WorldWideScience

Sample records for treated metallic adherends

  1. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  2. Effects of composite adherend properties on stresses in double lap bonded joints

    International Nuclear Information System (INIS)

    Mokhtari, M.; Madani, K.; Belhouari, M.; Touzain, S.; Feaugas, X.; Ratwani, M.

    2013-01-01

    Highlights: ► We analysis the maximal stresses distribution in the adhesive and the adherend for double lap joint. ► We modified the mechanical properties of adherend layer to decreases the stresses in adhesive layer. ► Then, we analysis the influence of modifying the types of fibers on maximal stresses distributions. ► We analysis the thickness modifications of some layers on maximal stresses distribution. ► In last, we analysis the combination of different modifications on maximal stresses distribution. -- Abstract: The effects of composite layer stiffness, thickness and ply orientations on stresses in the adhesive layer of a double lap bonded joint are investigated using three-dimensional finite element analysis code ABAQUS. A special 3-layer modelling technique is used in the finite element analysis. The non-linear behaviour of adhesive is also considered. Six composite laminates with different ply orientations are used in the lap-joint analysis. The composite materials considered in the analysis are – carbon epoxy, boron epoxy, T300/934 graphite-epoxy, and aramid epoxy. The analysis results indicate that the maximum stress in the adhesive can be significantly reduced by changing the stiffness and fibre orientations in the composite layer. Also, the use of hybrid composite (changing the nature of the fibres in two layers which are near the adhesive layer) results in reducing adhesive shear stresses.

  3. Metallic taste in cancer patients treated with chemotherapy.

    Science.gov (United States)

    IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L

    2015-02-01

    Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  5. Tensile behavior of laser treated Fe-Si-B metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B., E-mail: narendra.dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, Texas 76203-5017 (United States)

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  6. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  7. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    International Nuclear Information System (INIS)

    Vallee, T.; Keller, Th.; Fourestey, G.; Fournier, B.; Correia, J.R.

    2009-01-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  8. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, T.; Keller, Th. [Ecole Polytech Fed Lausanne, CCLab, CH-1015 Lausanne, (Switzerland); Fourestey, G. [Ecole Polytech Fed Lausanne, IACS, Chair Modeling and Sci Comp, CH-1015 Lausanne, (Switzerland); Fournier, B. [CEA SACLAY ENSMP, DEN, DANS, DMN, SRMA, LC2M, F-91191 Gif Sur Yvette, (France); Correia, J.R. [Univ Tecn Lisbon, Inst Super Tecn, Civil Engn and Architecture Dept, P-1049001 Lisbon, (Portugal)

    2009-07-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  9. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...... that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (

  10. Adsorption of phenol on metal treated by granular activated carbon

    International Nuclear Information System (INIS)

    Kang, Kwang Cheol; Kwon, Soo Han; Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won; Kim, Jin Won

    2007-01-01

    In this study, the effect of metal treatment on Granular Activated Carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal

  11. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  12. Behavior of metallic fuel in treat transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Wright, A.E.; Robinson, W.R.; Klickman, A.E.

    1988-01-01

    Results and analyses are reported for TREAT in-pile transient overpower tests of margin to cladding failure and pre-failure axial expansion of metallic fuel. In all cases the power rise was exponential on an 8 s period until either incipient or actual cladding failure was achieved. Test fuel included EBR-II driver fuel and ternary alloy, the reference fuel of the Intergral Fast Reactor concept. Test pin burnup spanned the widest range available. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models are presented which describe observed cladding failures and pre-failure axial expansions yet are general enough to apply to all metal fuel types

  13. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawai

    Full Text Available Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600 °C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro.

  14. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  15. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  16. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  17. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic

  18. New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood

    Science.gov (United States)

    Todd F. Shupe; Chung Y. Hse; Hui Pan

    2012-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...

  19. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  20. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants

    Science.gov (United States)

    Stumpner, Elizabeth; Kraus, Tamara; Liang, Yan; Bachand, Sandra M.; Horwath, William R.; Bachand, Philip A.M.

    2018-01-01

    In many regions of the world, subsidence of organic rich soils threatens levee stability and freshwater supply, and continued oxidative loss of organic matter contributes to greenhouse gas production. To counter subsidence in the Sacramento-San Joaquin Delta of northern California, we examined the feasibility of using constructed wetlands receiving drainage water treated with metal-based coagulants to accrete mineral material along with wetland biomass, while also sequestering carbon in wetland sediment. Nine field-scale wetlands were constructed which received local drainage water that was either untreated (control), or treated with polyaluminum chloride (PAC) or iron sulfate (FeSO4) coagulants. After 23 months of flooding and coagulant treatment, sediment samples were collected near the inlet, middle, and outlet of each wetland to determine vertical accretion rates, bulk density, sediment composition, and carbon sequestration rates. Wetlands treated with PAC had the highest and most spatially consistent vertical accretion rates (~6 cm year-1), while the FeSO4 wetlands had similarly high accretion rates near the inlet but rates similar to the untreated wetland (~1.5 cm year-1) at the middle and outlet sites. The composition of the newly accreted sediment in the PAC and FeSO4 treatments was high in the added metal (aluminum and iron, respectively), but the percent metal by weight was similar to native soils of California. As has been observed in other constructed wetlands, the newly accreted sediment material had lower bulk densities than the native soil material (0.04-0.10 g cm-3 versus 0.2-0.3 g cm-3), suggesting these materials will consolidate over time. Finally, this technology accelerated carbon burial, with rates in PAC treated wetland (0.63 kg C m-2 yr-1) over 2-fold greater than the untreated control (0.28 kg C m-2 yr-1). This study demonstrates the feasibility of using constructed wetlands treated with coagulants to reverse subsidence by accreting the

  2. Rapid microwave-assisted acid extraction of metals from chromated copper arsenate (CCA)-treated southern pine wood

    Science.gov (United States)

    Bin Yu; Chung Y. Hse; Todd F. Shupe

    2009-01-01

    The effects of acid concentration, reaction time, and temperature in a microwave reactor on recovery of CCA-treated wood were evaluated. Extraction of copper, chromium, and arsenic metals from chromated copper arsenate (CCA)-treated southern pine wood samples with three different acids (i.e., acetic acid, oxalic acid, and phosphoric acid) was investigated using in...

  3. Corrosion of metals in treated wood examined by synchrotron based xanes and XFM

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; Leandro Passarini; Barry Lai

    2016-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products used in outdoor environments. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Over the past ten years, several studies have looked at the...

  4. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    Science.gov (United States)

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  5. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    Science.gov (United States)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  6. Fractionation of heavy metals in liquefied chromated copper arsenate (CCA)-treated wood sludge using a modified BCR-sequential extraction procedure

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Robert Gambrell; Todd F. Shupe

    2009-01-01

    Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified...

  7. Accumulation of heavy metals by chickpea grown in fly Ash treated soil: effect on antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vimal Chandra; Singh, Jay Shankar [Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, Uttar Pradesh (India); Kumar, Akhilesh; Tewari, D.D. [Department of Botany, Maharani Lal Kunwari Post Graduate College, Balrampur, Uttar Pradesh (India)

    2010-12-15

    Chickpea grown in fly ash (FA) treated soil (25, 50, and 100% FA) was used to evaluate the effect of FA on antioxidants, metal concentration (Fe, Zn, Cu, Cr, and Cd), photosynthetic pigments (chlorophyll a (chl-a), chlorophyll b (chl-b), total chlorophyll (total chl), and carotenoids), growth and yield performance. All antioxidants in roots, shoots and leaves of chickpea increase with increasing FA doses to combat FA stress. The activities of antioxidants were more in the root tissues to cope with stress induced in the plants as compared to shoot and leaf. Concentration of metals was found maximum in roots than the shoots and seeds. The highest concentration of Fe and lowest level of Cd were recorded in all treatments of FA for different parts of the plant. The treated crop showed reduced level of chlorophyll but enhanced level of carotenoids and protein. However, root length, number of nodules and biomass in 25 and 50% FA treatments did not differ significantly in comparison to respective control plants. These results suggest that heavy metals of FA causes oxidative stress in this crop and the antioxidant enzymes could help a pivotal role against oxidative injury. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Heavy metals speciation in soils treated with sewage sludges

    International Nuclear Information System (INIS)

    Forero Hernandez, Adriana; Ballesteros Gonzalez, Maria Ines

    2004-01-01

    The chemical speciation in soils that had been treated with sewage sludge was determined to find out what had occurred to the heavy metals present. This was done nine weeks after sludge application. An incubation assay was realized using 2.5 % w/w sludge level; this is equivalent to 81.5 ton of sludge per hectare. Pots filled with sludge-soil mixture were placed in a greenhouse at temperature between 17 and 25 Celsius degrade, humidity at field capacity distributed in accordance with a random experimental design with four replicates and seven treatments. It was found that the concentration of Cd, Cu, Mn, Pb, and Zn was lower than the limits established by the environmental protection agency (EPA) for soil usage. Also, the organic carbon content, the available nitrogen and phosphorus were in the normal concentration range reported for organic fertilizers. The sludge addition to the soil gave significant increase of the fraction of Cd bounded to organic material as compared with the exchangeable fraction and the fraction bounded to iron-manganese oxides. Cooper showed more affinity for the fraction of iron-manganese oxides. Lead gave a fraction bounded to organic material that was absent in the witness samples. Zinc had a bigger proportion in the fraction associated with iron manganese oxides. Manganese as compared with the other metals showed the biggest unchangeable fraction

  9. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Posttest examination results of recent treat tests on metal fuel

    International Nuclear Information System (INIS)

    Holland, J.W.; Wright, A.E.; Bauer, T.H.; Goldman, A.J.; Klickman, A.E.; Sevy, R.H.

    1986-01-01

    A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity. Eutectic penetration and failure of the cladding were also examined in the failed pins

  11. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  12. Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants.

    Science.gov (United States)

    Kato, Hirokazu; Kondo, Motoharu; Imada, Hajime; Kuroda, Masahiro; Kamimura, Yoshitsugu; Saito, Kazuyuki; Kuroda, Kagayaki; Ito, Koichi; Takahashi, Hideaki; Matsuki, Hidetoshi

    2013-05-01

    This article is a redissemination of the previous Japanese Quality Assurance Guide guidelines. Specific absorption rate and temperature distribution were investigated with respect to various aspects including metallic implant size and shape, insertion site, insertion direction, blood flow and heating power, and simulated results were compared with adverse reactions of patients treated by radio frequency capacitive-type heating. Recommended guidelines for safe heating methods for patients with metallic implants are presented based on our findings.

  13. A Survival Analysis of Patients with Malignant Biliary Strictures Treated by Percutaneous Metallic Stenting

    International Nuclear Information System (INIS)

    Brountzos, Elias N.; Ptochis, Nikolaos; Panagiotou, Irene; Malagari, Katerina; Tzavara, Chara; Kelekis, Dimitrios

    2007-01-01

    Background. Percutaneous metal stenting is an accepted palliative treatment for malignant biliary obstruction. Nevertheless, factors predicting survival are not known. Methods. Seventy-six patients with inoperable malignant biliary obstruction were treated with percutaneous placement of metallic stents. Twenty patients had non-hilar lesions. Fifty-six patients had hilar lesions classified as Bismuth type I (n = 15 patients), type II (n = 26), type III (n = 12), or type IV (n = 3 patients). Technical and clinical success rates, complications, and long-term outcome were recorded. Clinical success rates, patency, and survival rates were compared in patients treated with complete (n = 41) versus partial (n = 35) liver parenchyma drainage. Survival was calculated and analyzed for potential predictors such as the tumor type, the extent of the disease, the level of obstruction, and the post-intervention bilirubin levels. Results. Stenting was technically successful in all patients (unilateral drainage in 70 patients, bilateral drainage in 6 patients) with an overall significant reduction of the post-intervention bilirubin levels (p < 0.001), resulting in a clinical success rate of 97.3%. Clinical success rates were similar in patients treated with whole-liver drainage versus partial liver drainage. Minor and major complications occurred in 8% and 15% of patients, respectively. Mean overall primary stent patency was 120 days, while the restenosis rate was 12%. Mean overall secondary stent patency was 242.2 days. Patency rates were similar in patients with complete versus partial liver drainage. Mean overall survival was 142.3 days. Survival was similar in the complete and partial drainage groups. The post-intervention serum bilirubin level was an independent predictor of survival (p < 0.001). A cut-off point in post-stenting bilirubin levels of 4 mg/dl dichotomized patients with good versus poor prognosis. Patient age and Bismuth IV lesions were also independent predictors

  14. Pin on disk against ball on disk for the evaluation of wear improvement on cryo-treated metal cutting shears

    Science.gov (United States)

    Jimbert, P.; Iturrondobeitia, M.; Ibarretxe, J.; Fernandez-Martinez, R.

    2015-03-01

    When talking about trybology, the election of the laboratory experiment type is a common problem of discussion. Laboratory wear methods are not designed to exactly reproduce the real working conditions of the analyzed part itself but serve to engineers and researcher to extrapolate the laboratory results to the real application. In order to shed some light on this issue, two wear tests have been analyzed following an ASTM standard and using the same experimental parameters and testing pair-materials in order to be able to make a comparison: Pin-on-Disk (PoD) against Ball-on-Disk (BoD). Three different tool steel have been analyzed in this study, AISI D2, AISI A8 and AISI H13, used to produce metal cutting shears. Metal on metal dry sliding tests were designed in order to reproduce the tool working conditions. These three materials were cryogenically treated and compared against no cryogenically treated ones to measure the improvement on their wear resistance due to cryogenic treatment. Finally, the wear rates obtained with both laboratory tests were compared against some real production metal cutting tools wear data. Results revealed an improvement of the wear resistance for cryo-treated samples of around 20% with the BoD test and around 6% with the PoD test. Real production tools wear was calculated for one of the tool steels and for two different applications. The improvement was approximately the one revealed by the BoD test. So, for the studied case, the BoD laboratory test gives more realistic prediction of real tool life improvement due to the cryogenic treatment.

  15. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  16. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  17. Heavy metal removal in an UASB-CW system treating municipal wastewater.

    Science.gov (United States)

    de la Varga, D; Díaz, M A; Ruiz, I; Soto, M

    2013-10-01

    The objective of the present study was to investigate for the first time the long-term removal of heavy metals (HMs) in a combined UASB-CW system treating municipal wastewater. The research was carried out in a field pilot plant constituted for an up-flow anaerobic sludge bed (UASB) digester as a pretreatment, followed by a surface flow constructed wetland (CW) and finally by a subsurface flow CW. While the UASB showed (pseudo) steady state operational conditions and generated a periodical purge of sludge, CWs were characterised by the progressive accumulation and mineralisation of retained solids. This paper analyses the evolution of HM removal from the water stream over time (over a period of 4.7 year of operation) and the accumulation of HMs in UASB sludge and CW sediments at two horizons of 2.7 and 4.0 year of operation. High removal efficiencies were found for some metals in the following order: Sn > Cr > Cu > Pb > Zn > Fe (63-94%). Medium removal efficiencies were registered for Ni (49%), Hg (42%), and Ag (40%), and finally Mn and As showed negative percentage removals. Removal efficiencies of total HMs were higher in UASB and SF units and lower in the last SSF unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Chromatographic separation of metal ions by means of paper treated with trioctyl - phosphate, Annex 7

    Energy Technology Data Exchange (ETDEWEB)

    Cvjeticanin, N M; Cvoric, J D; Obrenovic-Paligoric, I D [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    This chromatographic behaviour of uranium, thorium and some other metal ions and long-lived fission products was investigated on paper treated with trioctyl-phosphate. Hydrochloric, nitric, sulphuric and perchloric acids in concentrations of 0.1-10 N were used as the elution agents. The R{sub f} values of the ions investigated, which show the possibility of the inter separation of some cations, are given as a function of the concentration of acids (author)

  19. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  20. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  1. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  2. Success and complications of an intra-ductal fully covered self-expanding metal stent (ID-FCSEMS) to treat anastomotic biliary strictures (AS) after orthotopic liver transplantation (OLT).

    Science.gov (United States)

    Aepli, Patrick; St John, Andrew; Gupta, Saurabh; Hourigan, Luke F; Vaughan, Rhys; Efthymiou, Marios; Kaffes, Arthur

    2017-04-01

    Anastomotic biliary strictures (AS) after orthotopic liver transplantation (OLT) belong to the most common biliary complications and cause the biggest morbidity burden after OLT. Metal stents for benign biliary strictures are gaining acceptance with many published series. Traditional metal stent designs seem to have poor durability in AS after OLT. Novel intra-ductal stents are showing promise in these strictures. As a result, we designed a special stent with an antimigration waist and a short stent length with a long removal string that rests in the duodenum for easy removal. This is a retrospective multi-centre Australian study of AS after OLT treated with a novel intra-ductal fully covered self-expanding metal stent. From August 2008 to October 2014, records from three liver transplant centres were reviewed. Totally 36 ID-FCSEMS were inserted in 31 cases to treat an AS after OLT. The mean age of the patients was 56 years, and 61 % were male. The mean time of AS presentation after OLT was 20.3 months. Eight out of our 31 patients were previously treated using multiple plastic stenting over time without any success. Treatment with the ID-FCSEMS was performed with an average treatment time of 3.8 months. Stricture resolution was achieved in 100 %. All attempted stents removals were successful without any difficulty. Complications were reported in 6.5 %. It was pleasing that only one case of stent migration (2.8 %) was seen. Follow-up showed seven cases of AS recurrence (24.1 %), and all were treated successfully with repeat ERCP and stenting (some metal, some plastic). This novel ID-FCSEMS has a high clinical success and low complication rate, and in particular, there was only one case of stent migration. As a result, this stent type is preferred to traditional metal stents for treating AS after OLT.

  3. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  4. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  5. A Comparison of the Outcomes for Cartilage Defects of the Knee Treated With Biologic Resurfacing Versus Focal Metallic Implants.

    Science.gov (United States)

    Pascual-Garrido, Cecilia; Daley, Erika; Verma, Nikhil N; Cole, Brian J

    2017-02-01

    To compare the results of focal metallic resurfacing with biologic procedures in patients more than 35 years of age with isolated, full thickness defects of the femoral condyle. A total of 61 patients met the selection criteria resulting in 30 patients treated with biological procedures, including debridement, microfracture, osteochondral autograft transplantation, osteochondral allograft, and autologous chondrocyte implantation (BIO group), and 32 patients treated with focal metallic resurfacing (CAP group). The BIO and CAP groups were matched according to treatment location, defect grade and size, and age profile. Outcomes included Western Ontario and McMaster Osteoarthritis Index (WOMAC), Short Form-12, and satisfaction. The primary combination endpoint was determined as a 20% improvement (minimum clinically important difference-20) on WOMAC pain and function at 2 years and no additional index lesion-related surgical intervention. Safety and effectiveness were also reported. Thirty patients in the BIO group (mean age of 44.6, range 35-64) had an average follow-up of 2.6 years and 32 patients in the CAP group (mean age 47.9, range 37-68) were followed for 2.0 years. Fifty-three percent in the BIO group and 75% in the CAP group achieved success per the endpoint definition. The mean total WOMAC score improved significantly for both groups (BIO: 57-78; P metal resurfacing procedures for the treatment of isolated focal chondral lesions of the femoral condyle in the knee. Focal metallic resurfacing results in similar clinical outcomes and provides excellent success rates at short-term follow-up. Level III comparative study. Copyright © 2016. Published by Elsevier Inc.

  6. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  7. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    Science.gov (United States)

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khokhotva, Oleksandr, E-mail: khokhotva@bigmir.net [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden); Waara, Sylvia, E-mail: sylvia.waara@hh.se [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden)

    2011-06-15

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: > Metal-pine bark complex stability under changing environmental conditions is studied. > Metal leaching from non-treated bark is much higher than from urea-treated bark. > No significant influence of changing environmental conditions on the leaching extent. > Metal leaching from wet bark samples exposed to freezing is somewhat higher.> Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  9. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    International Nuclear Information System (INIS)

    Khokhotva, Oleksandr; Waara, Sylvia

    2011-01-01

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: → Metal-pine bark complex stability under changing environmental conditions is studied. → Metal leaching from non-treated bark is much higher than from urea-treated bark. → No significant influence of changing environmental conditions on the leaching extent. → Metal leaching from wet bark samples exposed to freezing is somewhat higher.→ Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  10. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  11. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  12. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  13. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.

