-to-stem (L/S) ratios, we found shifting conversion behavior as processing parameters were modified. Increasing the enzyme dosage, pretreatment temperature and pretreatment time all significantly improved conversion rates in samples with more than 50% leaf content, whereas...... less impact was observed on samples with less than 50% leaf content. Enzyme affinity, desorption and readsorption with leaf and stem fractions may affect the sugar yield in wheat straw saccharification. The data suggest that the L/S ratio is an important parameter when adjusting or optimizing...

  14. Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers

    International Nuclear Information System (INIS)

    Lara-Vázquez, Anibal R.; Quiroz-Figueroa, Francisco R.; Sánchez, Arturo; Valdez-Vazquez, Idania

    2014-01-01

    Wheat straw is gaining importance as a feedstock for the production of biofuels and high value-added bioproducts. Several pretreatments recover the fermentable fraction involving the use of water or aqueous solutions. Therefore, hydration properties of wheat straw fibers play an important role in improving pretreatment performance. In this study, the water retention capacity (WRC) and swelling of wheat straw fibers were studied using water, propylene glycol (PPG) and an effluent from a H 2 -producing reactor as the hydration media with three particle sizes (3.35, 2.00 and 0.212 mm). The effects of swelling were analyzed by optical and confocal laser scanning microscopy (CLSM). The highest WRC was reached with the effluent medium (9.84 ± 0.87 g g −1 in 4 h), followed by PPG (8.52 ± 0.18 g g −1 in 1 h) and water (8.74 ± 0.76 g g −1 in 10 h). The effluent hydration treatment had a synergic effect between the enzymes present and the water. The particle size had a significant effect on the WRC (P < 0.01), the highest values were reached with 3.35 mm fibers. The CLSM images showed that finer fibers were subjected to a shaving effect due to the grinding affecting its capacity to absorb the hydration medium. The microscopic analysis showed the increase in the width of the epidermal cells after the hydration and a more undulating cell wall likely due to the hydration of the amorphous regions in the cellulose microfibrils. The sugar release was determined, achieving the highest glucose content with the effluent hydration treatment. - Highlights: • Water retention capacity (WRC) and swelling of wheat straw fibers were studied. • The highest WRC was achieved with a biological effluent. • The enzymatic activity in the biological effluent yielded the highest sugar release. • Finer fibers showed a shaving effect that affected its capacity to absorb water. • A more undulating cell wall was visualized after the hydration

  15. Compensation effect of winter wheat grain yield reduction under straw mulching in wide-precision planting in the North China Plain

    OpenAIRE

    Liu, Xinhui; Ren, Yujie; Gao, Chao; Yan, Zhenxing; Li, Quanqi

    2017-01-01

    Climate change and the growing demand for food security force growers to identify ways both to improve food production and to reduce agricultural carbon emissions. Although straw mulching is known to decrease CO2 emissions, winter wheat grain yield in the North China Plain was declined under straw mulching. In an effort to determine the most effective way to increase winter wheat yield under straw mulching, a field experiment was conducted using two planting patterns (wide-precision planting ...

  16. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    Science.gov (United States)

    Zhang, Xiumin; Wang, Min; Rong, Wang; Zhiyuan, Ma; Donglei, Long; Hongxiang, Mao; Jiangnan, Wen; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 of straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 of DM, respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in 3 replications (runs). Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate to propionate ratio and lower methane production with a decline of methanogens, in comparison with control. Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. This article is protected by copyright. All rights reserved.

  17. Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid-statenucle......Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid...

  18. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... supplemented with NH4NO3, MgSO4, and KH2PO4 was used as cultivation medium aiming to obtain an enzyme mixture optimal for enzymatic hydrolysis of wet-oxidised wheat straw. The cultivations with B. cinerea and R brasilianum gave the highest endoglucanase (EC 3.2.1.4) and beta-glucosidase (EC 3...

  19. Effect of fertilizer prepared from human feces and straw on germination, growth and development of wheat

    Science.gov (United States)

    Liu, Dianlei; Xie, Beizhen; Dong, Chen; Liu, Guanghui; Hu, Dawei; Qin, Youcai; Li, Hongyan; Liu, Hong

    2018-04-01

    Solid waste treatment is one of the most important rate-limiting steps in the material circulation and energy flow of Bioregenerative Life Support System (BLSS). In our previous work, an efficient and controllable solid waste bio-convertor has been built and a solid waste degradation efficiency of 41.0% has been reached during a 105-d BLSS experiment. However, the fermented residues should be further utilized to fulfill the closure of the system. One solution might be to use the residues as the fertilizer for plant cultivation. Thus in this study, substrates were prepared using different ratios of the fermented residues to the vermiculite. And the influences of different ratios of the fermented residues on the seed germination, growth, photosynthetic characteristics and antioxidant capacity of wheat were studied. The results showed that the optimal rate of the fermented residue was 5%. With this ratio, the seed germination reached 97.3% with the root length, shoot length and biomass production as 59 mm, 52 mm and 150 mg, respectively, at the 4th day. Besides, the highest straw height of 25.1 cm was obtained at the 21st day. The salinity adversely affected the growth and some relevant metabolic processes of wheat. The Group-40% led to the lowest seed germination of 34.7% and the minimum straw height of 15 cm. This inhibition might be caused by the high Na content of 2118 mg/kg in the fermented residues. Chlorophyll b was more sensitive to the mineral nutrition stress and affects the wheat photosynthetic characteristics. Higher reactive oxygen species levels and reduced antioxidant enzymes may contribute, directly and/or indirectly, to the decline in the observed pigment contents in wheat.

  20. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production.

    Science.gov (United States)

    Erdei, Borbála; Hancz, Dóra; Galbe, Mats; Zacchi, Guido

    2013-11-29

    Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied. The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker's yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker's yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker's yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared

  1. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tumuluru; L.G. Tabil; Y. Song; K.L. Iroba; V. Meda

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barley and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).

  2. Modification of wheat straw lignin by solid state fermentation with white-rot fungi.

    Science.gov (United States)

    Dinis, Maria J; Bezerra, Rui M F; Nunes, Fernando; Dias, Albino A; Guedes, Cristina V; Ferreira, Luís M M; Cone, John W; Marques, Guilhermina S M; Barros, Ana R N; Rodrigues, Miguel A M

    2009-10-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), laccase, carboxymethylcellulase (CMCase), avicelase, xylanase and feruloyl esterase activities were screened and the content of lignin as well as hydroxycinnamic acids in fermented straw were determined. All fungi secreted feruloyl esterase while LiP was only detected in crude extracts from B. adusta. Since no significant differences (P>0.05) were observed in remaining lignin content of fermented straw, LiP activity was not a limiting factor of enzymatic lignin removal process. The levels of esterified hydroxycinnamic acids degradation were considerably higher than previous reports with lignocellulosic biomass. The data show that P. rufa, may be considered for more specific studies as higher ferulic and p-coumaric acids degradation was observed for earlier incubation times.

  3. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.

    Science.gov (United States)

    Sánchez, Rafael; Espinosa, Eduardo; Domínguez-Robles, Juan; Loaiza, Javier Mauricio; Rodríguez, Alejandro

    2016-11-01

    Wheat straw was cooked under different pulping processes: Soda (100°C, 7% NaOH, 150min), Kraft (170°C, 16% alkalinity, 25% sulfidity, 40min) and Organosolv (210°C, 60% ethanol, 60min). Once the pulps were obtained, lignocellulose nanofibers (LCNF) were isolated by mechanical process and TEMPO-mediated oxidation followed by a high pressure homogenization. After pulping process, the different pulps were characterized and its chemical composition was determined. The pulps characterization indicates that the Soda process is the process that, despite producing less delignification, retains much of the hemicelluloses in the pulp, being this content a key factor in the nanofibrillation process. Regarding the LCNF obtained by mechanical process, those nanofibers isolated from Organosolv wheat pulp (OWP) and Kraft wheat pulp (KWP) show low values for nanofibrillation yield, specific surface area and greater diameter. However, those nanofibers isolated from Soda wheat pulp (SWP) reach much higher values for these parameters and presents a diameter of 14nm, smaller than those obtained by TEMPO-mediated oxidation from OWP. Smaller diameters are generally obtained in TEMPO-oxidized LCNF. This work concludes that the lignin content does not affect greatly to obtain LCNF as does the hemicellulose content, so it is accurate to use a soft pulping process. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1 within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8 significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  5. TiO2 assisted photo-oxidative pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Awais, Muhammad; Alvarado-Morales, Merlin; Tsapekos, Panagiotis

    -catalytic oxidation. Titanium oxide (TiO2) is a photo-catalyst that in its rutile and anatase forms presents the property to enhance the photo-oxidation of lignin-containing substrates. Due to lignin is one of the major obstacles in methane production from lignocellulosic biomass, its destruction is a necessary step...... microscopy (SEM) images of the pretreated wheat straw that showed augmented damaged areas and development of pits after the pretreatment. In addition, the products of oxidation were also measured, as it was expected the lignin to be oxidized into phenolic acids. For instance, vanillic acid was found...... to be markedly higher in the pretreated samples that were exposed for 180min with 1.5 wt% and 2 wt% of TiO2 compared to the untreated wheat straw. Moreover, it was concluded that the products of lignin oxidation and also, the presence of TiO2 did not inhibit the AD process. Finally, UV treatment or TiO2 alone...

  6. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  7. Evolution and qualitative modifications of humin-like matter during high rate composting of pig faeces amended with wheat straw

    NARCIS (Netherlands)

    Genevini, P.L.; Tambone, F.; Adani, F.; Veeken, A.H.M.; Nierop, K.G.J.; Montoneri, E.

    2003-01-01

    During a 4-week period of composting of wheat straw-amended pig faeces, humin (HU)- and core-HU-like matter were isolated by NaOH-Na4P2O7 treatment of the compost bed, respectively, without and with previous extraction by organic solvent and by H2SO4. The changes in the content and elemental

  8. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were

  10. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...... to improve understanding and optimizing the electricity generation in microbial fuel cells....

  11. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan

    2014-01-01

    this process, 46.12 g LA could be produced from 100 g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose...

  12. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    Science.gov (United States)

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  13. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2012-03-12

    The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol

  14. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  15. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    Science.gov (United States)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of flufenacet in soil, wheat grain and straw by gas chromatography.

    Science.gov (United States)

    Bazoobandi, M; Yaduraju, N T; Kulshrestha, G

    2000-07-21

    An analytical procedure for detecting residues of a new herbicide, flufenacet, in soil, wheat grain and straw by gas chromatographic method using various solvents and extraction methods was standardized. The best results were obtained when samples fortified with flufenacet and were extracted with acetone-0.2 M HCl (95:5) using a horizontal shaker for soil and Soxhlet extractor for plant samples. The clean up was done by partitioning with dichloromethane. The GC equipped with an electron-capture detector and a column packing of HP-1 as stationary phase and nitrogen as a carrier gas at a flow-rate of 15 ml min(-1) was used. Temperatures of oven, injector and detector were adjusted at 190, 210 and 270 degrees C, respectively. The retention time of flufenacet was 2.07 min. The herbicide recoveries ranged between 81 to 100% from the three matrices.

  17. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  18. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    Within the past decade, there has been an interest for pressurized combustion and gasification of solid fuels in power plants due to the potential for high efficiency. The utilization of new types of solid fuels for pressurized combustion and gasification depends on char yield and char reactivity...... at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique....... The pyrolysis experiments show a yield larger than the yield from the proximate analysis. The pyrolysis is completed in about Is, and the yield is the same for 10 and 20 bar pressure. The combustion experiments show a high reactivity with oxygen, and the effects of pressure on combustion are discussed using...

  19. Co-pelletizing characteristics of torrefied wheat straw with peanut shell.

    Science.gov (United States)

    Bai, Xiaopeng; Wang, Guanghui; Gong, Chunxiao; Yu, Yong; Liu, Weinan; Wang, Decheng

    2017-06-01

    The co-pelletizing characteristics of torrefied wheat straw and peanut shell with adding water were investigated. The physicochemical and friction characteristics of biochar were determined to investigate the mechanism of biochar inter-particle cohesive bonding. Results showed that optimized process conditions were obtained with 15% peanut shell and 10% water content. The volume density, maximum breaking force of pellets initially decreased and then increased, while energy consumption increased with increasing temperature. The main factors contributing to the cohesion of mixing pellet were the peanut shell content, water content and friction characteristics of biochar. The moisture absorption of the pellet was improved significantly, while the water absorption of pellets did not always decrease with increased temperature. Peanut shell is an effective and inexpensive binder in the preparation of good-quality biochar pellets. Biochar pellets derived from torrefaction temperature of 275-300°C showed superior qualities for application as renewable biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten

    2016-01-01

    Background: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat...... straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsis subvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. Results......-scale pretreatment methods. The pretreatment effect was reached with only a minor total solids loss of 5 % by weight mainly caused by the fungal metabolism. The combination of the biopretreatments did not improve the methane potential of the WS, but improved the initial biogas production rate significantly...

  1. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added......% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum...... yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast(R). Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose. (C...

  2. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    Science.gov (United States)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  3. Synthesis and characterization of a novel super-absorbent based on wheat straw.

    Science.gov (United States)

    Ma, Zuohao; Li, Qian; Yue, Qinyan; Gao, Baoyu; Xu, Xing; Zhong, Qianqian

    2011-02-01

    In order to develop an eco-friendly polymer, a novel super-absorbent polymer was prepared by graft copolymerization of acrylic acid (AA), acrylic amide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) onto the pretreatment wheat straw (PTWS). The molecular structure of the super-absorbent was confirmed by FTIR. The factors that can influence absorbencies of the super-absorbent resin (SAR) were investigated, such as weight ratio between the monomers, the ratio of PTWS to monomers, the amount of initiator and cross-linker, temperature reaction time and neutralization degree of AA. The SAR has the water absorbency of 133.76 g/g in distilled water and 33.83 g/g in 0.9 wt.% NaCl solution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Optimization of biogas production from wheat straw stillage in UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, Prasad; Serrano, Maria; Angelidaki, Irini [Institute of Environment and Resources, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby (Denmark)

    2010-12-15

    In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VS{sub added} were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH{sub 4}/g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33-50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner. (author)

  5. Optimization of biogas production from wheat straw stillage in UASB reactor

    International Nuclear Information System (INIS)

    Kaparaju, Prasad; Serrano, Maria; Angelidaki, Irini

    2010-01-01

    In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VS added were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 o C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH 4 /g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33-50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner.

  6. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... matter (DM), crude protein (CP), ether extract (EE), crude ash (CA), neutral detergent fiber (NDF), acid detergent fiber (ADF) and ... supplementing straw with protein, intake, degradability and milk yield can be .... evaluation of kabuli and desi type chickpeas (cicer arietinum L.) for ruminants using in vitro.

  7. Effects of Corn Straw Returning and Nitrogen Fertilizer Application Methods on N2O Emission from Wheat Growing Season

    Directory of Open Access Journals (Sweden)

    XU Yu

    2015-12-01

    Full Text Available Based on a wheat field experiment, the effect of four treatments such as no-straw returning (SN, straw returning (SR, control release fertilizer application(SRC and nitrogen drilling(SRR on N2O emission was studied using the static chamber method and the gas chromatographic technique. The results indicated that the wheat field was the sources of N2O emission. The N2O emission peaks followed each time of fertilizer application and irrigation, and usually continued for 1~2 weeks. N2O emissions accounted for more than 40% of total emissions during the N2O emission peak. The amount of N2O emission during three growing stage of wheat from high to low was arranged in turn pre-wintering period, post-wintering period and wintering period. N2O emission could be increased by straw returning. Compared with SN, N2O emission could be enhanced by 48.6% under SR. Both SRC and SRR could decrease the N2O emission, increase wheat yield and economic benefit, especially the latter. Nitrogen drilling is a good method for yield increment and N2O abatement.

  8. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Tomas Pejo, Elia; Oliva, Jose M.; Ballesteros, Mercedes

    2008-01-01

    In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable...

  9. Simplification of urea treatment method of wheat straw for its better ...

    African Journals Online (AJOL)

    The new method involves weighing the required amount of urea (4% of straw), mixing it with double the amount of farm manure (as urease source), giving 30% moisture by adding water, putting this mixture in a bag, piling the straw on the bag, again moistening the straw with water (50% of straw) and incubating this material ...

  10. Sodium hydroxide treated wheat straw for sheep | Pienaar | South ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 2 (1980) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected ...

  11. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100......-chemicals production. The PBD, expressed as Potentially Disappeared Fraction (PDF) showed the highest adverse impact to biodiversity in maize, followed by straw, whereas the results showed relatively lower impact for ryegrass and grass-clover. The PFWTox (CTUe/t DM), at farm level was highest for straw, followed...... by maize, whereas the values were significantly lower for grass-clover and ryegrass. These variations in ranking of the different biomasses productions using different impact categories for environmental performance showed that it is important to consider a wider range of impact categories for assessing...

  12. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

    Science.gov (United States)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan; Qi, Benkun; Wan, Yinhua

    2014-04-01

    A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    OpenAIRE

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction)...

  14. Semi-continuous feeding and gasification of alfalfa and wheat straw pellets in a lab-scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Sarker, Shiplu; Arauzo, Jesús; Nielsen, Henrik Kofoed

    2015-01-01

    Highlights: • Alfalfa and wheat straw pellets were gasified in a lab-scale fluid-bed reactor. • ER varied between 0.20 and 0.35 at which several parameters investigated. • ER = 0.35 was found optimum for alfalfa at which process performance improved. • ER = 0.30 revealed optimum for wheat straw at which gasification was effective. - Abstract: Small scale air-blown fluidized bed gasification of alfalfa and wheat straw pellets were conducted for semi-continuous solid feeding and range of operating conditions varied due to the modifications in equivalence ratio (ER) (0.20–0.35) achieved both by varying solid and air input. Alfalfa pellets displayed an improvement in several gasification variables such as gas lower heating value (∼4.1 MJ/Nm 3 ), specific gas yield (1.66 Nm 3 /kg), cold gas efficiency (∼42%) and carbon conversion efficiency (∼72%) as ER maximized to 0.35 which was found optimum for this feedstock for the present course of experiments. Gasification parameters of wheat straw pellets on the other hand were characterized by a great degree of variation as the ER progressively increased. The optimum performance of this biomass was likely to achieve at ER = 0.30 when gas lower heating value and cold gas efficiency maximized to ∼4 MJ/Nm 3 and ∼37% respectively. Moreover, a substantial drop in tar yield (58.7 g/Nm 3 ) at this ER was also indicative to the optimal thermal conversion at this point of operation. Overall, both the feedstocks presented promising alternatives for utilization into the small-scale fluidized bed gasification which is increasingly emerging as a sustainable solution towards processing lignocellulosic biomass

  15. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price

    Directory of Open Access Journals (Sweden)

    Dave Barchyn

    2014-12-01

    Full Text Available Existing bioethanol operations rely on starch-based substrates, which have been criticized for their need to displace food crops in order to be produced. As an alternative to these first generation biofuels, the use of agricultural residues is being considered to create more environmentally-benign second generation, or cellulosic biofuels. Recalcitrance of these substrates to fermentation requires extensive pre-treatment processes, which often consume more energy than can be extracted from the ethanol that they produce, so one of the priorities in developing cellulosic ethanol is an effective and efficient pre-treatment method. This study examines the use of superheated steam (SS as a process medium by which wheat straw lignocellulosic material is pre-treated. Following enzymatic hydrolysis, it was found that 47% of the total glucose could be liberated from the substrate, and the optimal conditions for pre-treatment were 15 min in hot water (193 kPa, 119˚C followed by 2 min in SS. Furthermore, a preliminary relative economic analysis showed that the minimum ethanol selling price (MESP was comparable to that obtained from steam explosion, a similar process, while energy consumption was 22% less. The conclusion of the study is that SS treatment stands to be a competitive pre-treatment technology to steam explosion.

  16. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... conversion efficiency during SSF was 50, 62 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  17. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    Science.gov (United States)

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Intake and digestibility of untreated and urea treated rice straw base diet fed to sheep

    Directory of Open Access Journals (Sweden)

    D Yulistiani

    2003-03-01

    Full Text Available Rice straw as one of agricultural by-products has low quality due to low content of essensial nutrients like protein, energy, minerals and vitamin as well as poor palatability and digestibility. Therefore, the quality of rice straw needs to be improved in order to increase its utilization by gastrointestinal tract of ruminants. The purpose of this study is to compare untreated and urea treated rice straw as basal diets for sheep. Twelve mature Merino wethers (average body weight 53.62 + 3.44 kg were separated into 4 groups based on their live weight with each groups assigned three diets, that are: diet 1 untreated rice straw with high forage legume content, diet 2 urea ensiled rice straw and diet 3 rice straw sprayed with urea solution at feeding time. Diets were allocated based on a randomized complete block design. Urea ensiled rice straw was prepared by spraying chopped straw with urea solution to yield straw containing 4% urea and 40% moisture, then kept in air tight polythylene bags for 6 weeks. The untreated, ensiled and urea supplemented rice straw were mixed with other feed ingredients to provide isoenergetic and isonitrogenous diets. Diets were formulated to meet maintenance requirement according to NRC. Sheep were adapted to experimental diets for 15 days, and after adaptation period, a metabolism trial was conducted. Results reveal that dry matter intake permetabolic body weight (DMI/W0.75, DE (digestible energi intake and apparent digestibility of NDF (neutral detergent fibre were not significantly different between diet 1 and diet 2. Apparent digestibility of DM (dry matter, OM (organic matter, and ADF (acid detergent fibre, as well as N retention were not significantly different between three diets. Positive result in N retention was only observed in diet 2, while others were negative. It may be concluded from this study that untreated rice straw basal diet supplemented with forage legume offer an alternative method other than urea

  19. Compensation effect of winter wheat grain yield reduction under straw mulching in wide-precision planting in the North China Plain.

    Science.gov (United States)

    Liu, Xinhui; Ren, Yujie; Gao, Chao; Yan, Zhenxing; Li, Quanqi

    2017-03-16

    Climate change and the growing demand for food security force growers to identify ways both to improve food production and to reduce agricultural carbon emissions. Although straw mulching is known to decrease CO 2 emissions, winter wheat grain yield in the North China Plain was declined under straw mulching. In an effort to determine the most effective way to increase winter wheat yield under straw mulching, a field experiment was conducted using two planting patterns (wide-precision planting and conventional-cultivation planting) and two straw mulching rates (0 and 0.6 kg/m 2 ). The results showed the wide-precision planting/non-mulching treatment significantly increased the leaf area index more than the other three treatments at the early growth stage. This treatment improved aboveground dry matter accumulation and was conducive to increased spike weight in the late growth stage. By contrast, straw mulching significantly reduced winter wheat grain yields by lowering both spike number and 1000-grain weight at the mature plant stage. In the wide-precision planting/mulching treatment, a significantly increased spike number compensated for grain yield losses. The results support the idea that wide-precision planting combined with straw mulching has the potential to decrease the winter wheat grain yield reduction previously observed with straw mulching in the North China Plain.

  20. The effects of different levels of applied wheat straw in different dates on saffron (Crocus sativus L. daughter corms and flower initiation criteria in the second year

    Directory of Open Access Journals (Sweden)

    Parviz Rezvani Moghaddam

    2013-12-01

    Full Text Available In order to investigate the effects of different levels of applied wheat straw as mulch in different dates on flower characteristics and corms behavior of Saffron (Crocus sativus L. in the second year, a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in years of 2010-2011 and 2011-2012. The experimental treatments were all combination of different levels of wheat straw as mulch (0, 2, 4, 6 and 8 t. ha-1 based on surface applied method in three different dates (June, August and October. The results showed that the applied wheat straw as mulch in different dates had significant effects on flower characteristics of saffron (flower number, fresh and dried flower and stigma+ style yields. Based on these results, applied wheat straw as mulch in October had highest effects on increasing flower number, fresh and dried flower yields (by 46, 61 and 65%, respectively. In addition, applied wheat straw as mulch had significant effects on number and yield of replacement corms. The applied straw as mulch in October increased yield of replacement corms with 12 g or higher weight and total corm yield of saffron by 104 and 103 %, respectively, as compared to control treatment.

  1. Incorporation of treated straw and wood fly ash into clay building brick

    DEFF Research Database (Denmark)

    Chen, Wan; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    High Cd content in straw and wood fly ash, generated from biomass-fired power plants, prohibits its recycling as fertilizer spreading on the landfilled. To improve and alter the current mainstream of fly ash treatment by landfilling, different approaches were tried for treatment of straw and wood...... absorption, porosity, density, compressive strength and leaching behavior, and compared with the 100% clay bricks. It’s promising to use the treated ash as a secondary building material....... in the treated ash, suggests the possibility of the ash reuse in sintered clay bricks. In this study, the straw and wood fly ash treated by washing and EDR was incorporated into yellow clay bricks at different substitution rates. The properties of the clay-ash bricks were studied in terms of shrinkage, water...

  2. Relationship of Deoxynivalenol Content in Grain, Chaff, and Straw with Fusarium Head Blight Severity in Wheat Varieties with Various Levels of Resistance

    Directory of Open Access Journals (Sweden)

    Fang Ji

    2015-03-01

    Full Text Available A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB and determined the deoxynivalenol (DON content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.

  3. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites.

    Science.gov (United States)

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-24

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  4. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Evaluation of different water-washing treatments effects on wheat straw combustion properties.

    Science.gov (United States)

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-12-01

    A series of experiments was conducted to explore the effects of various water-washing solid-liquid ratios (1:50 and 1:10) and the stirring on wheat straw (WS) combustion properties. Comparing different solid-liquid ratio groups, a 16% increment in the higher heating value was obtained for 1:50 groups and only 5% for 1:10 groups relative to the raw material. Moreover, energy was lost 4-26 times greater in 1:10 groups than 1:50 groups. While water-washing reduced the comprehensive combustibility index by 14.89%-32.09%, the index values of washed WS were all higher than 2, indicating good combustion performance. The combustion activation energy of four washed WS were 175, 172, 186, and 176kJ/mol, which were all higher than the 160kJ/mol of WS. The fouling/slagging propensity of washed WS reduced to a lower possibility compared to medium of untreated WS. Overall, the recommended condition for washing WS before combustion is 1:50 ratio without stirring. Copyright © 2017. Published by Elsevier Ltd.

  6. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  7. Production of Micro- and Nanoscale Lignin from Wheat Straw Using Different Precipitation Setups.

    Science.gov (United States)

    Beisl, Stefan; Loidolt, Petra; Miltner, Angela; Harasek, Michael; Friedl, Anton

    2018-03-11

    Micro- and nanosize lignin has recently gained interest due to its improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. Applications for lignin in micro- to nanoscale however, ranging from improvement of mechanical properties of polymer nanocomposites, have bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. This research represents a whole biorefinery process chain and compares different precipitation setups to produce submicron lignin particles from lignin containing an organosolv pretreatment extract from wheat straw. A batch precipitation in a stirred vessel was compared with continuous mixing of extract and antisolvent in a T-fitting and mixing in a T-fitting followed by a static mixer. The precipitation in the combination of T-fitting and static mixer with improved precipitation parameters yields the smallest particle size of around 100 nm. Furthermore, drying of particles did not influence the particle sizes negatively by showing decreased particle diameters after the separation process.

  8. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome.

    Science.gov (United States)

    Davidi, Lital; Moraïs, Sarah; Artzi, Lior; Knop, Doriv; Hadar, Yitzhak; Arfi, Yonathan; Bayer, Edward A

    2016-09-27

    Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacterium Thermobifida fusca The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production.

  9. Combination of ensiling and fungal delignification as effective wheat straw pretreatment.

    Science.gov (United States)

    Thomsen, Sune T; Londoño, Jorge E G; Ambye-Jensen, Morten; Heiske, Stefan; Kádár, Zsofia; Meyer, Anne S

    2016-01-01

    Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsis subvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large-scale pretreatment methods. The pretreatment effect was reached with only a minor total solids loss of 5 % by weight mainly caused by the fungal metabolism. The combination of the biopretreatments did not improve the methane potential of the WS, but improved the initial biogas production rate significantly. The combination of the L. buchneri ensiling and C. subvermispora WRF treatment provided a significant improvement in the pretreatment effect on WS. This combined biopretreatment produced particularly promising results for ethanol production.