    Science.gov (United States)

    Liang, Yinxiu; Zhu, Hui; Bañuelos, Gary; Xu, Yingying; Yan, Baixing; Cheng, Xianwei

    2018-06-07

    This study aims to evaluate the practical potential of using constructed wetlands (CWs) for treating saline wastewater containing various heavy metals. The results demonstrated that CWs growing Canna indica with porous slag as substrate could efficiently remove heavy metals (Cu, Zn, Cd, and Pb) from saline wastewater at an electrical conductivity (EC) of 7 mS/cm, especially under low influent load. Salts with salinity level (characterized as EC) of 30 mS/cm suppressed the removal of some heavy metals, dependent on heavy metal species and their influent concentrations. The presence of salts in CWs can improve the accumulation of Cu, Zn, and Pb in plant tissues as compared to control treatment, irrespective of metal concentrations in solution. The influence of salts on Cd accumulation depended on both salinity levels and Cd concentrations in solution. Although more heavy metals were accumulated in roots than in shoots, the harvesting of aboveground plant materials is still efficient addition for heavy metal removal due to the greater biomass and growth rate of aboveground plant material. Furthermore, replacing all plants instead of preserving roots from harvested plants in CWs over a period of time is essential for heavy metal removal, because the continued accumulation by roots can be inhibited by the increasing accumulated heavy metals from saline wastewater.

  14. Treat mine water using passive methods

    International Nuclear Information System (INIS)

    Kleinmann, R.L.P.; Hedin, R.S.

    1993-01-01

    Passive treatment represents an alternative to conventional chemical treatment of coal mine drainage. When successful, passive systems require less investment, less maintenance and usually are less expensive than conventional chemical treatment systems. As a result, during the last seven years, more than 500 passive systems have been constructed in the United States to treat coal mine drainage. Some exist as an alternative to conventional treatment; others serve as an inexpensive pretreatment step than can decrease subsequent chemical requirements. Sulfide minerals present in rock disturbed during mining can oxidize to form an acidic metal-laden solution, commonly known as acid mine drainage (AMD). Alkalinity present in the rock may partially or completely neutralize AMD, but if either acidity or excessive metal contaminants remain, the water must be treated before it can be discharged legally. The principal regulated contaminant metals of coal mine drainage are iron and manganese. Metal mine drainage often contains more toxic metals, such as cadmium, nickel, copper and zinc. Chemical treatment of AMD is estimated to cost America's mining industry more than $1 million a day. Three principal passive technologies are used in the treatment of coal mine drainage: Aerobic wetlands, wetlands constructed with an organic substrate and anoxic limestone drains (ALDS). The selection of the technology or combination of technologies to be used depends on the quality of the water being treated

  15. Bioaccumulation of metals in constructed wetlands used to treat acid drainage

    International Nuclear Information System (INIS)

    Edwards, G.S.; Mays, P.A.

    1994-01-01

    Constructed wetlands are being used extensively as a potential mitigation for acid drainage. However, removal of metals to meet compliance requirements has varied among wetlands, ranging from partial to total success. In addition, wetlands are sinks for contaminants found in acid drainage, and bioaccumulation of these contaminants to levels that would adversely affect the food web is of growing concern. The primary objective of this project was to determine whether bioaccumulation of metals occurs in wetlands constructed for treatment of acid drainage. Water, sediment, plant and benthos samples were collected from two wetlands constructed by the Tennessee Valley Authority and a natural wetland in the spring and fall of 1992, and metal concentrations were determined. One of the constructed wetlands, Impoundment 1, has generally been in compliance for NPDES; the other, Widow's Creek, has never been in compliance. Preliminary results indicate similarities in sediment and plant metal concentrations between Impoundment 1 and the natural wetland and greater metal concentrations in the sediment and plants at Widow's Creek. Data also indicate that Mn, Zn, Cu, Ni, and Cr are being accumulated in the plants at each wetland. However, accumulation of metals by these plants probably accounts for only a small percentage of the removal of the annual metal load supplied to each wetland. Bioaccumulation of metals in the benthic organisms at each wetland is currently being investigated

  16. Fatigue life of metal treated by magnetic field

    International Nuclear Information System (INIS)

    Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing

    2009-01-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data. (cross-disciplinary physics and related areas of science and technology)

  17. The application of thermodynamic and spectroscopic techniques to adhesion in the polyimide/Ti 6-4 and polyphenylquinoxaline/Ti 6-4 systems

    Science.gov (United States)

    Dias, S.; Wightman, J. P.

    1984-01-01

    The results of calorimetric measurements of Ti adherend surfaces are presented. The measurements were carried out after several chemical pretreatments and after fracture of several lap shear samples aged at high temperature. The exact composition of the Ti samples was Ti(6 percent Al-4 percent V). The adhesives used were polyimides and polyphenylquinoxalines (PPQ). Each chemical pretreatment was accompanied by a unique spectroscopic feature which was characterized by XPS, SEM, and specular reflectance infrared spectroscopy. The energetics of the interaction between primer solutions and the Ti adherend were evaluated by microcalorimetry. Changes in the structure of the surface oxide layer upon heating of the adherend were deduced from immersion temperatures of the PI and PPQ solutions. The XPS and SEM data are given is a table.

  18. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities

    International Nuclear Information System (INIS)

    Yoon, In-Ho; Choi, Wang-Kyu; Lee, Suk-Chol; Min, Byung-Youn; Yang, Hee-Chul; Lee, Kune-Woo

    2012-01-01

    Highlights: ► Thermally treated HEPA filter media was transformed into glassy bulk materials. ► Main radionuclide and heavy metal were Cs-137 and Zn. ► Cs and Zn were transformed into stable form without volatilization and leaching. ► The proposed technique is simple and energy efficient procedure. - Abstract: The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900 °C for 2 h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO 2 ) and pollucite (Cs 2 OAl 2 O 3 4SiO 2 ), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process.

  19. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation

    Science.gov (United States)

    Asgari, Kamran; Najafi, Payam; Cornelis, Wim M.

    2014-05-01

    Constant use of treated wastewater for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. However, application of treated wastewater on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates on a sandy loam soil, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m a.s.l.. A two-crop rotation of wheat [Triticum spp.] and corn [Zea mays]) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting (initial value) and after harvesting (final value) for each crop in each year. Edible grain samples of corn and wheat were also collected. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. The concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P>0.05) compared with the freshwater-irrigated soils. The results showed no significant difference (P>0.05) of soil heavy metal content between different depths of emitters. A pollution load index PLI showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to

  20. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  1. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    Science.gov (United States)

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  2. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  3. Study of highly functionalized metal surface treated by plasma ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Masuda, Haruho; Saito, Kazuo; Ono, Taizou; Hayashi, Eiji

    2004-01-01

    Technology for processing metal surfaces with hardness, low friction and free from foreign substances was developed with plasma ion implantation. Diamond-like carbon (DLC) coating is a most promising method for realization of hard and smooth metal surface. DLC coating was tested in a metal pipe with 10 mm diameter and 10 cm length by a newly developed plasma ion implantation instrument. The surface coated by DLC was proved to have characteristics equivalent to those prepared with other methods. A computer program simulating a formation process of DLC coating was developed. Experiments for fluorinating the DLC coating surface was performed. (Y. Kazumata)

  4. Long-Term Follow-up of Modular Metallic Radial Head Replacement: Commentary on an article by Jonathan P. Marsh, MD, FRCSC, et al.: "Radial Head Fractures Treated with Modular Metallic Radial Head Replacement: Outcomes at a Mean Follow-up of Eight Years".

    OpenAIRE

    Mansat, Pierre

    2016-01-01

    Radial head arthroplasty is used to stabilize the joint after a complex acute radial head fracture that is not amenable for fixation or to treat sequelae of radial head fractures. Most of the currently used radial head prostheses are metallic monoblock implants that are not consistently adaptable and raise technical challenges since their implantation requires lateral elbow subluxation. Metallic modular radial head arthroplasty implants available in various head and stem sizes have been devel...

  5. A cluster of pediatric metallic mercury exposure cases treated with meso-2,3-dimercaptosuccinic acid (DMSA)

    Science.gov (United States)

    Forman, J; Moline, J; Cernichiari, E; Sayegh, S; Torres, J C; Landrigan, M M; Hudson, J; Adel, H N; Landrigan, P J

    2000-06-01

    Nine children and their mother were exposed to vapors of metallic mercury. The source of the exposure appears to have been a 6-oz vial of mercury taken from a neighbor's home. The neighbor reportedly operated a business preparing mercury-filled amulets for practitioners of the Afro-Caribbean religion Santeria. At diagnosis, urinary mercury levels in the children ranged from 61 to 1,213 microg/g creatinine, with a geometric mean of 214.3 microg/m creatinine. All of the children were asymptomatic. To prevent development of neurotoxicity, we treated the children with oral meso-2,3-dimercaptosuccinic acid (DMSA). During chelation, the geometric mean urine level rose initially by 268% to 573.2 microg mercury/g creatinine (p<0.0005). At the 6-week follow-up examination after treatment, the geometric mean urine mercury level had fallen to 102.1 microg/g creatinine, which was 17.8% of the geometric mean level observed during treatment (p<0.0005) and 47.6% of the original baseline level (p<0.001). Thus, oral chelation with DMSA produced a significant mercury diuresis in these children. We observed no adverse side effects of treatment. DMSA appears to be an effective and safe chelating agent for treatment of pediatric overexposure to metallic mercury.

  6. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Giuseppina Barra

    2017-09-01

    Full Text Available The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs with Polyhedral Oligomeric Silsesquioxane (POSS compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS to Tetraglycidyl Methylene Dianiline (TGMDA epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA, single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints.

  7. Evaluating the Heavy Metal Constituents of Pre-Treated Produced ...

    African Journals Online (AJOL)

    ERAKHRUMEN

    these metals in drinking water and effluent to be discharged into inland water. ... materials into the environment in concentration levels that are not .... Produced water undergoes changes in its physical ..... (tropical), Southeast Coast of India.

  8. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In, E-mail: nsi12@jbnu.ac.kr [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Jeon, Ye-Jin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Seok-Soon, E-mail: sskim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do 753-701 (Korea, Republic of); Kim, Tae-Wook [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of)

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  9. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  10. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  11. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, D.P. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Healy, M.G. [Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Fleming, G.T.A. [Microbiology, National University of Ireland, Galway, Co. Galway (Ireland); Grant, J. [Teagasc, Ashtown, Co. Dublin (Ireland); Wall, D. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Morrison, L. [Earth and Ocean Sciences and Ryan Institute, National University of Ireland, Galway, Co. Galway (Ireland); Cormican, M. [School of Medicine, National University of Ireland, Galway, Co. Galway (Ireland); Fenton, O., E-mail: owen.fenton@teagasc.ie [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland)

    2016-01-15

    Treated municipal sewage sludge (“biosolids”) and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L{sup −1}, respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. - Highlights: • This study investigated surface runoff of contaminants from biosolids in field plots. • Contaminants investigated were nutrients, metals, microbes and trace elements. • Compared to slurry, biosolids do not pose a greater risk of contaminant losses. • Fears concerning contaminant losses from land applied biosolids may be unfounded.

  12. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil

    International Nuclear Information System (INIS)

    Peyton, D.P.; Healy, M.G.; Fleming, G.T.A.; Grant, J.; Wall, D.; Morrison, L.; Cormican, M.; Fenton, O.

    2016-01-01

    Treated municipal sewage sludge (“biosolids”) and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L −1 , respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. - Highlights: • This study investigated surface runoff of contaminants from biosolids in field plots. • Contaminants investigated were nutrients, metals, microbes and trace elements. • Compared to slurry, biosolids do not pose a greater risk of contaminant losses. • Fears concerning contaminant losses from land applied biosolids may be unfounded.

  13. Pollution of the Rhine with toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Breder, R

    1981-07-17

    In the chapter of chemical analytics of traces contamination and element wastes are described. Another chapter is called ''sampling and treatment of samples''. In the chapter of determination methods are described atomic absorption spectrometry and inverse voltammetry. The chapter on the origin of metals in rivers deals with natural sources and anthropogenic pollution. The next chapter is called ''metal distribution and transfer events within the components water suspended matter and sediment''. Some toxicological aspects are treated, too. The chapter of anthropogenic metal pollution of the Rhine deals with some aspects of importance of the Rhine, the selection of the sampling places and metal contents in waters suspended matters and sediments. Another chapter treats the general relevance of data.

  14. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  15. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  16. Indications for MARS-MRI in Patients Treated With Metal-on-Metal Hip Resurfacing Arthroplasty.

    Science.gov (United States)

    Connelly, James W; Galea, Vincent P; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik

    2018-06-01

    Currently, there are no universally accepted guidelines on when to obtain metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) patients. Our primary aims were to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and create an algorithm for indicating MARS-MRI in patients with Articular Surface Replacement (ASR) HRA. The secondary aim was to compare our algorithm to existing guidelines on when to perform MARS-MRI in MoM HRA patients. The study cohort consisted of 182 patients with unilateral ASR HRA from a prospective, multicenter study. Subjects received MARS-MRI at a mean of 7.8 years from surgery, regardless of symptoms. We determined which variables were predictive of ALTR and generated cutoffs for each variable. Finally, we created an algorithm to predict ALTR and indicate MARS-MRI in ASR HRA patients using these cutoffs and compared it to existing guidelines. We found high blood cobalt (Co) (odds ratio = 1.070; P = .011) and high blood chromium (Cr) (odds ratio = 1.162; P = .002) to be significant predictors of ALTR presence. Our algorithm using a blood Co cutoff of 1.15 ppb and a Cr cutoff of 1.09 ppb achieved 96.6% sensitivity and 35.3% specificity in predicting ALTR, which outperformed the existing guidelines. Blood Co and Cr levels are predictive of ALTR in ASR HRA patients. Our algorithm considering blood Co and Cr levels predicts ALTR in ASR HRA patients with higher sensitivity than previously established guidelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  18. Gas adsorption on metal-organic frameworks

    Science.gov (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  19. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.

    Science.gov (United States)

    Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo

    2005-05-01

    Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of

  20. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil.

    Science.gov (United States)

    Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O

    2016-01-15

    Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. EB application in pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Hisashi Itoh; Ichiro Enomoto

    1999-01-01

    Two kinds of pressure sensitive adhesives (PSA's), that were formulations of radiation cross-linkable styrene-isoprene block copolymer (SIS) and complete hydrogenated aliphatic tackifying resin or non-hydrogenated, were prepared and the electron beam (EB) irradiation effect on these PSA performances such as peel strength against some kinds of adherends was studied. The results from measuring of PSA performance exhibit the close correlation between EB irradiation effect of these and the miscibility of the tackifying resin against SIS. Further it was clarified that PSA performance was influenced by the surface tension of adherends

  2. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  3. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    Science.gov (United States)

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  4. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  5. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass

    International Nuclear Information System (INIS)

    Dahiya, Sudhir; Tripathi, R.M.; Hegde, A.G.

    2008-01-01

    In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33 ± 0.44, 17.64 ± 0.31, 9.86 ± 0.17, 3.93 ± 0.11 and 7.82 ± 0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters

  6. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  7. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  8. States of light positive particles in metals

    International Nuclear Information System (INIS)

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  9. Plant availability of trace elements in sewage sludge-treated soils: methodology¹

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2011-08-01

    Full Text Available Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.

  10. Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals.

    Science.gov (United States)

    Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar

    2010-09-01

    In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  12. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain).

    Science.gov (United States)

    Teijon, Gloria; Candela, Lucila; Tamoh, Karim; Molina-Díaz, Antonio; Fernández-Alba, A R

    2010-08-01

    The presence of 170 pharmaceuticals, personal care products, priority substances according to the 2008/105EU Directive and four metals (Cd, Ni, Hg, Pb) have been investigated at the Llobregat delta, south of Barcelona (Spain). In the area, reclaimed water is destined to satisfy environmental uses, irrigation and the construction of a hydraulic barrier against seawater intrusion in the deep aquifer of the delta. A monitoring survey was undertaken of water samples from a tertiary wastewater treatment plant (Depurbaix), treated waste water with an additional treatment of ultrafiltration, reverse osmosis, and UV disinfection (WWATP, for the hydraulic barrier injection). Groundwater samples from the aquifer receiving recharge were also investigated. The pharmaceutical group of substances was detected in sampled waters at concentrations rarely exceeding a few microg/L, among the compounds Caffeine, Nicotine and Galaxolide (musk fragrance) were found to be present in more than 60% of the samples. Diuron was the only priority substance detected. The four metals were always present in a variable concentration. After the WWATP treatment the majority of analytes are removed from tertiary treated wastewater or their concentration is reduced below 0.1 microg/L. Monitoring revealed a widespread occurrence of analysed compounds in groundwater. Among them Codeine (analgesic), Ibuprofen (anti-inflammatory), Iopamidol, Iopromide (contrast agent) and Paraxanthine (metabolite of caffeine) have only been detected in groundwater, and are not present in water currently being injected in the deep aquifer.

  13. Process for treating waters and sludges and device for developing this process

    International Nuclear Information System (INIS)

    Levaillant, Claude.

    1977-01-01

    The description is given of a process for treating waters and sludge by means of a ionizing radiation beam, featuring the following stages: settlement of primary waters and sludge, centrifugation of the settled waters and sludge in order to separate the waste waters, the sludge formed of organic compounds charged with heavy metals and the sludge formed of mineral compounds, irradiation, by ionizing radiation beam, of the sludge formed of organic compounds, containing heavy metals, and which are transformed into less toxic and denser recoverable mineral compounds, centrifugation of the irradiated sludge making it possible to obtain clarified waters treated by irradiation, sludge composed of organic compounds freed of their heavy metals and sludge formed of mineral compounds containing heavy metals and which will be easily separated owing to their high density [fr

  14. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  15. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  16. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  17. Mineralization of alanine enantiomers in soil treated with heavy metals and nutrients

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2011-01-01

    Full Text Available This work deals with the determination of the effect of heavy metals and nutrients applied to the soil on alanine enatiomers mineralization with the main focus on evaluating the effect on L/D alanine respiration rate ratio. This study was initiated because previous research works revealed a change in L/D amino acid respiration under acid- or heavy metal-stress in soil. Generally, D-amino acids artificially supplied to soil are less utilized by microorganisms compared with their L-enantiomers. Stress of soil microorganisms cause decreased discrimination of D-amino acids utilization. Also, previous research showed that an application of fertilizers or combinations of fertilizers may affect the mineralization rate of L-amino acids differently, compared with their D-enantiomers. The results of this study show, that the effect of both heavy metals and nutrients on the L/D ratio was not clear, increasing or decreasing this ratio. Further research is necessary to broaden this study.

  18. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    Abstract. 4-Acryloxy acetophenone was prepared and subjected to suspension polymerization with divinyl- benzene as a cross-linking agent. The resulting network polymer was ligated with benzoyl hydrazone. The functional polymer was treated with metal ions [Cu(II), Fe(II)]. The polymer-metal complexes obtained.

  19. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  20. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  1. Do constructed wetlands remove metals or increase metal bioavailability?

    Science.gov (United States)

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This document compiles recent research findings related to corrosion of metals in preservative treated wood into a single report on corrosion of metals in wood. The research was conducted as part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The...

  3. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  4. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, Lucie [INRS-ETE (Canada); Blais, Jean-François, E-mail: blaisjf@ete.inrs.ca [INRS-ETE (Canada); Mercier, Guy [INRS-ETE (Canada); Cooper, Paul [University of Toronto (Canada); Gastonguay, Louis [IREQ (Canada); Morris, Paul [FPInnovations (Canada); Janin, Amélie; Reynier, Nicolas [INRS-ETE (Canada)

    2013-10-15

    Highlights: • A leaching process was studied for metals removal from CCA-treated wood wastes. • This decontamination process was studied at pilot scale (130-L reactor). • Removals up to 98% of As, 88% of Cr, and 96% of Cu were obtained from wood wastes. • The produced leachates can be treated by chemical precipitation. -- Abstract: The disposal of metal-bearing treated wood wastes is becoming an environmental challenge. An efficient recycling process based on sulfuric acid leaching has been developed to remove metals from copper-based treated wood chips (0 < x < 12 mm). The present study explored the performance and the robustness of this technology in removing metals from copper-based treated wood wastes at a pilot plant scale (130-L reactor tank). After 3× 2 h leaching steps followed by 3× 7 min rinsing steps, up to 97.5% of As, 87.9% of Cr, and 96.1% of Cu were removed from CCA-treated wood wastes with different initial metal loading (>7.3 kg m{sup −3}) and more than 94.5% of Cu was removed from ACQ-, CA- and MCQ-treated wood. The treatment of effluents by precipitation–coagulation was highly efficient; allowing removals more than 93% for the As, Cr, and Cu contained in the effluent. The economic analysis included operating costs, indirect costs and revenues related to remediated wood sales. The economic analysis concluded that CCA-treated wood wastes remediation can lead to a benefit of 53.7 US$ t{sup −1} or a cost of 35.5 US$ t{sup −1} and that ACQ-, CA- and MCQ-treated wood wastes recycling led to benefits ranging from 9.3 to 21.2 US$ t{sup −1}.

  5. Divalent metal ion removal from aqueous solution by acid-treated ...

    African Journals Online (AJOL)

    ions determined from the Langmuir isotherm showed that C. indica had the largest sorption capacity for Pb2+ ions and the least sorption for Ni2+. The results also showed that garlic-treatment of C. indica biomass enhanced its sorption capacity for the divalent metal ions, with the enhancement factor varying from 1.22 to 1.44 ...

  6. Electrochemical removal of CU, CR and AS from CCA-treated waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)]|[Dept. de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Univ. Nova de Lisboa, Caparica (Portugal)

    2001-07-01

    CCA-treated waste wood poses a potential environmental problem due to the content of copper, chromium and arsenic. This paper presents the results obtained by electrodialytic remediation of CCA-treated waste wood. It is found that more than 90% Cu, and approximately 85% Cr and As was removed from the wood during the remediation. Thereby the concentration of copper in the wood is reduced from app. 426 ppm to app. 25 ppm, chromium is reduced from app. 837 ppm to app. 135 ppm and the arsenic content decreases from app. 589 ppm to app. 151 ppm. After remediation the removed metals are collected into liquids. The use of ion exchange membranes to separate the wood from the electrolytes result in a distribution of the metals after remediation that makes the collection of the metals easier, and reuse of the metals, for e.g. new CCA, may be possible. (orig.)

  7. Unified computational model of transport in metal-insulating oxide-metal systems

    Science.gov (United States)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  8. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  9. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  10. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  11. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  12. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    Science.gov (United States)

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated

  14. PRETREATING URANIUM FOR METAL PLATING

    Science.gov (United States)

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  15. Leaching of CCA-treated wood: implications for waste disposal

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini

    2004-01-01

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality

  16. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  17. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  18. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).

    Science.gov (United States)

    Lai, Hung-Yu; Chen, Zueng-Sang

    2005-08-01

    Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in

  20. Effect of keratin on heavy metal chelation and toxicity to aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Coello, W.F.; Khan, M.A.Q. [Univ. of Illinois, Chicago, IL (United States). Dept. of Biological Sciences

    1998-12-31

    The presence of fresh scales and human hair in water can reduce the toxicity of lead nitrate at and above 6 ppb to fish. This ability is lost on drying and storage, but can be restored if dried hair or scales are treated with a solution of amino acids. The chelation ability of keratin in amino acid-treated scales or hair is retained for months on dry storage. Addition of these hair and/or scales to solutions of lead nitrate, mercuric chloride and a mixture of both, and cupric sulfate reduced the toxicity of these solutions to Daphnia magna and Dreissena polymorpha (zebra mussels). Toxicity of 10 ppm solutions of salts of 27 different metals to daphnids was similarly reduced after filtration through scales or hair. A mixture of a 2 ppb concentration of each of these 27 metals also became nonlethal to daphnids in the presence of, or filtration through, treated scales or hair. 0.25 g of treated hair or scale can be used indefinitely, again and again, to remove the mixture of these 27 metals from their fresh solution in 1 L water if the keratin is frequently rinsed with 0.1% nitric acid to remove the bound metals. The keratin in scales, this, may be the most important ectodermal secretion in absorbing metals from polluted environments and in providing protection against their toxic levels.

  1. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  2. Heavy metals in a degraded soil treated with sludge from water treatment plant

    Directory of Open Access Journals (Sweden)

    Teixeira Sandra Tereza

    2005-01-01

    Full Text Available The application of water treatment sludge (WTS to degraded soil is an alternative for both residue disposal and degraded soil reclaim. This study evaluated effects of the application of water treatment sludge to a Typic Hapludox soil degraded by tin mining in the National Forest of Jamari, State of Rondonia, Brazil, on the content of heavy metals. A completely randomized experimental design with five treatments was used: control (n = 4; chemical control, which received only liming (n = 4; and rates D100, D150 and D200, which corresponded to 100, 150 and 200 mg of N-sludge kg-1 soil (n = 20, respectively. Thirty days after liming, period in which soil moisture was kept at 70% of the retention capacity, soil samples were taken and analyzed for total and extractable Fe, Cu, Mn, Zn, Cd, Pb, Ni, and Cr. The application of WTS increased heavy-metal contents in the degraded soil. Although heavy metals were below their respective critical limits, sludge application onto degraded areas may cause hazardous environmental impact and thus must be monitored.

  3. Data on the histological and immune cell response in the popliteal lymph node in mice following exposure to metal particles and ions

    Directory of Open Access Journals (Sweden)

    Bethany Winans

    2016-12-01

    Full Text Available Hip implants containing cobalt–chromium (CoCr have been used for over 80 years. In patients with metal-on-metal (MoM hip implants, it has been suggested that wear debris particles may contribute to metal sensitization in some individuals, leading to adverse reactions. This article presents data from a study in which the popliteal lymph node assay (PLNA was used to assess immune responses in mice treated with chromium-oxide (Cr2O3 particles, metal salts (CoCl2, CrCl3, and NiCl2 or Cr2O3 particles with metal salts (“A preliminary evaluation of immune stimulation following exposure to metal particles and ions using the mouse popliteal lymph node assay” (B.E. Tvermoes, K.M. Unice, B. Winans, M. Kovochich, E.S. Fung, W.V. Christian, E. Donovan, B.L. Finley, B.L. Kimber, I. Kimber, D.J. Paustenbach, 2016 [1]. Data are presented on (1 the chemical characterization of TiO2 particles (used as a particle control, (2 clinical observations in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (3 PLN weight and weight index (WI in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (4 histological changes in PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (5 percentages of immune cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, and (6 percentages of proliferating cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts.

  4. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  5. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  6. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  7. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  8. Fast reactor safety testing in Transient Reactor Test (TREAT) in the 1980s

    International Nuclear Information System (INIS)

    Wright, A.E.; Dutt, D.S.; Harrison, L.J.

    1990-01-01

    Several series of fast reactor safety tests were performed in TREAT during the 1980s. These focused on the transient behavior of full-length oxide fuels (US reference, UK reference, and US advanced design) and on modern metallic fuels. Most of the tests addressed fuel behavior under transient overpower or loss-of-flow conditions. The test series were the PFR/TREAT tests; the RFT, TS, CDT, and RX series on oxide fuels; and the M series on metallic fuels. These are described in terms of their principal results and relevance to analyses and safety evaluation. 4 refs., 3 tabs

  9. Methods for surface treating metals, ceramics, and plastics before adhesive bonding

    International Nuclear Information System (INIS)

    Althouse, L.P.

    1976-01-01

    Methods for pretreating the surfaces of metals, ceramics, and plastics before they are coated with adhesive and used in assembly are described. The treatments recommended have been used successfully in the laboratory at LLL. Many are used in the assembly of nuclear devices. However, an unusual alloy or complex configuration may require trials before a specific surface treatment is chosen

  10. Advances in corrosion testing of metals in contact with treated wood

    Science.gov (United States)

    Samuel Zelinka; D.S. Stone

    2010-01-01

    A January 2004 change in the regulation of wood preservatives used in the U.S.has increased the use of newer wood preservatives, such as alkaline copper quaternary (ACQ) and copper azole (CuAz). These preservatives contain high amounts of cupric ions, which may be reduced to copper metal at the expense of less noble steel and galvanized fasteners in the wood....

  11. Assessment of Trace Metal Ions on Raw and Treated Water in Dakahlia Drinking water Purification Stations .Behaviour of aluminium in water purification plants

    International Nuclear Information System (INIS)

    El-Defrawy, M.M.; El-Fadaly, H.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The technology of improvement of water quality at water purification plants can be characterised by a large diversity of method and processes employed and by substantial differences in the design and process structure and equipment. The effect of operational parameters as ph, pre-, post- chlorination, coagulant index and mixing intensities on the level of some metal ions concentration in different sources of drinking water plants were studied. Results of the chemical analysis indicated that the dissolved and total AI 3+ concentration in treated water was much higher than raw water and sometimes with values over the international maximum limit. Much of the overall variation in aqua aluminium ion in treated water could be explained on the basis of ph, solubility, and filtration models efficiency, while ions as Fe 3+ and Mn 2+ were found within the acceptable limits. The data obtained indicated that relation between watershed inputs (CI 2 , H CI, alum dose) and output of soluble aluminium was not necessary simple and straightforward. The investigated water samples were collected from main stations and compact units in Dakahlia Governorate

  12. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer.

    Science.gov (United States)

    Ning, Dongfeng; Liang, Yongchao; Song, Alin; Duan, Aiwang; Liu, Zhandong

    2016-12-01

    Steel slag has been widely used as amendment and silicon fertilizer to alleviate the mobility and bioavailability of heavy metals in soil. The objective of this study was to evaluate the influence of particle size, composition, and application rate of slag on metal immobilization in acidic soil, metals uptake by rice and rice growth. The results indicated that application of slag increased soil pH, plant-available silicon concentrations in soil, and decreased the bioavailability of metals compared with control treatment, whereas pulverous slag (S1) was more effective than granular slag (S2 and S3). The acid-extractable fraction of Cd in the spiked soil was significantly decreased with application of S1 at rates of 1 and 3 %, acid-extractable fractions of Cu and Zn were decreased when treated at 3 %. Use of S1 at both rates resulted in significantly lower Cd, Cu, and Zn concentrations in rice tissues than in controls by 82.6-92.9, 88.4-95.6, and 67.4-81.4 %, respectively. However, use of pulverous slag at 1 % significantly promotes rice growth, restricted rice growth when treated at 3 %. Thus, the results explained that reduced particle size and suitable application rate of slag could be beneficial to rice growth and metals stabilization.

  13. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    Science.gov (United States)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  14. PIXE analysis of trace elements in tissues of rats treated with anticonvulsants

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, R.W.; Van Rinsvelt, H.A.; Kinyua, A.M.; O' Neill, M.P.; Wilder, B.J.; Houdayer, A.; Hinrichsen, P.F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  15. PIXE analysis of trace elements in tissues of rats treated with anticonvulsants

    International Nuclear Information System (INIS)

    Hurd, R.W.; Van Rinsvelt, H.A.; Kinyua, A.M.; O'Neill, M.P.; Wilder, B.J.; Florida Univ., Gainesville; Houdayer, A.; Hinrichsen, P.F.

    1987-01-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex. (orig.)

  16. Self-expandable metal stents in the treatment of benign anastomotic stricture after rectal resection for cancer.

    Science.gov (United States)

    Lamazza, A; Fiori, E; Sterpetti, A V; Schillaci, A; Scoglio, D; Lezoche, E

    2014-04-01

    To evaluate the use of self-expandable metallic stents to treat patients with symptomatic benign anastomotic stricture after colorectal resection. Ten patients with a benign symptomatic anastomotic stricture after colorectal resection were treated with endoscopic placement of a self-expandable metal stent. The stent was placed successfully in all 10 patients without any major morbidity. At a mean follow-up of 18 months the stenosis was resolved successfully in 7 out 10 patients (70%). The remaining three patients were subsequently treated successfully with balloon dilatation. Self-expandable metal stents represent a valid alternative to balloon dilatation to treat patients with benign symptomatic anastomotic stricture after colorectal resection for cancer. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  17. Metal-microorganism interactions

    International Nuclear Information System (INIS)

    Andres, Y.; Thouand, G.; Redercher, S.; Boualam, M.; Texier, A.Cl.; Hoeffer, R.

    1997-01-01

    The physico-chemical procedures of treating the metalliferous effluents are not always adapted to de polluting the slightly concentrated industrial wastes. An alternative idea was advanced, implying the ability of some microorganisms to fix in considerable amounts the metal ions present in aqueous solutions, possibly in a selective way. This approach has been investigated thoroughly during the last 30 years, particularly from a mechanistic point of view. The advantage of the microorganisms lies mainly in the large diversity of bacteria and in their chemical state dependent interaction with metals, as well as, in the possibilities of developing their selective and quantitative separation properties. A biomass from Mycobacterium smegmatis, an acidic alcoholic resistant bacteria, has been used to prepare a bio-sorption support allowing the preferential sorption of thorium as compared to uranium and lanthanum. These studies have been extended to biological polymers such as chitosan and to studies related to bioaccumulation mechanisms and/or to the microbial resistances towards metals

  18. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones

    Science.gov (United States)

    2014-01-01

    Background Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Results Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. Conclusion The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology. PMID:24405887

  19. Metallic stent in the treatment of ureteral obstruction: Experience of single institute

    Directory of Open Access Journals (Sweden)

    Chien-Chang Li

    2011-10-01

    Conclusion: Patients with ureteral obstructions can be treated sufficiently with the Resonance® metallic stent. Patients who had gynecological malignancies and received radiotherapy had a higher failure rate after Resonance® metallic stent insertion.

  20. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  1. A review of experiments and results from the TREAT facility

    International Nuclear Information System (INIS)

    Deitrich, L.W.; Dickerman, C.E.; Klickman, A.E.; Wright, A.E.

    1998-01-01

    The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s at Argonne National Laboratory (ANL) to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off-normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light water reactor (LWR) elements in a steam environment to obtain fission product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  2. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    TiO{sub 2}-based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author).

  3. A study on the photocatalytic reaction of the metals and organics

    International Nuclear Information System (INIS)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee

    1995-12-01

    TiO 2 -based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author)

  4. Assessment of physicochemical qualities, heavy metal ...

    African Journals Online (AJOL)

    Ogbe

    2012-08-23

    Aug 23, 2012 ... dominance of metals in the water followed the sequence: Al > Zn > Cu > Fe > Mn > Cd > Pb > Hg > As. ... ted and treated waters poses a considerable health risk ..... quently used to assess the general hygienic quality of water ...

  5. Minimizing corrosive action in timber bridges treated with waterborne preservatives

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer; James P. Wacker

    2007-01-01

    This work will briefly review published literature and current research activities on the corrosion of metals in contact with wood treated with waterborne alternatives to CCA. In addition, recommendations to minimize these corrosive effects in timber bridges will be discussed.

  6. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Oluwadamilare A. [Department of Biological Sciences, North Carolina State University (United States); Ray, Paul D. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Shea, Damian [Department of Biological Sciences, North Carolina State University (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States)

    2015-12-15

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu{sup 2+} transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments.

  7. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    International Nuclear Information System (INIS)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2015-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu 2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments

  8. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Science.gov (United States)

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  9. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem Stietiya

    2014-01-01

    Full Text Available Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1 soil was higher than Wadi Dhuleil (WD1 soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective.

  10. Effect of Treated Wastewater Irrigation on Heavy Metals Distribution in a Tunisian Soil

    Directory of Open Access Journals (Sweden)

    K. Khaskhoussy

    2015-06-01

    Full Text Available Treated wastewater (TWW may contain toxic chemical constituents that pose negative environmental and health impacts. In this study, soil samples under treated wastewater irrigation were studied. For this purpose, six plots were made in an irrigated area in north of Tunisia and treated with two water qualities: fresh water (FW and treated wastewater (TWW. Five soil depths were used: 0-30, 30-60, 60-90, 90-120 and 120-150 cm. The TWW irrigation increased significantly (P≤0.05 the soils’ EC, Na, K, Ca, Mg, Cl, SAR, Cu, Cd and Ni and had no significant (P ≤0.05 effect on the soils’ pH, Zn, Co and Pb contents. EC, Na, Cl, SAR, Zn and Co increased significantly with soil depth. The results for K, Ca, Mg, Cd, Pb and Ni exhibited similar repartition in different layers of soil. It was also shown that the amount of different elements in soil irrigated with fresh water (FW were less compared with the control soil

  11. Renal Transplant Ureteral Stenosis: Treatment by Self-Expanding Metallic Stent

    International Nuclear Information System (INIS)

    Cantasdemir, Murat; Kantarci, Fatih; Numan, Furuzan; Mihmanli, Ismail; Kalender, Betul

    2003-01-01

    We report the use of a metallic stent in a transplant ureteral stenosis. A 28-year-old man with chronic renal failure due to chronic pyelonephritis, who received a living-donor renal transplant, presented with transplant ureteral stenosis. The stenosis was unresponsive to balloon dilation and was treated by antegrade placement of a self-expanding Memotherm stent. The stentedureter stayed patent for 3 years. It may be reasonable to treat post-transplant ureteral stenosis resistant to balloon dilation with self-expanding metallic stents. However, long-term follow-up is required to evaluate the efficacy of this treatment

  12. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  13. Effects of experimental acidification on mobilisation of metals from sediments of limed and non-limed lakes

    International Nuclear Information System (INIS)

    Waellstedt, Teresia; Borg, Hans

    2003-01-01

    In order to study the influence of pH on the mobilisation of metals from lake sediments, intact sediment cores with overlying water were sampled from one lime treated lake and one acidified lake. The overlying water of two cores from each lake was successively acidified to pH 4.2 over a period of 3 months. In the acid treated samples from the limed lake, the initial concentrations of Al, Cd, Mn, Pb and Zn in the overlying water were generally lower and the final concentrations were higher than in the acid treated samples from the acidified lake. The labile inorganic fraction of Al (Al i ) was increasingly dominating as pH decreased. Redox potential and pH in the sediment indicated that the upper two centimetres were involved in the exchange reactions. The experiment showed that mobilisation of metals from sediments can occur and the results indicated that mobilisation could contribute to increased concentrations of metals in lake water during reacidification of formerly lime treated lakes. - Reacidification leads to mobilisation of metals from lake sediments

  14. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  15. Medical significance of the essential biological metals

    International Nuclear Information System (INIS)

    Davies, I.J.T.

    1977-01-01

    The medical significance of the essential biological metals such as zinc, copper and molybdenum as well as their nutritional and biochemical importance are reviewed. The following topics are treated: biochemical actions of the essential biological metals; the concept of essentiality; the development of knowledge about the essential biological metals. Data are given on zinc deficiency and hypogonadismi in humans, zinc and acrodermatitis enterophatica, zinc and the skin, zinc in diabetes mellitus, zinc and insulin, zinc and the liver; copper functions, copper deficiency - ''sway back'' in sheep, copper and haemopoiesis, copper and the function of blood vessels; molybdenum and dental caries in humans, oesophageal carcinoma and molybdenum deficiency in humans. (T.G.)

  16. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    2014-01-01

    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...... production has been found higher with the latter. The tuber dry matter content as well as reducing sugars were not affected by reused water. Total sugars content was higher with MBR and FTS water. Water use efficiency (WUE) was significantly higher with reused water. Compared to tap water, crop gross margin...

  17. Evaluating continuous application of treated sludge on soil and plant productivity

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2018-01-01

    Full Text Available Kala Compost is a mixture of treated sewage bio-solids and green wastes. It can improve soil fertility and plant growth. However, long-term application of treated sewage bio-solids could result in heavy metals accumulation and some health problems. e objective of this study was to evaluate the e ect of a long run application of Kala compost mixed with chemical fertilizer on soil and plant productivity. Soil and plant (mainly cucumber samples were taken from 12 greenhouses that received Kala compost continuously for the last ve years. No symptoms of physical or chemical problems were observed in the greenhouses and measured soil samples. Moreover, the soil had su cient values of di erent nutrients for plant growth and all measured micronutrients (heavy metals were within the safe limit and below the range of the international standards. An excellent growth was observed in all grown plants and no symptoms of elements de ciency were found. Chemical analysis of fruit samples did not show any accumulation of heavy metals and all measured elements were within the safe limit and did not exceed the international standards. It can be concluded that Kala compost was a good media for plant growth that can enrich the soil with di erent elements needed for higher yield. However, more monitoring is needed with treated bio-solid application but good management could be the key to avoid any adverse e ect of any contaminant.