  10. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    Science.gov (United States)

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  11. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain.

    Science.gov (United States)

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-09-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l(-1) of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v(-1) ) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60-80% PHWS lie between 0.37 and 0.46 g g(-1) of sugar, while the selectivity for butyric acid was as high as 0.9-1.0 g g(-1) of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Tensile Properties of Treated and Untreated Paddy Straw Fiber Using Sodium Hydroxide Strengthened with Polypropylene Resin

    Directory of Open Access Journals (Sweden)

    Majid Masni A.

    2016-01-01

    Full Text Available This paper focus on the effect of alkaline treatment by using sodium hydroxide on the tensile properties of paddy straw fibers strengthened with polypropylene resin. Two types of paddy straw fibers were used which are MR219 and MR220. The paddy straw fibers were prepared in two conditions as untreated and treated with sodium hydroxide (NaOH at 5% for 24 hours and then dried at 80°C for another 24 hours. For sampling process, these fibers were weighted according to 5% and 10% mass fraction. A total of 16 samples were prepared for this study based on ASTM D638 and tensile test was conducted by using ASTM D5083. The result showed that paddy straw fiber treated with NaOH had gain higher ultimate tensile strength compared to untreated paddy straw fiber where the highest ultimate tensile strength for the fibers is recorded at 10% of MR219 fiber with value of 2.0230 kN and 3.677 mm displacement were recorded. The highest strain were recorded by the same fibers with an average value of 5.253% and obtained the Young’s modulus up to 1110 MPa. However, the Young’s modulus which has been obtained by the same fibers was decreased with the percentage difference of 40%.

  13. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    Science.gov (United States)

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. PMID:16347043

  14. Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1986-04-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CS1-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity(C/sub 2/H/sub 2/ reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. 16 references.

  15. Effects of Branched-chain Amino Acids on Ruminal Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Hui Ling Zhang

    2013-04-01

    Full Text Available This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA, and ammonia nitrogen (NH3-N in the ruminal fluid were determined. Dry matter (DM and neutral detergent fiber (NDF degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001. However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001. The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05. Moreover, the proportions of propionate and butyrate decreased (p<0.01 with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001 by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001 increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

  16. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...... anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic......, ethanol concentration (4.9 kg m−3) and yield (40 g kg−1 of PWS) were similarly obtained by F. oxysporum and the mixed culture, while productivity rates as high as 34 g m−3 h−1 and 108 g m−3 h−1 were obtained by F. oxysporum and the mixed culture, respectively....

  17. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions.

    Science.gov (United States)

    van Gool, M P; Toth, K; Schols, H A; Szakacs, G; Gruppen, H

    2012-06-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and corn fiber xylan rich fractions. Up to 14% of the carbohydrates in wheat straw and 34% of those in corn fiber were hydrolyzed. The degree of hydrolysis by the enzymes depended on the origin of the fungal isolate and on the complexity of the substrate to be degraded. Penicillium, Trichoderma or Aspergillus species, and some non-identified fungi proved to be the best producers of hemicellulolytic enzymes for degradation of xylan rich materials. This study proves that the choice for an enzyme preparation to efficiently degrade a natural xylan rich substrate, is dependent on the xylan characteristics and could not be estimated by using model substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading

    DEFF Research Database (Denmark)

    Georgieva, T.I.; Hou, Xiaoru; Hilstrøm, Troels

    2008-01-01

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O-2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O-2 as oxidizing agent was ...... and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%....

  19. Effects of Molasses on the Fermentation Quality of Wheat Straw and Poultry Litter Ensiled with Citrus Pulp

    International Nuclear Information System (INIS)

    Migwi, P.K; Gallanga, J.R; Barneveld, R.J

    1999-01-01

    Studies were conducted to find out whether inclusion of molasses had any effect on the fermentation quality and potential nutritive value of silage when wheat straw and poultry litter were ensiled with citrus pulp. A 4 x 2 factorial experiment in a randomized complete block design with four treatments (T) containing wheat straw, poultry litter and citrus pulp respectively on DM basis with 0 and 5% molasses, were prepared as follows-: T1 (75:25:0); T2 (60:25:15); T3 (45:25:30) and T4 (30:25:45). For each treatment in triplicate between 5-10 kg of thoroughly mixed material were ensiled for for a period of 60 days in 20-l hard plastic container laboratory silos, lined with a double layer of polythene bags. Inclusion of 5% molasses when ensiling wheat straw and poultry litter with 0, 15, 30 and 45% citrus pulp had no significant effect on pH, neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and in vitro OM digestibility. However, molasses resulted in a significant decrease in volatile fatty acids including N-butyric acid. There was a complete elimination of coliforms in all treatments, except in the silage that had neither molasses nor citrus pulp. There was a significant difference in titratable acidity levels between silage with 0 and 5% molasses, but this was only in silage with 30% citrus pulp. As the proportion of citrus pulp in silage increased from 0 to 45%, there was significant increase in silage acidity and also an increase in pH. However, there was no significant difference in pH between silage with 30 and 45% citrus pulp. There was a significant (P < 0.001) increase in in vitro OM digestibility from 0.33 to about 0.56 for silage with 0 and 45% citrus pulp respectively. It is concluded that when wheat straw and poultry litter are ensiled with citrus pulp, use of molasses offers no significant benefit inspite of the cost associated with its use. However, when no citrus pulp is included in the pre-mix, addition of some

  20. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp.

    Science.gov (United States)

    Lin, Xiao-qiong; Han, Shuang-yan; Zhang, Na; Hu, Hui; Zheng, Sui-ping; Ye, Yan-rui; Lin, Ying

    2013-02-05

    Past studies have revealed major difficulties in applications of xylanase in the pulp and paper industry as enzymes isolated from many different species could not tolerate high temperatures or highly alkaline conditions. The thermostable xylanase A from Bacillus halodurans C-125 (C-125 xylanase A) was successfully cloned and expressed in Pichia pastoris with a yield as high as 3361 U/mL in a 2 L reactor. Its thermophilic and basophilic properties (optimal activity at 70 °C and pH 9.0), together with the fact it is cellulase-free, render this enzyme attractive for compatible applications in the pulp and paper industry. The pretreatment of wheat straw pulp with C-125 xylanase A at pH 9.0 and 70 °C for 90 min induced the release of both chromophores (Ab(237), Ab(254), Ab(280)) and hydrophobic compounds (Ab(465)) into the filtrate as well as sugar degradation. Moreover, the addition of 10 U xylanase to 1 g wheat straw pulp (dry weight) as pretreatment improved brightness by 5.2% ISO and decreased the kappa number by 5.0% when followed by hydrogen peroxide bleaching. In addition, compared with two commercial enzymes, Pulpzyme HC and AU-PE89, which are normally incorporated in ECF bleaching of wheat straw pulp, C-125 xylanase A proved to be more effective in enhancing brightness as well as preserving paper strength properties. When evaluating the physical properties of pulp samples, such as tensile index, tearing index, bursting index, and post-color (PC) number, the enzymes involved in pretreating pulps exhibited better or the same performances as chemical treatment. Compared with chemical bleaching, chlorine consumption can be significantly reduced by 10% for xylanase-pretreated wheat straw pulp while maintaining the brightness together with the kappa number at the same level. Scanning electron microscopy revealed significant surface modification of enzyme-pretreated pulp fibers with no marked fiber disruptions. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  2. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose...... was successfully realized. The separation of LA from broth by membrane in batch fermentation also decreased feedback inhibition. MIRB was carried out using wheat straw hydrolysates (29.72g/L glucose, 24.69g/L xylose and 5.14g/L arabinose) as carbon source, LA productivity was increased significantly from 1.01g...

  3. Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin.

    Science.gov (United States)

    Huijgen, W J J; Smit, A T; de Wild, P J; den Uil, H

    2012-06-01

    Wheat straw was fractionated using a three-step biorefining approach: (1) aqueous pretreatment for hemicellulose prehydrolysis into sugars, (2) organosolv delignification, and (3) enzymatic cellulose hydrolysis into glucose. Prehydrolysis was applied to avoid degradation of hemicellulose sugars during organosolv delignification. Maximum xylose yield obtained was 67% or 0.17 kg/kg straw (prehydrolysis: 175 °C, 30 min, 20mM H(2)SO(4)) compared to 4% in case of organosolv without prehydrolysis (organosolv: 200 °C, 60 min, 60% w/w aqueous ethanol). Prehydrolysis was found to reduce the lignin yield by organosolv delignification due to the formation of 'pseudo-lignin' and lignin recondensation during prehydrolysis. This reduction could partly be compensated by increasing the temperature of the organosolv delignification step. Prehydrolysis substantially improved the enzymatic cellulose digestibility from 49% after organosolv without prehydrolysis to 80% (20 FPU/g substrate). Increasing the organosolv delignification temperature to 220 °C resulted in a maximum enzymatic glucose yield of 93% or 0.36 kg/kg straw. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the ......The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw...... with the cellulolytic enzyme system, Celluclast (R) 1.5 L, from Trichoderma reesei, supplemented with a beta-glucosidase, Novozym (R) 188, from Aspergillus niger. Addition of glucose (0-40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner......-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product...

  5. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2013-03-10

    Wheat straw was pretreated and fermented to ethanol. Two strains, which had been mutated from the genetically modified Saccharomyces cerevisiae TMB3400, KE6-12 and KE6-13i, have been used in this study and the results of performance were compared to that of the original strain. The glucose and xylose co-fermentation ability was investigated in batch fermentation of steam-pretreated wheat straw (SPWS) liquid (undiluted, and diluted 1.5 and 2 times). Both strains showed improved xylose uptake in diluted SPWS liquid, and increased ethanol yields compared with the original TMB3400 strain, although xylitol formation also increased slightly. In undiluted SPWS liquid, however, only KE6-13i performed better than the original strain regarding xylose utilization. Fed-batch fermentation of 1.5 and 2 times diluted liquid was performed by adding the glucose-rich hydrolysates from enzymatic hydrolysis of the solid fraction of SPWS at a constant feed rate after 5 h of fermentation, when the glucose had been depleted. The modified strains showed improved xylose conversion; however, the ethanol yield was not significantly improved due to increased glycerol production. Fed-batch fermentation resulted in faster xylose utilization than in the batch cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  7. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  8. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust

    International Nuclear Information System (INIS)

    Chang, Guozhang; Huang, Yanqin; Xie, Jianjun; Yang, Huikai; Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2016-01-01

    Highlights: • The primarily pyrolysis composition of PKS lignin was p-hydroxyphenyl unit. • Higher phenol yield and lower gas energy yield were obtained from PKS pyrolysis. • PKS produced more bio-oil and biochar than WS and PS from pyrolysis at 650–850 °C. • PKS-char had poorer gasification reactivity due to higher ordering carbon degree. - Abstract: The lignin monomer composition of palm kernel shell (PKS) was characterized using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and the characteristics and distributions of products obtained from PKS pyrolysis were investigated using Py-GC/MS, GC, and a specially designed pyrolysis apparatus. The gasification reactivity of PKS biochar was also characterized using thermogravimetry (TG) and Raman spectroscopy. All the results were compared with those obtained from wheat straw (WS) and pine sawdust (PS). The results showed that PKS lignin is primarily composed of p-hydroxyphenyl structural units, while WS and PS lignins are mainly made up of guaiacyl units. Both the mass and energy yields of non-condensable gases from PKS pyrolysis were lower than those obtained from WS and PS pyrolysis at 650–850 °C, owing to the lower volatile content (75.21%) and lack of methoxy groups in PKS. Compared with WS and PS, higher bio-oil productivity was observed during PKS pyrolysis. Phenols were the main component of PKS bio-oil from pyrolysis at 500 °C, and the phenol content of PKS bio-oil (13.49%) was higher than in WS bio-oil (1.62%) and PS bio-oil (0.55%). A higher yield of biochar (on an ash-free basis) was also obtained from PKS pyrolysis. Because of its greater relative degree of ordered carbon, PKS biochar exhibited lower in situ reactivity during CO 2 or H 2 O gasification than WS and PS biochars. A longer residence time and addition of steam were found to be beneficial during PKS biochar gasification.

  10. How mushrooms feed on compost: conversion of carbohydrates and linin in industrial wheat straw based compost enabling the growth of Agaricus bisporus

    NARCIS (Netherlands)

    Jurak, E.

    2015-01-01

    Abstract In this thesis, the fate of carbohydrates and lignin was studied in industrial wheat straw based compost during composting and growth of Agaricus bisporus. The aim was to understand the availability and degradability of carbohydrates in order to help improve their

  11. Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries

    DEFF Research Database (Denmark)

    Silva-Fernandes, Talita; Marques, Susana; Rodrigues, Rita C. L. B.

    2016-01-01

    Eucalyptus residues, wheat straw, and olive tree pruning are lignocellulosic materials largely available in Southern Europe and have high potential to be used solely or in mixtures in sugar-based biorefineries for the production of biofuels and other bio-based products. Enzymatic hydrolysis of ce...

  12. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

    Science.gov (United States)

    Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby

    2012-01-01

    Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...

  13. The effect of cellulose crystallinity on the in vitro digestibility and fermentation, kinetics of meadow hay and barley, wheat and rice straws

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Fonseca, A.; Ferreira, L.M.M.; Sequeria, C.A.

    2003-01-01

    The effect of cellulose crystallinity on in vitro digestibility (IVD) and fermentation kinetics was investigated in samples of meadow hay and barley, wheat and rice straws. A saturated solution of potassium permanganate was used to isolate the celluloses, and their crystallinity was evaluated in a

  14. The effect of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw.

    Science.gov (United States)

    He, Xiangyu; Wu, Yanping; Cai, Min; Mu, Chunlong; Luo, Weihong; Cheng, Yanfen; Zhu, Weiyun

    2015-01-01

    This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32'93″N, 120°41'88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 μmol/mol in the first treatment (CO2 group). The temperature was increased by 2 °C in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 °C and 413 μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2 + TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.

  15. Effect of the incorporation of date pits and orange pulp in rations composed of wheat straw and concentrate on the blood biochemical parameters of Ouled Djellal breeding

    Directory of Open Access Journals (Sweden)

    N. Lakhdara

    2014-12-01

    Full Text Available Twenty four lambs of Ouled Djellal breeding from the region of Constantine, Algeria, were assigned randomly into 4 groups, the mean initial weights within the groups, ranged between 37.6±4.27 and 39.8±5.41 kg, to investigate the effect of the incorporation of two by-products of food industry, fresh orange pulp, ground date pits in rations composed of wheat straw as roughage, and concentrate as supplement. Four feeding groups were formed, the first group (T1 was fed with wheat straw and concentrate (60%/40%, the second group (T2 with wheat straw and orange pulp (60%/40%, for group 3 and 4 (T3-T4, the diet consisted on a mixture of 60% wheat straw and date pits at a ratio of (80 to 20% as a roughage in addition to 40% orange pulp for T3 and 40% concentrate for T4. Blood samples were collected from the jugular vein before morning feeding. Values of animal's plasma levels of Ca, glucose, proteins and urea were measured using a UV spectrophotometer. There was no significant difference in all the diets for Ca value, Ca values varied between 8.37 and 10.74 mg/Dl. T4 showed the highest value. Glucose blood content was similar for all the animals with no significant differences. While a very significant difference <0.001 was observed in blood proteins level in T3 and T4 comparing to the other groups. When date pits were incorporated in the diet containing wheat straw and concentrate, a very significant difference on urea blood content of lambs was observed (P<0.001.

  16. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    /l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...... in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T mathranii. When the concentration of aromatics was increased to 10 m...

  17. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    Science.gov (United States)

    Jurak, Edita; Punt, Arjen M.; Arts, Wim; Kabel, Mirjam A.; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  18. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals

    DEFF Research Database (Denmark)

    Østergaard Petersen, Mai; Larsen, Jan; Thomsen, Mette Hedegaard

    2009-01-01

    In the IBUS process (Integrated Biomass Utilization System) lignocellulosic biomass is converted into ethanol at high dry matter content without addition of chemicals and with a strong focus on energy efficiency. This study describes optimization of continuous hydrothermal pretreatment of wheat...... straw at pilot scale (up to 100 kg h(-1)) where six different pretreatment conditions have been investigated; all pretreatment conditions have been evaluated with regards to recovery of sugars after pretreatment (both C5 and C6) and convertibility of the cellulosic part of the fibers into ethanol....... The experiments show that the optimum pretreatment parameters are 195 degrees C for 6-12 min. At these conditions, a total of app. 70% of the hemicellulose is recovered, 93-94% of the cellulose is recovered in the fibers and app. 89% of the cellulose in the fibers can be converted into ethanol by commercial...

  19. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw.

    Science.gov (United States)

    Kalogeris, E; Iniotaki, F; Topakas, E; Christakopoulos, P; Kekos, D; Macris, B J

    2003-02-01

    A laboratory bioreactor, designed for solid-state fermentation of thermophilic microorganisms, was operated for production of cellulases and hemicellulases by the thermophilic fungus Thermoascus aurantiacus. The suitability of the apparatus for the effective control of important operating variables affecting growth of microbes in solid-state cultivation was determined. Application of the optimum conditions found for the moisture content of the medium, growth temperature and airflow rate produced enzyme yields of 1709 U endoglucanase, 4 U cellobiohydrolase, 79 U beta-glucosidase, 5.5 U FPA, 4490 U xylanase and 45 U beta-xylosidase per g of dry wheat straw. The correlation between microorganism growth and production of enzymes was efficiently described by the Le Duy kinetic model.

  20. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  1. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Murto, Marika

    2013-01-01

    This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with nutrient supplementation in a UASB reactor resulted in a high methane production rate, 2.70 m(3)/m(3).d at a sustainable OLR of 10.4 kg COD/m(3).d and with a COD reduction of 94%. Alternatively, co-digestion of the straw and seaweed hydrolysates in a UASB reactor also maintained a stable anaerobic process and can thus reduce the cost of nutrients addition. We have shown that biogas production from wheat straw can be competitive by pretreatment, high methane production rate in UASB reactors and also by co-digestion with seaweed hydrolysate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    Directory of Open Access Journals (Sweden)

    Billard Hélène

    2012-02-01

    Full Text Available Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a, CBH2 (Cel6a, EG1 (Cel7b, EG2 (Cel5a, as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25% which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  3. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw.

    Science.gov (United States)

    Billard, Hélène; Faraj, Abdelaziz; Lopes Ferreira, Nicolas; Menir, Sandra; Heiss-Blanquet, Senta

    2012-02-28

    An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  4. The effect of temperature on the ammoniation of wheat straw by urea

    African Journals Online (AJOL)

    treatment period and moisture level x treatment period interactions, indicated that lower temperatures and ... moisture level, treatment period, in vitro digestibility, nitrogen content. Chemical treatment oflow-quality .... using urea on the intake and nutritive value of chopped barley straw. Grass Forage Sci. 37, 89. JAYASURIYA ...

  5. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    loss curve, corresponding to the decomposition of hemicellulose and cellulose components in the straw. Washing reduced the char yield from 23 wt.% (daf) to 12 wt.% (daf), reduced the yields of gases, and increased the tar yield from 32 wt.% (daf) to 66 wt.% (daf). Adding 2 wt.% (daf) KCl to the washed...

  6. Growth performance, behaviour, forestomach development and meat quality of veal calves provided with barley grain or ground wheat straw for welfare purpose

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250  g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi-  tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish  Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health  status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required  during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P  average daily gain (1288 vs. 1203 g/d; P  not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was  similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through-  out the fattening period (2.12 vs. 1.15 g; P  calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged  in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of  the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards  carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum  (518 vs. 341 g; P  fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index  of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves  receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive-  ness of roughage at the abomasum level. Visual evaluation of the

  7. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    Science.gov (United States)

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  8. Mechanical Properties and Kinetics of Thermal Degradation of Bioplastics based on Straw Cellulose and Whole Wheat Flour

    Directory of Open Access Journals (Sweden)

    Hesam Omrani fard

    2012-12-01

    Full Text Available During  the  past  two  decades  the  use  of  bioplastics,  as  a  suitable  alternative to  petroleum-based  plastics,  has  attracted  researchers'  attention  to  a  great extent.  In  this  study,  the whole wheat four and  straw cellulose at different proportions were mixed with glycerol and bioplastics sheets were obtained by a press type molding machine.  The mechanical  properties  of  samples  were  examined  on compositions prepared by whole wheat weight in three proportions of 70, 60 and 50% and the cellulose in three proportions 75, 70 and 65%. The tensile tests on the samples indicated  that with  lowering  proportions  of  both  four  and  cellulose,  the modulus of elasticity and  tensile  strength of  the bioplastics dropped as well. The maximum modulus of  elasticity  achieved  for  the four  and  cellulose  compositions were 12.5, and 8.6 MPa, and the maximum tensile strengths were 878 and 202 kPa, respectively. The TGA tests indicated that the bioplastics prepared from whole wheat four showed higher temperatures of thermal degradation. The activation energies calculated for the four and cellulose bioplastics, as estimated by Arrhenius type equation, were 133.0 and 63.8 kJ/mol, respectively.

  9. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion.

    Science.gov (United States)

    Song, Wen; Wang, Xiaojuan; Gu, Jie; Zhang, Sheqi; Yin, Yanan; Li, Yang; Qian, Xun; Sun, Wei

    2017-05-01

    This study explored the effects of different mass ratios of swine manure relative to wheat straw (3:7, 5:5, and 7:3, i.e., control reactors C1, C2, and C3, respectively) on variations in antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion (AD). The cumulative biogas production volumes were 1711, 3857, and 3226mL in C1, C2, and C3, respectively. After AD, the total relative abundance of ARGs decreased by 4.23 logs in C3, whereas the reductions were only 1.03 and 1.37 logs in C1 and C2, respectively. Network analysis showed that the genera Solibacillus, Enterococcus, Facklamia, Corynebacterium_1, and Acinetobacter were potential hosts of ermB, sul1, and dfrA7. Redundancy analysis showed that the bacterial communities and environmental factors played important roles in the variation in ARGs. Thus, reductions in ARGs should be considered before reusing animal manure treated by AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental analysis of the influence of air-flow rate on wheat straw combustion in a fixed bed

    Directory of Open Access Journals (Sweden)

    Čepić Zoran M.

    2017-01-01

    Full Text Available Biomass in the form of crop residues represents a significant energy source in regions whose development is based on agricultural production. Among many possibilities of utilizing biomass for energy generation, combustion is the most common. With the aim of improving and optimizing the combustion process of crop residues, an experimental rig for straw combustion in a fixed bed was constructed. This paper gives a brief review of working characteristics of the experimental rig, as well as the results for three different measuring regimes, with the purpose to investigate the effect of air-flow rate on the wheat straw combustion in a fixed bed. For all three regimes analysed in this paper bulk density of the bed was the same, 60 kg/m3, combustion air was without preheating and air-flow rates were: 1152, 1872, and 2124 kg/m2h. The effect of air-flow rate on the ignition rate, burning rate, temperature profile of the bed and flue gas composition were analysed. It was concluded that in the regime with the lowest air-flow rate progress of combustion had two clearly conspicuous stages: the ignition propagation stage and the char and unburned material oxidation stage. At the highest air-flow rate the entire combustion occurred mostly in a single stage, due to increased air supply oxidized the char, remaining above the ignition front, simultaneously with the reactions of volatiles. Despite that, the optimal combustion process, the highest value of ignition rate, burning rate, and bed temperature was achieved with air-flow rate of 1872 kg/m2h.

  11. [Effects of no-tillage plus inter-planting and remaining straw on the field on cropland eco-environment and wheat growth].

    Science.gov (United States)

    Liu, Shiping; Zhang, Hongcheng; Dai, Qigen; Huo, Zhongyang; Xu, Ke; Ruan, Huifang

    2005-02-01

    The studies showed that under no-tillage plus inter-planting rice and wheat, the height of rice stubble remained on the field significantly affected light transmission rate, with an optimal height of 20-30 cm. No-tillage and straw-remaining decreased soil temperature at noon in sunny days, but slightly increased it in the morning and evening, led to a less diurnal difference of soil temperature. The average diurnal soil temperature under no-tillage was higher in cloudy but lower in sunny days. Under no-tillage and straw-remaining, both the bulk density and the penetration resistance of topsoil increased, but no apparent adverse effect of them was observed on wheat growth. Under no-tillage, soil water content was higher under drought condition, and soil permeability after irrigation was better, which was propitious to the wheat growth. Straw-remaining significantly inhibited weeds, but led to the decrease of basic seedlings and enhanced the damage of freezing. Under no-tillage plus inter-planting, the individuals of effective ears decreased, while the kilo-grain weight increased. The grain yield was slightly but not significantly low under no-tillage plus inter-planting.

  12. The effect of direct and counter-current flow-through delignification on enzymatic hydrolysis of wheat straw, and flow limits due to compressibility.

    Science.gov (United States)

    Pihlajaniemi, Ville; Sipponen, Mika Henrikki; Pastinen, Ossi; Nyyssölä, Antti; Laakso, Simo

    2016-12-01

    This article compares the processes for wheat straw lignocellulose fractionation by percolation, counter-current progressing batch percolation and batch reaction at low NaOH-loadings (3-6% of DM). The flow-through processes were found to improve delignification and subsequent enzymatic saccharification, reduce NaOH-consumption and allow reduction of thermal severity, whereas hemicellulose dissolution was unaffected. However, contrary to previous expectations, a counter-current process did not provide additional benefits to regular percolation. The compressibility and flow properties of a straw bed were determined and used for simulation of the packing density profile and dynamic pressure in an industrial scale column. After dissolution of 30% of the straw DM by delignification, a pressure drop above 100 kPa m -1 led to clogging of the flow due to compaction of straw. Accordingly, the maximum applicable feed pressure and volumetric straw throughput was determined as a function of column height, indicating that a 10 m column can be operated at a maximum feed pressure of 530 kPa, corresponding to an operation time of 50 min and a throughput of 163 kg m -3  h -1 . Biotechnol. Bioeng. 2016;113: 2605-2613. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  14. [Effects of irrigation mode on winter wheat yield and water- and nutrient use efficiencies under maize straw returning to field].

    Science.gov (United States)

    Dang, Jian-you; Pei, Xue-xia; Zhang, Jing; Wang, Jiao-ai; Cao, Yong; Zhang, Ding-yi

    2011-10-01

    In 2008-2010, a field experiment was conducted to study the effects of different irrigation modes on the grain yield, dry matter translocation, water use efficiency (WUE), and nutrient use efficiency (NUE) of winter wheat under maize straw returning to the field in a semi-arid and semi-humid monsoon region of Linfen, Shanxi Province of Northwest China. Irrigation at wintering time promoted tillering, irrigation at jointing stage increased the total tiller number and the fertile spike rate per tiller, whereas irrigation at booting stage promoted the dry matter accumulation in spike and increased the 1000-kernel mass. When the irrigation was implemented at two growth stages and the second irrigation time was postponed, both the dry matter translocation to leaf and the kernels per spike increased. Irrigation twice throughout the whole growth season induced a higher NUE and higher dry matter accumulation in spike, as compared to irrigation once. The irrigation amount at wintering time and the total irrigation amount had lesser effects on the tillering and the dry matter accumulation in spike. Increasing irrigation amount at jointing stage or booting stage more benefited the nutrient uptake, dry matter accumulation and translocation, and grain WUE, which in turn made the yield-formation factors be more balance and the grain yield be higher. It was concluded that to guarantee the irrigation amount at wintering time could achieve stabilized yield, and the optimal irrigation mode was irrigation at wintering time plus an additional irrigation at jointing stage (900 m3 hm(-2)), which could satisfy the water demand of winter wheat at its mid and later growth stage and increase the WUE of grain, and realize water-saving and high-yielding cultivation.

  15. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States - rainfall and wind-induced soil erosion methodology

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.G. [Enersol Resources, Manhattan, KS (United States)

    2002-05-01

    The focus of this study was to develop a methodology to estimate 'hectare-weighted', county-level, corn stover and spring and winter wheat straw removable residue quantities in the USA for 1995-1997 in 37 states (north-south line from North Dakota to Texas and all states east) such that tolerable rainfall and wind soil loss limits were not exceeded.The methodology developed and employed in this study was based on the revised universal soil loss equation (RUSLE) and the wind erosion equation (WEQ), which were used to predict individual county-level corn or wheat yields required at harvest to insure that the amount of soil loss would not exceed the tolerable soil loss limit. These yields were then compared to actual county-level corn or wheat yields to determine the quantity of removable residue. Results of this study indicate an annual average of over 42 and 8 million metric tons of corn stover and straw (spring and winter wheat), respectively (46.2 and 8.8 million tons) were potentially available for removal between 1995 and 1997 in these 37 states. (Author)

  16. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...... to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...

  17. Influence of gaseous phase, light and substrate pretreatment on fruit-body formation, lignin degradation and in vitro digestibility of wheat straw fermented with Pleurotus spp

    Energy Technology Data Exchange (ETDEWEB)

    Kamra, D.N.; Zadrazil, F.

    1986-01-01

    Wheat straw was fermented in the solid state with Pleurotus sajor-caju and P. eryngii at 25 degrees C under different concentrations of oxygen and carbon dioxide. Lower than 20% oxygen in the gaseous phase adversely affected the loss of organic matter, the lignin degradation and the change in straw digestibility with both species of Pleurotus. Higher concentrations (10%-30%) of carbon dioxide, with 20% oxygen in the atmospshere, slightly decreased the loss of lignin and organic matter when compared with the losses under oxygen or air. In spite of better lignin degradation by P. sajor-caju, the process efficiency with P. eryngii was higher, because of lower loss of organic matter during the fermentation. Fruit-bodies were not formed by P. eryngii during the period of experiment in any of the treatments. In P. sajor-caju, fruit-bodies were only formed either in flasks closed with cotton plugs or supplied with a continuous flow of sterile air. Carbon dioxide inhibited the process of primordia initiation and fruit-body development. A short exposure (20 minutes per day) to light was essential for primordia and fruit-body formation. The substrate changes and process efficiency with respect to increase in digestibility were much higher in darkness than in light. Light leads to intensive fruit-body production and a different pattern of substrate degradation. The indigenous microflora of wheat straw inhibited fruit-body formation and caused a higher organic matter loss, accompanied by a decrease in digestibility of the fermented wheat straw. 33 references.

  18. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    Science.gov (United States)

    Forte, Annachiara; Zucaro, Amalia; Basosi, Riccardo; Fierro, Angelo

    2016-01-01

    The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA) approach, the environmental performance of bio-based 1,4-butanediol (BDO) produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy). The aim was: (i) to identify the hotspots along the production chain; and (ii) to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO). Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation. PMID:28773687

  19. Yield and nutritional content of Pleurotus sajor caju on wheat straw supplemented with raw and detoxified mahua cake.

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Saha, Supradip; Walia, Suresh

    2013-12-15

    The effect of supplementation of wheat straw (WS) with raw/detoxified mahua cake (MC) on yield and nutritional quality of Pleurotus sajor caju was studied. Raw cake significantly enhanced the yield compared to control and could be tolerated up to a 10% addition. Detoxification further improved the mushroom yield giving a maximum of 1024.7 g kg(-1) from WS supplemented with 20% saponin free detoxified mahua cake. Chemical analysis of fruit bodies revealed that they are rich in proteins (27.4-34.8%), soluble sugars (28.6-32.2%) and minerals. Glucose, trehalose and glutamic acid, alanine were the major sugars and amino acids detected by HPLC analysis, respectively. HPLC studies further confirmed the absence of saponins (characteristic toxins present in MC) in both fruit bodies and spent. Degradation of complex molecules in spent was monitored via FTIR. The study proved beneficial for effective management of agricultural wastes along with production of nutrient rich and saponin free fruit bodies/spent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    Science.gov (United States)

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology.

    Science.gov (United States)

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2014-01-01

    Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw.

    Science.gov (United States)

    Janczak, Damian; Malińska, Krystyna; Czekała, Wojciech; Cáceres, Rafaela; Lewicki, Andrzej; Dach, Jacek

    2017-08-01

    Composting of poultry manure which is high in N and dense in structure can cause several problems including significant N losses in the form of NH 3 through volatilization. Biochar due to its recalcitrance and sorption properties can be used in composting as a bulking agent and/or amendment. The addition of a bulking agent to high moisture raw materials can assure optimal moisture content and enough air-filled porosity but not necessarily the C/N ratio. Therefore, amendment of low C/N composting mixtures with biochar at low rates can have a positive effect on composting dynamics. This work aimed at evaluating the effect of selected doses of wood derived biochar amendment (0%, 5% and 10%, wet weight) to poultry manure (P) mixed with wheat straw (S) (in the ratio of 1:0.4 on wet weight) on the total ammonia emissions (including gaseous emissions of ammonia and liquid emissions of ammonium in the collected condensate and leachate) during composting. The process was performed in 165L laboratory scale composting reactors for 42days. The addition of 5% and 10% of biochar reduced gaseous ammonia emission by 30% and 44%, respectively. According to the obtained results, the measure of emission through the condensate would be necessary to assess the impact of the total ammonia emission during the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters.

    Science.gov (United States)

    Idrus, S; Banks, C J; Heaven, S

    2012-01-01

    Wheat straw is a major potential source of waste biomass for renewable energy production, but its high salt content causes problems in combustion. The salts can be removed by washing, but this process also removes a proportion of the organic material which could potentially be recovered by anaerobic digestion of the washwater leachate. This approach would maximise the overall energy yield in an integrated process in which washwater could be recycled after further desalting. Leachate from cold water washing with a chemical oxygen demand (COD) of 1.2 g l⁻¹ was fed to mesophilic upflow anaerobic sludge blanket (UASB) digesters at a loading rate of 1 g COD l⁻¹ day⁻¹ to determine the energy yield and any detrimental effects of the leached salts on the process. The specific methane production was 0.29 l CH₄ g⁻¹ COD(added), corresponding to a COD removal rate of 84%. Light metal cations in the leachate, especially potassium, were found to accumulate in the digesters and appeared to have a synergistic effect up to a concentration of ∼6.5 mg K g⁻¹ wet weight of the granular sludge, but further accumulation caused inhibition of methanogenesis. It was shown that gas production in the inhibited digesters could be restored within 12 days by switching the feed to a synthetic sewage, which washed the accumulated K out of the digesters.

  4. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    Directory of Open Access Journals (Sweden)

    Annachiara Forte

    2016-07-01

    Full Text Available The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA approach, the environmental performance of bio-based 1,4-butanediol (BDO produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy. The aim was: (i to identify the hotspots along the production chain; and (ii to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO. Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation.

  5. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    Science.gov (United States)

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates.

    Science.gov (United States)

    Díaz, Teresa; Fillet, Sandy; Campoy, Sonia; Vázquez, Raquel; Viña, Javier; Murillo, José; Adrio, José L

    2018-04-01

    Improving the yield of carbohydrate to lipid conversion and lipid productivity are two critical goals to develop an economically feasible process to commercialize microbial oils. Lignocellulosic sugars are potential low-cost carbon sources for this process but their use is limited by the toxic compounds produced during biomass pretreatment at high solids loading, and by the pentose sugars (mainly xylose) which are not efficiently metabolized by many microorganisms. Adaptive laboratory evolution was used to select a Rhodosporidium toruloides strain with robust growth in non-detoxified wheat straw hydrolysates, produced at 20% solids loading, and better xylose consumption rate. An arabinose-inducible cre-lox recombination system was developed in this evolved strain that was further engineered to express a second copy of the native DGAT1 and SCD1 genes under control of the native xylose reductase (XYL1) promoter. Fed-batch cultivation of the engineered strain in 7-L bioreactors produced 39.5 g lipid/L at a rate of 0.334 g/Lh -1 and 0.179 g/g yield, the best results reported in R. toruloides with non-detoxified lignocellulosic hydrolysates to date.

  7. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Min Yu

    2018-01-01

    Full Text Available The effect of individual and combined particleboard dust (PB dust and basalt fibers (BFs on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.

  9. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    Science.gov (United States)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  10. Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability

    International Nuclear Information System (INIS)

    Sastre, C.M.; González-Arechavala, Y.; Santos, A.M.

    2015-01-01

    Highlights: • We assess the sustainability of electricity generation from Spanish wheat straw. • Parameter uncertainty and variability are included in the life cycle assessment. • 58% of the simulations accomplish EU sustainability criteria of 60% GHG savings. • Loss of soil organic carbon is the most relevant phase for global warming potential. • A reduction of isohumic coefficient uncertainty is needed due to its importance. - Abstract: This paper aims to provide more accurate results in the life cycle assessment (LCA) of electricity generation from wheat straw grown in Spain through the inclusion of parameter uncertainty and variability in the inventories. We fitted statistical distributions for the all the parameter that were relevant for the assessment to take into account their inherent uncertainty and variability. When we found enough data, goodness of fit tests were performed to choose the best distribution for each parameter and, when this was not possible, we adjusted triangular or uniform distributions according to data available and expert judge. To obtain a more complete and realistic LCA, we considered the consequences of straw exportation for the agricultural system, specially the loss of soil organic carbon and the decrease of future fertility. We also took into account all the inputs, transformations and transports needed to generate electricity in a 25 MWe power plant by straw burning. The inventory data for the agricultural, the transport and the transformation phases were collected considering their most common values and ranges of variability for the Spanish case. We used Monte Carlo simulation and sensitivity analysis to obtain global warming potential (GWP) and fossil energy (FOSE) consumption of the system. These results were compared with those of the electricity generated from natural gas in Spanish power plants, as fossil reference energy system. Our results showed that for the majority of the simulations electricity from wheat

  11. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp.

    Science.gov (United States)

    Walia, Abhishek; Mehta, Preeti; Guleria, Shiwani; Shirkot, Chand Karan

    2015-09-01

    Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.

  12. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  13. Potential production from poultry litter, chicken manure and wheat straw; Potencial de producao de biogas da cama de aviario, esterco de galinhas e palha de trigo

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio L.; Silva, Jadir Nogueira da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], email: fabio.zanatta@ufv.br; Scholz, Volkhard; Schonberg, Mandy [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Post Harvest Technology Dept.; Martin, Samuel [Universidade de Brasilia (UNB), DF (Brazil). Dept. de Engenharia Rural

    2011-07-01

    Poultry litter is a sub product of growth chicken, rich in nitrogen and used like fertilizer in grains and forage production. Normally is applied in the fields without treatment. It's a very good material to be used for biogas generation because his compounds are chicken manure, straw and others organics compounds like coffee and rice husks. The biogas produced by poultry litter can be used for electric generation or for the heating systems of chicken production. The aimed of this work was evaluated the biogas and methane production of poultry litter, chicken manure and wheat straw. The experiment was made in the Biogastechnikum Laboratory of Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), in Potsdam-Germany, from May to December 2010, according the rule VDI 4630 (Verein Deutscher Ingenieure). According to set conditions of the experiment, the results for biogas production are 393.25, 398.37 e 518.44 Nl biogas/kg{sub TSadded} and methane 223.72, 229.68, e 272.73 Nlmethane/kg{sub TSadded}; for poultry litter, poultry manure and wheat straw, respectively. (author)

  14. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw.

    Science.gov (United States)

    Wang, Shuai; Huang, Dao-You; Zhu, Qi-Hong; Zhu, Han-Hua; Liu, Shou-Long; Luo, Zun-Chang; Cao, Xiao-Ling; Wang, Ji-Yu; Rao, Zhong-Xiu; Shen, Xin

    2015-02-01

    When grown on Cd-contaminated soil, rice typically accumulates considerable Cd in straw, and which may return to the soil after harvest. This work was undertaken to assess the pollution risk of Cd associated to the Cd-contaminated rice straw after incorporating into an uncontaminated soil. With the Cd-contaminated rice straw added at 0, 1, 2, 3, 4 and 5 % (w/w), an incubation experiment (28 days) with non-planting and a followed pot experiment sequent with two planting (rice and Chinese cabbage, transplanted after 28-day incubation) were carried out to investigate the changes of soil Cd speciation and phytoavailability. The results indicated that the Cd-contaminated rice straw addition significantly increased soil pH and dissolved organic carbon during the 28-day incubation. For the high availability of Cd in contaminated rice straw, diethylenetriaminepentaacetic acid (DTPA) extractable Cd significantly increased, and the percentages of acetic acid extractable and reducible Cd in soil significantly enhanced after the addition of Cd-contaminated rice straw. However, the Cd-contaminated rice straw addition inhibited the rice growth and induced the decrease of Cd in rice grain and straw by 12.8 to 70.2 % and 39.3 to 57.3 %, respectively, whereas the Cd contents increased by 13.9 to 84.1 % in Chinese cabbage that planted after rice harvest. In conclusion, Cd associated with Cd-contaminated rice straw was highly available after incorporating into the soil, and thus the Cd pollution risk via the Cd-contaminated rice straw incorporation should be evaluated in the Cd-contaminated paddy region.

  15. The utilization of alkali-treated rice straw supplemented with cheap non-protein nitrogen in buffalo production in Sri Lanka

    International Nuclear Information System (INIS)

    Jayasuriya, M.C.N.; Karunaratne, M.

    1984-01-01

    Two experiments were undertaken to evaluate the feeding value of rice straw, with special emphasis on rumen function, on swamp buffalo in Sri Lanka. In Experiment 1 three rumen-fistulated buffaloes of average live weight 240 kg were used to compare three rations containing straw supplemented with 4% urea, straw 'ensiled' for 21 days with a solution of 4% urea (urea/ammonia treatment) and straw treated with a 4% solution of sodium hydroxide. The urea-ammonia and sodium hydroxide treatments were superior to urea supplementation in increasing apparent digestibility of the diet, total volatile fatty acid concentrations and acetate production rate in the rumen. In Experiment 2 three treatments were compared using the same three fistulated buffaloes. Treatments 1 and 2 were as in Experiment 1, but for treatment 3, to 4% urea ensiled straw as in Experiment 1 was added 5 wt% finely chopped, fresh glyricidia leaves prior to ensiling to supply urease, enhancing ammonia production from urea. The digestibility of the glyricidia-containing ration was similar to that of the ration with straw treated for 21 days. Acetate production and total volatile fatty acid concentration were also similar for the two treatments. The increased digestibility of the diet and the apparent increased volatile fatty acid production in the rumen explain the increases in live weight gain and milk production in cattle and buffalo fed urea-ammonia treated rice straw. Adding glyricidia at the commencement of ensiling can be recommended to reduce the ensiling time of treated straw. (author)

  16. Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Miu, P.I. [University of Tennessee; Smith, D.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

    2009-07-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 - and 30 -hammers. Overall accuracy of specific energy measurement was calculated as 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 -hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 -hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 -hammers. Rosin Rammler equation fitted the size distribution data with R2 > 0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in well-graded fine-skewed mesokurtic

  17. The effect of wheat straw substitution by different levels of date palm leaves on performance and health of Baluchi ewe lamb

    Directory of Open Access Journals (Sweden)

    Reza Valizadeh

    2016-04-01

    Full Text Available Introduction A major constraint of animal production in south of Iran is the lack of cheap source of roughages. Date palm leaves (DPL is one of the most abundant agricultural by-products in south of Iran. Almost all pruned leaves are discarded in the fields, mainly for nutrients recycling and soil conservation (M. Wan Zahari, et al1999. The yearly maintenance of date palm tree produces a (around 20 kg per each tree considerable quantities of green leaves (Bahman et al (1997; Pascual et al (2000. Ruminant can utilize crop residues, with poor nutritional value. These residues are traditionally fed to animal as the main part of diet in many developing countries. However; dry matter intake of these by-products are not adequate to fulfill the nutrient requirements of livestock even at maintenance level (Dixon and Egan, 2002. DPL has a great potential for use as a roughage or bulk source in total mixed ration (TMR for ruminants in dry areas. Detailed studies on fermentation characteristics and palatability of DPL silage, as well as on animal performance, have been reported by many workers (e.g. Abu Hassan and Ishida, 1991; Ishida and Abu Hassan, 1997; Oshio et al., 1999. Some researchers such as El-din and Tag-El-Din, 1996; and Bahman et al., 1997 have reported that DPL cannot be fed to animals because of low crude protein (6-7% and high level of fibrous cell wall content low palatability and digestibility. Therefore we design one experiment that investigates possibility of using DPL without any enrichment. The objective of this trial was to study the effect of replacement DPL with wheat straw and voluntary intake, average body gain and health of Baluchi ewe lambs. Materials and Methods Twenty-four Iranian Baluchi female lambs with initial body weight (BW of 20.48±0.5 kg and age of 130±10 days were assigned to 4 dietary treatments in a completely randomized design. Groups were balanced for weight and experimental trail lasted for 76 days. All lambs

  18. [Characterization of soil humus by FTIR spectroscopic analyses after being inoculated with different microorganisms plus wheat straw].

    Science.gov (United States)

    Wang, Shuail; Dou, Sen; Liu, Yan-Li; Li, Hui-Min; Cui, Jun-Tao; Zhang, Wei; Wang, Cheng-Yu

    2012-09-01

    The effects of different microbial communities on the structural characteristics of humus from the black soil amended with wheat straw were studied by FTIR Spectroscopy. The results indicated that (1) The structure and amount of functional groups in the water soluble substances (WSS) was tremendously influenced by the tested microorganisms, of which the amino and aryl ether was degraded rapidly in the inoculation process, and in the meantime, the content of hydroxyl groups was significantly reduced. The bacteria was helpful to increasing the amount of aliphatic hydrocarbons, while the other inoculated treatments were contrary. At the end of culture, the phenols and polysaccharides were gradually consumed, but the content of carboxyl groups had an increasing trend. (2) In the aspect of reducing hydroxyl groups of fulvic acid (FA), the role of actinomycetes was the biggest. The fungi had the biggest effect in improving the net generation of FA content. In addition, the fungi was conducive to improve the contents of carboxyl groups and carbohydrates of FA fraction. Except the mixed strains, the other treatments were all beneficial to the degradation of polysaccharide in the FA fraction, whose rate was greater than the decomposition of lipids. (3) The bacteria, actinomycetes and fungi were all helpful to reducing the amount of aliphatic hydrocarbons of HA fraction except the mixed strains. The content of carboxyl was effectively increased by fungi, but the effect of bacteria was contrary. The tested microorganisms could consume and utilize the polysaccharides of HA fraction, which could transform the humic-like fractions from plant residues into the real humus of soil.

  19. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  20. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw

    Science.gov (United States)

    2012-01-01

    Background Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. Results The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm. Conclusion This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production. PMID:22824058

  1. The fIXationof nitrogen in urea ammoniated wheat straw by means ...

    African Journals Online (AJOL)

    Owens, 1979)of the ammonia originally included. The reten- tion of this nitrogen by means of fixation by different acids was investigated by Borhami, Sundst¢l & Garmo (1982) and. Jayasuriya & Pearce (1983). These results indicated that ammonia-nitrogen in treated roughages can effectively be fixed by treatment with acids ...

  2. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw.

    Science.gov (United States)

    Ding, Yi; Du, Bo; Zhao, Xuebing; Zhu, J Y; Liu, Dehua

    2017-03-01

    Phosphomolybdic acid (PMo 12 ) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo 12 with solubilization of a fraction of hemicelluloses, and the PMo 12 was simultaneously reduced. In an external liquid flow cell, the reduced PMo 12 was re-oxidized with generation of electricity. The effects of several factors on pretreatment were investigated for optimizing the conditions. Enzymatic conversion of cellulose and xylan were about 80% and 45%, respectively, after pretreatment of wheat straw with 0.25M PMo 12 , at 95°C for 45min. FeCl 3 was found to be an effective liquid mediator to transfer electrons to air, the terminal electron acceptor. By investigating the effects of various operation parameters and cell structural factors, the highest output power density of about 11mW/cm 2 was obtained for discharging of the reduced PMo 12 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    Science.gov (United States)

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR

    Directory of Open Access Journals (Sweden)

    José I. Santos

    2015-01-01

    Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.

  5. Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods.

    Science.gov (United States)

    Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja

    2014-10-29

    Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).

  6. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  7. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  8. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    Science.gov (United States)

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  9. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. Conclusions: Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T...... glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. Results: The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140 degrees...

  10. Aggregation and mortality of Agriotes obscurus (Coleoptera: Elateridae) at insecticide-treated trap crops of wheat.

    Science.gov (United States)

    Vernon, Robert S

    2005-12-01

    Agriotes obscurus (L.) wireworms assembled in increasing numbers at rows of treated (Agrox DL Plus seed treatment) and untreated wheat, Triticum aestivum L., planted at increasing densities (0, 0.15, 0.30, and 0.60 seeds/cm). In treated wheat plots at all planting densities, no wireworm damage to seedlings was apparent, and total wireworms taken in core samples in wheat rows increased according to the asymptotic equation y = B0(1 -e(-Blx)), where B0 is the asymptote, B1 is the slope of the initial rise, and x is the seeding density. The number of dead wireworms in treated plots increased linearly and intercepted the asymptotic models (theoretical point at which 100% mortality of assembled population occurs) at 0.95 seeds/cm on 11 June and 1.14 seeds/cm on 18 June 1996. Untreated wheat at all densities planted had severe wireworm damage and significantly reduced stand. Populations that had assembled at the surviving untreated wheat were fewer than in the treated wheat plots, and although increasing with seeding density, did not follow the asymptotic model. The data suggest that A. obscurus populations can be assembled and killed in fallowed fields in large numbers at treated trap crops of wheat over a 19-d period when planted in rows spaced 1 m apart at a linear seeding density of 1.5 seeds/cm.

  11. Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite

    International Nuclear Information System (INIS)

    Liu, Linlin; Zhang, Tong; Wan, Haiwen; Chen, Yuanlin; Wang, Xiaojiao; Yang, Gaihe; Ren, Guangxin

    2015-01-01

    Highlights: • The additives of magnetite and zeolite in anaerobic digestion were studied. • Mineral additives increased methane production significantly. • Mineral additives provided a good environment for methanogens. • The optimum conditions for anaerobic digestion process were optimized. - Abstract: To enhance biogas production and identify new additive materials for the co-digestion of wheat straw, sheep manure, and chicken manure, batch experiments were investigated in this study. Experiments were conducted on the influence of additive materials on a range of manure/straw ratios (3:7, 5:5, and 7:3) and biogas production under a mesophilic temperature (35 °C). Results showed that the maximum increments of methane production (L/kg · VS add ) with the addition of 3 g magnetite and 1 g natural zeolite were 52.01% and 51.01%, respectively. The addition of magnetite and zeolite in the anaerobic digestion process produced a good fermentation environment. By using the response optimizer when the manure proportion was 52%, the best methane yield was obtained with the addition of 2.7 g magnetite. For zeolite, the best addition dose was 1 g and the optimum manure proportion is 63%. Magnetite had a more extensive increase in methane yield than zeolite

  12. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.

    Science.gov (United States)

    Klinke, H B; Olsson, L; Thomsen, A B; Ahring, B K

    2003-03-20

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195 degrees C) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxybenzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 mM), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same. The longer fermentation time could not be explained by an inhibitory action of phenols alone, but was more likely caused by inhibitory interactions of phenols with carboxylic acids, such as acetic and formic acid. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 738-747, 2003.

  13. Hybrid SSF/SHF Processing of SO2Pretreated Wheat Straw-Tuning Co-fermentation by Yeast Inoculum Size and Hydrolysis Time.

    Science.gov (United States)

    Cassells, B; Karhumaa, K; Sànchez I Nogué, V; Lidén, G

    2017-02-01

    Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO 2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO 2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.

  14. Physicochemical characteristics of wheat treated with diatomaceous earth and conventionally stored

    OpenAIRE

    Freo,Janete Deliberali; Moraes,Lidiane Borges Dias de; Santetti,Gabriela Soster; Gottmannshausen,Taís Luana; Elias,Moacir Cardoso; Gutkoski,Luiz Carlos

    2014-01-01

    Studies show the efficacy of the use of diatomaceous earth for insect control, however, lack studies on the effects of physical and chemical properties of wheat flour added diatomaceous earth. The aim of this study was to assess the physicochemical characteristics of wheat grains treated with increasingly higher dosages of diatomaceous earth and conventionally stored for a 180-day period. Samples containing 10 kg of wheat grains were treated with 0.0, 2.0 and 4.0 g kg-1 of diatomaceous earth ...

  15. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate...... how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...... composition. The Si concentration in wheat straw differed significantly among genotypes and growth locations. Wheat straw with high Si concentration released less xylose during enzymatic saccharification suggesting inhibition by Si deposited in hemicelluloses. N supply had a distinct effect on Si...

  16. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2005-05-01

    Full Text Available Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract. Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice straw hemicellulosic hydrolysate treated with activated charcoal was a cheap source of xylose and other nutrients for xylitol production by C. guilliermondii. The non-necessity of adding nutrients to the hydrolysate media would be very advantageous since the process becomes less costly.Este trabalho avaliou a produção de xilitol pela levedura Candida guilliermondii, a partir de hidrolisado hemicelulósico de palha de arroz não tratado e tratado com carvão ativo, ambos suplementados ou não com nutrientes (sulfato de amônio, cloreto de cálcio e extrato de farelo de arroz. Os resultados mostraram que tanto o rendimento como a produtividade volumétrica em xilitol diminuíram quando os nutrientes foram adicionados em ambos hidrolisados, tratado e não tratado. Em hidrolisado tratado, a eficiência de conversão de xilose em xilitol foi de 79% quando em ausência de nutrientes. Estes resultados mostram que o hidrolisado hemicelulósico de palha de arroz tratado com carvão ativo é uma fonte barata de xilose e outros nutrientes, para a produção de xilitol por Candida guilliermondii. A não necessidade de adicionar nutrientes ao meio a base de hidrolisado é muito vantajosa, uma vez que o processo se torna mais econômico.

  17. Trading quality and breadmaking performance of wheat treated with natural zeolite and diatomaceous earth

    Directory of Open Access Journals (Sweden)

    Bodroža-Solarov Marija I.

    2011-01-01

    Full Text Available The aim of study was to investigate the influence of naturally occurring zeolite and diatomaceous earth, as inert dusts approved for insect pest control in certified organic crop production, on trading and breadmaking quality of treated wheat. The treatments significantly reduced the trading quality of wheat which was reflected through lowering of test weight. This effect was more marked in the case of low-vitreous wheat rather than in high-vitreous one. Investigation of rheological properties of flours made from the treated wheat demonstrated that treatments with natural zeolite and diatomaceous earth at all applied doses significantly increased the water absorption, which consequently increased the bread yield. However, these changes in the flour properties were not high enough to modify the quality attributes of bread as was shown by instrumentally measuring crumb hardness and springiness as well as sensory evaluation.

  18. Effects of feeding alfalfa stemlage or wheat straw for dietary energy dilution on nutrient intake and digestibility, growth performance, and feeding behavior of Holstein dairy heifers.

    Science.gov (United States)

    Su, Huawei; Akins, Matt S; Esser, Nancy M; Ogden, Robin; Coblentz, Wayne K; Kalscheur, Kenneth F; Hatfield, Ron

    2017-09-01

    Feeding high-quality forage diets may lead to excessive weight gains and over-conditioning for dairy heifers. Restriction of energy density and dry matter intake by using low-energy forages, such as straw, is a good approach for controlling this problem. Alfalfa stems contain high fiber and moderate protein content and have the potential to be used to replace straw to reduce dietary energy. The objective of this study was to compare nutrient intakes, digestibilities, growth performance, and feeding behaviors of dairy heifers offered an alfalfa silage/corn silage high-energy diet (HE; 13.1% crude protein, 65.4% total digestible nutrients, 39.7% neutral detergent fiber) with 2 energy-diluted diets that replaced various proportions of the corn or alfalfa silages with either alfalfa stemlage (STM; 12.6% crude protein, 59.1% total digestible nutrients, 46.4% neutral detergent fiber) or chopped wheat straw (WS; 12.6% crude protein, 61.9% total digestible nutrients, 43.7% neutral detergent fiber). Seventy-two pregnant Holstein heifers (16.8 ± 1.3 mo) were stratified into 3 blocks (24 heifers/block) by initial body weight (light, 440 ± 18.0 kg; medium, 486 ± 18.6 kg; heavy, 534 ± 25.1 kg), with each block composed of 3 pens (8 heifers/pen), with diets assigned randomly to 1 pen within the block. Diets were offered in a 56-d feeding trial. Both dry matter intake and energy intake were decreased with the addition of low-energy forages to the diets, but no differences in dry matter intake were observed across diluted diets. Digestibility of dry matter, organic matter, neutral detergent fiber, and apparent N were greater for HE compared with diluted diets, and for WS compared with STM. Total body weight gain (74 vs. 56 kg) and average daily gain (1.32 vs. 1.00 kg/d) were greater for heifers offered HE compared with diluted diets. Feed efficiency tended to be less for heifers offered the diluted diets compared with HE (10.7 vs. 8.6 kg of feed/kg of gain). Heifers did not

  19. The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor.

    Science.gov (United States)

    Ibbett, Roger; Gaddipati, Sanyasi; Greetham, Darren; Hill, Sandra; Tucker, Greg

    2014-03-29

    The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields. The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions. A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate

  20. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances.