  18. Separation of Metals From Spent Catalysts Waste by Bioleaching Process

    OpenAIRE

    Sirin Fairus, Tria Liliandini, M.Febrian, Ronny Kurniawan

    2010-01-01

    A kind of waste that hard to be treated is a metal containing solid waste. Leaching method is one thealternative waste treatment. But there still left an obstacle on this method, it is the difficulty to find theselective solvent for the type of certain metal that will separated. Bioleaching is one of the carry ablealternative waste treatments to overcome that obstacle. Bioleaching is a metal dissolving process orextraction from a sediment become dissolve form using microorganisms. On this met...

  19. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. An innovative surgical technique for treating penile incarceration injury caused by heavy metallic ring

    Directory of Open Access Journals (Sweden)

    S J Baruah

    2009-01-01

    Full Text Available Penile incarceration injury by heavy metallic ring is a rare genital injury. A man may place metal object for erotic or autoerotic purposes, for masturbation or increasing erection, and due to psychiatric disturbances are some of the reasons for a penile incarceration injury. The incarcerating injury results in reduced blood flow distal to the injury, leading to edema, ischemia, and sometimes gangrene. These injuries are divided into five grades and their treatment options are divided into four groups. Surgical techniques are reserved for the advanced grades (Grades IV and V. We describe an innovative surgical technique, which can be adopted in Grades II and III injuries.

  1. Metallic stent and stereotactic conformal radiotherapy for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Li Yu; Wang Ning; Tian Qihe; Guo Zhanwen; Zhang Haibo; Song Liyan

    2005-01-01

    Objective: To evaluate the effect of metallic stent combined with stereotactic conformal radiotherapy (SCRT) for hilar cholangiocarcinoma. Methods: Fifty-four patients with hilar cholangiocarcinoma were analyzed, including 31 treated with stent plus stereotactic conformal radiotherapy (combined group) and 23 with metallic stent alone (control group). Results: The mean survival time of combined group was 11.1 ± 4.6 months, compared with 5.1 ± 2.8 months of the control group, giving a significant difference between the two groups (P<0.01). Conclusion: The combination of metallic stent and stereotactic conformal radiotherapy is more effective than metallic stent alone for unresectable hilar cholangiocarcinoma. (authors)

  2. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  3. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  4. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  5. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    Science.gov (United States)

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-12-01

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A review of metal release in the food industry

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Rasmussen, Anette Alsted; Hilbert, Lisbeth Rischel

    2006-01-01

    processes, storing equipment as well as cleaning and sanitising procedures are reviewed. Stainless steel is the most widely used metallic material in the food industry; however other metals and their alloys are also briefly treated. The review deals with phenomena mainly relating to electrochemical......The objective of this review is to outline literature on metal release in the food industry. Key results are reviewed from publications with high scientific level as well as papers with focus on industrial aspects. Examples of food products with a corrosive effect are given, and cases concerning...

  7. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  8. Temporary metal internal stent dilation for colorectal obstruction and effect on operation methods

    International Nuclear Information System (INIS)

    Chen Niwei; Cheng Yingsheng; Fan Youben; Jin Huimin; Xu Huimin

    2005-01-01

    Objective: To explore the methods and clinical value of temporary internal metal stent through endoscopy under X ray control for treating patients with malignant colorectal obstruction. Methods: 27 patients with malignant colorectal obstruction were treated by temporary metallic internal stent placement via endoscopy under the X ray guidance. Results: 27 patients with colorectal obstruction symptoms were all got rid of the trouble within 48 hours after the stent placement. Selective stage I colorectal cancer resection and anastomosis were performed after bowel preparation. Conclusions: Metallic internal stent placement can loosen the colorectal obstructive symptoms with higher successful rate via endoscopy under X ray control and furthermore for promotion of stage I colorectal cancer resection and anastomosis. (authors)

  9. Cleaning of dismantled metals by electropolishing

    International Nuclear Information System (INIS)

    Wei, T.Y.; Chung, Z.J.; Lu, D.L.; Hsieh, J.C.

    1995-01-01

    A project of cleaning dismantled metals is going on at INER. The test work has been performed. Results showed that the activity decreased from 45 microSv/h to background level after 20 minutes electrolytic polishing. These cleaned metals could be reused through melting and fabricating. These metals could also be classified as BRC waste to facilitate the waste management if they can pass the identification and be admitted by the government authority. In order to achieve the planned target, some electro-decontamination facilities have been established. An automatic electropolishing facility with six cells was designed to clean the contaminated metals in plate type with dimensions less than 50 cm x 50 cm. Another automatic electropolishing facility was specially designed for treating the contaminated pipes. In addition, mobile electropolishing facilities were also established for large pieces of metal and some fixed equipment. In this cleaning project, a practical recycling and treatment method for electrolyte has been developed in order to comply with the requirement of secondary waste minimization

  10. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  11. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  12. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  13. Trace metals content (contaminants) as initial indicator in the quality of heat treated palm oil whole extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fauzi, Noor Akhmazillah bt [Chemical and Bioprocess Department, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Sarmidi, Mohd Roji [Chemical Engineering Pilot Plant, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-07-01

    An investigation was carried out on the effect of different sterilization time on the trace metals concentration of palm oil whole extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 minutes. The kernels were then stripped from the sterilized fruits to get the pulp and later the pulp was pressed using small scale expeller. The resulting puree was centrifuge at 4000 rpm for 20 minutes. The palm oil whole extract were then collected and trace metals analysis was conducted using Inductively Couple Plasma-Mass Spectrometry (ICP-MS). The result showed that the highest yield was obtained at 40 minutes of sterilization with 19.9 {+-} 0.21 % (w/w). There was no significant different (p < 0.5) in total trace metals content between the degrees of the heat treatment. Na+ was found as the highest trace metals content in the extract with mean concentration ranging from 1.05 {+-} 0.03 ppm to 2.36 {+-} 0.01 ppm. 40 minutes of heating time was predicted to have good oil quality due to higher content in trace metals that inhibit the lipase enzyme activity.

  14. Effect of dental metal in 10 MV X-ray beam therapy

    International Nuclear Information System (INIS)

    Mimura, Seiichi; Mikami, Yasutaka; Inamura, Keiji; Tahara, Seiji; Nagaya, Isao; Egusa, Tomomi; Nakagiri, Yoshitada; Sugita, Katsuhiko.

    1991-01-01

    We have often encountered patients with dental metal when employing the 10 MV X-ray beam therapy for head and neck tumors, and felt it important to investigate the effect of dental metal in relation to dose distribution. The absorbed dose rose abruptly in the vicinity of the metal reaching an interface value equal to 150% of the dose within the acrylic phantom. These results showed that an overdose occurred about 5 mm from the metal. We also learned that the overdose can be avoided by using a 5-mm thick tissue equivalent material. Six patients with dental metal were treated after first covering their metal with a 5-mm thick mouthpiece. No radiation stomatitis caused by the metal was observed in any of these cases. (author)

  15. An assessment of post-remediation changes in sediment chemistry partitioning in an S/S treated soil.

    Science.gov (United States)

    Cutter, S.; MacLeod, C. L.; Canning, K.; Carey, P. J.; Hills, C. D.

    2003-04-01

    The Astra Pyrotechnics plant located in the Dartford Marshes, Kent, UK was the site of a field trial utilizing cement stabilization/solidification (S/S) in September 2000. A hotspot containing 35% copper and several thousand part per million lead and zinc was treated in order to trial an new form of cement stabilization (accelerated carbonation technology or ACT) developed by the Centre for Contaminated Land Remediation. A 10 by 20 meter plot was divided into 4 cells into which untreated, OPC (ordinary Portland cement) treated, Envirocem (a Lafarge special cement) treated and ACT treated soil was placed. Each cell has a leachate collection system and the leachate is monitored monthly. In August 2003, 24 cm cores were collected from each cell. These cores were analysed to determine changes in sediment chemistry and metal partitioning characteristics. Sediment chemistry was determined using an aqua regia digestion followed by ICP OES analysis. The CISMED extraction procedure was used to examine partitioning changes. The contaminant concentrations in the leachates remain below UK drinking water standards. However, seasonal cyclicity is observed with an increase of metals in the leachates during winter months. The sediment cores were analysed for Ca, Cr, Cu, Fe, K, Mn, Mg, Na, Ni, Pb and Zn. Only the untreated cell showed any discernable changes in metal concentration with depth. The S/S treated cells show no trends although differences in partitioning between the cells is observed.

  16. TREAT experiment M2 post-test examination

    International Nuclear Information System (INIS)

    Holland, J.W.; Teske, G.M.; Florek, J.C.

    1986-01-01

    Transient Reactor Test (TREAT) Facility experiment M2 was performed to evaluate the transient behavior of metal-alloy fuel under accident conditions to investigate the inherent safety features of the fuel in integral fast reactor (IFR) system designs. Objectives were to obtain early information on the key fuel behavior characteristics at transient overpower (TOP) conditions in metal-fueled fast reactors; namely, margin to cladding breach and extent of axial self-extrusion of fuel within intact cladding. The onset of cladding breaching depends on fuel/cladding eutectic formation, as well as cladding pressurization and melting. Driving forces for fuel extrusion are fission gas, liquid sodium, and volatile fission products trapped within the fuel matrix. The post-test examination provided data essential for correctly modeling fuel behavior in accident codes

  17. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    Science.gov (United States)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  18. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  19. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  20. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  1. Alternative process for treating radioactive effluents

    International Nuclear Information System (INIS)

    Puget, Flavia P.; Massarani, Giulio

    2002-01-01

    In this work an alternative process for treating a wastewater containing dissolved uranium is considered. In order to develop this work, a continuous separation unit, characterized by the solvent extraction, carried out inward the ejector is used. Alamina 336 (a mixture of tri-octyl and tri-decyl amines) is used as extractant in this process. The splitting of the amine-water emulsion formed is carried out in a gravitational separation tank. The result showed that it is possible to reach an efficiency of about 95% for the uranium extraction, for metal concentration in the feed of 10 ppm and a Q fa /Q fo ratio around 500. Furthermore, an efficiency of about 50% is reached for metal concentration in the feed of 1 ppm and for aQ fa /Q fo ratio around 1000, when the liquid flow rate is equal 1200 L/h. (author)

  2. The possibilities of magnetic resonance imaging in the diagnostics of complications after metal-on-metal hip arthroplasty

    Directory of Open Access Journals (Sweden)

    A. A. Vergay

    2013-01-01

    Full Text Available Objective: to find adverse periprosthetic local tissue reactions after metal-on-metal hip arthroplasty with ASR XL heads. Material and methods: 119 patients with 134 ASR XL head - Corail prostheses were treated in 2007-2009. The results were studied in 94 cases (105 prostheses - 84%. Average follow-up time consisted 62 ± 3 months. MRI was performed in 12 patients (13 hips who had clinical nonsatisfaction. Obtained data were compared with 21 MRI (24 hips of controlled group with good and perfect clinical results. Results. We found variations of normal periprosthetic tissue condition. Adverse reactions were identified in 10 cases. To improve the quality of pictures we developed special MRI adjustments and regimes of work. Conclusion: MRI diagnostics is indicated for the patients with metal-on-metal total hip arthroplasty in order to identify adverse local tissue reactions. The improvement of picture quality needs special adjustment of MRI equipment.

  3. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    Science.gov (United States)

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  4. A new way of treating french radioactive waste

    International Nuclear Information System (INIS)

    Bernard Rottner; Fabrice Jannot; Lena Bergstroem

    2006-01-01

    STUDSVIK and ONECTRA have built a partnership in order to offer the French market new radwaste treatment services, by putting together their specific knowledge about radioactive waste treatment by combining and completing each other's specific knowledge. STUDSVIK provides services related to incineration, melting and recycling of waste originating from the nuclear industry and fuel fabrication plants. ONECTRA is a well known specialist about nuclear dismantling studies or operations driving, nuclear tools design, environmental engineering, chemical or radiological remediation, and nuclear project management. The goal of this partnership is to propose new solutions to treat radwaste, such as to: lower the global waste management price, Offer solutions for 'exotic' waste, provide recycling operations French nuclear Industry. The overall objectives with STUDSVIK's metal scrap treatment are to reduce the amount of waste having to be disposed of and to recycle valuable metals. The residual weight after treatment is normally between 2% and 7% of the incoming weight, depending on the activity content and combination of metals. Moreover, ONECTRA's specific developments for decontamination processes can lead to treat parts with higher levels of activity than what was done by STUDSVIK before. Experience from volume reduction has made it possible to develop a new approach for treatment of used steam generators. During the second half of 2005 this new method is used for treating a steam generator from a Swedish PWR. FREE RELEASE is a current operation in Europe, following the RP 89 European commission's recommendations, table 3-1. STUDSVIK is free-releasing metals since more than 15 years, with a long time partnership with the Steel Industry( ex: metallic waste from UK, Germany, Sweden, Switzerland, Belgium, a.s.o.). The waste owner gives an acceptance guarantee for return of secondary waste (like filter dust, material sorted out, slags, a.s.o), and ingots that can not be

  5. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels show to play a crutial role in the undestanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si : P is analyzed. (author) [pt

  6. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels shown to play a crutial role in the understanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si:P is analyzed. (Author) [pt

  7. Metal spectra as indicators of development

    Science.gov (United States)

    Graedel, T. E.; Cao, J.

    2010-01-01

    We have assembled extensive information on the cycles of seven industrial metals in 49 countries, territories, or groups of countries, drawn from a database of some 200,000 material flows, and have devised analytical approaches to treat the suite of metals as composing an approach to a national “materials metabolism.” We demonstrate that in some of the more developed countries, per capita metal use is more than 10 times the global average. Additionally, countries that use more than the per capita world average of any metal do so for all metals, and vice versa, and countries that are above global average rates of use are very likely to be above global average rates at all stages of metal life cycles from fabrication onward. We show that all countries are strongly dependent on international trade to supply the spectrum of nonrenewable resources that modern technology requires, regardless of their level of development. We also find that the rate of use of the spectrum of metals stock is highly correlated to per capita gross domestic product, as well as to the Human Development Index and the Global Competitiveness Innovation Index. The implication is that as wealth and technology increase in developing countries, strong demand will be created not for a few key resources, but across the entire spectrum of the industrial metals. Long-term metal demand can be estimated given gross domestic product projections; the results suggest overall metal flow into use in 2050 of 5–10 times today’s level should supplies permit. PMID:21098309

  8. Effect of untreated and treated sewage wastewater by chloride or irradiation on growth of some plants and soil characteristics

    International Nuclear Information System (INIS)

    Takriti, S.; Khalifa, K.

    2003-12-01

    Pot experiments were conducted at Deir-Alhajar research station, about 40 km. south east of Damascus during 2000. Corn. eggplant and parsley were planted in plastic pots capacity 8 kg soil to study the effect of irrigation of corn, eggplant and parsley by untreated and treated sewage water (by Chloride or Irradiation) on growth and effect of irrigation on soil characteristics and accumulation of some heavy metals such as Pb, Cr, Co, Hg, and Zn, Cu in plant and soil which irrigated with treated and untreated sewage water compared with irrigated with fresh water (well water). The results showed that no negative effect was observed for untreated and treated sewage water on growth of plants (corn, eggplant and parsley). Also, no significant effect due to irrigation with treated and untreated sewage water was observed in accumulation of some trace elopements (heavy metals) such as Cr, Pb, Hg, and Zn and Cu in plants irrigated with treated and untreated sewage water to critical toxic point. This point needed more studies and longer period to confirm these results before using by farmers on large scale. Irradiation of sewage water had a positive effect on reducing the transfer of some heavy toxic metals such as Pb and Cr form waste water to soil. (author)

  9. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  10. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  12. Development of Tools for Engineering Analysis and Design of High-Performance FRP-Composite Structural Elements

    DEFF Research Database (Denmark)

    Mortensen, Fl.

    as general specification of loads and boundary conditions. For all the structural problems addressed, the analyses are carried out following the same principal approach, which is based on an explicit formulation of the governing set of differential equations. The governing differential equations...... in ESAComp. The solution procedures for the adhesive bonded joints have been used to conduct a parametric study, where the influence of using laminated adherends has been investigated. Based on this, a set of general design guidelines has been given in order to improve the structural performance and strength...... for joints with laminated adherends. The guidelines are also valid for the ply drop problems, since their mechanical behaviour are very similar. The results obtained for adhesive bonded joints, ply drops and insert problems have been compared with finite element analysis results. The results obtained...

  13. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  14. Electrochemistry at a Metal Nanoparticle on a Tunneling Film: A Steady-State Model of Current Densities at a Tunneling Ultramicroelectrode.

    Science.gov (United States)

    Hill, Caleb M; Kim, Jiyeon; Bard, Allen J

    2015-09-09

    Here, a new methodology is proposed for treating electrochemical current densities in metal-insulator-metal nanoparticle (M-I-MNP) systems. The described model provides broad, practical insights about MNP-mediated electron transfer to redox species in solution, where electron transfer from the underlying electrode to a MNP via tunneling and heterogeneous electron transfer from the MNP to redox species in solution are treated as sequential steps. Tunneling is treated through an adaptation of the Simmons model of tunneling in metal-insulator-metal structures, and explicit equations are provided for tunneling currents, which demonstrate the effect of various experimental parameters, such as insulator thickness and MNP size. Overall, a general approach is demonstrated for determining experimental conditions where tunneling will have a measurable impact on the electrochemistry of M-I-MNP systems.

  15. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    International Nuclear Information System (INIS)

    Royer, E.; Unz, R.F.; Hellier, W.W.

    1998-01-01

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R 2 values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R 2 values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R 2 value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems

  16. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  17. A case of rectovagino-vesical fistula due to radiation therapy for uterine cancer treated with covered expandable metallic stent

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsukasa, Shunroh; Okabe, Satoshi; Tanami, Hideaki [Tokyo Medical and Dental Univ. (Japan). School of Medicine] (and others)

    2002-04-01

    A 65-year-old woman had received a panhysterectomy and radiation therapy for a uterine cancer in 1974 and underwent a drainage operation for a peritonitis due to rupture of the bladder associated with radiation cystitis in 1983. A rectovesical fistula was revealed and partial resection of the bladder and rectum was performed in 1996. In 1998, rectovesical fistula recurred and symptom of fecaluria and contact-type dermatitis at perineal region subsequently worsened. In February, 2000, colonoscopy and gastrograffin-enema revealed a giant recto-vagino-vesical fistula. Although we recommended ileostomy, the patient refused our offer. She gave informed consent to our proposal about the insertion of a covered expandable metallic stent (EMS) into the rectum to treat for fecaluria. After insertion of a covered EMS, fecaluria and contact-type dermatitis at perineal region subsequently improved. Three months later, fecaluria appeared again. Finally, seven months later, severe inflammation occurred at perineal and pubic region because of migration of the covered EMS into the bladder, then we removed the covered EMS and performed ileostomy. It is difficult to use the covered EMS treatment for benign rectovesical or rectovaginal fistula for a long term. (author)

  18. Method of making metal-chalcogenide photosensitive devices

    International Nuclear Information System (INIS)

    Kazacos, M.S.; Miller, B.

    1981-01-01

    We have found that a photoactive metal selenide film, such as cdse, may be formed by cathodic eletrodeposition from a selenosulfite (Seso32-) solution without the need for a subsequent heat treating step which, it is hypothesized, was required by the simultaneous deposition of elemental selenium

  19. Radiological chronometry of uranium metal samples

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.; LaMont, S.P.