    Science.gov (United States)

    Karlsson, Hanna; Ahlgren, Serina; Sandgren, Mats; Passoth, Volkmar; Wallberg, Ola; Hansson, Per-Anders

    2016-01-01

    Biodiesel is the main liquid biofuel in the EU and is currently mainly produced from vegetable oils. Alternative feedstocks are lignocellulosic materials, which provide several benefits compared with many existing feedstocks. This study examined a technical process and its mass and energy balances to gain a systems perspective of combined biodiesel (FAME) and biogas production from straw using oleaginous yeasts. Important process parameters with a determining impact on overall mass and energy balances were identified and evaluated. In the base case, 41% of energy in the biomass was converted to energy products, primary fossil fuel use was 0.37 MJ prim /MJ produced and 5.74 MJ fossil fuels could be replaced per kg straw dry matter. The electricity and heat produced from burning the lignin were sufficient for process demands except in scenarios where the yeast was dried for lipid extraction. Using the residual yeast cell mass for biogas production greatly increased the energy yield, with biogas contributing 38% of total energy products. In extraction methods without drying the yeast, increasing lipid yield and decreasing the residence time for lipid accumulation are important for the energy and mass balance. Changing the lipid extraction method from wet to dry makes the greatest change to the mass and energy balance. Bioreactor agitation and aeration for lipid accumulation and yeast propagation is energy demanding. Changes in sugar concentration in the hydrolysate and residence times for lipid accumulation greatly affect electricity demand, but have relatively small impacts on fossil energy use (NER) and energy yield (EE). The impact would probably be greater if externally produced electricity were used.

  1. Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case.

    Science.gov (United States)

    Hassan, Muhammad; Ding, Weimin; Shi, Zhendan; Zhao, Sanqin

    2016-07-01

    The present study emphasized the co-digestion of the thermal-H2O2 pretreated wheat straw (WS) and chicken manure (CM) with the waste activated sludge at four levels of C/N (35:1, 30:1, 25:1 and 20:1). All C/N compositions were found significant (Pmethane generation and process stability during the anaerobic co-digestion of WS and CM. The experimental results revealed that the composition having C/N value of 20:1 was proved as optimum treatment with the methane enhancing capability of 85.11%, CODs removal efficiency of 48.55% and 66.83% VS removal as compared with the untreated WS. The other compositions having C/N of 25:1, 30:1 and 35:1 provided 75.85%, 63.04% and 59.96% enhanced methane respectively as compared with the control. Pretreatment of the WS reduced its C/N value up to 65%. Moreover, to optimize the most suitable C/N composition, the process stability of the co-digestion of WS and CM was deeply monitored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhancing Nutritional Contents ofLentinus sajor-cajuUsing Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw.

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg -1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase ( p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS.

  3. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  4. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    Science.gov (United States)

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS. PMID:27790187

  6. Enhancing nutritional contents of Lentinus sajor-caju using residual biogas slurry waste of detoxified mahua cake mixed with wheat straw

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-10-01

    Full Text Available Residual biogas slurries (BGS of detoxified mahua cake (DMC and cow dung (CD were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS. Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p≤0.05 in protein content (29.6-38.9%, sugars (29.1-32.3% and minerals (N, P, K, Fe, Zn was observed in the fruit bodies. Principle component analysis (PCA was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%, lignin (%, celluloses (% and C/N ratio were closely correlated in comparison to Fe, N and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%, hemicelluloses (14.1-23.1% and lignin (27.4-39.23% in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of Lentinus sajor-caju by resourceful utilization of BGS.

  7. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    Science.gov (United States)

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  8. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  9. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha-1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  10. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu

    2018-01-01

    Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl 2 -extractable Cd and Pb was lower than that of untreated soil. MgCl 2 -extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.

  11. Estimation of Total Saponins and Evaluate Their Effect on in vitro Methanogenesis and Rumen Fermentation Pattern in Wheat Straw Based Diet

    Directory of Open Access Journals (Sweden)

    Navneet Goel

    2012-04-01

    Full Text Available The present experiment was carried out to estimate the total saponins and evaluate their effect on methanogenesis and rumen fermentation by in vitro gas production techniques. Three plant material, rough chaff tree seed (Achyranthus aspara, T1, gokhru seed (Tribulus terrestris, T2 and Siris seed (Albizia lebbeck, T3 were selected for present study. The total saponins content in T1, T2 and T3 were 45.75, 25.65 and 48.26% (w/w, respectively. Three levels of each saponins (3, 6 and 9% on DM basis and wheat straw based (50R:50C medium fiber diet (200±10 mg were used for the evaluation of their effect on methanogenesis and rumen fermentation pattern. Results showed the maximum methane reduction (49.66% in term of mM/gDDM and acetate propionate ration (35.08% were found in T1 at 6 and 3% levels. Result show that propionate production (mM/ml was increased; protozoa population decreased (75% significantly on addition with T3 at 6% level. No significant variation was found in dry matter digestibility in all cases. The present results demonstrate that total saponins extracted from different herbal plants are a promising rumen modifying agent. They have the potential to modulate the methane production, dry matter digestibility and microbial biomass synthesis.

  12. Physicochemical characteristics of wheat treated with diatomaceous earth and conventionally stored

    Directory of Open Access Journals (Sweden)

    Janete Deliberali Freo

    2014-12-01

    Full Text Available Studies show the efficacy of the use of diatomaceous earth for insect control, however, lack studies on the effects of physical and chemical properties of wheat flour added diatomaceous earth. The aim of this study was to assess the physicochemical characteristics of wheat grains treated with increasingly higher dosages of diatomaceous earth and conventionally stored for a 180-day period. Samples containing 10 kg of wheat grains were treated with 0.0, 2.0 and 4.0 g kg-1 of diatomaceous earth and then conventionally stored. Analyses of grain hectoliter mass and ash content, as well as flour gluten content, flour color, alveography and farinography were performed at 0, 60, 120 and 180 days of storage. The experiment was carried out in a totally randomized design. The grain ash content and intensity of color component L* of wheat flour increase proportionally to the application of increasing doses of diatomaceous earth and longer storage periods. The grain hectoliter mass and values of +b* chromaticity coordinate, wet gluten content and gluten content in wheat flour diminish with the application of increasing doses of diatomaceous earth and longer storage periods. The gluten strength and dough stability of flour obtained from wheat grains without addition of diatomaceous earth increase with the storage period; this behavior was not observed in treatments with the application of 2.0 and 4.0 g kg-1 diatomaceous earth. The application of increasing doses of diatomaceous earth changes the physical and chemical characteristics of wheat grains stored, with consequent reduction of the flour technological quality.

  13. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  14. Effects of protein levels in concentrate and rice straw or urea-treated rice straw on growth performance, carcass characteristics and consumer acceptance of meat from goat and sheep

    Directory of Open Access Journals (Sweden)

    Sanpoomi, P.

    2007-03-01

    Full Text Available The objectives of this research were to study the effect of protein levels in concentrate and rice straw or urea-treated rice straw on growth performance, carcass characteristics and consumer acceptance of meatfrom goat and sheep. Sixteen male goats and sixteen male sheep, with the initial weight of 20-25 kg, were randomly assigned to an individual pen and received the experimental diets. A 2x2x2 factorial experiment in completely randomized design (CRD was applied with 4 replicates per treatment. The treatments werecombined by two animal species (goat and sheep, two levels of crude protein (CP in concentrate (14 or 16% CP and two types of roughages (rice straw or 5% urea-treated rice straw. The diets were fed ad libitum foreach animal and the feeding trial lasted for 91 days. The results showed that average daily gain among treatment groups were not significantly different (P>0.05 but that of goat and sheep receiving urea-treated ricestraw was higher (P0.05 across treatments. Total feed intake of sheep was higher than of goat (964.5VS 749.9 g/d. Total feed intake of goat and sheep receiving urea-treated rice straw were higher than those receiving rice straw (90.1.7 VS 817.4 g/d. Digestion coefficients of dry matter (DM and nutrients weresignificantly different among treatments (P0.05. Percentage of shank and heart in goat (29.4 and 0.63% were higher than that in sheep(24.6 and 0.56%; however, its skin percentage was lower than in sheep (13.87 VS 16.83%. Most wholesale cuts of all treatments were not significantly different (P>0.05. However, percentage of neck cut, shouldercut and shank cut in goat (8.22, 24.07 and 7.77%, respectively was higher than that in sheep (6.79, 21.63 and 5.68%, respectively. Percentage of loin cut and leg cut in sheep (9.64 and 33.24% were higher than that ingoat (7.33 and 29.02%. Carcass length, back fat thickness, shear force and loin eye area of all treatments were not significantly different (P>0.05. Back fat

  15. Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy

    Directory of Open Access Journals (Sweden)

    Aparna Mukherjee

    2017-01-01

    Full Text Available The present investigation highlights the feasibility of a polymer grafting process to enhance the durability and flame retardancy of rice straw towards application as a low cost roofing material. The success of this grafting methodology was perceived to depend upon a bi-step pre-treatment process encompassing delignification and inorganic salts dispersion. Subsequently free radical polymer grafting of acrylonitrile onto rice straw was implemented by immersion mechanism initiated by oxalic acid-potassium permanganate initiator. The percentage of grafting, limiting oxygen index (LOI, biodegradability of the grafted rice straw and grafting yield percentage was estimated to be 57%, 27%, 0.02% and 136.67%, respectively. The weight loss of polymer grafted rice straw implied its less biodegradability over raw straw. Thus, the process of grafting contrived in the present analysis can be a promising and reliable technique for the efficient utilization of rice straw as an inexpensive roofing element through the augmentation of its durability and flame retardancy.

  16. Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress

    Directory of Open Access Journals (Sweden)

    Nasser A.M. Barakat

    2011-12-01

    Full Text Available The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected parameters specially at high salinity levels (150-200 mM NaCl.Treatments with 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs mitigated the harmful effect of NaCl. To conclude the phytohormone indole acetic acid or salicylic acid improved salt tolerance in stressed wheat by significantly activated catalase, peroxidase, and ascorbate peroxidase, increased photosynthetic pigments and enhancing the accumulation of nontoxic metabolites (sugars, proteins, amino acid and free proline as a protective adaptation mechanism in different wheat organs. However, the magnitude of increase was more pronounced in salicylic acid treated plants than in indole acetic acid treated ones, and the spike was more accumulator organ of non toxic metabolites compared to shoot and root. Thus salicylic acid and/or indole acetic acid treatments prevents the deleterious effects of salinity stressed wheat and could be adopted as a potential growth regulator or antioxidant to improve growth particularly under moderate NaCl salinity levels, wheat plant respond positively to SA foliar application than IAA application.

  17. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.

    Science.gov (United States)

    Pereira, Antonio; Hoeger, Ingrid C; Ferrer, Ana; Rencoret, Jorge; Del Rio, José C; Kruus, Kristiina; Rahikainen, Jenni; Kellock, Miriam; Gutiérrez, Ana; Rojas, Orlando J

    2017-04-10

    Lignins were isolated from spruce, wheat straw, and eucalyptus by using the milled wood lignin (MWL) method. Functional groups and compositional analyses were assessed via 2D NMR and 31 P NMR to realize their effect on enzyme binding. Films of the lignins were fabricated and ellipsometry, atomic force microscopy, and water contact angle measurements were used for their characterization and to reveal the changes upon enzyme adsorption. Moreover, lignin thin films were deposited on quartz crystal microgravimetry (QCM) and surface plasmon (SPR) resonance sensors and used to gain further insights into the lignin-cellulase interactions. For this purpose, a commercial multicomponent enzyme system and a monocomponent Trichoderma reesei exoglucanase (CBH-I) were considered. Strong enzyme adsorption was observed on the various lignins but compared to the multicomponent cellulases, CBH-I displayed lower surface affinity and higher binding reversibility. This resolved prevalent questions related to the affinity of this enzyme with lignin. Remarkably, a strong correlation between enzyme binding and the syringyl/guaiacyl (S/G) ratio was found for the lignins, which presented a similar hydroxyl group content ( 31 P NMR): higher protein affinity was determined on isolated spruce lignin (99% G units), while the lowest adsorption occurred on isolated eucalyptus lignin (70% S units). The effect of electrostatic interactions in enzyme adsorption was investigated by SPR, which clearly indicated that the screening of charges allowed more extensive protein adsorption. Overall, this work furthers our understanding of lignin-cellulase interactions relevant to biomass that has been subjected to no or little pretreatment and highlights the widely contrasting effects of the nature of lignin, which gives guidance to improve lignocellulosic saccharification and related processes.

  18. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    Science.gov (United States)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  19. Effects of steam-treated rice straw feeding on growth, digestibility, and plasma volatile fatty acids of goats under different housing systems.

    Science.gov (United States)

    Muhammad, Naeem; Nasir, Rajput; Li, Dong; Lili, Zhang; Tian, Wang

    2014-12-01

    In order to use rice straw as forage in livestock feeding, the effects of steam-treated rice straw (at 15.5 kgf/cm(2) for 120 s) feeding on growth performance, plasma volatile fatty acid profile, and nutrient digestibility of goats were determined. Twenty male goats (18.69 ± 0.34 kg) were used in an 84-day trial. The goats were divided into four groups of five goats each to receive steam-treated (STRS) or untreated (UTRS) rice straw diet under closed house (CH) and open house (OH) systems. The results revealed that the goats fed with STRS had significantly higher dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility; similarly, the average daily weight gain and feed conversion ratio were higher for STRS groups under both CH and OH systems than those for UTRS. The plasma protein and insulin in STRS and cholesterol in UTRS groups was higher (P  0.05) at 30 days. The plasma amylase, lipase, T3, T4 and glucagon at 30 and 60 days were not different (P > 0.05) among the groups. The plasma acetate, propionate, butyrate, and total volatile fatty acid were higher (P  0.05) on these parameters. It could be concluded that steam treatment of rice straw at 15.5 kgf/cm(2) for 120 s increased apparent nutrient digestibility, hence increased the growth and feed efficiency of growing goats.

  20. Power from triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Dassanayake, M.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the feasibility of using triticale straw for production of electricity in Canada. Triticale is a manmade hybrid of wheat and rye and it has a high potential of growth in Canada. The cost ($/MWh) of producing electricity from triticale straw was estimated using a data intensive techno-economic model. The study also determined the optimum size of a biomass power plant (MW) which is a trade-off between capital cost of the plant and transportation cost of biomass. Cost curves were also developed in order to evaluate the impact of scale on power production costs. The location of the power plant and the future expansion of triticale were among the factors considered in the techno-economic mode. The scope of the work included all the processes beginning with the collection of straw to the conversion to electricity through direct combustion at the power plant. According to the preliminary results, the cost of producing power from triticale straw is higher than coal-based electricity production in western Canada.

  1. Nitrogen Fixation Associated with Development and Localization of Mixed Populations of Cellulomonas sp. and Azospirillum brasilense Grown on Cellulose or Wheat Straw

    Science.gov (United States)

    Halsall, Dorothy M.; Goodchild, David J.

    1986-01-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 109 cells per g of substrate, were evident after 4 and 5 days of incubation at 30°C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO2 production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an initial increase in cell numbers (107 cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 109 cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixed culture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relationship of cells from the two species facilitated the mutually beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. Images PMID:16347042

  2. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  3. Effect of rice straw silage treated with rumen microbes of buffalo on digestibility and ecosystem of cattle rumen

    Directory of Open Access Journals (Sweden)

    Thalib A

    2000-03-01

    Full Text Available Treatment of rice straw silage with addition of buffalo rumen microbes was conducted to improve the ruminal digestion of rice straw in ongole cattle. Three fistulated cattles were each introduced to dietary treatment: I. Untreated rice straw (JPTP, II. Rice straw ensilaged with buffalo rumen microbes (SJPMR-Kr, and ID. Elephant grass (RG. All diets were formulated isonitrogeneous (14% crude protein and fed to animals over a period of 4 weeks. After 4 weeks of feeding trial, rwnen fluid of the animals were evaluated to digest its own basal diet (as substrate. The results show that cumulative gas production resulting from the substrate fermented (96 hours by rumen fluid from cattle fed diet II is 205% of the diet I and 151 % of the diet ID. Measurements of DMD of the substrates after the gas production procedure show the similar trend (ie. DM digestibilities for JPTP= 33%; SJPMR-Kr= 54% dan RG= 45%. Means of in sacco DMD (72 hours incubation confirm the results of gas production (ie. in sacco DM Digestibilities for JPTP= 35%; SJPMR-Kr= 44% and RG= 39%. All results described between treatments are highly significant different (P0.05, except for total VFA (ie. JPTP= 0.52 mg Inri; SJPMR-Kr= 3,37 mg Inri and RG= 3.15 mg Inri.

  4. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw

    International Nuclear Information System (INIS)

    Elsayed, Mahmoud; Andres, Yaves; Blel, Walid; Gad, Ali; Ahmed, Abdelkader

    2016-01-01

    Highlights: • Co-digestion of PS, WS, and BH was conducted to evaluate different VS organic loads for an optimal methane production. • Co-digestion of PS and WS was optimized using buckwheat husk as a new waste material. • Combination of PS, WS, and BH produced higher methane yields than the individual digestion of PS, WS, and BH. • The highest CMYs and VS removal rate were achieved at C/N ratios of 10 and 7.50 gVS/L, respectively. • The purification process increased the methane content from 58.91–63.05% to 92.46–95.30%. - Abstract: An environmentally acceptable disposal of sewage sludge and agro-wastes presents an urgent problem facing many countries. Anaerobic digestion (AD) is a robust and suitable technique for producing renewable energy from wastes. This study aims to improve methane production from anaerobic co-digestion of primary sludge (PS) and wheat straw (WS) depending on their volatile solids (VS) organic load and by adding a proposed waste material of buckwheat husk (BH) based on their carbon to nitrogen (C/N) ratio. Mesophilic anaerobic batch tests were carried out in 500-mL digesters. Individual and six mixtures of PS and WS at different VS organic loads were anaerobically digested to optimize VS load for the greatest gas production. The highest cumulative methane yield (CMYs) occurred with combined substrates at a VS load of 7.50 gVS/L. In general, the optimized organic loads that gave the highest cumulative biogas yield (CBYs) and CMYs were in the range of 6–8 gVS/L. In addition, AD of individual substrates of PS, WS, and BH and of their mixture at different C/N ratios was investigated regarding to the methane yields. Multi-component substrates produced the greatest CMY at a C/N ratio of 10.07. The CMYs was increased by 39.26% when the proposed waste material of buckwheat husk (BH) was added to the different mixtures of PS and WS compared to the co-digestion of PS and WS. Experimental results were approved using statistical

  5. Process optimization for the preparation of straw feedstuff for rearing yellow mealworms (Tenebrio molitor L.) in BLSS

    Science.gov (United States)

    Li, Leyuan; Liu, lh64. Hong

    2012-07-01

    It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.

  6. Effects of Amendment of Biochar and Pyroligneous Solution from wheat straw pyrolysis on Yield and soil and crop salinity in a Salt stressed cropland from Central China Great Plain

    Science.gov (United States)

    Li, L.; Liu, Y.; Pan, W.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.

    2012-04-01

    Crop production has been subject to salt stress in large areas of world croplands. Organic and/or bio-fertilizers have been applied as soil amendments for alleviating salt stress and enhancing crop productivity in these salt-stressed croplands. While biochar production systems using pyrolysis of crop straw materials have been well developed in the world, there would be a potential measure to use materials from crop straw pyrolysis as organic amendments in depressing salt stress in agriculture. In this paper, a field experiment was conducted on the effect of biochar and pyroligneous solution from cropstraw pyrolysis on soil and crop salinity, and wheat yield in a moderately salt stressed Entisol from the Central Great Plain of North China. Results indicated that: biochar and pyroligneous solution increased soil SOC, total nitrogen, available potassium and phosphorous by 43.77%, 6.50%, 45.54% and 108.01%, respectively. While Soil bulk density was decreased from 1.30 to 1.21g cm-3; soil pH (H2O) was decreased from 8.23 to 7.94 with a decrease in soluble salt content by 38.87%. Wheat yield was doubled over the control without amendment. In addition, sodium content was sharply declined by 78.80% in grains, and by 70.20% and 67.00% in shoot and root, respectively. Meanwhile, contents of potassium and phosphorus in plant tissue were seen also increased despite of no change in N content. Therefore, the combined amendment of biochar with pyroligneous solution would offer an effective measure to alleviate the salt stress and improving crop productivity in world croplands. Keywords: biochar, salt affected soils, wheat, crop productivity, salinity

  7. Fermentation Quality and in Vitro Nutrient Digestibility of Fresh Rice Straw-Based Silage Treated with Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    B. Santoso

    2014-08-01

    Full Text Available The aim of the experiment was to evaluate fermentation characteristics and in vitro nutrient digestibility of fresh rice straw-based silage ensiled with addition of epiphytic lactic acid bacteria (LAB inoculant. The experiment was arranged in a completely randomized design, with 2 × 2 factorial arrangement of treatments. The first factor was the ratio of fresh rice straw (FRS, tofu waste (TW and cassava waste (CW consisted of two levels i.e., 40 : 20 : 40 and 40 : 25 : 35, on dry matter (DM basis. The second factor was the level of LAB inoculant with two levels ie., 0 and 20 mL/kg FM. The treatments were (A FRS + TW + CW with the ratio of 40 : 20 : 40, without LAB inoculant; (B FRS + TW + CW with the ratio of 40 : 20 : 40 + LAB inoculant; (C FRS + TW + CW with the ratio of 40 : 25 : 35, without LAB inoculant; (D FRS + TW + CW with ratio of 40 : 25 : 35 + LAB inoculant. Results showed that addition of LAB inoculant in silage increased lactic acid concentration (P0.05 on chemical composition, fermentation quality of silage and in vitro digestibility. It was concluded that mixture silage with ratio of 40 : 20 : 40 with the addition of LAB inoculant had the best fermentation quality and nutrient digestibility than other silages.

  8. Effects of Andrographis paniculata and Orthosiphon stamineus Supplementation on in-vivo Rumen Fermentation Parameters and Microbial Population in Goats Fed Urea-treated Rice Straw

    Directory of Open Access Journals (Sweden)

    Roslan, N.A.

    2016-12-01

    Full Text Available Four fistulated Boer cross-bred bucks with 25 kg average body weight was used to test the effects of dietary treated rice straw supplemented with A. paniculata and O. stamineus on in-vivo rumen parameters and microbial population in goats. The study was conducted in 4 periods (4 x 4 Latin square design, where each period was for a duration of 22 d; 10 dof adaptation period, 5 dof sampling and 7 dof change-over. The animals were fed once daily at 0800 (3% body weight with 60% of urea-treated rice straw and 40 % of one of four concentrate diets: T1-basal diet + 1% A. paniculata, T2-basal diet + 1% O. stamineus, T3-basal diet + 0.5% of A. paniculata and 0.5% O. stamineus (AO and T4-basal diet without supplementation of herbs. Clean water was provided ad libitum and the animals were individually penned. Rumen contents were sampled at 0, 2, 4, 6 and 12 hafter the onset feeding and the pH was recorded. Rumen pH, VFA's, concentration of ammonia and microbial population in the rumen fluid were measured. The mean rumen pH was the highest (P<0.05 at 2 h in T3 after the onset feeding while the mean concentration (mg/L of ammonia in the rumen fluid was the lowest at 6 and 12 h in T2 (P<0.05. The molar proportion of valerate was higher (P<0.05 at 6 h in T1. Meanwhile, the acetate to propionate ratio was affected by time where it was significantly higher at 12 h in T3. Significant reduction of total protozoa, methanogens, F. succinogens and R. albus number was observed in the herb-supplemented groups (P<0.05. The results suggest that urea-treated rice straw with herbs supplementation can be fed to goats without impairing their performance. However, further study could be done by increasing the supplementation of herbs in order to observe more effective results.

  9. Total volatile fatty acids and bacterial production rates as affected by rations containing untreated or ammonia (urea) treated rice straw in croos-bred cattle

    International Nuclear Information System (INIS)

    Puri, J.P.; Gupta, B.N.

    1990-01-01

    An experiment was conducted to study the effect of feeding ammoniated rice straw on ruminal total volatile fatty acid (TVFA) and bacterial production rates. Twelve karan swiss, male, rumen fistulated calves (2-2.5 yrs) were divided in three equal groups. Animals were offered rice straw either untreated (A) or 4 per cent urea+40 per cent moisture treated and ensiled for 30 days (B) or 5 per cent urea+30 per cent moisture treated and ensiled for 30 days (C). Protein requirements were met through concentrate mixture. Levels of NH 3 -N and TCA-precipitable-N in strained rumen liquor (SRL) were significantly higher (20.34±0.022, 63.26±0.81 (B), 20.78±0.41, 64.98±0.87 (C) (mg/100 ml SRL) in groups fed ammoniated ±0.31, 45.94±1.91 mg/100 ml S RL), respectively. The bacterial production rates in the rumen (g/day) were significantly higher in groups B and C as compared to group A. TVFA concentrations (mmole/100 ml SRL ) and TVFA production rates (mmole/d) were also significantly higher in groups B and C as compared to group A. The bacterial production rates were significantly co-related with TVFA, NH 3 -N, TCA precipitable-N concentration in the rumen and ATP production. Multiple regression equations relating bacterial production rates with (i)NH 3 -N and TVFA concentration in the rumen, (ii)NH 3 -N and TVFA production rates and (iii)NH 3 -N and ATP produced were also developed. (author). 18 refs., 2 tabs

  10. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1.

    Science.gov (United States)

    Oberoi, Harinder Singh; Babbar, Neha; Sandhu, Simranjeet Kaur; Dhaliwal, Sandeep Singh; Kaur, Ujjal; Chadha, B S; Bhargav, Vinod Kumar

    2012-04-01

    In this study, simultaneous saccharification and fermentation (SSF) was employed to produce ethanol from 1% sodium hydroxide-treated rice straw in a thermostatically controlled glass reactor using 20 FPU gds⁻¹ cellulase, 50 IU gds⁻¹ β-glucosidase, 15 IU gds⁻¹ pectinase and a newly isolated thermotolerant Pichia kudriavzevii HOP-1 strain. Scanning electron micrograph images showed that the size of the P. kudriavzevii cells ranged from 2.48 to 6.93 μm in diameter while the shape of the cells varied from oval, ellipsoidal to elongate. Pichia kudriavzevii cells showed extensive pseudohyphae formation after 5 days of growth and could assimilate sugars like glucose, sucrose, galactose, fructose, and mannose but the cells could not assimilate xylose, arabinose, cellobiose, raffinose, or trehalose. In addition, the yeast cells could tolerate up to 40% glucose and 5% NaCl concentrations but their growth was inhibited at 1% acetic acid and 0.01% cyclohexamide concentrations. Pichia kudriavzevii produced about 35 and 200% more ethanol than the conventional Saccharomyces cerevisiae cells at 40 and 45°C, respectively. About 94% glucan in alkali-treated rice straw was converted to glucose through enzymatic hydrolysis within 36 h. Ethanol concentration of 24.25 g l⁻¹ corresponding to 82% theoretical yield on glucan basis and ethanol productivity of 1.10 g l⁻¹ h⁻¹ achieved using P. kudriavzevii during SSF hold promise for scale-up studies. An insignificant amount of glycerol and no xylitol was produced during SSF. To the best of our knowledge, this is the first study reporting ethanol production from any lignocellulosic biomass using P. kudriavzevii.