    2014-01-01

    Radiological chronometry is an important tool in nuclear forensics that uses several methods to determine the length of time that has elapsed since a material was last purified. One of the chronometers used in determining the age of metallic uranium involves measuring the fractional ingrowth of 230 Th from its parent 234 U with the assumption that the uranium metal contained no impurities, especially thorium, when it was purified. The affects of different etching procedures were evaluated for the removal of surface oxidation with three different types of uranium metal samples to determine whether the etching procedure affects the radiological age. The sample treated with a rigorous etching procedure had exhibited the most reliable radiological age while less rigorous etching yields a radiological age from 15 years to hundreds of years older than the known age. Any excess thorium on the surface of a uranium metal sample presents a bias in age determination and the sample will appear older than the true age. Although this research demonstrates the need for rigorous surface etching, a bias in the radiological age could have arisen if the uranium in the metal was heterogeneously distributed. (author)

  20. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  1. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  2. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  3. Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van Raaij Jos JAM

    2008-10-01

    Full Text Available Abstract Background Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyethylene wear induced prosthetic failure, but can increase systemic cobalt and chromium ion concentrations. The objective of this study is to compare two cementless total hip arthroplasties: a conventional 28 mm metal-on-polyethylene articulation and a large head metal-on-metal articulation. We hypothesize that the latter arthroplasties show less bone density loss and higher serum metal ion concentrations. We expect equal functional scores, greater range of motion, fewer dislocations, fewer periprosthetic radiolucencies and increased prosthetic survival with the metal-on-metal articulation. Methods A randomized controlled trial will be conducted. Patients to be included suffer from non-inflammatory degenerative joint disease of the hip, are aged between 18 and 80 and are admitted for primary cementless unilateral total hip arthroplasty. Patients in the metal-on-metal group will receive a cementless titanium alloy acetabular component with a cobalt-chromium liner and a cobalt-chromium femoral head varying from 38 to 60 mm. Patients in the metal-on-polyethylene group will receive a cementless titanium alloy acetabular component with a polyethylene liner and a 28 mm cobalt-chromium femoral head. We will assess acetabular bone mineral density by dual energy x-ray absorptiometry (DEXA, serum ion concentrations of cobalt, chromium and titanium, self reported functional status (Oxford hip score, physician reported functional status and range of motion (Harris hip score, number of dislocations and prosthetic survival. Measurements will take place preoperatively, perioperatively, and postoperatively (6 weeks, 1 year, 5 years and 10 years. Discussion

  4. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison

    OpenAIRE

    Guzle Adas, Yasemin; Yazici, Omer; Kekilli, Esra; Kiran, Ferat

    2018-01-01

    Objective: Metallic implants have impacts on dose distribution of radiotherapy. Our purpose is evaluating impact of metallic implants with different dose calculation algorithms on dose distribution. Material and Methods: Two patients with metallic implants on vertebral body were included in this study. They were treated with stereotactic radiotherapy. The data of the patients were retrospectively re-calculated with different TPSs and calculation algorithms. Ray-Tracing (Ry-Tc), Mont...

  5. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  6. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  7. Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria).

    Science.gov (United States)

    Hudek, L; Torriero, A A J; Michalczyk, A A; Neilan, B A; Ackland, M L; Bräu, Lambert

    2017-05-01

    This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H 2 O 2 , no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H 2 O 2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582 - cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582 - cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  8. Evaluation of Ti-6Al-4V surface treatments for use with a polyphenylquinoxaline adhesive

    Science.gov (United States)

    Progar, Donald J.

    1987-01-01

    Three surface treatments for Ti-6Al-4V adherends were evaluated using a thermoplastic polymer monoether polyphenylquinoxaline, MEPPQ, which had been shown in previous studies to have good potential as a high temperature adhesive for aerospace applications. Initial results based on long term thermal exposure at 232 C (450 F) using the phosphate-fluoride (PF) and chromic acid anodized (CAA) treatments with MEPPQ adhesive were not encouraging. A significant improvement in strength retention and a change in failure mode (cohesive) at 232 C (450 F) was found for the SHA treated specimens compared to the PF and CAA treatments. Although an improvement in long term thermal durability was obtained with the SHA treatment of Ti-6Al-4V, an improved surface treatment with better long term durability is still required for aerospace applications.

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    Science.gov (United States)

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  11. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  13. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2013-02-01

    In a column experiment with horizontal permeable barriers, the effects of a biodegradable chelator-nitrilotriacetic acid (NTA) on the uptake of heavy metals from municipal solid waste (MSW) compost by Festuca arundinacea and metal leaching were investigated. The use of NTA was effective in increasing Cu, Pb, and Zn uptakes in shoots of two crops of F. arundinacea. In columns with barriers and treated with 20 mmol NTA per kg MSW compost, metal uptakes by the first and second crop of F. arundinacea were, respectively, 3.8 and 4.0 times for Pb, and 1.8 and 1.7 times for Zn greater with the added NTA than without it. Though NTA application mobilized metals, it caused only slight leaching of metals from MSW compost. Permeable barriers positioned between compost and soil effectively reduced metal leaching. NTA-assisted phytoextraction by turfgrass with permeable barriers to cleanup heavy metal contaminated MSW compost should be environmentally safe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  15. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  16. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    International Nuclear Information System (INIS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-01-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test. (paper)

  17. Heavy metal accumulation imparts structural differences in fragrant Rosa species irrigated with marginal quality water.

    Science.gov (United States)

    Ahsan, Muhammad; Younis, Adnan; Jaskani, Muhammad Jafar; Tufail, Aasma; Riaz, Atif; Schwinghamer, Timothy; Tariq, Usman; Nawaz, Fahim

    2018-09-15

    Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and

  18. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  19. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  20. Metal Removal and Antimicrobial Properties of Watermelon rind modified with clove

    Directory of Open Access Journals (Sweden)

    Othman N.

    2016-01-01

    Full Text Available The current rapid development of industrial activity indirectly discharged pollutant into the local water stream. One of the harmful industrial wastes that enter public drainage is heavy metal owing to its toxic, non-biodegradable and persistent in nature. Improper treatment of domestic waste also will discharged high amount of microbial. Various types of technology were developed for removing pollutant in wastewater, but most of the technology employed to address on removing organic content in wastewater. Other pollutant namely, heavy metals and microbial indirectly treated at low concentration of pollutant loading. Among various available technologies for water treatment adsorption process is considered a promising technology as compared to other methods because of convenience, easy operational and low cost of treatment. The aim of this study is to investigate potential used of local fruit rind modified with herb as adsorbent material. The rind present strong potential due to its high content of cellulose, pectin, hemicellulose and lignin as active binding sites for metal sorption. Modified rind improves absorption by having anti microbial properties to kill pathogenic organisms. The concentration of heavy metal ions was analysed using ICP-MS. E. coli and total colifrm were plated out using chromocult agar. The results showed significant reductions of heavy metals and microbial concentration after wastewater was treated with clove modified rind.

  1. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  3. Mechanical behaviour of dissimilar metal welds

    International Nuclear Information System (INIS)

    Escaravage, C.

    1990-01-01

    This report addresses the problems of dissimilar metal welds connecting an austenitic stainless steel component to a ferritic steel component. In LMFBRs such welds appear at the junction of the austenitic stainless steel vessel with the ferritic steel roof and in sodium and water or steam pipes. The latter are exposed to high temperatures in the creep range. A wide range of austenitic stainless steels and ferritic steels (carbon steels, low allow steels and alloy steels) are covered; the study encompasses more than 20 different weld metals (austenitic stainless steels and nickel base alloys). The report begins with a presentation of the materials, geometries and welding procedures treated in the study, followed by a review of service experience from examinations of dissimilar metal welds after elevated temperature service, in particular failed welds. Results of laboratory tests performed for reproducing service failures are then discussed. A further section is devoted to a review of test results on fatigue behaviour and impact toughness for dissimilar metal welded joints when creep is not significant. Finally, the problem of residual life assessment is addressed. A set of recommendations concludes the report. They concern the material selection, welding procedure, life prediction and testing of dissimilar metal welds. 84 refs

  4. 92 Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Choice-Academy

    Speciation and distribution of heavy metals in soil controls the degree to which ... observed that the groundwater is vulnerable to contamination as no treated ... toxic materials such as lead, cadmium, .... designing remediation programme for.

  5. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  6. Uptake of CrO42- ions by Fe-treated tri-calcium phosphate

    International Nuclear Information System (INIS)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E.

    2010-01-01

    CrO 4 2- ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10 -4 M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO 4 2- ions was 7.10 x 10 -3 mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  7. Comparison of outcome in 1809 patients treated with drug-eluting stents or bare-metal stents in a real-world setting

    Directory of Open Access Journals (Sweden)

    Vogt A

    2011-11-01

    Full Text Available Alexander Vogt1, Anke Schoelmerich1, Franziska Pollner1, Manuela Schlitt1, Uwe Raaz1, Lars Maegdefessel2, Iris Reindl1, Michael Buerke1, Karl Werdan1, Axel Schlitt11Department of Medicine III, Martin Luther-University, Halle, Germany; 2Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USAPurpose: The aim of this study was to determine the long-term safety of drug-eluting stent (DES versus bare metal stent (BMS implantation in a “real-world” setting.Patients and methods: A total of 1809 patients who were treated with implantation of either BMS or DES were assessed. Kaplan-Meier and multivariate Cox regression analyses concerning primary endpoint of cardiac mortality were performed.Results: A total of 609 patients received DES. Mean age was 66.2 ± 11.3 years, 69.4% were male, and 1517 (83.8% were treated for acute coronary syndrome (unstable angina 510 [28.2%], non-ST-elevation myocardial infarction [NSTEMI] 506 [28.0%], and ST-elevation myocardial infarction [STEMI] 501 [27.7%]. Mean follow-up was 34 ± 15 months. During follow-up, 268 patients died of cardiac causes (DES 42 [7.3%]; BMS 226 [19.6%]; P < 0.001. Univariate Kaplan-Meier analysis showed an advantage of DES over BMS concerning the primary endpoint (P < 0.001. When adjusting for classic risk factors and additional factors that affect the progression of coronary heart disease (CHD, DES was not found to be superior to BMS (hazard ratio 0.996, 95% confidence interval 0.455–2.182, P = 0.993. Severely impaired renal function was an independent predictor for cardiac mortality after stent implantation.Conclusion: Treatment with DES is safe in the long term, also in patients presenting with STEMI. However, in multivariate analyses it is not superior to BMS treatment.Keywords: coronary stent, outcome, renal insufficiency, myocardial infarction, STEMI

  8. Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes

    NARCIS (Netherlands)

    Gouin O'Shaughnessey, P.; Dube, M; Fernandez Villegas, I.

    2016-01-01

    A three-dimensional finite element model of the induction welding of carbon fiber/polyphenylene sulfide thermoplastic composites is developed. The model takes into account a stainless steel mesh heating element located at the interface of the two composite adherends to be welded. This heating

  9. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions of the world is a cause of serious concerns. The severe water scarcity urges the reuse of treated wastewater effluent and marginal water as a resource for irrigation. Mobarake Steel Complex has been using treated industrial wastewater for drip-irrigation of trees in about 1350 ha of its green space. However, wastewater may contain some amounts of toxic heavy metals, which create problems. Excessive accumulation of heavy metals in agricultural soils through wastewater irrigation may not only result in soil contamination, but also affect food quality and safety. Improper irrigation management, however, can lead to the loss of soil quality through such processes as contamination and salination. Soil quality implies its capacity to sustain biological productivity, maintain environmental quality, and enhance plants, human and animal health. Soil quality assessment is a tool that helps managers to evaluate short-term soil problems and appropriate management strategies for maintaining soil quality in the long time. Mobarakeh Steel Complex has been using treated wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short- middle, and long-term wastewater irrigation on soil heavy metal concentration in green space of Mobarake Steel complex. Materials and Methods: The impacts of wastewater irrigation on bioavailable and total heavy metal concentrations in the soils irrigated with treated wastewater for 2, 6 and 18 years as compared to those in soils irrigated with groundwater and un-irrigated soils. Soils were sampled from the wet bulb produced by under-tree sprinklers in three depths (0-20, 20-40 and 40-60 cm. Soil samples were air-dried, and crushed to pass through a 2-mm sieve. Plant-available metal concentrations were extracted from the soil with diethylenetriaminepentaacetic acid-CaCl2

  10. Improvements in or relating to surface treatment of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.; Hartley, N.E.W.

    1975-01-01

    A method is described for surface treating metals so as to reduce their coefficients of friction. The metal is subjected to bombardment by a beam of ions of dry lubricant material, or material that forms a dry lubricant. The ions should have energies sufficient to cause them to be implanted into the surface region of the metal. The metal may be heated to facilitate assimilation of the ions, and implantation may be enhanced by means of irradiation of the article with radiation of energy sufficient to enhance diffusion of the ions into the article. The dry lubricant ions may comprise Mo + , In + , or Sn + . Where the article is of steel suitable ions are Mo + and S + deposited in the ratio of 1:2. Examples of application of the method are given, using a 500 Kv Cockcroft-Walton accelerator for the implantation. (U.K.)

  11. [Fine mesh metal endoprostheses for treatment of extensive cervical and intrathoracic tracheomalacia].

    Science.gov (United States)

    Wilmes, E; Berger, H; Dienemann, H; Jolk, A

    1994-01-01

    The treatment of tracheal stenoses caused by tracheomalacia is mainly carried out by means of sleeve resection, tracheopexy with ring support or other tracheoplastic operative procedures. If patients cannot be treated by surgical operative strategies, conventional stents are usually used to dilate the trachea. The use of a self-expanding elastic metal prosthesis in 5 patients with tracheal airway obstruction caused by tracheomalacia proved to be a true alternative in the therapy of tracheobronchial stenoses. We report on the long term use of 5 patients with tracheal stenoses treated by implantation of elastic metal wallstents. The implantation of the stents resulted in immediate improvement in respiratory function in all 5 patients. None of the patients experienced complications secondary to the stent placement. The stents were well tolerated (long-time follow-up 26 months). The implantation of self-expanding metal stents type "wallstent" seems to offer alternative possibilities for the treatment of tracheomalacia.

  12. Sources of heavy metal contamination in Swedish wood waste used for combustion

    International Nuclear Information System (INIS)

    Krook, J.; Martensson, A.; Eklund, M.

    2006-01-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW

  13. Selective synthesis of double helices of carbon nanotube bundles grown on treated metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Sodi, Felipe; Iniguez-Rabago, Agustin; Rosas-Melendez, Samuel; Ballesteros-Villarreal, Monica [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prolongacion Paseo de la Reforma 880, Lomas de Santa Fe (Mexico); Vilatela, Juan J. [IMDEA Materials Institute, E.T.S. de Ingenieros de Caminos, Madrid (Spain); Reyes-Gutierrez, Lucio G.; Jimenez-Rodriguez, Jose A. [Ingenieria Industrial, Grupo JUMEX, Ecatepec de Morelos, Estado de Mexico (Mexico); Palacios, Eduardo [Lab. de Microscopia Electronica de Ultra Alta Resolucion, Instituto Mexicano del Petroleo, San Bartolo Atepehuacan (Mexico); Terrones, Mauricio [Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA (United States); Research Center for Exotic Nanocarbons (JST), Shinshu University, Nagano (Japan)

    2012-12-15

    Double-helix microstructures consisting of two parallel strands of hundreds of multi-walled carbon nanotubes (MWCNTs) have been synthesized by chemical vapour deposition of ferrocene/toluene vapours on metal substrates. Growth of coiled carbon nanostructures with site selectivity is achieved by varying the duration of thermochemical pretreatment to deposit a layer of SiO{sub x} on the metallic substrate. Production of multibranched structures of MWCNTs converging in SiO{sub x} microstructure is also reported. In the abstract figure, panel (a) shows a coloured micrograph of a typical double-helix coiled microstructure of MWCNTs grown on SiO{sub x} covered steel substrate. Green and blue show each of the two individual strands of MWCNTs. Panel (b) is an amplification of a SiO{sub x} microparticle (white) on the tip of the double-stranded coil (green and blue). The microparticle guides the collective growth of hundreds of MWCNTs to form the coiled structure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  15. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  16. Thermophysical properties of simple liquid metals: A brief review of theory

    Science.gov (United States)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  17. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts.

    Science.gov (United States)

    Liu, Ling; Guo, Xiaoping; Wang, Shuqi; Li, Lei; Zeng, Yang; Liu, Guanhong

    2018-04-15

    In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg -1 ) > Cu (38.6mgg -1 ) > Zn (34.9mgg -1 ) > Ni (28.7mgg -1 ) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  19. Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock

    Science.gov (United States)

    2017-03-27

    Figure 1. This ESTCP demonstration was focused in the vicinity of Building 8595, adjacent to the location of a reported surface release of PCE ( Earth ...electron donor source, such as vegetable oil, is typically used in passive approaches. When treating a DNAPL source area in fractured rock, there are... vegetable oil) are used. Hydrogen The generation of hydrogen can be used to verify fermentation of electron donor. Metals (Fe, Mn, As) Increase

  20. An unusual intracranial metallic foreign bodies and panhypopituitarism.

    Science.gov (United States)

    Lakouichmi, Mohammed; Baïzri, Hicham; Mouhsine, Abdelilah; Boukhira, Abderrahmane; Akhaddar, Ali

    2014-01-01

    A 49 years old man, with a history of aggression at the age of 18 years by a pair of scissors, who consulted for unilateral migraine headaches look straight. Paraclinical explorations concluded that trauma to anterior pituitary by a metallic foreign body from the right nostril to the sella, responsible for panhypopituitarism and sinusitis. The headaches are frequent causes of consultation, often treated symptomatically but rarely explored. The direct trauma to the pituitary gland, by a metallic foreign body, is exceptional. We report the case of neglected panhypopituitarism, discovered 31 years after injury with a pair of scissors.

  1. Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ji, Dapeng; Huang, Xin; Zhang, Jianyun; Liu, Jing

    2017-08-01

    Co-occurrence of pyrethroids and metals in watersheds previously has been reported to pose great risk to aquatic species. Pyrethroids are a class of chiral insecticides that have been shown to have enantioselective toxicity and biotransformation. However, the influence of metals on enantioselectivity of pyrethroids has not yet been evaluated. In the present study, the effects of cadmium (Cd), copper (Cu), and lead (Pb) on the enantioselective toxicity and metabolism of cis-bifenthrin (cis-BF) were investigated in zebrafish at environmentally relevant concentrations. The addition of Cd, Cu, or Pb significantly increased the mortality of zebrafish in racemate and R-enantiomer of cis-BF-treated groups. In rac-cis-BF- or 1R-cis-BF-treated groups, the addition of Cd, Cu, or Pb caused a decrease in enantiomeric fraction (EF) and an increased ratio of R-enantiomer residues in zebrafish. In 1S-cis-BF-treated groups, coexposure to Cd led to a lower EF and decreased residue levels of S-enantiomer. In addition, coexposure to the 3 metals resulted in different biodegradation characteristics of each enantiomer accompanied with differential changes in the expression of cytochrome P450 (CYP)1, CYP2, and CYP3 genes, which might be responsible for the enantioselective biodegradation of cis-BF in zebrafish. These results suggest that the influence of coexistent metals should be considered in the ecological risk assessment of chiral pyrethroids in aquatic environments. Environ Toxicol Chem 2017;36:2139-2146. © 2017 SETAC. © 2017 SETAC.

  2. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  3. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  4. Treatment of radioactive metallic waste by the electro-slag melting method

    International Nuclear Information System (INIS)

    Ochiai, Atsuhiro; Nagura, Kanetake; Noura, Tsuyoshi

    1983-01-01

    The applicability of the electro-slag melting method for treating plutonuim contaminated metallic waste was studied. A 100kg test furnace was built and simulated metallic waste was melted and solidified in this furnace. Waste volume was reduced to 1/25 with a decontamination factor of 25 and the slag and the copper mold are repeatedly usable. The process is expected to be employed in the project of PWTF (Plutonium contaminated Wate Treatment Facilities). (author)

  5. Strength and failure analysis of inverse Z joints bonded with Vinylester Atlac 580 and Flexo Tix adhesives

    International Nuclear Information System (INIS)

    Adin, Hamit; Turgut, Aydin

    2012-01-01

    In this study, the tensile strength and failure loads of the inverse Z joints were analyzed both experimentally and numerically by using two adhesives with different properties under a tensile load. Vinylester Atlac 580 and Flexo Tix were used as adhesives and the joints were prepared with two different composite materials. Initially, the mechanical properties of the adhesives were specified using bulk specimens. Then, the stress analyses were performed using three dimensional finite element method (3 D FEM) via Ansys (V.10.0.1). The experimental results were compared with the numerical results and they were found quite reasonable. According to the test results, it can be seen that when the adherend thickness is increased, the stress increases as well. The most appropriate value of the adherend thickness is identified as t = 5 mm. Furthermore, it was observed that the lowest failure load was obtained at t = 3 mm the thickness for each specimen

  6. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  7. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  8. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    Science.gov (United States)

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports

  9. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  10. Experimental Analysis of Soil and Mandarin Orange Plants Treated with Heavy Metals Found in Oilfield-Produced Wastewater

    Directory of Open Access Journals (Sweden)

    Ailin Zhang

    2018-05-01

    Full Text Available Despite a declining trend, California remains a significant oil-producing state. For every barrel of crude oil, an average of 15 barrels of oilfield produced water (OPW is generated, some of which is used to boost freshwater sources for crop irrigation in the agriculturally important Central Valley. OPW is known to contain salts, metals, hydrocarbons, alkylphenols, naturally radioactive materials, biocides, and other compounds from drilling and production processes. Less is known about the potential uptake and accumulation of these compounds in crops and soil irrigated with OPW. In this study, 23 potted mandarin orange plants were irrigated two to three times weekly (depending on season with water containing three different concentrations of the known OPW heavy metals barium, chromium, lead, and silver. Seven sets of samples of soil and leaves and 11 fruits were collected and processed using microwave-assisted digestion (EPA Method 3051A. Processed samples were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES. Analysis of variance (ANOVA and covariance (ANCOVA coupled with Tukey’s honest significant difference test were used to examine the effects of metal concentrations in the irrigation water and number of watering days, respectively, on the metal concentrations in the soil, leaf, and fruit samples. Accumulation of barium in soil and leaves was strongly positively associated with sample and number of watering days, increasing nearly 2000-fold. Lead also showed an upward trend, increasing up to 560-fold over the baseline level. Total chromium showed an increase in the soil that tapered off, but less consistent results in the leaves and fruit. The silver results were more volatile, but also indicated at least some level of accumulation in the tested media. The smallest absolute accumulation was observed for chromium. Concentrations in the fruit were highest in the peel, followed by pith and juice. Accumulation

  11. Methods and compositions for treating low temperature subterranean well formations

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, J.