  11. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw...

  12. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation

    Science.gov (United States)

    Xu, Shanshan; Hou, Pengfu; Xue, Lihong; Wang, Shaohua; Yang, Linzhang

    2017-11-01

    Straw incorporation and domestic sewage irrigation have been recommended as an environmentally friendly agricultural practice and are widely used not only in China but also in other countries. The individual effects on yield and environmental impacts have been studied extensively, but the comprehensive effect when straw returning and domestic sewage irrigation are combined together has seldom been reported. This study was conducted to examine the effects of straw returning and domestic sewage irrigation on rice yields, greenhouse gas emissions (GHGs) and ammonia (NH3) volatilization from paddy fields from 2015 to 2016. The results showed that the rice yield was not affected by the irrigation water sources and straw returning under the same total N input, which was similar in both years. Due to the rich N in the domestic sewage, domestic sewage irrigation could reduce approximately 45.2% of chemical nitrogen fertilizer input without yield loss. Compared to straw removal treatments, straw returning significantly increased the CH4 emissions by approximately 7-9-fold under domestic sewage irrigation and 13-14-fold under tap water irrigation. Straw returning also increased the N2O emissions under the two irrigation water types. In addition, the seasonal NH3 volatilization loss was significantly increased by 88.8% and 61.2% under straw returning compared to straw removal in 2015 and 2016, respectively. However, domestic sewage irrigation could decrease CH4 emissions by 24.5-26.6%, N2O emissions by 37.0-39.0% and seasonal NH3 volatilization loss by 27.2-28.3% under straw returning compared to tap water irrigation treatments. Global warming potentials (GWP) and greenhouse gas intensities (GHGI) were significantly increased with straw returning compared with those of straw removal, while they were decreased by domestic sewage irrigation under straw returning compared to tap water irrigation. Significant interactions between straw returning and domestic sewage irrigation on

  13. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages.

    Science.gov (United States)

    Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee

    2017-07-10

    Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  14. Degradation of PAH in a creosote-contaminated soil. A comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant.

    Science.gov (United States)

    Hultgren, Jenny; Pizzul, Leticia; Castillo, María del Pilar; Granhall, Ulf

    2010-01-01

    The degradation of polyaromatic hydrocarbons (PAH) in an aged creosote-contaminated soil in the presence of Salix viminalis was investigated in a greenhouse experiment. Phenanthrene and pyrene were degraded 100% and 80%, respectively, in the presence of plants but only 68% and 63% without plants. The effects of the nonionic surfactant Triton X-100 or the addition of straw, without plants, were also studied. The addition of straw had no effect on PAH degradation compared to the control Pyrene degradation with Triton X-100 at low concentrations (0.06 microl g(-1) DW) was comparable to that with plants but was less for anthracene and phenanthrene. The treatments with plants were, according to SIR measurements, dominated by active microorganisms (98.8% of the biomass), whereas all treatments without plants contained mostly dormant or non-growing microorganisms (1.7-2.0% active). Viable counts and active biomass were highly correlated in all treatments and demonstrated that S. viminalis greatly increased microbial populations. Dominant bacteria were grouped according to Gram, fluorescence and oxidase tests and revealed differences between treatments. The presence of S. viminalis or the surfactant enhanced PAH degradation, primarily by a rhizosphere effect on the microbial activity in the former case and by increased bioavailability in the latter case.

  15. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  16. Rheological and stability aspects of dry and hydrothermally heat treated aleurone-rich wheat milling fraction.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; von Reding, Walter; Schwendener, Urs; Kálmán, Franka; Tömösközi, Sándor

    2017-04-01

    Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100°C for 12min) and hydrothermal treatment processes (96°C for 6min with 0-20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. PERFORMANCE EVALUATION OF AN ANAEROBIC BAFFLED REACTOR TREATING WHEAT FLOUR STARCH INDUSTRY WASTEWATER

    Directory of Open Access Journals (Sweden)

    H. Movahedyan, A. Assadi, A. Parvaresh

    2007-04-01

    Full Text Available Feasibility of the anaerobic baffled reactor process was investigated for the treatment of wheat flour starch wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a reactor (with a volume of 13.5 L and five compartments with diluted feed of approximately 4500 mg/L chemical oxygen demand was accomplished in about 9 weeks using seed sludge from anaerobic digester of municipal wastewater treatment plant. The reactor with hydraulic retention time of 72h at 35°C and initial organic loading rate of 1.2 kgCOD/m3.d showed 61% COD removal efficiency. The best performance of reactor was observed with an organic loading rate of 2.5 kgCOD/m3.d or hydraulic retention time of 2.45 d and the COD conversion of 67% was achieved. The system also showed very high solids retention with effluent suspended solids concentration of about 50 mg/L for most organic and hydraulic loadings studied. Based on these observations, the ABR process has potential to treat food industrial wastewater as a pretreatment and is applicable for extreme environmental conditions.

  18. Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model.

    Science.gov (United States)

    Shen, Jiacheng; Zhu, Jun

    2016-01-01

    Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.

  19. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium.

    Science.gov (United States)

    Polcaro, C M; Brancaleoni, E; Donati, E; Frattoni, M; Galli, E; Migliore, L; Rapanà, P

    2008-08-01

    A bioremediation system for creosote-treated wood is proposed, based on the detoxifying capability of Pleurotus ostreatus, a ligninolythic fungus. Non-sterilized chipped contaminated wood was mixed at various ratios with wheat straw on which Pleurotus mycelia was grown. At 1:2 initial ratio contaminated wood:wheat straw, chemical analyses demonstrated an almost complete degradation of creosote oil components after 44 days, also confirmed by a significant reduction of ecotoxicity. Lower ratios, i.e. higher amount of contaminated wood, lower system efficiency, although a better creosote degradation was obtained by a stepped up wood addition.

  20. Mechanical properties and crystallization behavior of three kinds of straws/nylon 6 composites.

    Science.gov (United States)

    Huang, Zhiliang; Yin, Qianjuan; Wang, Qianwen; Wang, Pinghua; Liu, Tingguo; Qian, Liwu

    2017-10-01

    After alkali treatment, wheat straw, maize straw and rice straw were mixed with a mixture of nylon 6 (PA6) and prepared into composites using the melt blending method. The mechanical properties and crystallization behavior of three kinds of straw fiber/PA6 composites were studied using tensile and impact tests, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that increasing of the three kinds of straw fibers initially increased the tensile strength of the composites and then decreased, and that the tensile strength reached a maximum value when the wheat straw fiber content was 10%, which was 56.9% higher than that of the pure PA6. The impact strength of the composites initially decreased and then increased, with the maximum impact obtained for the composites with the wheat straw fiber content of 10%, which was 39.2% higher than that of the pure PA6. The introduction of the three kinds of straw fiber also induced the formation of α crystal formed in the PA6. With the increase of the straw fiber content, the grain size of the composite increased continuously, the crystallization temperature (Tc) decreased, the melting temperature (Tm) and crystalline changed slightly, and the maximum degree of crystallinity was obtained when the wheat straw fiber content was 10%. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Resource assessment and removal analysis for corn stover and wheat straw in the United States : rainfall and wind-induced soil erosion methodology

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.G. [Kansas State Univ., Manhattan, KS (United States); Walsh, M.; Graham, R. [Oak Ridge National Laboratory, Oakridge, TN (United States); Sheehan, J.J. [National Renewable Energy Laboratory, Golden, CO (United States)

    2003-07-01

    This paper presents a newly developed methodology to estimate the quantities of crop residues that can be removed while maintaining rain or wind erosion at less than or equal to the tolerable soil-loss level. Several factors directly influence the removal of agricultural residues for bioenergy and bioproduct use such as grain yield, crop rotation, field management practices within a rotation, climate, and physical characteristics of the soil. The authors analyzed six corn and wheat rotations in the 10 largest corn-producing states, Iowa, Illinois, Indiana, Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin. An evaluation for conventional, mulch-reduced, and no-till field operations was performed of residue removal rates for each rotation. The results showed that potential removable maximum quantities vary from almost 5.5 million dry metric tons per year for a continuous corn rotation using conventional till in Kansas, to in excess of 97 million dry metric tons per year for a corn-wheat rotation using no-till in Illinois. 9 refs., 5 tabs.

  2. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  3. Bound sup 14 C residues in stored wheat treated with ( sup 14 C)deltamethrin and their bioavailability in rats

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.U.; Kacew, S. (Agriculture Canada, Ottawa, Ontario (Canada)); Akhtar, M.H. (Univ. of Ottawa, Ontario (Canada))

    1990-04-01

    Wheat grains treated with radiolabeled deltamethrin ((S)-{alpha}-cyano-3-phenoxybenzyl (1R,3R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate) and stored in the laboratory for 168 days formed bound (nonextractable) {sup 14}C residues. The amount of bound {sup 14}C residues formed was about 11% of the total {sup 14}C in stored grain. Br{sub 2}CA (3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylic acid) and 3-PBacid (3-phenoxybenzoic acid) were present in the form of bound {sup 14}C residues in addition to some radiolabeled product of unknown composition. The stored wheat containing bound {sup 14}C was fed to rats. The {sup 14}C residues were excreted in urine and feces in nearly equal proportion. The {sup 14}C residues identified in urine were Br{sub 2}CA, 3-PBacid, and conjugated compounds of 4{prime}-OH-3-PBacid (3-(4-hydroxyphenoxy)benzoic acid). Most of the {sup 14}C residues excreted in feces were extractable with methanol. Trace amounts of {sup 14}C residues were also present in lungs, kidney, and liver. The results suggest that bound residues in stored wheat treated with deltamethrin when fed to rats are highly bioavailable.

  4. Chemical composition, cell wall features and degradability of stem, leaf blade and sheath in untreated and alkali-treated rice straw.

    Science.gov (United States)

    Ghasemi, E; Ghorbani, G R; Khorvash, M; Emami, M R; Karimi, K

    2013-07-01

    Three dominant morphological fractions (i.e. leaf blade (LB), leaf sheath (LS) and stem) were analysed for chemical composition and ruminal degradability in three rice straw varieties. In one variety treated with alkali, cell wall features were also characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. The highest concentrations of cell wall carbohydrates (hemicellulose and cellulose) were observed in LS, whereas the highest concentrations of non-fibre (silica, phenolic compounds and CP) and lignin were recorded for LB. The stem had the lowest silica and hemicellulose contents but intermediate levels of other components. In terms of ruminal degradability, stem ranked higher than LB, which was followed by LS. Hemicellulose was found to be less degradable than either dry matter or cellulose in all the three fractions investigated. FTIR results indicated that the highest levels of hydrogen bonding, esterification and crystallinity within the cell wall components belonged to LS. In the alkaline treatment, these indices decreased to a larger extent for leaf fractions and a greater improvement was achieved in the degradability of LB and LS compared with that of stem. In the 24-h ruminal incubation, the silicified layer of epidermis and the underlying cell walls showed a rigid structure in the control fractions, whereas the treatment with NaOH resulted in crimping of the silicified cuticle layer and the loss of integrity in cell structure. Despite the highest silica and lignin contents observed in LB, LS showed the lowest degradability, which might be due to its high level of hydrogen bonding, crystallinity and esterification within its cell wall components as well as its high hemicellulose content.

  5. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective

    International Nuclear Information System (INIS)

    Monteleone, Massimo; Cammerino, Anna Rita Bernadette; Garofalo, Pasquale; Delivand, Mitra Kami

    2015-01-01

    Highlights: • Energy balance and GHG savings of a straw-to-electricity value chain were determined. • An “expanded” LCA was performed, from farm field to electricity delivery. • Both direct and indirect factors of land use change have been considered in the analysis. • No-tillage and crop rotation significantly improved the system performance. • A win–win, sustainable solution for the energy use of straw has been identified. - Abstract: This study examined some management strategies of wheat cultivation system and its sustainability in using straw as an energy feedstock. According to the EU regulatory framework on biofuels, no GHG emissions should be assigned to straws when they are used for energy. Given this relevance in the current energy policy, it is advisable to include all possible marginal effects related to land use, resource utilization and management changes in the comparison of different biomass options. Coherently, an expanded life cycle assessment (LCA) was applied to include the upstream cultivation phase and to make a comparison between “straw to soil” and “straw to energy”. Different crop management conditions in Southern Italy were simulated, by using the CropSyst model, to estimate the long-term soil organic carbon and annual N 2 O soil emissions. Three wheat cropping systems were considered: the conventional single wheat system without straw removal (W0) and with partial straw removal (W1), together with a no-tillage “wheat-wheat-herbage” rotation system with partial straw removal (W2). The results of the simulations were integrated in the LCA to compare fossil energy consumption and greenhouse gas (GHG) emissions of straw-to-electricity with respect to the fossil-based electricity system. The “improved” rotational wheat cropping system (W2) gave the best performance in terms both of GHG savings and fossil displacement, thus stressing that straw use for energy generation in parallel with the optimization of the

  6. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Tatarková, Veronika; Hiller, Edgar; Vaculík, Marek

    2013-06-01

    Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  8. The influence of straw meal on the crude protein and amino acid metabolism and the digestibility of crude nutrients in broiler breeding hens. 1

    International Nuclear Information System (INIS)

    Zander, R.; Gruhn, K.; Hennig, A.

    1987-01-01

    The metabolization of the straw N and the influence of the straw on N excretion in urine were studied in 2 experiments with colostomized broiler hens and with 15 N-labelled wheat straw as well as 15 N-labelled wheat. In experiment 1 the test animals divided up into 4 groups received 0 g, 20 g, 30 g and 40 g straw meal per animal and day in addition to 120 g mixed feed. The daily 15 N excess ( 15 N') intake from the straw was 18.4 mg, 27.5 mg and 36.7 mg. The amount of 15 N' daily consumed with the labelled wheat in experiment 2 was 119.7 mg. 40 g straw meal resulted in a significantly increased amount of urine (p 15 N' of the labelled wheat was not influenced by the straw meal supplement. The productive 15 N' of the straw increased from 3.8 mg/animal and day (20 g straw) to 13.4 mg/animal and day (40 g straw). In contrast to 15 N wheat, straw as a 15 N source resulted in a lower labelling of uric acid N in comparison with urine N. It can be assumed that the changed metabolization of the straw N is influenced by microbial processes in the intestines. (author)

  9. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation.

    Science.gov (United States)

    El-Shishtawy, Reda M; Mohamed, Saleh A; Asiri, Abdullah M; Gomaa, Abu-Bakr M; Ibrahim, Ibrahim H; Al-Talhi, Hasan A

    2015-05-28

    In continuation of our previously interest in the saccharification of agriculture wastes by Bacillus megatherium in solid state fermentation (SSF), we wish to report an investigation and comparative evaluation among Trichoderma sp. for the saccharification of four alkali-pretreated agricultural residues and production of hydrolytic enzymes, carboxymethyl cellulase (CMCase), filter paperase (FPase), pectinase (PGase) and xylanase (Xylase) in SSF. The optimization of the physiological conditions of production of hydrolytic enzymes and saccharification content from Trichoderma virens using alkali-pretreated wheat bran was the last goal. The physico-chemical parameters of SSF include incubation time, incubation temperature, moisture content of the substrate, incubation pH, supplementation with carbon and nitrogen sources were optimized. Saccharification of different solid state fermentation sources wheat bran, date's seeds, grass and palm leaves, were tested for the production of fermentable sugar by Trichoderma sp. The maximum production of hydrolytic enzymes CMCase, FPase, PGase and Xylase and saccharification content were obtained on wheat bran. Time course, moisture content, optimum temperature, optimum pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of the hydrolytic enzymes, protein and total carbohydrate of T. virens using alkali pre-treated wheat bran. The maximum production of CMCase, FPase, PGase, Xylase, protein and carbohydrate content was recorded at 72 h of incubation, 50-70 % moisture, temperature 25-35 °C and pH 5. The influence of supplementary carbon and nitrogen sources was studied. While lactose and sucrose enhanced the activity of PGase from 79.2 to 582.9 and 632.6 U/g, starch inhibited all other enzymes. This was confirmed by maximum saccharification content. Among the nitrogen sources, yeast extract and urea enhanced the saccharification content and CMCase, PGase and Xylase. The results of

  10. Iron bioavailability and utilization in rats are lower from lime-treated corn flour than from wheat flour when they are fortified with different sources of iron.

    Science.gov (United States)

    Hernández, Miguel; Sousa, Virginia; Moreno, Ambar; Villapando, Salvador; López-Alarcón, Mardya

    2003-01-01

    Although iron bioavailability from wheat flour fortified with iron has been widely studied, the bioavailability of lime-treated corn flour has not been evaluated sufficiently. We compared iron bioavailability and utilization of lime-treated corn flour and wheat flour supplemented with various iron sources. Bioavailability and utilization were determined in Sprague-Dawley rats using the iron balance and hemoglobin depletion-repletion methods. Rats were iron depleted by feeding them a low iron, casein diet for 10 d. During the repletion period, the rats were fed diets based on lime-treated corn flour or wheat flour, both supplemented with ferrous fumarate, ferrous sulfate, ferric citrate and reduced iron for 14 d. Hemoglobin was determined at the end of depletion and repletion periods. The phytate concentration was lower in wheat flour (114 mg/100g) than in lime-treated corn flour (501 mg/100g). Iron bioavailability and utilization by rats were higher from fortified and unfortified wheat flour than from the lime-treated corn flour counterparts. Iron utilization was greater in rats fed wheat flour supplemented with ferrous sulfate, followed by fumarate and citrate than in rats fed reduced iron. In lime-treated corn flour, iron utilization by rats fed unfortified flour and flour fortified with reduced iron did not differ, but utilization was higher in rats fed corn flour fortified with iron sulfate, fumarate and citrate than with reduced iron. We conclude that fortification of lime-treated corn flour with reduced iron has no effect on iron bioavailability or utilization, probably due to the high phytate content. Other iron compounds must be selected to fortify lime-treated corn flour when intended for public nutrition programs.

  11. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw.

    Science.gov (United States)

    Ma, Shichun; Huang, Yan; Wang, Cong; Fan, Hui; Dai, Lirong; Zhou, Zheng; Liu, Xing; Deng, Yu

    2017-05-01

    A thermophilic, anaerobic, fermentative bacterium, strain A6T, was obtained from an anaerobic batch digester treating animal manure and rice straw. Cells were Gram-stain-positive, slightly curved rods with a size of 0.6-1×2.5-8.2 µm, non-motile and produced terminal spores. The temperature, pH and NaCl concentration ranges for growth were 40-60 °C, 6.5-8.0 and 0-15.0 g l-1, with optimum growth noted at 50-55 °C, pH 7.5 and in the absence of NaCl, respectively. Yeast extract was required for growth. d-Glucose, maltose, d-xylose, d-galactose, d-fructose, d-ribose, lactose, raffinose, sucrose, d-arabinose, cellobiose, d-mannose and yeast extract were used as carbon and energy sources. The fermentation products from glucose were ethanol, lactate, acetate, propionate, butyrate, valerate, iso-butyrate, iso-valerate, H2 and CO2. The G+C content of the genomic DNA was 36.6 mol%. The predominant fatty acids were C16 : 0, iso-C17 : 1, C14 : 0, C16 : 1ω7c, C16 : 0 N-alcohol and C13 : 0 3-OH. Respiratory quinones were not detected. The polar lipid profile comprised phosphoglycolipids, phospholipids, glycolipids, a diphosphatidylglycerol, a phosphatidylglycerol and an unidentified lipid. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was closely related to Defluviitalea saccharophila DSM 22681T with a similarity of 96.0 %. Based on the morphological, physiological and taxonomic characterization, strain A6T is considered to represent a novel species of the genus Defluviitalea, for which the name Defluviitalea raffinosedens sp. nov. is proposed. The type strain is A6T (=DSM 28090T=ACCC 19951T).

  12. Mapping straw yield using on-combine light detection and ranging (LiDAR)

    Science.gov (United States)

    Wheat (Triticum aestivum L.) straw is not only important for long-term soil productivity, but also as a raw material for biofuel, livestock feed, building, packing, and bedding. Inventory figures in the United States for potential straw availability are largely based on whole states and counties. ...

  13. Simultaneous determination of three herbicides in wheat, wheat straw, and soil using a quick, easy, cheap, effective, rugged, and safe method with ultra high performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2015-04-01

    In this study, a sensitive and effective analytical method for the extraction and detection of three herbicide residues (florasulam, fluroxypyr, and halauxifen-methyl) in wheat and soil was developed. Samples were extracted with acetonitrile/water followed by salting out, dispersive solid-phase extraction cleanup, and detection using ultra high performance liquid chromatography coupled with tandem mass spectrometry. The target analytes were detected within a 5 min runtime using an ultra high performance liquid chromatography high-strength silica trifunctional column connected to an electrospray ionization source in positive mode. The method was validated in five replicates at three fortification concentrations in each matrix. Adequate pesticide quantification and identity confirmation were attained, even at the lowest concentration levels. The method showed very good accuracy and precision. Good recoveries were observed for the three herbicides and mostly ranged between 75.8 and 114.6%, with intraday relative standard deviations herbicide. The method was successfully applied for the simultaneous analysis of the three herbicides in actual trial samples, and the results proved that the proposed method was effective in detecting these three herbicides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress

    OpenAIRE

    BARAKAT NASSER A.M.

    2011-01-01

    The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root) grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl) were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected pa...

  15. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications.

    Science.gov (United States)

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-04-11

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  16. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro

    Directory of Open Access Journals (Sweden)

    Mahima

    2015-04-01

    Full Text Available Aim: The aim of the current study was to protect the protein in mustard cake by different levels of formaldehyde treatment with a view to optimize the level of formaldehyde. Materials and Methods: Different levels of formaldehyde treatment (0, 1, 1.5 and 2% of crude protein containing concentrate and roughages diet in 40:60 ratio were tested for their effect on nutrients digestibility, in vitro ammonia release, in vitro gas production and change in protein fractions. Non-significant (p≤0.05 effect on pH, microbial biomass, partitioning factor, total gas production (TGP, TGP per g dry matter and TGP per g digestible dry matter (ml/g was observed in almost all the treatments. Results: Total volatile fatty acids at 2% formaldehyde treatment level of mustard cake was lower (p<0.05 as compared to other groups, while in vitro dry matter digestibility and in vitro organic matter digestibility were reported to be low in 1% formaldehyde treated group. Conclusion: On a holistic view, it could be considered that formaldehyde treatment at 1.5% level was optimal for protection of mustard oil cake protein.

  17. Effects of Supplementation of Mulberry ( Foliage and Urea-rice Bran as Fermentable Energy and Protein Sources in Sheep Fed Urea-treated Rice Straw Based Diet

    Directory of Open Access Journals (Sweden)

    Dwi Yulistiani

    2015-04-01

    Full Text Available A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS. The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW and the TRS was provided ad libitum. There were no differences (p>0.05 among the three treatment groups with respect to dry matter (DM intake (76.8±4.2 g/kg BW0.75 and DM, organic matter (OM, and crude protein (CP digestibility (55.3±1.22; 69.9±0.85; 46.3±1.65% respectively for DM, OM, and CP. The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber was significantly lower (p<0.05 for T3 (46.2 and 46.6 respectively compared to T1 (55.8 and 53.7 respectively and T2 (54.1 and 52.8 respectively. Nitrogen (N intake by sheep on diet T3 was significantly (p<0.05 higher than sheep fed diet T1. However, N balance did not differ among the three diets (3.0±0.32 g/d. In contrast, the rumen ammonia (NH3-N concentrations in sheep fed T2 and T3 were significantly (p<0.05 higher than in sheep fed T1. The NH3-N concentrations for all three diets were above the critical value required for optimum rumen microbial growth and synthesis. Total volatile fatty acid concentrations were highest (p<0.05 in T1 (120.3 mM, whilst the molar proportion of propionic acid was highest in T3 (36.9%. However, the microbial N supply in sheep fed T1 and T3 was similar but was significantly (p<0.05 higher than for sheep fed T2. It was concluded that mulberry foliage is a potential supplement of fermentable energy and protein for sheep fed TRS based diet. The suggested level of

  18. Dustiness of chopped straw as affected by lignosulfonate as a dust suppressant.

    Science.gov (United States)

    Breum, N O; Nielsen, B H; Lyngbye, M; Midtgård, U

    1999-01-01

    Many sources add to the concentration of bioaerosols in livestock buildings, and source control is the number one priority for keeping a low concentration. Straw is a common but dusty bedding material in livestock buildings and the present study is focused on the dustiness of chopped straw (barley) as affected by lignosulfonate (LS) as a dust suppressant. A LS-solution was aerosolized in a spray chamber fitted to an existing bedding chopper to allow the chopped straw to adsorb the LS-solution. The dustiness of straw treated with LS was compared to non-treated straw. As storage conditions may affect dustiness, the study included treated straw kept for 4 weeks in sealed plastic bags. Dustiness of the chopped straw was measured in terms of the potential of the straw to emit bioaerosols in a rotating drum. The LS-treated straw proved low in dustiness compared to the non-treated straw. The dustiness with respect to the mass of dust was reduced by at least a factor of 6, and for fungi and endotoxin the factors of reduction were 4 and 3, respectively. Dustiness of LS-treated straw kept in plastic bags was reduced by a factor of 2 for mass of dust and by a factor of 4 for endotoxin, but dustiness for fungi was increased by a factor of 3. It is concluded that lignosulfonate has potential as a dust suppressant for chopped straw.

  19. CO2 emissions from soil incubated with sugarcane straw and ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils 49(1):555-. 565. Yeomans J, Bremner JM (1988) A rapid and precise method four routine determination of organic carbon in soil.Commun. Soil Sci. Plant Anal. 19(1):1467-1476.

  20. Review of straw chambers

    International Nuclear Information System (INIS)

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  1. The degradation of wheat straw lignin

    Science.gov (United States)

    Liang, Jiaqi

    2017-03-01

    Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.

  2. Removal of phenol from aqueous solution using rice straw as adsorbent

    Science.gov (United States)

    Sarker, Nandita; Fakhruddin, A. N. M.

    2017-06-01

    Phenol is an environmental pollutant; the present study was conducted to examine the adsorption of phenol by rice straw. For this purpose raw (untreated), physically treated (boiled and dried) and thermally treated (heated at 230 °C for 3 h to produce ash) rice straw were selected to determine phenol removal efficiency at different contact times and adsorbent dosages for 1 and Percentage of removal of phenol increased as the adsorbent dose increase. The removal efficiency increase in the order of: raw rice straw ash) rice straw. Langmuir and Freundlich isotherm was developed for 1 and ash) treated rice straw. Freundlich isotherm best fit the equilibrium data for 1 mm thermally treated rice straw. The results showed that thermally treated rice straw (ash) can be developed as a potential adsorbent for phenol removal from aqueous solution.

  3. Changes in bacterial community of soil induced by long-term straw returning

    Directory of Open Access Journals (Sweden)

    Yanling Chen

    Full Text Available ABSTRACT: Straw returning is an effective way to improve soil quality. Whether the bacterial community development has been changed by long-term straw returning in non-calcareous soil is not clear. In this study, the following five treatments were administered: soil without fertilizer (CK; wheat and corn straw returning (WC; wheat straw returning with 276 kg N ha−1 yr−1 (WN; manure, 60,000 kg ha−1 pig manure compost (M and wheat and corn straw returning with 276 kg N ha−1 yr−1 (WCN. The high-throughput 16S rRNA sequencing technology was used to evaluate the bacterial communities. The results showed that the community was composed mostly of two dominant groups (Proteobacteria and Acidobacteria. Bacterial diversity increased after the application of straw and manure. Principal component analyses revealed that the soil bacterial community differed significantly between treatments. The WCN treatment showed relatively higher total soil N, available P, available K, and organic carbon and invertase, urease, cellulase activities and yield than the WC treatment. Our results suggested that application of N fertilizer to straw returning soil had significantly higher soil fertility and enzyme activity than straw returning alone, which resulted in a different bacterial community composition, Stenotrophomonas, Pseudoxanthomonas, and Acinetobacter which were the dominant genera in the WC treatment while Candidatus, Koribacter and Granulicella were the dominant genera in the WCN treatment. To summarize, wheat and maize straw returning with N fertilizer would be the optimum proposal for improving soil quality and yield in the future in non-calcareous fluro-acquic-wheat and maize cultivated soils in the North China Plain in China.