    1979-08-21

    An aqueous composition is described for treating subterranean formations having temperatures of up to 120 F. The aqueous composition consists of water, a water-soluble organic gelling agent, an oxidizing agent to supply free radicals, and a reducing agent to accelerate the generation of free radicals. Reducing agents are water-soluble metal salts of the halides, sulfates, nitrates or mixtures thereof. Oxidizing agents are water-soluble peroxides, persulfates or mixtures thereof. Gelling agents may be sodium polyacrylate, polyacrylic acid, polysodium-2-acrylamide-3-propylsulfonate polyacrylamides or polymetharylamides that have been hydrolyzed from 0 to 70% and neturalized with ammonium or alkali metal hydroxides; or gums such as guar, locust bean, taaga tragacanth, hydroxyethyl guar, hydroxy-propyl guar, carboxymethyl guar or mixtures thereof. 22 claims.

  12. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  13. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  14. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  15. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  16. Modelling inorganic biocide emission from treated wood in water

    Energy Technology Data Exchange (ETDEWEB)

    Tiruta-Barna, Ligia, E-mail: Ligia.barna@insa-toulouse.fr [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR792, Laboratoire d' Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Universite Paris-Est, CSTB- Scientific and Technical Centre for the Building Industry, ESE/Environment, 24, rue Joseph Fourier, 38400 Saint Martin d' Heres (France)

    2011-09-15

    Highlights: {center_dot} We developed a mechanistic model for biocide metals fixation/mobilisation in wood. {center_dot} This is the first chemical model explaining the biocide leaching from treated wood. {center_dot} The main fixation mechanism is the surface complexation with wood polymers. {center_dot} The biocide mobilization is due to metal-DOC complexation and pH effect. - Abstract: The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO{sub 4}{sup -2}, dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.

  17. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  18. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.; Kalimullah; Miles, K.J.

    1990-01-01

    The results of the SAS4A analysis of the M7 TREAT Metal fuel experiment are presented. New models incorporated in the metal fuel version of SAS4A are described. The computational results are compared with the experimental observations and this comparison is used in the interpretation of physical phenomena. This analysis was performed using the integrated metal fuel SAS4A version and covers a wide range of events, providing an increased degree of confidence in the SAS4A metal fuel accident analysis capabilities

  19. Arc-textured metal surfaces for high thermal emittance space radiators

    International Nuclear Information System (INIS)

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 μm were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70

  20. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  1. Compressed air-assisted solvent extraction (CASX) for metal removal.

    Science.gov (United States)

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  2. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.

    2008-01-01

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  3. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  4. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  5. Mechanism of biosorption of Heavy metals by mucor rouxii

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G. [Alberta Capital Region Wastewater Commission, Fort Saskatchewan, Alberta (Canada); Viraraghavan, T. [Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada)

    2008-08-15

    Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb,Cd,Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Unusual presentation of failed metal-on-metal total hip arthroplasty with features of neoplastic process

    Directory of Open Access Journals (Sweden)

    Robert P. Runner, MD

    2017-06-01

    Full Text Available Metal-on-metal (MoM total hip arthroplasty (THA is associated with increased incidence of failure from metallosis, adverse tissue reactions, and the formation of pseudotumors. This case highlights a 53-year-old female with an enlarging painful thigh mass 12 years status post MoM THA. Radiographs and advanced imaging revealed an atypical mass with cortical bone destruction and spiculation, concerning for periprosthetic malignancy. Open frozen section biopsy was performed before undergoing revision THA in a single episode of care. This case illustrates that massive pseudotumors can be locally aggressive causing significant femoral bone destruction and may mimic malignancy. It is important that orthopaedic surgeons, radiologists and pathologists understand the relative infrequency of periprosthetic malignancy in MoM THA to mitigate patient concerns, misdiagnosis, and allow for an evidence based discussion when treating massive pseudotumors.

  7. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities.

    Science.gov (United States)

    Yoon, In-Ho; Choi, Wang-Kyu; Lee, Suk-Chol; Min, Byung-Youn; Yang, Hee-Chul; Lee, Kune-Woo

    2012-06-15

    The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900°C for 2h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO(2)) and pollucite (Cs(2)OAl(2)O(3)4SiO(2)), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A study on the treatment of industrial wastewater containing heavy metals

    International Nuclear Information System (INIS)

    Yoon, Myoung Hwan; Jang, In Soon; Park, Jang Jin; Choi, Chang Shik; Lee, Yoon Hwan; Shin, Jin Myoung

    1993-06-01

    It is essential to treat heavy metals contained in industrial wastewater safely and economically for the protection of the environment. An effective method of separating heavy metals using acornic acid for the first time in the world must be utilized for wastewater treatment. One of the merits of this method lies in its cheap treatment cost. Furthermore, the secondary contamination, which occurs often when chemical purifiers are used, could be minimized. Another advantage of utilizing the acornic acid is that various kinds of heavy metals contained in industrial wastewater can be purified at once. The final purpose of this project is to commercialize the method by 1994. (Auther)

  9. Transition metal rates in latosol twice treated with sewage sludge

    Directory of Open Access Journals (Sweden)

    Ana Tereza Jordão Pigozzo

    2006-05-01

    Full Text Available Agricultural recycling of sewage sludge has been a source of accumulation of heavy metals in the environment which may reach toxic levels and cause serious damage to the biota. Field experiments were undertaken for two agricultural years (2000 and 2002 and effects of two sewage sludge applications were evaluated through the extraction of (essential and non-essential transition metals by diethylenetriaminepentaacetic acid (DTPA extractor in a medium texture dystrophic Dark Red Latosol. Cd, Ni, Co, Pb and Cr were not detected. Application of sewage sludge initially caused a slight pH rise in the soil; later pH lowered and kept itself close to the starting level. It could be concluded that through consecutive sludge application, extractable rates of Fe and Mn in soil samples gradually increased during the two agricultural years in proportion to sewage sludge doses and sampling period. In fact, they were higher than rates of control. Due to low concentrations of soil samples, extractor had a restricted capacity for evaluation of its phytoavailability.A reciclagem agrícola do lodo de esgoto tem provocado o acúmulo de metais pesados no solo e na água, podendo atingir níveis tóxicos e causar danos às plantas cultivadas, aos animais e ao homem, por meio da cadeia trófica. Neste intuito foi desenvolvido o presente experimento, em condições de campo, entre 2000 e 2002, onde foram avaliados os efeitos da aplicação de lodo de esgoto por dois anos, sobre a extração de metais de transição (essenciais e não pelo extrator DTPA em um Latossolo Vermelho distrófico (LVd de textura média. As concentrações dos elementos metálicos: Mn, Fe, Cd, Ni, Co, Pb e Cr não foram detectados pelo método da absorção atômica na solução obtida com o extrator DTPA. A aplicação de lodo de esgoto causou inicialmente pequena elevação no pH do solo, posteriormente a diminuição do mesmo, e manteve-se próximo ao original. Foi possível concluir que, com

  10. THE IMPACT OF SEWAGE TREATMENT PLANT ON THE AMOUNT OF HEAVY METALS IN WATER OF THE SUPRAŚL RIVER CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-01-01

    Full Text Available The main purpose of this study was to evaluate the effect of treated sewage flowing from sewage treatment plants located in the basin of the Supraśl river on the concentration and load of metals in river waters and its main tributaries. Three measuring- control points were chosen, on the river and its tributaries, located near Gródek, Sokółka and Dobrzyniewo. Selected points were located behind the discharge of treated wastewater from sewage treatment plants respectively – Gródek, Sokółka and Bialystok. The samples of treated sewage and water were collected in a period from May to November, once a month in 2014. Each individual sample was examined for the content of dissolved form of the following metals: Pb2+, Cu2+, Cd2+, Ni2+, Zn2+, Fe2+/3+. After taking into account water flow of the Biała, Sokołda and Supraśl in every month, metals loads expressed in mg·h-1, transported by the Supraśl and its tributaries waters were calculated. In the study monthly metals loads discharged into the Biała, Sokołda and Supraśl by sewage treatment plants in Białystok, Sokółka and Gródek were also calculated. The studies have shown the impact of metals load in treated wastewater on metals loads in waters of studied rivers based on the obtained correlation. Most of the searched relations between loafs of Pb2+ – r = 0,88; Cd2+ – r = 0,98; Fe2+/3+ – r = 0,45; Ni2+ – r = 0,55; Zn2+ – r = 0,86 were obtained in case of wastewater treatment plant in Gródek and Supraśl waters. In the study period we observed a diversity in concentration of Cd2+, Fe2+/3+, Ni2+ and Zn2+ in treated sewage and in river waters, which affected loads of this metals.

  11. The effects of metal ion PCR inhibitors on results obtained with the Quantifiler(®) Human DNA Quantification Kit.

    Science.gov (United States)

    Combs, Laura Gaydosh; Warren, Joseph E; Huynh, Vivian; Castaneda, Joanna; Golden, Teresa D; Roby, Rhonda K

    2015-11-01

    Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that

  12. Investigations of radiochemical methods for the platinum group metals for NAA

    International Nuclear Information System (INIS)

    Tredoux, M.

    A radiochemical procedure for the determination of the platinum group metals and gold is outlined in this report. The sample is irradiated, treated with acids and passed through anion-exchange columns before being determined by gamma spectrometry

  13. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  14. Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads

    Science.gov (United States)

    Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui

    1997-01-01

    Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.

  15. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  16. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  17. Study of the high power laser-metal interactions in the gaseous atmospheres

    Science.gov (United States)

    Lugomer, Stjepan; Bitelli, G.; Stipancic, M.; Jovic, F.

    1994-08-01

    The tantalum and titanium plates were treated by pulsed, high power CO2 laser in the pressurized atmospheres of N2 and O2. Studies performed by the optical microscopy, microhardness measurements, and the auger electron spectroscopy revealed: (1) topographic modification of the surface caused by the temperature field; (2) metal hardening, caused by the laser shock; and (3) alloying/cladding, caused by the chemical reaction between the metal surface and the gaseous atmosphere.

  18. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  19. Plasma trace metals during total parenteral alimentation.

    Science.gov (United States)

    Solomons, N W; Layden, T J; Rosenberg, I H; Vo-Khactu, K; Sandstead, H H

    1976-06-01

    The plasma concentrations of the trace metals zinc and copper were studied prospectively in 13 patients with gastrointestinal diseases treated with parenteral alimentation (TPA) for periods of from 8 days to 7 1/2 weeks. Plasma copper levels fell rapidly and consistently in all patients, with an overall rate of - 11 mug per 100 ml per week. Zinc concentrations declined in 10 of 13 patients at a more gradual rate. Analysis of the standard parenteral alimentation fluids revealed zinc content equivalent to 50% of the daily requirement and a negligible content of copper. From combined analysis of plasma zinc, hair zinc, and taste acuity, there is evidence that increased utilization or redistribution within the body may effect plasma concentrations in some patients. Neither an increase in urinary excretion nor a primary decrease in plasma binding proteins appeared to be a major factor in lowering plasma trace metal concentrations. These findings indicate that a marked decrease in plasma copper is regular and a decline in plasma zinc is common during TPA using fluids unsupplemented with trace metals. Supplementation of parenteral alimentation fluids with the trace metals zinc and copper is recommended.

  20. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals.

    Science.gov (United States)

    Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng

    2011-08-01

    Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content tosoil particle size was less significant, even when the soils were thermally treated to 550°C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Percutaneous metallic self-expandable endoprostheses in malignant hilar biliary obstruction

    NARCIS (Netherlands)

    Stoker, J.; Laméris, J. S.; van Blankenstein, M.

    1993-01-01

    Forty-five patients with malignant hilar obstruction were treated with a total of 68 percutaneously inserted metallic self-expandable endoprostheses (Wallstents) for palliative biliary drainage. The stent diameter was 1 cm; the length was 3.5 to 10.5 cm. Early complications occurred in seven

  2. Neutron activation analysis of trace metals in the hair and organs of small animals treated chronically with Hg and Mn

    International Nuclear Information System (INIS)

    Ohmori, S.; Hashimoto, K.

    1985-01-01

    For the purpose of studying the secretion of exogenous toxic metals into hair, the relation between their concenrations in hair and in organs, and the metal shift Hg or Mn was orally administered to Guinea pigs for protracted periods. The distributions of metals in hair and organs were examined by means of neutron activation analysis. It was found that the administration of Hg at high dose resulted in abnormally high Hg levels in hair from the 2nd dosing week and in organs after 25 weeks of dosing, and in a reduced motor activity after 25 weeks of administration. There occurred metal shifts in hair as well. Administration of Mn at high doses, on the other hand, showed no such biological influences, although a dose-dependent increase of Mn in hair was detected with time. (author)

  3. Treatment and minimization of heavy metal-containing wastes 1995

    International Nuclear Information System (INIS)

    Hager, J.P.; Mishra, B.; Litz, J.L.

    1995-01-01

    This symposium was held in conjunction with the 1995 Annual Meeting of the Minerals, Metals and Materials Society in Las Vegas, Nevada, February 12--16, 1995. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information on treating and minimizing heavy metal-containing wastes. Papers were categorized under the following broad headings: aqueous processing; waste water treatment; thermal processing and stabilization; processing of fly ash, flue dusts, and slags; and processing of lead, mercury, and battery wastes. Individual papers have been processed separately for inclusion in the appropriate data bases

  4. Metal waste forms from the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys are being developed for the disposal of radioactive metal isotopes isolated using an electrometallurgical treatment technique to treat spent nuclear fuel. The nominal waste forms are stainless steel-15 wt% zirconium alloy and zirconium-8 wt% stainless steel alloy. These alloys are generated in yttria crucibles by melting the starting materials at 1,600 C under an argon atmosphere. This paper discusses the microstructures, corrosion and mechanical test results, and thermophysical properties of the metal waste form alloys

  5. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use

    DEFF Research Database (Denmark)

    Schalock, Peter C; Menné, Torkil; Johansen, Jeanne D

    2011-01-01

    Cutaneous and systemic hypersensitivity reactions to implanted metals are challenging to evaluate and treat. Although they are uncommon, they do exist, and require appropriate and complete evaluation. This review summarizes the evidence regarding evaluation tools, especially patch and lymphocyte...... transformation tests, for hypersensitivity reactions to implanted metal devices. Patch test evaluation is the gold standard for metal hypersensitivity, although the results may be subjective. Regarding pre-implant testing, those patients with a reported history of metal dermatitis should be evaluated by patch...... testing. Those without a history of dermatitis should not be tested unless considerable concern exists. Regarding post-implant testing, a subset of patients with metal hypersensitivity may develop cutaneous or systemic reactions to implanted metals following implant. For symptomatic patients, a diagnostic...

  6. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  7. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  8. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  9. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  10. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  11. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  12. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  13. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants.

    Science.gov (United States)

    López-Jornet, Pía; Perrez, Francisco Parra; Calvo-Guirado, José Luis; Ros-Llor, Irene; LLor-Ros, Irene; Ramírez-Fernández, Piedad

    2014-07-01

    The aim of this study was to assess the potential genotoxicity of dental implants, evaluating biomarkers of DNA damage (micronuclei and/or nuclear buds), cytokinetic defects (binucleated cells) and the presence of trace metals in gingival cells of patients with implants, comparing these with a control group. A total of 60 healthy adults (30 patients with dental implants and 30 control patients without) were included in the study. Medical and dental histories were made for each including life-style factors. Genotoxicity effects were assessed by micronucleus assays in the gingival epithelial cells of each patient; 1,000 epithelial cells were analyzed, evaluating the frequency of micronucleated cells and other nuclear anomalies. The concentration of metals (Al(27), Ag(107), Co (59), Cr (52), Cu(63), Fe(56), Sn(118), Mn(55), Mo(92), Ni(60), Pb(208), Ti(47)) were assayed by means of coupled plasma-mass spectrophotometry (ICP-MS). The frequency of micronuclei in the patient group with implants was higher than in the control group but without statistically significant differences (P > 0.05). Similar results were found for binucleated cells and nuclear buds (P > 0.05). For metals assayed by ICP-MS, significant differences were found for Ti(47) (P ≤ 0.045). Univariate analysis identified a significant association between the presence of micronuclei and age. Dental implants do not induce DNA damage in gingival cells, the slight effects observed cannot be indicated as biologically relevant.

  14. Palliative metallic stent placement for managing esophageal cancer of the aging

    International Nuclear Information System (INIS)

    Li Qnqi; Yin Huabin; Yue Wei; Ji Chengzhou; Yang Yufeng

    2000-01-01

    Objective: To evaluate the effectiveness of self-expanding metallic stent in the treatment of the old patients with malignant esophageal stricture. Methods: 32 old patients with malignant esophageal stricture were treated with covered self-expandable metallic stents, 32 stents were placed by X-TV guiding, without pre-dilatation of the stenosis by balloon catheter. Results: All 32 stents were successfully placed, the successful rate was 100%. All of the patients obtained the improvement of the food intake ability. No fatal stent-related complications occurred. The average survival time was 6.5 months. Conclusions: The covered self-expandable metallic stent is effective in the palliative management of malignant esophageal stricture of the aging

  15. [Expandable metal mesh stents for treatment of tracheal stenoses and tracheomalacia].

    Science.gov (United States)

    Müller, C; Dienemann, H; Hoffmann, H; Berger, H; Storck, M; Jolk, A; Schildberg, F W

    1993-01-01

    The treatment of tracheo-bronchial stenosis or tracheomalacia is mainly carried out by means of resection or tracheoplastic operative strategies. Since the introduction of metal-mesh stents, a definitive endoluminal therapy has to be considered under new aspects. Six patients with malignant stenosis or tracheomalacia due to compression were treated by implantation of Palmaz- or Wallstents. Immediately after the implantation, patients were relieved from dyspnoea, the forced inspiratory volume-1 (FIV1) was normalized. All implanted stents were well tolerated, even in the long-time follow-up (19 months). Bronchoscopic control showed overgrowth of the metal meshes by respiratory epithelium. The implantation of metal-mesh stents is an adequate alternative in the treatment of malignant stenosis and tracheomalacia.

  16. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  17. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  18. Nonlinear Bloch waves in metallic photonic band-gap filaments

    International Nuclear Information System (INIS)

    Kaso, Artan; John, Sajeev

    2007-01-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament

  19. Nonlinear Bloch waves in metallic photonic band-gap filaments

    Science.gov (United States)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  20. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    Science.gov (United States)

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  1. Metals separation using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Pourfarzaneh, M.

    1997-01-01

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed

  2. Monte Carlo method for magnetic impurities in metals

    Science.gov (United States)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  3. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  4. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  5. Antimicrobial and thermal properties of metal complexes of grafted fabrics with acrylic acid by gamma irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.; Khalil, E.M.