  4. Cereal straws form important part of livestock feeding in developing ...

    African Journals Online (AJOL)

    Kamran

    Abstract. Limited use of cereal straws in livestock feeding is due to their low voluntary intake, low protein contents and low digestibility. Nutritional value of these roughages can be improved through chemical or physical methods. Efficacy of treating straw with urea for improving its nutritive value is considered equivalent to ...

  5. Two tank-mix adjuvants effect on yield and quality attributes of wheat treated with growth retardants

    Directory of Open Access Journals (Sweden)

    Wojciech Miziniak

    2016-09-01

    Full Text Available ABSTRACT: The objective of this study was to evaluate the quality of seeds and yield of winter wheat under different retardants application. The two years field trials on winter wheat were carried out in the Institute of Plant Protection - National Research Institute in Poznan (Poland. Treatments consisted of trinexapac-ethyl, chlormequat and prohexadione calcium applied in mixtures with paraffin oil adjuvant or organosilicone surfactant in BBCH 31 growth stage of winter wheat. No lodging occurred in any experimental year. The retardants had varying effect on the quality parameters of wheat grain. The highest fluctuations in the content of protein, gluten and the Zeleny value were observed after the application of chlormequat chloride. Starch content in wheat grain, regardless of the retardant application method, was negatively correlated with others grain quality parameters evaluated in the experiment. Depending on the year of study and weather conditions, increased or decreased wheat quality.

  6. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation Produção de xilitol em hidrolisado hemicelulósico de palha de trigo: destoxificação do hidrolisado e fonte de carbono utilizada para o preparo do inóculo

    Directory of Open Access Journals (Sweden)

    Larissa Canilha

    2008-06-01

    Full Text Available Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5% de carvão ativo para remoção otimizada de compostos inibitórios.

  7. Changes in lipid composition of Blumeria graminis f.sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid.

    Science.gov (United States)

    Muchembled, Jérôme; Sahraoui, Anissa Lounès-Hadj; Grandmougin-Ferjani, Anne; Sancholle, Michel

    2006-06-01

    Treatment of wheat leaves with heptanoyl salicylic acid (HS) and trehalose at concentrations of 0.1 and 15 g l(-1), prior to fungal inoculation, resulted in 40% and 60% protection, respectively, against powdery mildew. The total lipid composition of Blumeria graminis f.sp. tritici (Bgt) conidia, the causal agent of wheat powdery mildew, was compared when produced on wheat leaves, respectively, untreated and treated with the two elicitors, HS and trehalose. An obvious effect was observed on lipid composition (sterol and fatty acid (FA)) of Bgt conidia produced on wheat leaves treated with HS. A total of 16 FA (C12-C24 saturated and unsaturated) as well as unusual methoxylated Fatty Acids (mFA) (3-methoxydocosanoic and 3-methoxytetracosanoic acids) were detected in the conidia. Medium chain FA were predominant in HS treated conidia (64.65%) while long chain fatty acids constituted the major compounds in untreated conidia (62%). The long chain/medium chain FA ratio decreased from 1.8 in the conidia produced on untreated leaves to 0.5 in the conidia obtained from HS treated leaves. When comparing the sterol composition of Bgt conidia produced on leaves treated with HS versus conidia obtained from untreated ones, very important changes within the two major classes can be seen. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and 24-methylcholesta-7,24-dien were reduced by about 82% whereas 24-ethylsterols, e.g., 24-ethylcholesterol and 24-ethylcholesta-5,22-dienol were increased by about 85%. The 24-methylsterols/24-ethylsterols ratio was reduced by ninefold in the conidia produced from HS treated leaves.

  8. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.C.; Boersma, A.R.; Bisschops, I.; Pels, J.R.; Jong, de E.; Weusthuis, R.A.; Reith, H.

    2008-01-01

    The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of

  9. The Last Straw

    CERN Multimedia

    McFarlane, K.W.

    2002-01-01

    On 4 December 2002 at Hampton University, we completed processing the 'straws' for the Barrel TRT. The straws are plastic tubes 4 mm in diameter and 1.44 m long. More than 52 thousand straws will be used to build the drift tube detectors in the Barrel TRT. The picture shows some members of the Hampton production team ceremonially cutting the last straw to its final precise length. The production team, responsible for processing 64 thousand straws, included Jacquelyn Hodges, Carolyn Griffin, Princess Wilkins, Aida Kelly, Alan Fry, and (not pictured) Chuck Long, Nedra Peeples, and Hilda Williams. The straws have a cosmopolitan history. First, plastic film from a U.S. company was shipped to Russia to be coated with conductive materials and adhesive. The coated film was slit into long ribbons and sent to the UK to be wound into tubes. The tubes were then sent to two ATLAS collaborators in Russia, PNPI (Gatchina) and JINR (Dubna), where they were reinforced with carbon fibres to make them stiff and accuratel...

  10. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-03-01

    Full Text Available This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

  11. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  12. Effect of 60Co γ-rays irradiation on rice straw fibre structure and enzyme hydrolyzation

    International Nuclear Information System (INIS)

    Chen Jingping; Li Wenge; Peng Ling; Wang Keqin; Xiong Xingyao

    2008-01-01

    The effect of improving enzyme hydrolyze of rice straw was estimated with treating dry rice straw and raw fiber by 60 Co γ-rays irradiation. the water-soluble deoxidize carbohydrate and total carbohydrate of 60 Co γ-rays irradiated rice straw and raw fibres were measured by DNS method and vitrol-phenol method. The changes of deoxidize carbohydrate groups of irradiated hydrolyzing rice straw were analyzed by gas chromatography. The organism structures of irradiated rice straw were scanned by electron microscope, the results showed that 1000-1500 kGy 60 Co γ-irradiation doses effectively destroyed rice straw's organism structures, especially the silicon crystal structures, and along with irradiation doses increased the breakage degree enlarged significantly. The contents of the water-soluble deoxidize carbohydrate and total carbohydrate of rice straw increased significantly. treated by both irradiation and enzyme, the cellulose transform rate of rice straw was 88.7%, which is better than that only treated by 60 Co γ-irradiation or enzyme. The content of water-solubility deoxidize carbohydrate of the treated rice straw was 214.4 mg/g and the total carbohydrate of straw was 758.5 mg/g. The contents of mannose, galactose, glucose, arabinose and xylose increased significantly, among those carbohydrate, the glucose's increment was the largest and account for 62.64%, and mannose's increments was the second. The contents of lignin of the rice straw were not influenced obviously by irradiation treatment. (authors)

  13. Antioxidant properties of digestive enzyme-treated fibre-rich fractions from wheat, finger millet, pearl millet and sorghum: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Aisha Siddiq A.

    2015-12-01

    Full Text Available Whole grains are rich in antioxidant components (AC, most of which are bound to fibre fraction and released during digestion. The study investigated the effect of digestive enzymes on the antioxidant properties of fibre-rich fractions from wheat (Triticum aestivum, finger millet (Eleusine coracana, pearl millet (Pennisetum typhoides and sorghum (Sorghum bicolor. Coarse (CF and fine fractions (FF of milled flour were separated using a standard sieve and analysed for nutritional composition, AC extractable in different solvents and antioxidant activity (AA in untreated and enzyme-treated fractions. The CF had a higher range of insoluble dietary fibre (17.26–20.93% than FF (10.65–17.29%. The highest amount of polyphenols and flavonoids was extractable in different solvents from finger millet and pearl millet, respectively. FF of pearl millet showed higher total AA in all solvents. Enzyme-treated samples had a much higher content of AC as well as higher total AA. Free radical scavenging assay revealed that enzyme-treated millet flours had higher activity in comparison to wheat. Between fractions, wheat exhibited variable results. Among millets, CF of finger millet and FF of pearl millet and sorghum had higher AA. In conclusion, digestive enzyme treatment released more AC from grains, and exhibited a higher AA.

  14. [Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong Plain, Northwest China].

    Science.gov (United States)

    Li, Shuo; Li, You-bing; Wang, Shu-juan; Shi, Jiang-lan; Tian, Xiao-hong

    2015-04-01

    A four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer. Compared to no wheat straw returning, soil CPMIs in 0-10 cm and 10-20 cm soil layer increased by 19.1% and 67.9% for the wheat straw chopping returning treatment, and by 22.6% and 32.4% for the maize straw chopping subsoiling treatment, respectively. Correlation analysis showed that soil CPMI was a more effective index reflecting the sequestration of soil organic carbon in 0-30 cm soil layer than the ratio of LOC to TOC. This study thus suggested that WC-MM regime is the best straw-returning regime for soil organic carbon sequestration.

  15. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower...... decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use....

  16. Nutrient Digestibility, Ruminal Fermentation Activities, Serum Parameters and Milk Production and Composition of Lactating Goats Fed Diets Containing Rice Straw Treated with

    Directory of Open Access Journals (Sweden)

    A. E. Kholif

    2014-03-01

    Full Text Available The study evaluated replacement of Egyptian berseem clover (BC, Trifolium alexandrinum with spent rice straw (SRS of Pleurotus ostreatus basidiomycete in diets of lactating Baladi goats. Nine lactating homo-parity Baladi goats (average BW 23.8±0.4 kg at 7 d postpartum were used in a triplicate 3×3 Latin square design with 30 d experimental periods. Goats were fed a basal diet containing 0 (Control, 0.25 (SRS25 and 0.45 (SRS45 (w/w, DM basis of SRS. The Control diet was berseem clover and concentrate mixture (1:1 DM basis. The SRS45 had lowered total feed intake and forages intake compared to Control. The SRS25 and SRS45 rations had the highest digestibilities of DM (p = 0.0241 and hemicellulose (p = 0.0021 compared to Control which had higher (p<0.01 digestibilities of OM (p = 0.0002 and CP (p = 0.0005 than SRS25 and SRS45. Ruminal pH and microbial protein synthesis were higher (p<0.0001 for SRS25 and SRS45 than Control, which also had the highest (p<0.0001 concentration of TVFA, total proteins, non-protein N, and ammonia-N. All values of serum constituents were within normal ranges. The Control ration had higher serum globulin (p = 0.0148, creatinine (p = 0.0150, glucose (p = 0.0002 and cholesterol (p = 0.0016. Both Control and SRS25 groups had the highest (p<0.05 milk (p = 0.0330 and energy corrected milk (p = 0.0290 yields. Fat content was higher (p = 0.0373 with SRS45 and SRS25 groups compared with Control. Replacement of BC with SRS in goat rations increased milk levels of conjugated linoleic acid and unsaturated fatty acids compared with Control. It was concluded that replacing 50% of Egyptian berseem clover with SRS in goat rations improved their productive performance without marked effects on metabolic indicators health.

  17. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...

  18. Building a Straw Bridge

    Science.gov (United States)

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  19. Renewable Silica-Carbon Nanocomposite and Its Use for Reinforcing Synthetic Wood Made of Rice Straw Powders

    OpenAIRE

    Karyasa, I Wayan

    2016-01-01

    The current study was aimed to prepare and to characterize a renewable silica-carbon nanocomposite from rice straw ashes. It was purposed also to study the use of the produced nanocomposite as reinforcing material in producing a synthetic wood made of three axial blend of treated rice straw powder, phenolfrmaldehyde resin, and the nanocomposite. A simple preparation route of nanocomposite silica-carbon from rice straw was formulated containing three steps, namely pretreating of rice straw, pr...

  20. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria

    DEFF Research Database (Denmark)

    Kieffer, Dorothy A.; Piccolo, Brian D.; Marco, Maria L.

    2016-01-01

    Background: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites...... steatosis. Methods: Five-week-old male C57BL/6J mice fed a 45%-lard based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were...

  1. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    International Nuclear Information System (INIS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-01-01

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  2. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Irina Gabriela, E-mail: coroirina@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Trofin, Alina Elena, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Cazacu, Ana, E-mail: anagarlea@gmail.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Ţopa, Denis, E-mail: topadennis@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 D. Mangeron Street, 700050 Iasi (Romania); Jităreanu, Gerard, E-mail: gerardj@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania)

    2015-12-15

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  3. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat

    International Nuclear Information System (INIS)

    Song Ninghui; Zhang Shuang; Hong Min; Yang Hong

    2010-01-01

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg -1 Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg -1 DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat. - Dissolved organic matter (DOM) as a soil amendment can reduce herbicide accumulation in crops.

  4. Structural differences in wheat (Triticum aestivum), hemp (Cannabis sativa) and Mischanthus (Mischanthus ogiformis) affect the quality and stability of compost as growing medium

    OpenAIRE

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2005-01-01

    Physical properties as well as process parameters were examined in three different composts based on plant residues. The wheat compost was a mixture of clover-grass and wheat straw in a ratio of 3:5, the Mischanthus compost was composed of the same materials and contained Mischanthus straw in addition in a ratio of 3:2.5:2, and the hemp compost was based on clover-grass, wheat and hemp straw also in a ratio of 3:2.5:2. The wheat and Mischanthus composts both had an initial C/N ratio of 26 and...

  5. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...

  6. Removal of straw lignin from spent pulping liquor using synthetic cationic and biobased flocculants

    Science.gov (United States)

    Aqueous alkaline delignification of wheat straw produces hemicellulose for bioenergy and other applications. After removal of the hemicellulose, spent pulping liquor (SPL) remains. The spent pulping liquor is approximately 28% water, 40% ash, 3% hemicellulose, 25% lignin, 5% protein, and less than...

  7. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Farid, I.M.; Moursy, A.A.A.; Kotb, E.A.; Ismail, M.

    2012-01-01

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  8. Straw Appliqué Technique

    African Journals Online (AJOL)

    User

    2010-10-17

    Oct 17, 2010 ... Straw bits and lengths are used in making the related part as described above. Bits of different geometric shapes, sizes, and tones are combined to create the forms from the original photograph on a gum-stay reinforce linen fabric. The straw medium form most part of the human exposed skin while the other.

  9. Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Tamaki, Yukihiro; Mazza, Giuseppe

    2011-06-22

    Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate (total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r², RPD, and R/SEP criteria. The xylan model showed good and acceptable predictive performance. However, the ash model was evaluated as providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of total glycans, glucan, xylan, and extractives in triticale and wheat straw samples.

  10. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    Science.gov (United States)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  11. Changes in the content of water-soluble sulphur in the soil after an application of straw and elemental sulphur

    Directory of Open Access Journals (Sweden)

    Pavel Ryant

    2007-01-01

    Full Text Available The changes in the content of water-soluble sulphur in the soil after the application of straw and elemental sulphur (ES were explored in a 2-year vegetation pot experiment. The following variants were included in the experiment: 1 unfertilised control; 2 wheat straw; 3 rape straw; 4 ES; 5 wheat straw + ES; 6 rape straw + ES. The two types of straw were applied in a dose of 32 g of dry matter and elemental sulphur was applied in a dose of 0.42 g per pot, i.e. 6 kg of soil. The unsatisfactory C:N ratio in the straw was optimised to 25:1 by adding nitrogen in urea. Soil samples were taken prior to sowing of the model plant (spring wheat in 2005 and white mustard in 2006 and then in regular monthly intervals until harvesting (5 times a year. The content of water-soluble sulphur in the soil was evaluated by multifactorial analysis of variance monitoring the effect of the crop, date of soil sampling, application of straw and elemental sulphur.The contents of water-soluble sulphur differed statistically significantly (P > 0.999 when growing the individual model plants. When growing white mustard in 2006 the amount of available sulphur was by 1/5 higher and could have been partly affected by the warm year 2006, as compared to 2005 when spring wheat was grown. Significant differences (P > 0.999 were also discovered among the dates of soil sampling; higher values were detected before the sowing of model plants, i.e. after incubation in the winter, during vegetation the content of water-soluble sulphur decreased and sulphur showed the significantly highest values at the harvest of model plants. When wheat straw was applied the sulphur content did not increase and this may be associated with the wide C:S ratio, whereas after the application of rape straw the content of water-soluble sulphur increased by one third more than in the unfertilised control. The application of elemental sulphur also significantly increased the amount of water-soluble sulphur in

  12. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    Directory of Open Access Journals (Sweden)

    Marwen Bouasker

    2014-04-01

    Full Text Available The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  13. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition.

    Science.gov (United States)

    Han, Wei; He, Ming

    2010-05-01

    The effects of exogenous cellulase application on straw decomposition, soil fertility, and plant growth were investigated with nylon bag and pot experiments. Cellulase application promoted straw decomposition, and the decomposition rates of rice and wheat straw increased by 6.3-26.0% and 6.8-28.0%, respectively, in the nylon bag experiments. In pot experiments soil-available N and P contents, soil cellulase activity, and growth of rice seedlings increased. Soil respiration rate and microbial population were unaffected. Seventy Ug(-1) was the optimal cellulase concentration for plant growth. The exogenous cellulase persisted in soil for more than 100days. Although the data show that exogenous cellulase application can enhance soil fertility and plant growth in the short-term due to the acceleration of straw decomposition and has the potential to be an environment-friendly approach to manage straw, cellulase application to soil seems currently not economical. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Urea-ensiled rice straw as a feed for cattle in Thailand

    African Journals Online (AJOL)

    urea, with or without small amounts of salt and/or molasses. The wet straw is covered with a plastic sheet and ensiled for about 3weeks before it is fed to the animals. The urea-treated straw should be removed or the stack opened for one day ...

  15. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  16. Effect of grain storage and processing on chlorpyrifos-methyl and pirimiphos-methyl residues in post-harvest-treated wheat with regard to baby food safety requirements.

    Science.gov (United States)

    Balinova, A; Mladenova, R; Obretenchev, D

    2006-04-01

    A study was undertaken to assess the effects of storage intervals and of milling procedures on the dissipation of chlorpyrifos-methyl and pirimiphos-methyl residues in post-harvest-treated wheat grain and to obtain scientific data on the compliance of the processed products with safety requirements concerning baby foods. The insecticide formulations were applied on stored wheat at recommended rates (20 ml t(-1)). The initial concentration levels in whole grain were determined in samples taken 1 h after treatment. The dissipation of residues and their distribution in different fractions of the milled grain were studied after various storage intervals, from 7 to 270 days after treatment. Samples of treated grain were milled in a fractionating laboratory mill and eight fractions--bran, semolina, three types of groats and three types of flour--were collected and analysed for pesticide residues. The residues were determined by an analytical method based on acetone extraction, graphitized carbon clean-up and GC-ECD, respectively, and GC-NPD determination of residues. The limits of determination of both pesticides were 0.005 mg kg(-1), which is high enough for enforcement of the European Commission Directive that established a maximum residue level of 0.01 mg kg(-1) for any pesticide in cereal-based baby food. The results showed that the pesticides chlorpyrifos-methyl and pirimiphos-methyl applied post-harvest on wheat as grain protectants were distinguished by relatively low rates of degradation in the grain under practical storage conditions. Milling did not significantly reduce the bulk of the chemicals but resulted in the distribution of residues in various processed products. The main part of the insecticides deposited on the grain remained in the bran and partly in semolina fractions. After 270 days of treatment, the residues of chlorpyrifos-methyl were within the range 0.8-2.1 mg kg(-1) and of pirimiphos-methyl - between 0.6 and 3.7 mg kg(-1) in the various types

  17. Technical processing of rapeseed straw

    Energy Technology Data Exchange (ETDEWEB)

    Bentsen, T.; Ravn, T.

    1984-01-01

    From the approx. 150,000 hectars which at present are grown with rapeseed, on an average of about 300,000 tons of straw is available. However, the production capacity attains approx. 700,000 tons but this quantity is not at all available, mainly due to weather conditions in the harvest period and the applied harvest technique. Rapeseed straw is an excellent fuel also when compressed into briquettes. It is nevertheless recommendable to use fly ash or a lignosulphonate as a binder in case of briquetting to avoid a poor briquette quality and slag formation. Rapeseed straw forms a good raw material for semi-chemical pulping and may substitute beech wood when this commodity is in short supply. The fiber fraction of rapeseed straw has been examined in the Eternit roofing production process. It appears that the fibers to some extent have a retarding effect on the cement setting. The inclusion of rapeseed straw particles into an ordinary medium density board of wood chips may be increased from the known 5 to 20 percent provided that an adhesive of polyurethane resin base is applied. In the production of thin particle boards rapeseed straw has proven itself to have a very positive effect. When used with a polyurethane glue the properties of rapeseed straw equal those of ordinary wood chips.

  18. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  19. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1997-07-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100, 150 kGy) on gross energy (GE), in vitro organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs, and maize cobs. The results indicate that , there were significant increase in IVOMD and IVDE values, especially, at the dose of 150 kGy. compared with the control, the increase in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, the increase was only 12% for maize cobs. Digestible energy values increased by 1165, 1621, 1540, and 1130 MJ/kg dry matter, for barley straw, sorghum straw, wheat chaffs, and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (author)

  20. Photochemical production of hydrogen peroxide from natural algicides: decomposition organic matter from straw.

    Science.gov (United States)

    Ma, Hua; Zhang, Jie; Tong, Liyin; Yang, Jixiang

    2015-08-01

    The ability of decomposition organic matter from three natural algicides (barley, rice, and wheat straw) and natural organic matter (NOM) isolates to generate hydrogen peroxide under simulated solar irradiation was evaluated in order to understand the mechanism of indirect algae inhibition through a photochemical pathway. Specific optical properties (higher phenolic hydroxyl group contents and lower E2/E3) of barley straw organic matter (BSOM) reveal its outstanding ability to produce H2O2 as a photosensitizer. The appearance of a protein-like structure in BSOM indicated that bacteria or fungi probably transformed the structure of BSOM and brought other organic matter, which may account for its distinct optical properties. The ΦH2O2 of BSOM obtained through aerobic decomposition is 14.73 × 10(-5), which is three times the value of SRHA, whereas the ΦH2O2 value of BSOM obtained for non-aerobic decomposition was 5.30 × 10(-5), still higher than that of SRHA. The ΦH2O2 of rice straw organic matter was slightly lower than those of SRHA and SRFA, but much higher than that of wheat straw organic matter. The superior ability of BSOM to generate H2O2 was partly responsible for the outstanding potential and prior choice of barley straw for cyanobacteria or algae inhibition in various plant decomposition products.

  1. Pilot plant straw biomass power plant; Demonstrationsanlage Strohkraftwerk Gronau

    Energy Technology Data Exchange (ETDEWEB)

    Vodegel, Stefan [Claustahler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany); Lach, Friedrich-Wilhelm [Ueberlandwerk Leinetal GmbH, Gronau (Leine) (Germany)

    2008-07-01

    Drastically increasing prices for oil and gas promote the change to renewable energies. Biomass has the advantage of the storability. However, it has the disadvantage of a small stocking density. This suggests decentralized power plants. Also the proven technology of water vapour cycles with use of turbine is questioned. In the rural district Hildesheim there are efforts of thermal utilisation straw from wheat cropping. For this, a feasibility study of the Claustahler Umwelttechnik-Technik GmbH (Clausthal Zellerfeld, Federal Republic of Germany) presents technical and economic possibilities exemplary for the industrial area West in Gronau (Federal Republic of Germany). Technical and economic chances and risks are pointed out.

  2. Desempenho de novilhos Simental alimentados com silagem de sorgo, cana-de-açúcar e palhada de arroz tratada ou não com amônia anidra Performance of Simental steers fed sorghum silage, sugar cane and straw rice treated or not with anhydrous ammonia

    Directory of Open Access Journals (Sweden)

    Gláucon César Cardoso

    2004-12-01

    Full Text Available Avaliou-se o desempenho de novilhos alimentados com dietas contendo palhada de arroz amonizada, palhada de arroz + uréia, cana-de-açúcar + uréia e silagem de sorgo. Utilizaram-se 16 novilhos, Simental PO, com peso vivo médio de 400 kg, distribuídos em delineamento inteiramente casualizado. O experimento teve duração de 88 dias, sendo 15 de adaptação e 61 dias de avaliação, divididos em três períodos de 21 dias. O consumo total de MS, que variou de 7,1 a 10,0 kg/dia, diferiu entre as dietas, registrando-se maiores consumos para os animais que receberam dietas contendo palhada de arroz amonizada e silagem de sorgo, que, por sua vez, não diferiram entre si. A conversão alimentar não diferiu entre as diferentes dietas, registrando-se valor médio de 6,6. Observou-se maior ganho de peso para os animais que receberam palhada de arroz amonizada (1,59 kg/dia em relação à palhada mais uréia (1,25 kg/dia. O efeito da amonização, melhorando o valor nutritivo da palhada de arroz, resultou em maior consumo voluntário deste volumoso e, conseqüentemente, em maior ganho diário de peso vivo dos animais, em relação à palhada de arroz não-tratada e suplementada com uréia.The performance of steers fed diets using as roughage rice straw treated with anydrous ammonia, rice straw+urea, sugar cane + urea and sorghum silage were evaluated. Sixteen PO Simental steers, averaging 400 kg initial LW, were assigned to a completely randomized design. The experiment last 88 days, 15 days of adaptation and 61 experimental days, divided in three periods of 21 days. Total DM intake, that ranged from 7.1 to 10.0 kg/day, differ among treatments, where higher intakes were observed for the animals fed ammoniated rice straw and sorghum silage, that did not differ. Feed:gain ratio did not differ among different diets, and an average value of 6.6 was recorded. It was observed higherweight gain for the animals fed ammoniated rice straw (1.59 kg/day in

  3. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    Science.gov (United States)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  4. production of bioethanol from rice straw using yeast extracts ...

    African Journals Online (AJOL)

    user

    abundant lignocellulosic waste materials in the world. It annually produced about ... organic compounds carbon monoxide and nitrogen oxide. .... powdered Rice Straw was separately treated with alkali solution to swell the cellulose and make it available for enzyme hydrolysis. The method described by [17] was employed.

  5. Life-cycle assessment of straw use in bio-ethanol production: A case study based on biophysical modelling

    International Nuclear Information System (INIS)

    Gabrielle, Benoit; Gagnaire, Nathalie

    2008-01-01

    Cereal straw, a by-product in the production of agricultural crops, is considered as a potentially large source of energy supply with an estimated value of 47 x 10 18 J worldwide. However, there is some debate regarding the actual amounts of straw which could be removed from arable soils without jeopardizing their quality, as well as the potential trade-offs in the overall straw-to-energy chain compared to the use of fossil energy sources. Here, we used a deterministic model of C and N dynamics in soil-crop systems to simulate the effect of straw removal under various sets of soil, climate and crop management conditions in northeastern France. Model results in terms of nitrate leaching, soil C variations, nitrous oxide and ammonia emissions were subsequently inputted into the life-cycle assessment (LCA) of a particular bio-energy chain in which straw was used to generate heat and power in a plant producing bio-ethanol from wheat grains. Straw removal had little influence on simulated environmental emissions in the field, and straw incorporation in soil resulted in a sequestration of only 5-10% of its C in the long term (30 years). The LCA concluded to significant benefits of straw use for energy in terms of global warming and use of non-renewable energy. Only the eutrophication and atmospheric acidification impact categories were slightly unfavourable to straw use in some cases, with a difference of 8% at most relative to straw incorporation. These results based on a novel methodology thereby confirm the environmental benefits of substituting fossil energy with straw. (author)

  6. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  7. Wheat allergy: diagnosis and management

    Directory of Open Access Journals (Sweden)

    Cianferoni A

    2016-01-01

    wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to wheat. Keywords: IgE mediated food allergy, non-IgE mediated food allergy, wheat allergy, baker’s asthma, wheat dependent exercise induced anaphylaxis, eosinophilic esophagitis, eosinophilic gastritis

  8. Rice straw pulp obtained by using various methods.

    Science.gov (United States)

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  9. Development of multi-functional combine harvester with grain harvesting and straw baling

    International Nuclear Information System (INIS)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-01-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  10. Development of multi-functional combine harvester with grain harvesting and straw baling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-09-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  11. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-03-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  12. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  13. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  14. Light clay straw bale solutions in the contemporary housing as an element of sustainable development. Selected issues

    Directory of Open Access Journals (Sweden)

    Drozd Wojciech

    2016-01-01

    Full Text Available The article presents issues related to the solutions with light clay and straw bale in the contemporary housing. Building using straw bale and light clay is simple, eco-friendly and accessible to all. It fits in with the idea of sustainable development, supporting local businesses and giving people the opportunity to integrate in the design and construction of the house. The article presents the thermal analysis for both walls made of straw bale and of light clay. The analysis showed a very good performance. All positive aspects allow treating straw and light clay as a viable alternative to the commonly used technologies for erecting buildings.

  15. Effect of wheat bran supplementation with fresh and composted ...

    African Journals Online (AJOL)

    Nutrient supplements and agricultural wastes used for mushroom cultivation are important in improving establishment and production of mushrooms. Agricultural wastes such as sawdust, grass, sugarcane bagasse, wheat straw and maize cobs have successfully been used for the production of Kenyan wood ear ...

  16. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  17. Wheat allergy: diagnosis and management

    Science.gov (United States)

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  18. Seafood processing wastes ensiled with straw: utilization and intake by sheep.

    Science.gov (United States)

    Samuels, W A; Fontenot, J P; Allen, V G; Abazinge, M D

    1991-12-01

    Ensiled mixtures of seafood processing wastes and wheat straw were evaluated. Thirty-six crossbred wethers (average BW = 34 kg) were fed 1) a basal diet (hay and concentrate) alone, or a 1:1 ratio (DM basis) of basal and 2) ensiled fish waste plus straw (70:30, wet basis), 3) ensiled fish waste and straw (51:49), 4) ensiled crab waste plus straw (60:40), 5) ensiled crab waste plus straw (40:60), or 6) ensiled wheat straw (50% moisture). Dry molasses (5%) was included in all ensiled mixtures, and glacial acetic acid (16% vol/wt) was added to the crab waste mixtures. Among diets containing ensiled fish waste, DM digestibility was greater (P less than .01) for the diet containing silate with 70% fish waste than the diet containing 51% fish waste. There was no difference (P greater than .05) in DM digestibility between the two crab waste silages. Apparent digestibility of CP was greater (P less than .01) for diets containing fish than for those containing crab waste. Nitrogen retention (g/d) was positive for sheep receiving all diets but not different among treatments. Apparent absorption of P (g/d) was greater (P less than .01) by sheep fed fish waste silage diets than by those fed crab waste silage diets. Among seafood silages, DMI was greater (P less than .01) for sheep consuming the 60:40 than for those consuming the 40:60 crab waste silage diet and less (P less than .01) for sheep fed the 70:30 than for those fed the 51:49 fish waste silage diet. Seafood processing wastes potentially are valuable to ensile with crop residues for use as ruminant feedstuffs.

  19. A trial burn of rape straw and whole crops harvested for energy use to assess efficiency implications

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    Increased biomass utilisation and alternatives to cereal straw such as oil seed rape (OSR) straw will be necessary to achieve the Government's renewable energy targets. This report describes the results of a study to investigate the technical and economic feasibility of burning OSR straw and whole crops in an existing biomass power plant operated by EPR Ely Ltd in comparison with conventional cereal straw. Suitable quantities of bales of each fuel were provided for the combustion trials by Anglian Straw Ltd. Three trials were conducted: one using wheat-based cereal straw; one using 92% OSR; and one using 65% whole crop fuel. The availability of OSR straw and whole crop in Eastern England for use as fuel was also determined. Plant performance and stack emissions were evaluated and samples of delivered crop samples, bottom ash and fly ash from each trial were analysed. The parameters against which performance was assessed included: ease of handling and conveying; ease of chopping; ease of entry into the combustion chamber; furnace temperature profile; steam and electricity production rate; plant chimney emissions; ash collection and removal; operating stability; sustainability; and fuel availability.

  20. The influence of straw meal on the crude protein and amino acid metabolism and the digestibility of crude nutrients in broiler hens. 3

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.

    1987-01-01

    In two experiments with colostomized broiler hens the influence of a straw meal supplement on the apparent digestibility of the amino acids of the ration and the 15 N-labelled basic amino acids in wheat was studied. In experiment 1 the animals received 120 g mixed feed plus 0, 20, 30 and 40 g straw meal per animal and day. The digestibility of the amino acids decreased on average from 86% to 83%, 80% and 79% with the growing straw intake. In contrast to the control variant, 20 g straw meal intake resulted in a singificant decrease of digestibility for lysine, histidine, glycine, tyrosine, phenylanaline, cystine and methionine. 30 and 40 g straw meal reduced significantly the digestibility of all amino acids with the exception of arginine. The amino acid composition of the crude protein in feces changed only very slightly due to the straw supplement. In experiment 2 15 N-labelled wheat was a component of the ration. Of the 15 N-labelled amino acids lysine, histidine and arginine, 88, 90 and 95% were apparently digested. The adaptation of the animals to straw meal intake did not change the digestibility of the amino acids. (author)

  1. Mechanical support for straw tubes

    International Nuclear Information System (INIS)

    Joestlein, H.

    1990-01-01

    A design is proposed for mounting a large number of straw tubes to form an SSC central tracking chamber. The assembly is precise and of very low mass. The fabrication is modular and can be carried out with a minimum of tooling and instrumentation. Testing of modules is possible prior to the final assembly. 4 figs

  2. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria.

    Science.gov (United States)

    Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Adams, Sean H; Martin, Roy J

    2016-12-01

    Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites) associated with specific microbes may be involved. The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display steatosis. Five-week-old male C57BL/6J mice fed a 45%-lard-based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were strong discriminators between the ETWB and control groups. Body weight and liver TGs were decreased by ETWB feeding (by 10% and 25%, respectively; P liver reactive oxygen species was increased (by 29%; P liver antioxidants (glutathione and α-tocopherol); decreased liver carbohydrate metabolites, including glucose; lower hepatic arachidonic acid; and increased liver and plasma β-hydroxybutyrate. Liver transcriptomics revealed key metabolic pathways affected by ETWB, especially those related to lipid metabolism and some fed- or fasting-regulated genes. Together, these changes indicate that dietary fibers such as ETWB regulate hepatic metabolism concurrently with specific gut bacteria community shifts in C57BL/6J mice. It is proposed that these changes may elicit gut-derived signals that reach the liver via enterohepatic circulation, ultimately affecting host liver metabolism in a manner that mimics, in part, the fasting state. © 2016 American Society for Nutrition.

  3. The effects of alfalfa particle size and acid treated protein on ruminal ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-10-17

    Oct 17, 2011 ... received a mixed diet (% of dry matter) consisting of 23.73 alfalfa, 8.70 canola meal, 39.56 wheat straw,. 13.45 beet pulp and 13.45 ... ruminal mean retention time of plastic particles in sheep. (Kaske and Engelhardt .... 13.45 and 13.45% of alfalfa forage, canola meal, wheat straw, beet pulp and barley grain, ...

  4. Bioconversion of rice straw as animal feed ingredient through solid state fermentation

    International Nuclear Information System (INIS)

    Mohamad Hanif Mohamad Jamil; Sepiah Muid

    1998-01-01

    Work was conducted to establish procedures and techniques to utilise microorganisms, particularly basidiomycetes, for solid fermentation of rice by-products. The purpose of the study was to determine the potential of biologically processed rice by-products as ingredients of feed formula for selected livestock. Fungal organisms Auriculariapolytrichia, Lentimus connatus, L. edodes, Pleurotus cystidiosus, P. florida, P. sajor-caju and Volvariella volvacea respectively were inoculated on sterilised rice straw and the mycelium produced were cultured for periods of 3-4 weeks by which time the straw was fully enmeshed with mycelia. Proximate analysis of the finished products gave increases of 93-172 % crude protein and reduction of 31-54 % crude fibre on comparison with untreated rice straw. Amino acid analysis showed general increases for solid fermented rice straw (SFRS) which were comparatively close to amino acid values of conventional feed ingredients such as wheat, corn, sorghum and barley. Solid fermented rice straw was also tested as an ingredient in the formulation of rations for broiler chickens. Feeding trials on poultry indicated a maximum substitution of 50% maize with SFRS in feed rations was possible to attain acceptable growth of chickens to an average live final weight of 1.8 - 2.0 kg. per chicken at age 7 weeks. From studies undertaken, it was observed that the cellulolytic straw could be developed as a potential feed material for livestock through solid fermentation with microorganisms. From the research results, the use of solid fermented rice straw as an alternative ingredient in animal feeds may be one way in reducing reliance on feed imports and at the same time controlling environmental pollution. (Author)

  5. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... 24 h intervals. Therefore, totally 432 measures were made for both compost formula. Thus, 27 temperature measurement points were selected in total (Figure 1). Mushroom cultivation. Composts were spawned with 30 g mycelium (Type Horst U1) per kg then filled into plastic bags as 7 kg wet weight basis.

  6. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    , while lignin was degraded up to 95% by O3. The loss of biomass after washing could be explained by the amount of lignin degraded. The washing water of pretreated samples (0–7 h) was analyzed for potential fermentation inhibitors. Approximately 30 lignin degradation products and a number of simple...... carboxylic acids and phenolic compounds were found, e.g., vanillic acid, acetic acid, and formic acid. Some components had the highest concentration at the beginning of the ozonisation process (0.5, 1 h), e.g., 4-hydroxybenzladehyde, while the concentration of others increased during the entire pretreatment...

  7. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    Allelopathy is a process in which secondary metabolites produced by plants, micro-organisms, viruses and fungi control growth and development of other biological systems. Some plants may beneficially or antagonistically affect other plants through allelochemical compounds which may be released directly or indirectly ...

  8. Detection of specific immunoglobulin E antibodies toward common airborne allergens, peanut, wheat, and latex in solvent/detergent-treated pooled plasma.

    Science.gov (United States)

    Apelseth, Torunn O; Kvalheim, Venny L; Kristoffersen, Einar K

    2016-05-01

    Allergic transfusion reactions (ATRs) present with a broad range of symptoms probably caused by mediators released from mast cells and basophil granulocytes upon activation. Passive immunoglobulin (Ig)E sensitization may yield clinical symptoms and positive allergy tests. Unexpected findings of IgE antibodies in pooled solvent/detergent (S/D)-treated plasma (Octaplas, Octapharma) during routine analysis initiated an investigation of serum proteins. Consecutive batches of S/D-plasma transfused during September 2014 through March 2015 were investigated for IgE, IgG, IgA IgM, C3, C4, haptoglobin, anti-nuclear antibodies (ANAs), and red blood cell (RBC) antibodies. During the study period, 4203 S/D-plasma units were transfused. Nineteen (14 Octaplas A and five Octaplas AB) of 20 batches of S/D-plasma were included, representing 99.9% of total number of plasma units. A total of 0.4% of units and five batches reported ATRs. Concentrations of total IgE higher than expected values in adults (<120 kU/L) were observed in 18 of the 19 (95%) batches investigated (median concentration [quartiles], 161 [133-183]). Specific IgE antibodies (expected < 0.35 kilounits antigen [kUA]/L) against house dust mite (2.52 [1.01-5.09]), timothy (2.83 [2.48-3.24]), cat (1.13 [0.58-1.52]), dog (0.83 [0.50-1.05]), mugwort (0.69 [0.53-0.97]), birch (0.62 [0.28-0.92]), peanut (0.52 [0.29-075]), wheat (0.46 [0.33-0.69]), and latex (0.32 [0.21-0.53]) were also detected. IgG, IgA, IgM, C3, C4, and haptoglobin were within or below normal ranges. No RBC antibodies were observed, but 18% of batches showed low levels of ANA (anti-RNP). Specific IgE antibodies against airborne allergens, food allergens, and latex were detected in S/D-treated pooled plasma. © 2016 AABB.

  9. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    Science.gov (United States)

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  10. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  11. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  12. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    A sustainable production of energy crops requires that the loss of mineral nutrients when removing biomass is compensated naturally or by an addition of plant nutrients. Recycling ash is a natural way to satisfy this need arising after combustion of energy crops. In this pre-study, the prerequisites for recycling straw ash have been investigated. The Danish experience with spreading ash to fields and information in literature on the composition of ash have been collected and presented. Analysis of straw samples taken from four different places in Scania yielded information on cadmium and nutrient concentration in straw and in ash. A balance between removal of nutrient and cadmium with wheat straw and restoring them by recycling straw ash has been computed. Straw ash is a potassium fertiliser with some phosphorus and some liming effect. It is technically difficult to spread the small quantities of ash in solid form, ca 250 kg per hectare and year in average, which a pure recycling would require. It is easier to spread larger quantities, e.g. ca 1 ton per hectare every fourth year, which corresponds to spreading once in a four year crop rotation, but then one provides too much potassium if one considers the actual needs of the coming crops at that occasion, which could lead to potassium being leached out on light soils. Alternatively, one could spread only bottom ash, but this would lead to half of the potassium content not being recycled to agricultural soil and lost with the fly ash that is disposed of. If one spreads about 500 kg bottom ash per hectare every other year, which could be a suitable strategy to avoid overloading soils with potassium, the dose brought to 1 ha may be computed as: 4 - 10 kg phosphorus, 50 - 100 kg potassium, 5 - 15 kg sulphur, 4 - 8 kg magnesium, 0.1 - 0.3 kg manganese and 20 - 40 kg CaO. These basis of these calculations is the results from the analyses performed in this study. The cadmium concentration was significantly higher in wheat

  13. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  14. Ammoniation of rice straw using poultry litter: Effect on nutrient ...

    African Journals Online (AJOL)

    On peut déduire que le traitement de la paille de riz avec la litière de volaille peut améliorer la valeur nutritive et en même temps réduire les microorganismes pathogènes dans la paille traitée. The nutritive value and pathogenic microbial flora of poultry litter treated rice straw in a 5x3x3 factorial trial was conducted at the ...

  15. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China

    Science.gov (United States)

    Htun, Yin Min; Tong, Yanan; Gao, Pengcheng; Xiaotang, Ju

    2017-05-01

    Straw incorporation is a common agricultural practice, but the additional carbon source may increase greenhouse gas emissions by stimulating microbial activity in soil, particularly when straw is applied at the same time as nitrogen (N) fertilizer. We investigated the coupled effects of straw and N fertilizer on greenhouse gas emissions in a rainfed winter wheat-summer fallow system in Northwest China. Simultaneous applications of straw and N fertilizer increased N2O emissions by up to 88%, net greenhouse gas (NGHG) emission and net greenhouse gas intensity (NGHGI) by over 90%, and the N2O emission factor by over 2-fold. When straw was applied before N fertilizer, the emission factor (0.22%) decreased by approximately one-half compared with that for simultaneous applications (0.45%). In addition, early straw incorporation decreased N2O emissions, NGHG, and NGHGI by 35% (0.62 kg N2O-N ha-1 yr-1), 40% (242 kg CO2-eq ha-1 yr-1), and 38% (42 kg CO2-eq t-1 grain), respectively. We identified the period 30-35 days after N fertilization as a crucial period for evaluating the effectiveness of management practices on N2O emissions. The time between straw and fertilizer applications was negatively related to N2O emission (R2 = 0.8031; p early straw incorporation can effectively mitigate greenhouse gas emissions by reducing N2O flux and increasing soil CH4 uptake without significantly decreasing grain yield.

  16. Effect of urea treatment on the nutritive value of local sorghum and millet straw: a comparative study on growing performance of Djallonke rams

    Directory of Open Access Journals (Sweden)

    A.B. Kanwe

    2010-04-01

    Full Text Available Two tons of and chopped millet and sorghum straws have been treated with an urea solution at 5% (100 kg of straw, sprinkled with 50 lt. of solution. Treated straws were used as basic diet (900 g day associated to 100 g of cotton cake for 24 growing Djallonke rams in comparison to non treated straws. Four groups of animals were fed for 98 days with: urea treated sorghum (UTSS, not treated sorghum straw (NTSS, treated millet (UTMS, non treated millet straw (NTMS. Treated straws presented an increase of NDF of about 9%, of total nitrogen from 2 to 3 times while digestibility of dry matter increased respectively by 8,8% and 23,0% respectively in treated sorghum and millet. Also dry matter intake increased by 4,5% and 15,5% for treated sorghum and millet respectively compared to non treated. Mean weekly weight gain were significantly higher (P<0.05 for UTSS e UTMS compared to NTSS e NTMS. While the weekly weight gain, did not differed between UTSS vs. UTMS and NTSS vs. NTMS. At the end of the trial the UTSS and UTMS group presented a weight gain of about 40% and 38.7%, of their initial weight; while the gain for both NTSS and NTMS was respectively of 31.1% and 29.5%.

  17. Industrial scale straw-to-biomethane conversion. A new bioenergy and business opportunity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bonde, T.A. [BioFuel Technology ApS, Randers (Denmark); Sangaraju Raju, C.; Moeller, H.B. [Aarhus Univ., Forskningscenter Foulum, Tjele (Denmark); Slot Knudsen, M. [C.F. Nielsen A/S, Baelum (Denmark)

    2013-09-01

    The project resulted in the development, design, engineering, construction, and demonstration of a plant for industrial scale use of cereal straw for anaerobic digestion and production of biogas. The technology is based on the C. F. Nielsen A/S mechanical presses and adapted to the new purpose, to pre-treat and feed straw into a digester in one single step. A number of laboratory measurements as a function of variations of the pre-treatment showed, that under practical circumstances it is possible to achieve a biogas yield of 400 m{sup 3} per tons straw (corresponding to 300 m{sup 3} methane per tons volatile solids). The most significant effect was achieved by impregnating the straw with 1 % acetic acid before mechanical treatment. It was additionally shown that an extended incubation, after the mechanical treatment at 90 deg. C, resulted in a more pronounced effect than incubation at 140 deg. C. The maximum gas yield was 360 l methane per kg vs (volatile solids). This is equivalent to 290 l methane per kg straw (at 85 % dry matter, 95 % vs) or 450 l biogas per kg straw (at 65 % methane). A typical annual quantity of straw for anaerobic digestion would be 10.000 tons and more. A biogas plant digesting e.g. 100.000 tons liquid manure and 10.000 tons straw will produce a total of app. 6.5 mio. m{sup 3} biogas, of which 2.5 mio. m{sup 3} stems from the slurry and 4 mio. m{sup 3} from the straw. The result is a sustainable and robust biogas production and an equally sustainable economic performance of the biogas plant. (Author)

  18. Bio-composites made from pine straw

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  19. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    Directory of Open Access Journals (Sweden)

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  20. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  1. Toxicity potential of residual ethylene oxide on fresh or frozen embryos maintained in plastic straws.

    Science.gov (United States)

    Schiewe, M C; Schmidt, P M; Pontbriand, D; Wildt, D E

    1988-01-01

    The toxic effects of residual ethylene oxide (EtO), a frequently used gas-sterilant, on embryos either frozen for long-term purposes or stored acutely for 30 min to 9 hr in a fresh condition in 0.25-ml straw containers were evaluated. In Experiment 1, fresh embryos were frozen (using conventional technology) in straws previously aerated for 0 hr to 8 mo after EtO sterilization. With the exception of the 8-mo group in which survival and quality ratings were depressed, embryo viability was not affected significantly by short-term prefreeze and post-thaw exposure to EtO residues. Experiment 2 was conducted to analyze the influence of prefreeze exposure to EtO residues on embryo development in vitro for embryos temporarily stored in previously sterilized straws aerated for different intervals. Compared to non-EtO-sterilized control straws, the development, quality, and viability of embryos exposed to EtO-treated straws were compromised (p less than 0.05) as the aeration interval decreased and the exposure interval increased. The combined results of both experiments indicate that EtO-treated straws can be used to cryopreserve gametes efficiently, but only if the aeration interval is greater than or equal to 72 hr and the prefreeze duration of exposure is less than or equal to 3 hr.

  2. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  3. Nutrient digestion and performance by lambs and steers fed thermochemically treated crop residues.

    Science.gov (United States)

    Sewell, J R; Berger, L L; Nash, T G; Cecava, M J; Doane, P H; Dunn, J L; Dyer, M K; Pyatt, N A

    2009-03-01

    Five studies were conducted to determine nutrient digestibility and performance of lambs and steers fed thermochemically treated crop residues and distillers dried grains with solubles (DDGS) as a corn replacement pellet (CRP; 75% residue:25% DDGS, DM basis). Fifteen Hampshire, Suffolk, or Dorset wethers (BW 33.3 +/- 5.0 kg) were utilized to evaluate nutrient digestibility of the unprocessed native (NAT) and CRP [Exp. 1: wheat straw (WS); Exp. 2: corn stover (CS); Exp. 3: switchgrass (SWG) and corn fiber:wheat chaff (CFWC)] when limit fed (Exp. 1 and 2: 1.8% of BW daily; Exp. 3: 2.5% of BW daily) compared with a 60% corn diet. In Exp. 4, 56 individually fed Dorset-cross wether lambs (BW 32.0 +/- 1.4 kg) were utilized to compare performance and digestibility of WS, wheat chaff (WC), corn fiber (CF), a 3:1 blend of corn fiber:wheat straw (CFWS), a 3:1 blend of CFWC, and SWG-CRP fed for ad libitum intake compared with a 45% corn diet. In Exp. 5, 32 individually fed Holstein steers (BW 185.2 +/- 0.9 kg) were used to evaluate performance and digestibility of diets containing corn, WS-CRP, CFWC-CRP, or NAT-WS fed for ad libitum intake. Crop residues were processed with 5% calcium oxide (DM basis) and 35% water in a double-shaft enclosed mixer (Readco Kurimoto Continuous Processor, York, PA) and subsequently pelleted with DDGS to form CRP. Feeding lambs WS-CRP (Exp. 1) or CS-CRP (Exp. 2) increased digestion of DM, NDF, and ADF compared with NAT (P crop residues are thermochemically processed. Processed crop residues may be fed in combination with DDGS to partially replace corn in ruminant diets.

  4. Wheat Allergy

    Science.gov (United States)

    ... Watery eyes Wheat allergy Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  5. Effect of Leucaena and Sesbania supplementation on body growth and scrotal circumference of Ethiopian highland sheep and goats fed teff straw basal diet

    NARCIS (Netherlands)

    Kaitho, R.J.; Tegegne, A.; Umunna, N.N.; Nsahlai, I.V.; Tamminga, S.; Bruchem, J. van; Arts, J.M.

    1998-01-01

    The long term effect of supplementation of Leucaena pallida and Sesbania sesban on growth and reproduction performance was determined on 30 male Ethiopian highland sheep and 25 East African goats. Unchopped teff straw (Eragrostis tef) was given ad libitum and supplemented with either wheat bran (150

  6. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  7. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  8. Use of molecular-genetically bred Coprinus cinereus strains for an efficient isolation of cellulose from rice straw.

    Science.gov (United States)

    Kikuchi, Madoka; Ogawa, Kei-ichiro; Yamazaki, Takashi; Kajiwara, Susumu; Shishido, Kazuo

    2002-01-01

    Molecular-bred Coprinus cinereus monokaryotic strains with high lignin- and xylan-degrading activities were mixed-cultured at 27 degrees C in the liquid medium containing 0.5% (w/v) cut rice straw and 0.025% MnCl2. After 3 weeks, the culture supernatant was extensively treated with crude cellulase, showing the presence in it of 9.3% of the total cellulose of rice straw. When rice straw treated with 0.1 N NaOH or cultured with Ganoderma applanatum were used, the recoveries of the cellulose increased up to 29%. The same experiments were done by using a non-bred control strain, showing the recoveries of the cellulose from the treated or cultured rice straw to be 8%.

  9. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...

  10. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  11. Dust-Firing of Straw and Additives

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...

  12. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...

  13. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  14. Multiple effects of swelling by sodium bicarbonate after delignification on enzymatic saccharification of rice straw.

    Science.gov (United States)

    Kahar, Prihardi; Taku, Kazuo; Tanaka, Shuzo

    2013-12-01

    The multiple effects of pretreatments by chemical delignification using acidified sodium chlorite (ASC) and swelling using sodium bicarbonate (SB) for enzymatic saccharification of rice straw in bioethanol production have been investigated in this study. The treatment with the combination of ASC three times (3× ASC) first and SB later resulted in the significant reduction in Klason lignin content up to 90% (wt./wt.). By the saccharification of the pretreated rice straw with cellulase enzymes, it was confirmed that SB treatment was an important step in the pretreatment process not only to disintegrate the cellulose structure but also to facilitate the amorphization of the crystalline cellulose as well as the extended removal of integrated lignin. Furthermore, FTIR analyses revealed that the crystal type of cellulose appeared to be changed from type I to type II by SB treatment, thereby increasing the cellulose surface area and making it more accessible to the cellulase enzyme. Conversion rate to sugar was remarkably increased when 3× ASC + SB treatments were applied to untreated rice straw, even though the saccharification of the treated rice straw was performed at a low enzyme loading (1/100, wt.-enzymes/wt.-substrate). Conclusively, rice straw could be saccharified at high yield in short time at low cellulase loading, enables the enzymatic saccharification to be more feasible for practical bioethanol production using rice straw as a substrate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Co-digestion of ley crop silage, straw and manure

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aa.; Edstroem, M. [Swedish Inst. of Agricultural Engineering, Uppsala (Sweden)

    1997-08-01

    Anaerobic co-digestion of ley crop silage, wheat straw and liquid manure with liquid recirculation was investigated in laboratory- and pilot scale. An organic loading rate of 6.0 g Vs L{sup -1} d{sup -1} was obtained when 20% of liquid manure (TS-basis) was added, whereas an organic loading rate of 2.5 g VS L{sup -1} d{sup -1} was obtained when the manure was replaced with a trace element solution. The methane yield varied between 0.28 and 0.32 L g VS{sup -1}, with the value being lowest for a mixture containing 60% silage, 20% straw and 20% manure (TS-basis), and highest for 100% ley crop silage. The concentration of ammonia-N was maintained at ca 2 g L{sup -1} by adjusting the C:N-ratio with straw. To achieve good mixing characteristics with a reasonable energy input at TS-concentrations around 10%, the particle sizes of straw and silage had to be reduced with a meat mincer. The digester effluent was dewatered, resulting in a solid phase that could be composted without having to add amendments or bulking agents, and a liquid phase containing 7-8% TS (mainly soluble and suspended solids). The liquid phase, which should be used as an organic fertilizer, contained up to 90% of the N and 74% of the P present in the residues. Calculations of the costs for a full-scale plant showed that a biogas price of SEK 0.125 MJ{sup -1} (0.45 k Wh{sup -1}) is necessary to balance the costs of a 1-MW plant. An increase in plant size to 4 MW together with an increase in compost price from SEK 100 tonnes{sup -1} to SEK 370 tonnes{sup -1} and a 20% rise in the methane yield through post-digestion (20%) would decrease the price to SEK 0.061 MJ{sup -1} (0.22 kWh{sup -1}). (au) 15 refs.

  16. Elements of the dynamic behaviour of a 2-metre straw tracker : straw as transmission line

    CERN Document Server

    Wertelaers, P

    2010-01-01

    This Note reports on computational work only. A straw has to be treated as a transmission line. Simple frequency responses can readily be plotted from analytical models. This is done, with special attention to the influence of the serial resistance. For transient responses, a multi-cell numerical model is developed. Such model is obviously approximate, and its shortcomings, mainly of aesthetic nature, are well visible. The scope of this Note is limited to the general line propagation and reflexion behaviour ; it does not include the front-end and the itinerary thereto, nor does it discuss exterior couplings such as cross-talk. However, the developed model could be used to include these.