    2009-01-01

    Cotton, cotton/ ET blend and PET fabrics were treated against microbial effect by radiation -induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions like Co (l l), Ni(l l) and Cu(l l).The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the structural damage of the fabrics caused by biodegradation was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behaviour was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the microbial resistance of the fabrics and the microbial resistance could be arranged according to the complexed metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexes with Cu (l l) grafted fabrics complexes with Co (l l)

  6. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  7. CONCENTRATION OF SELECTED ELEMENTS IN RAW AND ULTRA HEAT TREATED COW MILK

    Directory of Open Access Journals (Sweden)

    Lukáčová Anetta

    2012-10-01

    Full Text Available The potential presence of toxic metals in food is being recognized as a priority by standards organizations and constitutes an analytical challenge. The toxic metal content of milk and dairy products is due to several factors: environmental conditions, the manufacturing process and the possible contamination during several steps of the manufacturing processes. The aim of this study was to evaluate samples of raw milk with fat contents 3.8% obtained at randomly from animal farms in around Nitra, western Slovakia region and ultra – heat treated cow milk (UHT with fat contents 1.5% commercially available from local market in Nitra. Samples of milk were analysed for metal contents using atomic absorption spectrophotometry (AAS. UHT milk showed higher levels of cadmium, nickel and iron. Higher levels of zinc, copper were detected in raw milk. Significant differences in the concentration of copper between raw and UHT cow milk were found.

  8. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions

    International Nuclear Information System (INIS)

    Liu Yang; Sun Changbin; Xu Jin; Li Youzhi

    2009-01-01

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO 4 .5H 2 O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 deg. C to 40 deg. C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca 2+ from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S=O) of

  9. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    Science.gov (United States)

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  10. Electromagnetic Detection of Stress Gradients at the Surfaces of Metals

    International Nuclear Information System (INIS)

    Schmidt, William F.; Zinke, Otto H.

    2004-01-01

    A general, integral expression is developed which relates measurements of the variations of the imaginary component of complex- reluctance with frequency to stress profiles near the surfaces of metals. The technique should yield either applied or residual stress profiles produced, for example, by heat-treating, metal-working, fatigue, or peening. It may even be applicable to carburizing. The technique of measurement cancels out the effects of any pre-treatment residual-stress profile (subject to the assumption of superposition). The general, integral expression is induced from the results of measurements on a steel bar which is subjected to both tensile tests and bending tests

  11. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  12. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use

    DEFF Research Database (Denmark)

    Schalock, Peter C; Menné, Torkil; Johansen, Jeanne D

    2011-01-01

    algorithm to guide the selection of screening allergen series for patch testing is provided. At a minimum, an extended baseline screening series and metal screening is necessary. Static and dynamic orthopaedic implants, intravascular stent devices, implanted defibrillators and dental and gynaecological......Cutaneous and systemic hypersensitivity reactions to implanted metals are challenging to evaluate and treat. Although they are uncommon, they do exist, and require appropriate and complete evaluation. This review summarizes the evidence regarding evaluation tools, especially patch and lymphocyte...... transformation tests, for hypersensitivity reactions to implanted metal devices. Patch test evaluation is the gold standard for metal hypersensitivity, although the results may be subjective. Regarding pre-implant testing, those patients with a reported history of metal dermatitis should be evaluated by patch...

  13. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Fatigue life of metal treated by magnetic field

    Science.gov (United States)

    Liu, Zhao-Long; Hu, Hai-Yun; Fan, Tian-You; Xing, Xiu-San

    2009-03-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.

  15. Use of high metal-containing biogas digestates in cereal production - Mobility of chromium and aluminium.

    Science.gov (United States)

    Dragicevic, Ivan; Eich-Greatorex, Susanne; Sogn, Trine A; Horn, Svein J; Krogstad, Tore

    2018-07-01

    Biogas digestate use as organic fertilizer has been widely promoted in recent years as a part of the global agenda on recycling waste and new sustainable energy production. Although many studies have confirmed positive effects of digestates on soil fertility, there is still lack of information on the potential adverse effects of digestates on natural soil heavy metal content, metal leaching and leaching of other pollutants. We have investigated the release of aluminium (Al) and chromium (Cr) from different soils treated with commercial digestates high in mentioned potentially problematic metals in a field experiment, while a greenhouse and a laboratory column experiment were used to address mobility of these metals in two other scenarios. Results obtained from the field experiment showed an increase in total concentrations for both investigated metals on plots treated with digestates as well as a significant increase of water-soluble Al concentrations. Factors that were found to be mostly affecting the metal mobility were dissolved organic carbon (DOC), pH and type of soil. Metal binding and free metal concentrations were modelled using the WHAM 7.0 software. Results indicated that the use of digestates with high metal content are comparable to use of animal manure with respect to metal leaching. Data obtained through chemical modelling for the samples from the field experiment suggested that an environmental risk from higher metal mobility has to be considered for Al. In the greenhouse experiment, measured concentrations of leached Cr at the end of the growing season were low for all treatments, while the concentration of leached Al from digestates was higher. The high irrigation column leaching experiment showed an increased leaching rate of Cr with addition of digestates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Therapeutic evaluation of retrievable esophageal covered stent in treating achalasia

    International Nuclear Information System (INIS)

    Li Yuwei; Zhang Fuqiang; Yuan Liang; Li Yunhui; Luo Bin; Yu Li; Sun Dingqiang

    2010-01-01

    Objective: To evaluate the clinical effect of retrievable esophageal covered metal internal stent in treating patients with achalasia. Methods: Under DSA guidance, peroral 'Z-type' double horn covered metal internal stent implantation was performed in 16 patients with achalasia. Esophagography was carried out about 28 days after the procedure and the stent was retrieved. Results: Of 16 cases, the stent fell off into the stomach two weeks after the operation in one. And the stent was successfully replaced after it was taken out. The placed stent was successfully retrieved in all cases 28 days after the treatment. No serious complications occurred. All the patients were followed up for 3 months to 3 years. During the follow-up period restenosis of the esophagus developed in two cases (at one and 1.5 years respectively), and the restenosis degree was relived after balloon dilation. Clinically, no esophageal symptoms, such as dysphagia, occurred in all patients. Conclusion: As a simple and safe technique, the retrievable esophageal covered metal internal stent implantation is very effective with fewer complications for the treatment of achalasia. Moreover, the technique carries lower restenosis occurrence. (authors)

  17. An Overview on Metal Cations Extraction by Azocalixarenes

    Directory of Open Access Journals (Sweden)

    Hasalettin Deligöz

    2011-12-01

    Full Text Available In this overview, our main aim is to present the design, preparation, characterization, and extraction/sorption properties of chromogenic azocalix[4]arenes (substituted with different groups toward metal cations. Azocalixarenes, which contain a conjugated chromophore, i.e. azo (-N=N- group are synthesized in “one-pot” procedures in satisfactory yields. A wide variety of applications is expected by the functionalization of the side arms. Some of them are used to complex with metal ions. These macrocycles due to their bowl-shaped geometry are indeed used as hosts allowing ionic or organic guests to coordinate onto their cavity. The azocalixarene based ionophores are generally applied in various fields such as catalyst recovery, power plant, agriculture, metals finishing, microelectonics, biotechnology processes, rare earths speciation, and potable water purification. Besides these, they find applications in the area of selective ion extractions, receptors, optical devices, chemical sensor devices, the stationary phase for capillary chromatography, ion transport membranes, and luminescence probes etc. This survey is focused to provide overview an of the versatile nature of azocalix[n]arenes as highly efficient extractants for metal ions treated as pollutants.

  18. Plasma electrolytic polishing of metalized carbon fibers

    Directory of Open Access Journals (Sweden)

    Falko Böttger-Hiller

    2016-02-01

    Full Text Available Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1. To increase performance and especially functionality of CFRPs, the integration of microelectronic components into CFRP parts is aspired. The functionalization by sensors, actuators and electronics can enable a high lightweight factor and a new level of failure-safety. The integration of microelectronic components for this purpose requires a working procedure to provide electrical contacts for a reliable connection to energy supply and data interfaces. To overcome this challenge, metalized carbon fibers are used. Metalized fibers are, similar to the usual reinforcing fibers, able to be soldered and therefore easy to incorporate into CFRPs. Unfortunately, metalized fibers have to be pre-treated by flux-agents. Until now, there is no flux which is suitable for mass production without destroying the polymer of the CFRP. The process of plasma electrolytic polishing (PeP could be an option, but is so far not available for copper. Thus, in this study, plasma electrolytic polishing is transferred to copper and its alloys. To achieve this, electrolytic parameters as well as the electrical setup are adapted. It can be observed that the gloss and roughness can be adjusted by means of this procedure. Finally, plasma electrolytic polishing is used to treat thin copper layers on carbon fibers.

  19. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    Science.gov (United States)

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  20. Metal accumulation in a potential winter vegetable mustard (Brassica campestris L.) irrigated with different types of waters in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, Z. I.; Ahmad, K.; Yasmeen, S.; Ashfaq, A.

    2016-01-01

    Considering the harmful effects of metal-enriched vegetables a comprehensive study was conducted to appraise the extent of accumulation of different metals in mustard (Brassica campestris L.). The vegetable was treated with ground water, sewage water and canal water irrigation in areas of Punjab, Pakistan. Metals and metalloids observed in all three sites treated with sewage, canal and ground water were As, Cu, Fe, Ni, Pb, Mo, Se and Zn were observed in the sites treated with ground, sewage and canal waters as well as the vegetable grown therein. The metal concentration observed in water samples was: Fe>Zn >Pb> Ni> Mo> Cu> As> Se, the order in the soil was: As >Pb> Fe > Ni > Mo > Cu > Zn > Se, while the order in the vegetable was: Zn > Fe> Cu> Ni> Mo>Pb> As> Se. The values of bio-concentration factor varied from 0.09-15.47 mg kg-1. Correlation was positively significant for Brassica campestris and soil except Ni and Se which showed positive non significant correlation. Pollution load index was observed to be in the following order: As >Pb> Ni > Mo >Fe > Cu > Se > Zn in the sites GWI, CWI and CWI. Fe and Zn (0.169) showed highest value of daily intake of metal (DIM), while Se (0.003) showed lowest value in crop of all three sites GWI, CWI and CWI. The health risk index and EF ranged from 0.24-69.86 mg day/sup -1/and 0.134-14.12 mg day/sup -1/, respectively. Overall, the vegetable treated with sewage water may have considerable impact on food quality and in turn on the health of people consuming it. (author)

  1. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, V., E-mail: vga220@ual.es [Departamento de Edafologia y Quimica Agricola, ESI CITE IIB, Universidad de Almeria, Carretera de Sacramento s/n, 04129 Almeria (Spain); Garcia, I.; Del Moral, F.; Simon, M. [Departamento de Edafologia y Quimica Agricola, ESI CITE IIB, Universidad de Almeria, Carretera de Sacramento s/n, 04129 Almeria (Spain)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The effectiveness of soil amendments was studied in lixiviates and in pore water. Black-Right-Pointing-Pointer Heavy metals and arsenic showed different partitioning. Black-Right-Pointing-Pointer The amendment which was effective against arsenic was not effective against metals. Black-Right-Pointing-Pointer The amendment that fixed metals increased the arsenic concentration in lixiviates. Black-Right-Pointing-Pointer Using amendments in combination did not improve the effectiveness. - Abstract: A metal-arsenic polluted soil from sulphide-mine waste was treated, in all possible combinations, with two different amounts of marble sludge (98% CaCO{sub 3}), compost (41% organic carbon), and Byferrox (70% Fe). Lixiviate and pore water from each treated and untreated soil were analysed, and lettuce-seed bioassays were performed. None of the treatments decreased the electrical conductivity of lixiviates or the concentrations of all pollutants found in both solutions. Marble sludge and compost increased the pH values and decreased the zinc, cadmium, copper, and lead concentrations in both solutions while increasing the arsenic concentrations in the lixiviates. Byferrox did not alter the physicochemical parameters or the concentrations of zinc, cadmium, copper, or lead in either solution but significantly decreased the arsenic concentrations in pore water. Compared with the Byferrox treatment, the mixture of marble sludge and Byferrox decreased redox potential values, increasing the arsenic concentrations in both solutions and the electrical conductivity of the pore water. All lixiviates were highly phytotoxic and seeds did not germinate. Pore-water phytotoxicity was related to electrical conductivity values and heavy-metal concentrations. The combination of marble sludge and compost was most effective at diminishing toxicity in lettuce. The soils treated with Byferrox, alone or mixed with marble sludge or compost, were the most

  2. The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship

    International Nuclear Information System (INIS)

    Kim, Bu Gi; Lee, Dai Gil

    2009-01-01

    Liquefied natural gas (LNG) has been widely used as a substitute fuel for commercial purposes. It is transported mainly by LNG ships which have primary and secondary leakage barriers. The former is composed of welded thin stainless steel or invar plates, while the latter is composed of adhesively bonded glass composite or aluminum foil sheets. The role of the secondary barrier is to maintain fluid tightness when the primary barrier fails during the transport of LNG. The tightness of the secondary barrier is dependent on the wetting characteristics between the adhesive and adherend of the bonded structure during bonding operation, which depends much on the contamination on the adherend surface. Therefore, in this work, an optical measuring device of oil contamination on the aluminum surface for the secondary barrier was developed. A transparent oil was used as the contaminant and its effect on the bonding strength was investigated. From the experiments, it has been found that the developed measuring device for oil contamination can be used to detect oil contamination on a large bonding area of the secondary barrier in ship building yards

  3. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. IV. Improvement in wet peel strength

    International Nuclear Information System (INIS)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Adhesive joints of hydrolyzed methyl acrylate grafts, bonded with epoxy adhesives, yield extremely high peel strength (adherend failure) in dry conditions. However, when the joints are exposed to humid environments, the peel strength rapidly decreases with exposure time and then reaches a constant value (wet peel strength). Since the locus of failure changes from the adherend to the homopolymer layer with decreasing peel strength, the decrease is due to a decrease in mechanical strength of the homopolymer layer itself, which results from its swelling by water absorption. Many attempts to reduce the swelling of the homopolymer layer or to strengthen the swollen homopolymer layer were unsuccessful except (1) priming with epoxy solutions consisting of a base epoxy resin and organic solvents which can dissolve not only epoxy resins but also hydrolyzed poly(methyl acrylate) and (2) partial etching of the homopolymer layer by photo-oxidative degradation. All the results on the improvement in wet peel strength can be explained in terms of the penetration of epoxy resins into the homopolymer layer and subsequent curing of the penetrated epoxy resin. 15 figures, 1 table

  4. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  6. A Review of Post and Core Application with Emphasize on Non Metallic Posts

    Directory of Open Access Journals (Sweden)

    Shahroodi MH

    2001-05-01

    Full Text Available Many different methods are suggested to restore endodontically treated teeth. Prefabricated posts can not be indicated for all teeth and cast posts require extra time and cost. In addition, with the introduction of full ceramic restorations, achieving the ideal esthetic with metal post underneath them may be problematic or impossible because the darkness of the metallic posts may show through the highly translucent all ceramic restorations. In this article the review of litature and describiton of applied methods of different procedure in restoring the root canal therapied teeth and few techniques of non metallic posts fabrication such as fiber reinforced composite and zirconium oxide posts have been described.

  7. DEVELOPMENT OF A PLANT TEST SYSTEM FOR EVALUATION OF THE TOXICITY OF METAL CONTAMINATED SOILS. I. SENSITIVITY OF PLANT SPECIES TO HEAVY METAL STRESS

    Directory of Open Access Journals (Sweden)

    Andon VASSILEV

    2001-09-01

    Full Text Available The sensitivity of young bean, cucumber and lettuce plants to heavy metals stress was studied at control conditions in a climatic room. The plants were grown in pots with perlite and supplied daily by half-strength Hoagland nutrient solution. The plants were treated for 8 days with different heavy metal doses (full, ½ and ¼ starting at appearance of the fi rst true leaf (cucumber and bean or the full development of the second leaf (lettuce. The full dose consisted 500 μM Zn, 50 μM Cd and 20 μM Cu added to the nutrient solution. Based on the measured morphological (fresh weight, leaf area, root length and physiological parameters (photosynthetic pigments content and activity of guaiacol peroxidase in roots, the cucumber plants presented the highest sensitivity to heavy metal stress.

  8. Chronic metals ingestion by prairie voles produces sex-specific deficits in social behavior: an animal model of autism.

    Science.gov (United States)

    Curtis, J Thomas; Hood, Amber N; Chen, Yue; Cobb, George P; Wallace, David R

    2010-11-12

    We examined the effects of chronic metals ingestion on social behavior in the normally highly social prairie vole to test the hypothesis that metals may interact with central dopamine systems to produce the social withdrawal characteristic of autism. Relative to water-treated controls, 10 weeks of chronic ingestion of either Hg(++) or Cd(++) via drinking water significantly reduced social contact by male voles when they were given a choice between isolation or contact with an unfamiliar same-sex conspecific. The effects of metals ingestion were specific to males: no effects of metals exposure were seen in females. Metals ingestion did not alter behavior of males allowed to choose between isolation or their familiar cage-mates, rather than strangers. We also examined the possibility that metals ingestion affects central dopamine functioning by testing the voles' locomotor responses to peripheral administration of amphetamine. As with the social behavior, we found a sex-specific effect of metals on amphetamine responses. Males that consumed Hg(++) did not increase their locomotor activity in response to amphetamine, whereas similarly treated females and males that ingested only water significantly increased their locomotor activities. Thus, an ecologically relevant stimulus, metals ingestion, produced two of the hallmark characteristics of autism - social avoidance and a male-oriented bias. These results suggest that metals exposure may contribute to the development of autism, possibly by interacting with central dopamine function, and support the use of prairie voles as a model organism in which to study autism. (c) 2010 Elsevier B.V. All rights reserved.

  9. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  10. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  11. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  13. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  14. Electro-actuation characteristics of Cl2 and SF6 plasma-treated IPMC actuators

    International Nuclear Information System (INIS)

    Saher, Saim; Kim, Woojin; Moon, Sungwon; Jin Kim, H; Kim, Yong Hyup

    2010-01-01

    This paper describes plasma treatments that improve the actuation properties by modifying the surface morphology of ionic polymer metal composites (IPMC). The proposed Cl 2 and SF 6 plasmas change the surface appearance of the electroactive polymer, and scanning electron microscopy (SEM) of the plasma-treated surfaces reveals the development of round and cone-shaped microstructures. After electroless chemical metal plating, these microstructures significantly alter the characteristics of the IPMC electrode. In plasma-treated IPMCs, the densely packed platinum nanoparticles have produced a relatively thick electrode layer. This configuration has led to the improvement in the electrical properties of the IPMC: surface resistance is noticeably decreased, whereas electrical capacitance is increased. These changes in the electrical properties have considerably enhanced the actuation parameters: displacement, force and operational life are increased by more than three times relative to the conventional IPMC. Our experimental data suggest a relationship between the IPMC actuator's electrical properties and actuation parameters: actuators with lower surface resistance generate large deflection and actuators with higher capacitance generate large actuation force. The actuation tests including coin lifting suggests the potential of the modified IPMC for artificial muscle applications

  15. The technique study and primary clinical application of inverted Y-shaped self-expandable metal airway stent

    International Nuclear Information System (INIS)

    Han Xinwei; Wu Gang; Ma Ji; Yang Ruimin; Guan Sheng; Ma Nan; Wang Yanli

    2007-01-01

    Objective: To investigate the feasibility and primary therapeutic effect of inverted Y-shaped self-expandable metal stent for complex airway stenosis. Methods: On the standpoint of the peculiar anatomic structure and the pathological changes of complex airway stenosis, we designed the inverted Y-shaped self-expandable metal stent. Under the fluoroscopic guidance, 7 stents were implanted in 7 cases of airway complex stenosis. Results: The inverted Y-shaped self-expandable metal stents were placed seccussfully, with instantaneous relief of dyspnea and improvement of living quality. Conclusion: The placement of inverted Y-shaped self-expandable metal stent is feasible and safe for treating airway complex stenosis. (authors)

  16. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.

    2009-01-01

    0/90 WR GFRP and 0/90 UD CFRP laminates and steel. The focus here is on CFRP/steel joint due to availability of test data. The thickness of the outer adherend varies from 3 mm to 6 mm. Shear overlaps of 25-200mm were considered. The overall objectives are (i) to assess the quality of the standard...

  17. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  18. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  19. Metal removal from tailings ponds water using indigenous micro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, H.; Ulrich, A.; Liu, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Each barrel of oil produced by oil sands produce 1.25 m{sup 3} of tailings. The tailings are collected in ponds located at mining sites. The tailing pond water (TPW) must be reclaimed and released into the environment. This PowerPoint presentation discussed a method of removing metals from tailings pond water that used indigenous micro-algae. The in situ experimental method used Parachlorella kessliri to treat 2 ponds. The TPW was enriched with low and high concentrations of nutrients. Dry cell biomass analyses were then conducted, and the pH of the resulting samples was compared. Inductively coupled plasma mass spectrometry analysis methods were used to determine the initial metal concentrations in the raw TPWs. The study showed that the micro-algae remove significantly more metals when high levels of nutrients are used. tabs., figs.