  17. Rumen Fermentation and Performance of Lactating Dairy Cows Affected by Physical Forms and Urea Treatment of Rice Straw

    Directory of Open Access Journals (Sweden)

    P. Gunun

    2013-09-01

    Full Text Available The aim of this study was to determine the effect of different physical forms and urea treatment of rice straw on feed intake, rumen fermentation, and milk production. Four, multiparous Holstein crossbred dairy cows in mid-lactation with initial body weight (BW of 409±20 kg were randomly assigned according to a 4×4 Latin square design to receive four dietary treatments. The dietary treatments were as follows: untreated, long form rice straw (LRS, urea-treated (5%, long form rice straw (5% ULRS, urea-treated (2.5%, long form rice straw (2.5% ULRS and urea-treated (2.5%, chopped (4 cm rice straw (2.5% UCRS. Cows were fed with concentrate diets at a ratio of concentrate to milk yield of 1:2 and rice straw was fed ad libitum. The findings revealed significant improvements in total DM intake and digestibility by using long and short forms of urea-treated rice straw (p0.05, whereas ruminal NH3-N, BUN and MUN were found to be increased (p<0.01 by urea-treated rice straw as compared with untreated rice straw. Volatile fatty acids (VFAs concentrations especially those of acetic acid were decreased (p<0.05 and those of propionic acid were increased (p<0.05, thus acetic acid:propionic acid was subsequently lowered (p<0.05 in cows fed with long or short forms of urea-treated rice straw. The 2.5% ULRS and 2.5% UCRS had greater microbial protein synthesis and was greatest when cows were fed with 5% ULRS. The urea-treated rice straw fed groups had increased milk yield (p<0.05, while lower feed cost and greater economic return was in the 2.5% ULRS and 2.5% UCRS (p<0.01. From these results, it could be concluded that 2.5% ULRS could replace 5% ULRS used as a roughage source to maintain feed intake, rumen fermentation, efficiency of microbial protein synthesis, milk production and economical return in mid-lactating dairy cows.

  18. Quantitative traits in wheat (Triticum aestivum L

    African Journals Online (AJOL)

    MSS

    2012-11-13

    Nov 13, 2012 ... The effect of the use of different lime rates on the pH values and subsequently on the quantitative traits in wheat (Triticum aestivum ... biological potential of the wheat variety ('Novosadska rana 5'), if adequately treated with lime along with .... stage with 300 kg/ha NPK fertilizer with microelements ratio of 10-.

  19. Comparative Properties of Bamboo and Rice Straw Pellets

    Science.gov (United States)

    Xianmiao Liu; Zhijia Liu; Benhua Fei; Zhiyong Cai; Zehui Jiang; Xing' e Liu

    2013-01-01

    Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw...

  20. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  1. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  2. Evaluation of Some Organic Residues on the Availability of Nutrients to wheat Plants Using '15N Isotope

    International Nuclear Information System (INIS)

    Omar, M.A.I.; Ismail, M.M.; El-akel, E.A.; Abdel Aziz, A.H.A.; Abdel-Wadood, A.

    2008-01-01

    The experiment was carried out in pots under greenhouse conditions to evaluate chicken manure and rice straw either individually or combined with mineral fertilizer rates on wheat plant grown in sandy soils. Organic materials were mixed with 5 kg soil pot 1 . 15 N-labeled ammonium sulfate was added after thinned wheat plants. Basal recommended dose of P and K were applied. The treatments were arranged in a completely randomized block design At harvest, the dry weight of straw and grains were recorded. Also Ndff, Ndfs and FUE were calculated. The obtained results showed that the application of organic and inorganic nitrogen fertilizer was significantly improved the yield of wheat straw and grains and have the order of ammonium sulfate (AS) > chicken manure (CM) > rice straw (RS). The effect was more pronounced when both CM and RS were applied in combined with labelled ammonium sulfate at the rates of (25% + 75%) and (50% + 50%). Fertilizer use efficiency (%FUE) was in the range of 3.9% to 13% in straw and 7.9% to 35.3% in grains. N derived from fertilizer (Ndff) by either straw or grains was ranged from 25.32 - 48.90% dependent on N fertilization forms and rates. Results indicated the importance of organic-N as a supplemental source for nitrogen and other elements which may be useful for enhancement of plant growth as well as saving the environment from pollution

  3. Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble.

    Science.gov (United States)

    Kumhomkul, Thapakorn; Panich-pat, Thanawan

    2013-08-01

    Straw mushrooms were grown on lead contaminated rice straw and stubble. Study materials were dried, acid digested, and analyzed for lead using flame atomic absorption spectrophotometry. The results showed the highest lead concentration in substrate was 445.350 mg kg⁻¹ in Treatment 3 (T3) and the lowest was BD (below detection) in Treatment 1 (T1). The maximum lead content in straw mushrooms was 5.072 mg kg⁻¹ dw in pileus of T3 and the minimum lead content in straw mushrooms was BD in egg and mature (stalk and pileus) stage of T1. The lead concentration in straw mushrooms was affected by the age of the mycelium and the morphology of mushrooms. Mushrooms' lead uptake produced the highest accumulation in the cell wall. Some lead concentrations in straw mushrooms exceeded the EU standard (>3 mg kg⁻¹ dw).

  4. Analysis and simulation of straw fuel logistics

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1998-12-31

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these operations. To be sustainable, the energy content of these fuels should not exceed the energy extracted from the straw. The objective of this study is to analyze straw as fuel in district heating plants with respect to environmental and energy aspects, and to improve the performance and reduce the costs of straw handling. Energy, exergy and emergy analyses were used to assess straw as fuel from an energy point of view. The energy analysis showed that the energy balance is 12:1 when direct and indirect energy requirements are considered. The exergy analysis demonstrated that the conversion step is ineffective, whereas the emergy analysis indicated that large amounts of energy have been used in the past to form the straw fuel (the net emergy yield ratio is 1.1). A dynamic simulation model, called SHAM (Straw HAndling Model), has also been developed to investigate handling of straw from the fields to the plant. The primary aim is to analyze the performance of various machinery chains and management strategies in order to reduce the handling costs and energy needs. The model, which is based on discrete event simulation, takes both weather and geographical conditions into account. The model has been applied to three regions in Sweden (Svaloev, Vara and Enkoeping) in order to investigate the prerequisites for straw harvest at these locations. The simulations showed that straw has the best chances to become a competitive fuel in south Sweden. It was also demonstrated that costs can be

  5. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    Science.gov (United States)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  6. Simultaneous harvesting of straw and chaff for energy purposes : influence on bale density, yield, field drying process and combustion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, G. [JTI Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden); Ronnback, M. [SP Technical Research Inst. of Sweden, Boras (Sweden)

    2010-07-01

    The potential to increase the productivity of fuel straw harvest and transportation was examined. When harvesting straw for energy purposes, only the long fraction is currently collected. However, technological improvements have now rendered it possible to harvest chaff, thus increasing the amount of harvest residues and bale density. The purpose of this study was to determine how harvest yield, bale density, field-drying behaviour and combustion characteristics are affected by the simultaneous harvest of straw and chaff. Field experiments were conducted in 2009 for long- and short-stalked winter wheat crops. Combine harvesting was carried out with 2 different types of combine harvesters. A high-density baler was used to bale the crop residues. Mixing chaff in with the straw swath by combine harvesting gave a lower initial moisture content compared with straw only. The density and the weight of each bale were not affected by the treatments. However, the added chaff increased the total yield of crop residues by 14 per cent, indicating that about half of the biologically available chaff was harvested. Although mixing in chaff increased the ash content by 1 percentage unit, there was no considerable change in net calorific value or ash melting behaviour.

  7. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  8. Cereal straw management: a trade-off between energy and agronomic fate

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    2015-06-01

    Full Text Available Climate change mitigation is the most important driving force for bioenergy development. Consequently, the environmental design of bioenergy value chains should address the actual savings of both primary energy demand and greenhouse gases (GHG emissions. According to the EU Renewable Energy Directive (2009/28/EC, no direct impacts and no GHG emissions should be attributed to crop residues (like cereal straws when they are removed from agricultural land for the purpose of bioenergy utilisation. The carbon neutral assumption applied to crop residues is, however, a rough simplification. Crop residues, indeed, should not be viewed simply as a waste to be disposed, because they play a critical role in sustaining soil organic matter and therefore have an inherent C-capturing value. Moreover, considering straws as an energy feedstock, its status of co-product is clearly recognised and its availability could be obtained according to different cropping systems, corresponding to different primary energy costs and GHG emissions. This paper highlights some hidden features in the assessment of agricultural energy and carbon balance, still very difficult to be detected and accounted for. Although they are frequently disregarded, these features (such as long term dynamic trend of soil organic carbon and annual nitrous oxide emissions from the soil should be carefully considered in assembling the energy and emission balance. By using a crop simulation model, the long-term soil organic matter and annual N2O soil emissions were estimated. Consequently, a comprehensive energy and GHG balance was determined in accordance with the life cycle assessment methodology. Contrasting methods of straw management and wheat cultivation were compared: straw retention vs removal from the soil; conventional vs conservation tillage; wheat cropping system as a single-crop or in rotation. The resulting carbon footprint of straws has different magnitudes with respect to the several

  9. Tested R-value for straw bale walls and performance modeling for straw bale homes

    Energy Technology Data Exchange (ETDEWEB)

    Commins, T.R.; Stone, N.I.

    1998-07-01

    Since the late 1800's, houses have been built of straw. Contrary to nursery rhymes, these houses have proved sturdy and comfortable and not at all easy to blow down. In the last several years, as people have experimented with new and old building materials and looked for ways to halt rice field stubble burning, there has been a resurgence of homes built with straw. Unfortunately, there has been very little testing to determine the thermal performance of straw bale walls or to discover how these walls affect a home's heating and cooling energy consumption. Reported R-values for straw bale walls range from R-17 to R-54, depending on the test procedure, the type of straw used and the type of straw bale wall system. This paper reports on a test set-up by the California Energy Commission (Commission) and conducted in a nationally accredited lab, Architectural Testing Inc. (ATI) in Fresno, California. The paper describes the tested straw bale wall assemblies, the testing process, and problems encountered in the construction and testing of the walls. The paper also gives a reasonable R-value to use in calculating thermal performance of straw bale houses and presents findings that show that straw bale construction can decrease the heating and cooling energy usage of a typical house by up to a third over conventional practice.

  10. γ-ray radiation effect on properties of straw powder/PBS composite

    International Nuclear Information System (INIS)

    Yang Mingcheng; Luo Yongquan; Liu Wentao; Zhu Jun; Guo Dongquan; Li Zhaopeng; Gen Feng; Qu Lingbo

    2013-01-01

    Background: In recent years, with decreasing global fossil resources and increasing 'white pollution', renewable and biodegradable materials attract more and more attentions. Poly (butylene succinate) (PBS) has good mechanical property, biodegradability and processing performance, which is the focus of hot topics in the study of biodegradable plastic materials, however, being soft and of high cost, it is still limited in application range. Purpose: In order to improve the mechanical and thermal properties, a series of wheat straw powder/PBS composites were prepared by melt extrusion, and then the 60 Co-y ray was directly utilized to irradiate the straw powder/PBS composite. Methods: The influence of TAIC (triallyl isocyanurate) radiation absorbed dose and radiation sensitizer on the mechanical property and thermal performance of straw powder/PBS composite was investigated, and the impact fracture surface morphology of the composite was observed by SEM (scanning electron microscope). Results: The tensile strength and flexural strength were enhanced with increasing radiation dosage, and then tend to be stable, the heat distortion temperature also increased but not significantly with increasing radiation dosage. The results show that when TAIC content is 2%, with straw powder/PBS composite irradiated by 30-kGy dose, the tensile strength and flexural strength are increased by 26% and 39.8%, respectively. Conclusion: The radiation modification of composite material has no effect on thermal stability, but do improve the tensile strength and flexural strength when up to 2% of TAIC is integrated and irradiated by certain dose. The interface cohesiveness between straw powder and PBS is strengthened after radiation. (authors)

  11. Propriedades físicas e tecnológicas de farinha de trigo tratada com terra diatomácea Technological and physical properties of wheat flour treated with diatomaceous earth

    Directory of Open Access Journals (Sweden)

    Janete Deliberali Freo

    2011-06-01

    Full Text Available Embora exista grande número de trabalhos sobre a aplicação de terra diatomácea no controle de insetos em grãos de trigo, as informações sobre o resíduo que permanece na farinha após a moagem, mesmo com retirada parcial na etapa de limpeza, e se este altera a qualidade tecnológica, são restritas. O objetivo deste estudo foi avaliar as propriedades físicas e tecnológicas de farinha de trigo tratada com diferentes terras diatomáceas. As terras diatomáceas de marcas comerciais, codificadas como TD1 e TD2 e a farinha de trigo tipo I foram adquiridas no mercado local. A TD1 e TD2 foram adicionadas nas doses zero, 0,5, 1,0 e 2,0g kg-1 de farinha de trigo, homogeneizadas em misturador e realizadas as análises número de queda, alveografia, farinografia, cor e teste de panificação experimental. O experimento foi conduzido em delineamento inteiramente casualizado em arranjo fatorial 2x4, os resultados submetidos à análise de variância (ANOVA e nos modelos significativos, as médias comparadas entre si pelo teste de Tukey a 5% de significância. A terra diatomácea adicionada na quantidade de até 2g kg-1 afeta as propriedades físicas e funcionais da farinha de trigo. O alveógrafo é efetivo para predizer alterações nas propriedades físicas de farinha de trigo tratada com terra diatomácea. As alterações mais acentuadas nas propriedades físicas da farinha de trigo são do componente L* (luminosidade de cor e força geral de glúten (W, enquanto que nas tecnológicas o escore de pontos e componente L* de cor do miolo.Although there are many studies on the application of diatomaceous earth for insect control in wheat grains, the information about the residue that remains in the flour after grinding, even with partial removal in the cleaning step, and if this changes the technological quality are restricted. The objective of this study was to evaluate the physical and functional properties of wheat flour treated with diatomaceous

  12. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang; Yu, Haiyang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Jing [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Xu, Hua, E-mail: hxu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing [Zhenjiang Institute of Agricultural Science of Hilly Regions in Jiangsu, Jurong 212400 (China)

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH{sub 4} emission by 280–1370%, while decreasing N{sub 2}O emission by 7–13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH{sub 4} emission by 7–13% and 6–12%, respectively, whereas reduced N{sub 2}O emission by 10–27% and 9–24%, respectively. The higher CH{sub 4} emission could be attributed to the higher soil CH{sub 4} production potential triggered by the combined application of straw and microbial inoculant, and the lower N{sub 2}O emission to the decreased inorganic N content. As a whole, the benefit of lower N{sub 2}O emission was completely offset by increased CH{sub 4} emission, resulting in a higher GWP for NPKSR (5–12%) and NPKSJ (5–11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3–6% and 2–4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. - Highlights: • This paper presents 3-year measurements of CH

  13. Electrodialytic Removal of Cadmium from Straw Ash

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days...... of remediation. Further removal of cadmium could be possible with longer remediation time or a higher current density...

  14. Developments for the TOF Straw Tracker

    International Nuclear Information System (INIS)

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  15. Development of a doubled haploid system for wheat through wheat ...

    African Journals Online (AJOL)

    Twenty wheat genotypes were crossed with six maize varieties. The haploid embryos were rescued and cultured for plant regeneration and subsequently treated with colchicines for chromosome doubling. Half-diallel crosses were made in a cage and greenhouse and the embryos were cultured in the laboratory under ...

  16. Deprivation of straw bedding alters PGF(2alpha)-induced nesting behaviour in female pigs.

    Science.gov (United States)

    Burne; Murfitt; Gilbert

    2000-10-01

    Sows are highly motivated to build a maternal nest on the day preceding parturition. A model for nest building has been established in pigs, in which exogenously administered prostaglandin F(2alpha) (PGF(2alpha)) may be used to elicit nesting behaviour in cyclic, pseudopregnant and pregnant pigs. The aim of this experiment was to examine the effects of deprivation of straw bedding on PGF(2alpha)-induced nest building in pseudopregnant Large White gilts. Oestradiol valerate injections (5 mg/day) were given on days 11-15 of the oestrous cycle to induce pseudopregnancy. The pigs were housed individually in a pen (2.8x1.7 m) and provided with 2-kg fresh straw each day. On the test day, on day 46 or 47 of pseudopregnancy, half of the pigs were deprived of straw (substrate effect) and they were injected intramuscularly with saline or 15 mg of PGF(2alpha) (Lutalyse, Upjohn) (treatment effect) allocated in a Latin-square design. Behaviour was recorded onto video tapes for 1 h either side of treatment for analysis using a computerised event recorder. PGF(2alpha)-treated pigs housed in bare or strawed pens showed significantly higher frequencies of pawing and rooting, and stood for longer than saline-treated controls. This treatment effect has been previously shown to be comparable to pre-partum nest building. The removal of straw significantly reduced the frequency of pawing and the duration of rooting by PGF(2alpha)-treated pigs. The results demonstrate that nesting behaviour can be initiated by exogenously administered PGF(2alpha) and is further modified by the provision of straw. This suggests that PGF(2alpha)-induced nesting behaviour is subject to environmental feedback.

  17. EFFECT OF RICE STRAW AND NITRATE LEVELS IN SOIL SOLUTION ON NITROUS OXIDE EMISSION

    Directory of Open Access Journals (Sweden)

    André Carlos Cruz Copetti

    2015-04-01

    Full Text Available Among the greenhouse gases, nitrous oxide (N2O is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2 and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N and rice straw levels (0, 5 and 10 Mg ha-1, i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF, significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

  18. EFFICIENCY OF WHEAT, BARLEY AND CORN BRAN TREATED WITH GAMMA RAYS IMPROVING BIOCHEMICAL AND HISTOLOGICAL DISORDERS INDUCED BY FEEDING RATS OXIDIZED OIL

    International Nuclear Information System (INIS)

    SOLIMAN, S.M.; HAMZA, R.G.

    2009-01-01

    The present study aims to investigate the effect of adding 3 different dietary fibers (wheat, barley and corn bran) to normal balanced diet after exposure to gamma radiation at dose of 20 kGy before adding cotton seed oils and boiled oil. The experimental diet was fed for 4 weeks. This study was designed to throw more light on certain biochemical and histological changes in liver of male albino rats. Rats were classified into 8 groups; control group fed on diet fibers free, group 2 fed on diet supplemented with 15% fibers (wheat, barley and corn bran), group 3 fed on diet supplemented with irradiated fibers, group 4 fed on diet supplemented with 15% boiled oil, group 5 fed on diet supplemented with 15% fiber and 15% boiled oil, group 6 fed on diet supplemented with fibers and cotton seed oil 15%, group 7 fed on diet supplemented with irradiated fibers and boiled oil 15% and group 8 fed on diet supplemented with irradiated fibers and cotton seed oil 15%. Experimental investigations were carried out after 4 weeks. The results obtained revealed that extended administration of fibers and cotton seed oil has significantly minimized the amount of thiobarbituric acid reactive substances (TBARS) in blood and significantly ameliorated the glutathion content. Superoxide dismutas and catalase enzymes were assayed in blood, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were detected. In addition, modulations of cholesterol and triglycerides levels were observed through all the experiments. In rats fed on boiled oil, the data showed histological changes in liver such as tissue degeneration, lymphocyte infiltration, hepatic cell necrosis and dilation of portal spaces and blood vessels.

  19. Mortality and F1 progeny of the lesser grain borer, Rhyzopertha dominica (F), on wheat treated with diatomaceous earth: effects of rate, exposure period and relative humidity.

    Science.gov (United States)

    Ferizli, Ahmet G; Beris, Gulay

    2005-11-01

    A series of experiments at 25 (+/-1) degrees C were conducted in which different application rates of diatomaceous earth (DE) formulation Protect-It at two levels of relative humidity, 40 and 55%, and at three exposure periods were evaluated for control of Rhyzopertha dominica (F). Test insects were placed in vials containing 40 g of soft winter wheat mixed with 0.25, 0.50, 1.00, 1.50 and 2.00 g DE kg(-1). At all rates except 0.25 g kg(-1), mortality was significantly different from that in the control at the relevant exposure period. After each exposure interval, dead and live insects were counted and removed, and the vial containing wheat was then returned to the appropriate humidity chamber for 8 weeks until F(1) adults emerged. F(1) progeny production was significantly different from the control group at all rates. Mortalities for 1, 2 and 3 weeks exposure were found to be 47 (+/-5)%. Despite the fact that mortality increased with increasing rate, total mortality was not achieved even at the highest rate of DE. F(1) progeny production decreased with increasing rate for both RH conditions, and containment of population for both RH conditions was achieved at 1.00 g DE kg(-1). For each exposure period, F(1) progeny production of R dominica decreased with increasing rate of DE, and population suppression was achieved at 1.00 g DE kg(-1) for all exposure intervals. In summary, Protect-It resulted in reduced F(1) adult progeny and containment of population was achieved at 1.00 g DE kg(-1) at which rate mortality was 77%. Copyright 2005 Society of Chemical Industry.

  20. 29-36 Supplementation of Graded Levels of Wheat Bran to Intact ...

    African Journals Online (AJOL)

    urea solution was sprayed thoroughly onto layers of tef straw, rubbed by hand to ensure proper penetration and trampled on by foot to ensure proper packing. After filling the trench with urea treated straw, it was covered with plastic sheeting, and loaded with soil to create a hermetic sealing and left to incubate for 21 days.

  1. 29-36 Supplementation of Graded Levels of Wheat Bran to Intact ...

    African Journals Online (AJOL)

    for the lucrative religious holiday markets. The major reason for castration of sheep is to ... ammonia released from urea treated straw and incorporate it into their cell proteins. Thus, this could be a group .... the ammonia generated into the environment in the course of straw treatment with urea and until fed to animals. It.

  2. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  3. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    Science.gov (United States)

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P acid and alkaline soils, respectively.

  4. Development of a new lactic acid bacterial inoculant for fresh rice straw silage

    Directory of Open Access Journals (Sweden)

    Jong Geun Kim

    2017-07-01

    Full Text Available Objective Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods Lactic acid bacteria (LAB from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821 were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841, two commercial inoculants (HM/F and P1132 and no additive as a control. Results After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p0.05 effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP content and in vitro DM digestibility (IVDMD increased after inoculation of LAB 1821 (p<0.05. Conclusion LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH3-N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  5. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  7. Greenhouse (III): Gas-Exchange and Seed-to-Seed Experiments on the Russian Space Station MIR and Earth-grown, Ethylene-Treated Wheat Plants

    Science.gov (United States)

    Campbell, William F.; Bingham, Gail; Carman, John; Bubenheim, David; Levinskikh, Margarita; Sytchev, Vladimir N.; Podolsky, Igor B.; Chernova, Lola; Nefodova, Yelena

    2001-01-01

    The Mir Space Station provided an outstanding opportunity to study long-term plant responses when exposed to a microgravity environment. Furthermore, if plants can be grown to maturity in a microgravity environment, they might be used in future bioregenerative life-support systems (BLSS). The primary objective of the Greenhouse experiment onboard Mir was to grow Super Dwarf and Apogee wheat through complete life cycles in microgravity; i.e., from seed-to-seed-to-seed. Additional objectives were to study chemical, biochemical, and structural changes in plant tissues as well as photosynthesis, respiration, and transpiration (evaporation of water from plants). Another major objective was to evaluate the suitability clothe facilities on Mir for advanced research with plants. The Greenhouse experiment was conducted in the Russian/Bulgarian plant growth chamber, the Svet, to which the United States added instrumentation systems to monitor changes in CO2 and water vapor caused by the plants (with four infrared gas analyzers monitoring air entering and leaving two small plastic chambers). In addition, the US instrumentation also monitored O2; air, leaf (IR), cabin pressure; photon flux; and substrate temperature and substrate moisture (16 probes in the root module). Facility modifications were first performed during the summer of 1995 during Mir 19, which began after STS-72 left Mir. Plant development was monitored by daily observations and some photographs.

  8. Fate of {sup 15}N-urea applied to wheat-soybean succession crop

    Energy Technology Data Exchange (ETDEWEB)

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: aeboaret@cena.usp.br; pcotrive@cena.usp.br; muraoka@cena.usp.br; Spolidorio, Eduardo Scarpari [SN Centro de Pesquisa e Promocao de Sulfato de Amonio, Piracicaba, SP (Brazil)]. E-mail: sncentro@merconet.com.br; Freitas, Jose Guilherme de; Cantarella, Heitor [Instituto Agronomico de Campinas, SP (Brazil)]. E-mail: jfreitas@iac.sp.gov.br; hcantare@iac.sp.gov.br

    2004-07-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha{sup -1}) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha{sup -1} of N. The efficiency of {sup 15}N-urea utilization ranged from 52% to 85%. The main loss of applied {sup 15} N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha{sup -1}, was less than 1% of applied {sup 15}N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual {sup 15} N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the {sup 15} N applied to wheat at sowing or at tillering stage. (author)

  9. Fate of 15N-urea applied to wheat-soybean succession crop

    International Nuclear Information System (INIS)

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Spolidorio, Eduardo Scarpari; Freitas, Jose Guilherme de; Cantarella, Heitor

    2004-01-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha -1 ) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha -1 of N. The efficiency of 15 N-urea utilization ranged from 52% to 85%. The main loss of applied 15 N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha -1 , was less than 1% of applied 15 N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15 N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15 N applied to wheat at sowing or at tillering stage. (author)

  10. Radiation disinfection of rice-straw products

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao; Ohki, Yumi.

    1991-01-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10 7 - 3x10 8 per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D 10 values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D 10 values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10 -4 per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author)

  11. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    Science.gov (United States)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  12. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  13. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...

  14. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    Science.gov (United States)

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P replacement of corn and 10% untreated residue with treated forage result in a nutrient supply of OM similar to that of the control. The improvements in total tract fiber digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets.

  15. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism.

    Science.gov (United States)

    Tripathi, M K; Mishra, A S; Misra, A K; Vaithiyanathan, S; Prasad, R; Jakhmola, R C

    2008-03-01

    Selection of white-rot fungi of bio-conversion of mustard straw (MS) into feed for ruminants. Mustard straw was cultured with Ganoderma applanatum, Coriolus versicolor and Phanerochaete chrysosporium for solid-state fermentation at 35 degrees C from 7 to 63 days for delignification and for 21 days to study dry matter digestibility and protein enrichment. Lignin loss in fungus cultured straw varied between 100 and 470 g kg(-1) lignin. Delignification was higher between 7 and 28 days fermentation with C. versicolor. Among the three fungi P. chrysosporium was the most effective in degrading lignin for longer fermentation. In-vitro dry matter digestibility (IVDMD) and crude protein content was higher in C. versicolor cultured straw. Large quantity of straw was cultured by C. versicolor for 21 days, for in vivo evaluation. Mean pH and metabolites of rumen fermentation were not different while, pH and volatile fatty acid increased at 6 h postfermentation on cultured straw feeding. Cultured straw fermentation increased (P = 0.001) small holotricks and reduced (P = 0.005) large holotricks population. Fungus cultures straw did not improve microbial enzyme concentration. Coriolus versicolor and P. chrysosporium were the promising fungus for MS bio-delignification. Coriolus versicolor treated MS improved dry matter digestibility and protein content.

  16. Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

    Directory of Open Access Journals (Sweden)

    P. Gunun

    2013-12-01

    Full Text Available This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS and urea-treated (3% rice straw (UTRS, and factor B was type of physical form of rice straw: long form rice straw (LFR and chopped (4 cm rice straw (CHR. The steers were offered the concentrate at 0.5% body weight (BW /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p0.05, except propionic acid (C3 was increased (p<0.05 in UTRS fed group. Nitrogen (N balance was affected by urea treatment (p<0.05. Microbial protein synthesis (MCP synthesis were greater by UTRS and CHR group (p<0.05. The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05. From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

  17. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  18. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  19. Some characteristics of the long straw drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Ivanov, A.B.; Livinskij, V.V.; Lobastov, S.P.; Lysan, V.M.; Mishin, S.V.; Peshekhonov, V.D.

    1998-01-01

    This article represents the construction and testing of the long straw drift tubes of different types. The diameter and the length of each straw were equal to 15 mm and 3 m respectively. The cathode resistance of these straws has a small value, i.e. about 100 Ohm/m. Thus, they do not have a large attenuation length. Installation of the spacers reduces the effective straw length by 0.5 % per meter, at least

  20. Characteristics of Three Decomposer Accelerators on Maize Straw Decomposition

    OpenAIRE

    KUANG En-jun; CHI Feng-qin; SU Qing-rui; ZHANG Jiu-ming; GAO Zhong-chao; ZHU Bao-guo

    2014-01-01

    In order to make sure the effect of straw decomposer accelerators on the maize straws in Northeast of China, mesh bag method was used to determine the decomposition characteristics of maize straw biomass amount and nutrition release regularity in one year. The results showed that after 100 days, decomposition rates of maize straws biomass amount were between 57.1%-64.1%. The highest decomposition rate of 64.1% was the treatment with the 3rd decomposer accelerator. The nutrition release rates ...