  20. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    -stage batch extraction, the soil was successfully treated passing both the Toxicity Characteristics Leaching Procedure (TCLP) and EPA Total Extractable Metal Limit. The final residual Pb concentration was about 300 mg/kg, with a corresponding TCLP of 1.5 mg/l. Removal of the exchangeable and carbonate fractions for Cu and Zn was achieved during the first extraction stage, whereas it required two extraction stages for the same fractions for Pb. Removal of Pb, Cu, and Zn present as exchangeable, carbonates, and reducible oxides occurred between the fourth- and fifth-stage extractions. The overall removal of copper, lead, and zinc from the multiple-stage washing were 98.9%, 98.9%, and 97.2%, respectively. The concentration and operating conditions for the soil washing extractions were not necessarily optimized. If the conditions had been optimized and using a more representative Pb concentration ({approx}12000 mg/kg), it is likely that the TCLP and residual heavy metal soil concentrations could be achieved within two to three extractions. The results indicate that the J-Field contaminated soils can be successfully treated using a soil washing technique. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    , the soil was successfully treated passing both the Toxicity Characteristics Leaching Procedure (TCLP) and EPA Total Extractable Metal Limit. The final residual Pb concentration was about 300 mg/kg, with a corresponding TCLP of 1.5 mg/l. Removal of the exchangeable and carbonate fractions for Cu and Zn was achieved during the first extraction stage, whereas it required two extraction stages for the same fractions for Pb. Removal of Pb, Cu, and Zn present as exchangeable, carbonates, and reducible oxides occurred between the fourth- and fifth-stage extractions. The overall removal of copper, lead, and zinc from the multiple-stage washing were 98.9%, 98.9%, and 97.2%, respectively. The concentration and operating conditions for the soil washing extractions were not necessarily optimized. If the conditions had been optimized and using a more representative Pb concentration (∼12000 mg/kg), it is likely that the TCLP and residual heavy metal soil concentrations could be achieved within two to three extractions. The results indicate that the J-Field contaminated soils can be successfully treated using a soil washing technique. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  3. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  4. Should in the treatment of osteochondritis dissecans biodegradable or metallic fixation devices be used? A comparative study in goat knees

    NARCIS (Netherlands)

    Wouters, Diederick B.; Bos, Rudolf R. M.; van Horn, Jim R.; van Luyn, Marja J. A.

    Most of the metallic devices have to be removed, treating osteochondritis dissecans lesions. This animal study describes the biological and mechanical behavior of screws and pins, made of commercially available PGA/PLA and PLA96 and metallic screws and pins, used for fragment fixation. A sham

  5. Durability of metals from archaeological objects, metal meteorites, and native metals

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects

  6. Durability of metals from archaeological objects, metal meteorites, and native metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  7. Residual salts separation from metal reduced electrolytically in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Oh, Seung Chul; Hong, Sun Seok; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The PWR spent oxide fuel can be reduced electrolytically in a hot molten salt for the conditioning and the preparation of a metallic fuel. Then the metal product is smelted into an ingot to be treated in the post process. Incidentally, the residual salt which originated from the molten salt and spent fuel elements should be separated from the metal product during the smelting. In this work, we constructed a surrogate material system to simulate the salt separation from the reduced spent fuel and studied the vaporization behaviors of the salts

  8. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    Science.gov (United States)

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  9. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    International Nuclear Information System (INIS)

    Grieco, S.A.; Neubauer, E.D.

    1996-01-01

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  10. Self-expandable metal stent placement versus emergency resection for malignant proximal colon obstructions

    NARCIS (Netherlands)

    Amelung, F.J.; Draaisma, W.A.; Consten, E.C.; Siersema, P.D.; Borg, F. ter

    2017-01-01

    BACKGROUND: Traditionally, all patients with a malignant obstruction of the proximal colon (MOPC) are treated with emergency resection. However, recent data suggest that Self-expandable metallic stent (SEMS) placement could lower mortality and morbidity rates. This study therefore aimed to compare

  11. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  12. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  13. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    International Nuclear Information System (INIS)

    Guala, Sebastian D.; Vega, Flora A.; Covelo, Emma F.

    2010-01-01

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  14. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Guala, Sebastian D. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Gutierrez 1150, Los Polvorines, Buenos Aires (Argentina); Vega, Flora A. [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain); Covelo, Emma F., E-mail: emmaf@uvigo.e [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain)

    2010-08-15

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  15. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  16. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    Science.gov (United States)

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada.

    Science.gov (United States)

    Padmavathiamma, Prabha K; Li, Loretta Y

    2009-08-01

    The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  18. Medium-term follow-up after deployment of ultraflex expandable metallic stents to manage endobronchial pathology.

    Science.gov (United States)

    Madden, Brendan P; Park, John E S; Sheth, Abhijat

    2004-12-01

    Between March 1997 and March 2004 we deployed 80 Ultraflex metallic expandable stents (Boston Scientific, Waterson, MA) in 69 patients under direct vision using rigid bronchoscopy. We report our medium- to long-term experience in patients for whom these stents were deployed. To date 15 patients have been followed for more than 1 year (median 41 months, range 12 to 83 months) after stent deployment. Indications for stenting in these patients were neoplasia (5), stricture (5), airway malacia (1), iatrogenic tracheal tear (1), and compression from an aortic aneurysm (1), a right interrupted aortic arch (1), and a right brachiocephalic artery aneurysm with tracheomalacia (1). Ten tracheal stents (9 covered, 1 uncovered) and 10 bronchial stents (8 uncovered, 2 covered) were inserted, and 5 patients received two stents. Five of these patients experienced no long-term problems. Complications included troublesome halitosis (5), which was difficult to treat despite various antibiotic regimes; granulation tissue formation above and below the stent that was successfully treated with low-power Nd:YAG laser therapy (7); and metal fatigue (1). We did not encounter stent migration. We conclude that Ultraflex expandable metallic stents have an important role in the management of selected patients with diverse endobronchial pathologies and are well tolerated in the long-term. Although associated granulation tissue can be successfully treated with Nd:YAG laser, halitosis can be a difficult problem to address.

  19. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Woo; Lee, Soo Chul [Pukyong National University, Busan (Korea, Republic of); Ahn, Byung Kun [Korea Polytechnic, Busan Campus, Busan (Korea, Republic of)

    2013-10-15

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  20. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    International Nuclear Information System (INIS)

    Nam, Ki Woo; Lee, Soo Chul; Ahn, Byung Kun

    2013-01-01

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  1. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  2. Embryotoxicity of benzalkonium chloride in vaginally treated rats.

    Science.gov (United States)

    Buttar, H S

    1985-12-01

    The effects of the spermicide benzalkonium chloride (BKC) were studied on the conceptus of rat. Single doses (0, 25, 50, 100 or 200 mg kg-1) of aqueous solutions of BKC were administered intravaginally (1 ml kg-1) on gestational day 1. The vulval metallic clips, used to prevent leakage of the solution, were removed 24 h post-treatment. Fetuses were obtained and examined for malformations on day 21 of gestation. slight to copious amounts of vaginal discharge and vaginitis were noticed in rats treated with the two largest doses of BKC. A dose-related increase in resorptions and fetal death, reduction in litter size and weight were observed in BKC-treated dams. The conceptus loss seemed to occur both before and after implantation. BKC did not cause any discernible visceral malformations, although minor sternal defects occurred in fetuses exposed to 100 and 200 mg kg-1 of the spermicide. These results suggest that single vaginal application of BKC is embryo- and fetocidal in the rat at a dose about 143 times higher than that recommended for controlling conception in women.

  3. A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode

    International Nuclear Information System (INIS)

    Lugo-Lugo, Violeta; Hernandez-Lopez, Susana; Barrera-Diaz, Carlos; Urena-Nunez, Fernando; Bilyeu, Bryan

    2009-01-01

    Natural, formaldehyde-treated and copolymer-grafted orange peels were evaluated as adsorbents to remove lead ions from aqueous solutions. The optimum pH for lead adsorption was found to be pH 5. The adsorption process was fast, reaching 99% of sorbent capacity in 10 min for the natural and treated biomasses and 20 min for the grafted material. The treated biomass showed the highest sorption rate and capacity in the batch experiments, with the results fitting well to a pseudo-first order rate equation. In the continuous test with the treated biomass, the capacity at complete exhaustion was 46.61 mg g -1 for an initial concentration of 150 mg L -1 . Scanning electronic microscopy and energy dispersive X-ray spectroscopy indicated that the materials had a rough surface, and that the adsorption of the metal took place on the surface. Fourier transform infrared spectroscopy revealed that the functional groups responsible for metallic biosorption were the -OH, -COOH and -NH 2 groups on the surface. Finally, the thermogravimetric analysis indicates that a mass reduction of 80% can be achieved at 600 deg. C

  4. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints.

    Science.gov (United States)

    Koseki, Hironobu; Tomita, Masato; Yonekura, Akihiko; Higuchi, Takashi; Sunagawa, Sinya; Baba, Koumei; Osaki, Makoto

    2017-01-01

    Metal-on-metal (MoM) bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII) may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo) alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa), a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and prevented the adhesion of wear debris. The results of this study suggest that the CII surface stabilizes the wear status due to the low friction coefficient and low infiltration of partner materials, and these properties also prevent the adhesion of wear debris and inhibit excessive wear. Carbon is considered to be biologically inert; therefore, CII is anticipated to be applicable to the bearing surfaces of MoM prostheses.

  5. Dilemma in pediatric mandible fractures: resorbable or metallic plates?

    Science.gov (United States)

    Taylan Filinte, Gaye; Akan, İsmail Mithat; Ayçiçek Çardak, Gülçin Nujen; Özkaya Mutlu, Özay; Aköz, Tayfun

    2015-12-01

    The aim of this study was to compare the efficiency of resorbable and metallic plates in open reduction and internal fixation of mandible fractures in children. Thirty-one patients (mean age, 8.05 years; range 20 months-14 years) were operated on various fractures of the mandible (26 [60.4%] symphysis- parasymphysis, 12 [27.9%] condylar-subcondylar fractures, 5 [11.6%] angulus and ramus fractures). Twelve patients were treated with resorbable plates and 19 patients with metallic plates. Mean follow-up time was 41 months (11-74 months) in the metallic hardware group and was 22 months (8-35 months) in the resorbable plate group. Both groups were investigated for primary bone healing, complications, number of operations, and mandibular growth. The results were discussed below. Both groups demonstrated primary bone healing. Minor complications were similar in both groups. The metallic group involved secondary operations for plate removal. Mandibular growth was satisfactory in both groups. Resorbable plates cost more than the metallic ones; however, when the secondary operations are included in the total cost, resorbable plates were favourable. As mandibular growth and complication parameters are similar in both groups, resorbable plates are favored due to avoidance of potential odontogenic injury, elimination of long-term foreign body retention and provision of adequate stability for rapid bone healing. However, learning curve and concerns for decreased stability against heavy forces of mastication accompanied with the resorbable plates when compared to the metallic ones should be kept in mind.

  6. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland

    Directory of Open Access Journals (Sweden)

    Kulbat Eliza

    2017-01-01

    Full Text Available The aim of this study is to investigate the distribution of selected heavy metals and metal–resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: < 1–4.1. Although the maximum value of Müller's geochemical index determined for copper indicates that the sediment is ‘strongly contaminated’, in general the analysed bottom sediments were classified as the I and II category according to Polish geochemical standards. From the microbiological side a significant part of heterotrophic bacteria isolated from the bottom sediment and surface water (raw and treated water showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal–resistant bacteria were recorded in the sediments of the reservoir (60%–88%. The share of metal–resistant strains in the raw water was significantly lower (34%–61%. The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  7. Metal-containing lymph nodes following prosthetic replacement of osseous malignancy: potential role of MR imaging in characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M.; Cooper, S.A. [Dept. of Radiology, Royal Orthopaedic Hospital, Birmingham (United Kingdom); Mangham, D.C. [Dept. of Pathology, Royal Orthopaedic Hospital, Birmingham (United Kingdom); Grimer, R.J. [Dept. of Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham (United Kingdom)

    2001-05-01

    The identification of regional lympadenopathy in patients with bone malignancy treated by excision and insertion of a prosthesis usually indicates metastatic disease. We present two cases in which the lymphadenopathy was due to an uncommon but well-recognized foreign body reaction. This is secondary to the lymphatic uptake of metal debris shed by the prosthesis. In one case the metal within the excised lymph node could be demonstrated on in vitro MR imaging and in retrospect on the original in vivo scans. This condition should be considered when undertaking an MR examination in patients with bone malignancy treated by prosthetic replacement in whom there is a clinical suspicion of metastatic spread to the regional lymph nodes. (orig.)

  8. Apparatus comprising trace element dosage and method for treating raw water in biofilter

    DEFF Research Database (Denmark)

    2015-01-01

    the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial......Apparatus for treating raw water in a biofilter The present invention relates to an apparatus in which raw water is treated through microbial activity where microbial activity is controlled by nutrients and other parameters. Some of the nutrients controlling the microbial activity are trace...... elements such as certain metals (Cu, Co, Cr, Mo, Ni, W, Zn or a mixture thereof). The apparatus comprising - a volume provided with an inlet (2) for raw water and an outlet (3) for water having been subjected to microbial activity, a filter and a trace element dosage device (13) are placed in this volume...

  9. Decontamination of U-metal surface by an oxidation etching system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Kansa, E.J.; Shaffer, R.J.; Weed, H.C. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    A surface treatment to remove surface contamination from uranium (U) metal and/or hydrides of uranium and heavy metals (HM) from U-metal parts is described. In the case of heavy metal atomic contamination on a surface, and potentially several atomic layers beneath, the surface oxidation treatment combines both chemical and chemically driven mechanical processes. The chemical process is a controlled temperature-time oxidation process to create a thin film of uranium oxide (UO{sub 2} and higher oxides) on the U-metal surface. The chemically driven mechanical process is strain induced by the volume increase as the U-metal surface transforms to a UO{sub 2} surface film. These volume strains are significantly large to cause surface failure spalling/scale formation and thus, removal of a U-oxide film that contains the HM-contaminated surface. The case of a HM-hydride surface contamination layer can be treated similarly by using inert hot gas to decompose the U-hydrides and/or HM-hydrides that are contiguous with the surface. A preliminary analysis to design and to plan for a sequence of tests is developed. The tests will provide necessary and sufficient data to evaluate the effective implementation and operational characteristics of a safe and reliable system. The following description is limited to only a surface oxidation process for HM-decontamination. (authors)

  10. Esophagojejunal Anastomosis Fistula, Distal Esophageal Stenosis, and Metalic Stent Migration after Total Gastrectomy

    Directory of Open Access Journals (Sweden)

    Nadim Al Hajjar

    2015-01-01

    Full Text Available Esophagojejunal anastomosis fistula is the main complication after a total gastrectomy. To avoid a complex procedure on friable inflamed perianastomotic tissues, a coated self-expandable stent is mounted at the site of the anastomotic leak. A complication of stenting procedure is that it might lead to distal esophageal stenosis. However, another frequently encountered complication of stenting is stent migration, which is treated nonsurgically. When the migrated stent creates life threatening complications, surgical removal is indicated. We present a case of a 67-year-old male patient who was treated at our facility for a gastric adenocarcinoma which developed, postoperatively, an esophagojejunostomy fistula, a distal esophageal stenosis, and a metallic coated self-expandable stent migration. To our knowledge, this is the first reported case of an esophagojejunostomy fistula combined with a distal esophageal stenosis as well as with a metallic coated self-expandable stent migration.

  11. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  12. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  13. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    Science.gov (United States)

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  14. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    Science.gov (United States)

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  15. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  16. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  17. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints

    Directory of Open Access Journals (Sweden)

    Koseki H

    2017-05-01

    Full Text Available Hironobu Koseki,1 Masato Tomita,2 Akihiko Yonekura,2 Takashi Higuchi,1 Sinya Sunagawa,2 Koumei Baba,3,4 Makoto Osaki2 1Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, 2Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan; 3Industrial Technology Center of Nagasaki, Ikeda, Omura, Nagasaki, Japan; 4Affiliated Division, Nagasaki University School of Engineering, Bunkyo, Nagasaki, Japan Abstract: Metal-on-metal (MoM bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa, a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and

  18. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  19. Uptake of CrO{sub 4}{sup 2-} ions by Fe-treated tri-calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E., E-mail: juan.serrano@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    CrO{sub 4}{sup 2-} ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10{sup -4} M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO{sub 4}{sup 2-} ions was 7.10 x 10{sup -3} mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  20. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  1. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  2. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  3. Extraction of metal ions using chemically modified silica gel: a PIXE analysis.

    Science.gov (United States)

    Jal, P K; Dutta, R K; Sudarshan, M; Saha, A; Bhattacharyya, S N; Chintalapudi, S N; K Mishra, B

    2001-08-30

    Organic ligand with carboxyhydrazide functional group was immobilised on the surface of silica gel and the metal binding capacity of the ligand-embedded silica was investigated. The functional group was covalently bonded to the silica matrix through a spacer of methylene groups by sequential reactions of silica gel with dibromobutane, malonic ester and hydrazine in different media. Surface area value of the modified silica was determined. The changes in surface area were correlated with the structural change of the silica surface due to chemical modifications. A mixture solution of metal ions [K(I),Cr(III),Co(II),Ni(II),Cu(II),Zn(II),Hg(II) and U(VI)] was treated with the ligand-embedded silica in 10(-3) M aqueous solution. The measurement of metal extraction capacity of the silica based ligand was done by multielemental analysis of the metal complexes thus formed by using Proton Induced X-ray Emission (PIXE) technique.

  4. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  5. Metallic stents provide better QOL than plastic stents in patients with stricture of unresectable advanced esophageal cancer

    International Nuclear Information System (INIS)

    Ohta, Kazuki; Nagahara, Akihito; Iijima, Katsuyori

    2006-01-01

    The aim of this study was to elucidate the utility and safety of treatment with esophageal stents (plastic and metallic stents) for unresectable advanced esophageal cancer. Between 1992 and 2002, 14 cases of unresectable advanced esophageal cancer were treated with esophageal stents (the plastic stent group, 7 cases; and the metallic stent group, 7 cases). Of these, 10 cases had a history of chemotherapy and or radiotherapy. An improvement in oral intake and performance status (PS), survival time, periods at home, and adverse events were compared between the two groups. After stenting, oral intake and PS were significantly improved in the metallic stent group. Follow-up at home was possible in 71.4%. There was no significant difference in survival or duration of time at home between the two groups. All adverse events were controllable and there was no difference between the two groups. Stenting not only improved oral intake and PS but also allowed a stay at home, resulting in a marked improvement in patients' quality of life (QOL). Stenting was performed safely even in cases with a history of radiotherapy. There was no difference in survival, ratios of staying at home, and safety between the two groups, but QOL was significantly improved in the metallic stent group. These outcomes indicate that placement of metallic stents should be actively considered to treat stricture due to advanced esophageal cancer. (author)

  6. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  7. Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.

    Science.gov (United States)

    Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen

    2014-10-01

    The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  9. Presence and Character of the 5f Electrons in the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt; Mårtensson, N.

    1980-01-01

    The sensitivity of the Image level binding energy to the occupation of the 5f orbital is pointed out and used to demonstrate the presence of 5f electrons in the uranium metal. It is suggested that the valence band spectrum of uranium might contain satellites originating from excitations...... to localized 5f-electron configurations. Different kinds of core-hole screenings are discussed for the actinide metals as well as the difference between inner and outer core electron ionizations. Finally, the question of itinerant versus localized 5f behaviour is treated by means of a total energy comparison...

  10. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulate waste feeds from Hanford, Savannah River, and Kernforschungszentrum Karlsruhe were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. The majority of particles and agglomerates were generally less than 10 μm; however, large agglomerations (up to 1 mm) were found in the German feed. 5 refs., 6 figs., 2 tabs

  11. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  12. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    International Nuclear Information System (INIS)

    Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F.

    2010-01-01

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  13. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  14. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  15. Metal-on-metal hip joint tribology.

    Science.gov (United States)

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  16. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    Science.gov (United States)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  17. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  18. Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors

    International Nuclear Information System (INIS)

    Ashraf, Shakeel; Mattsson, Claes G; Thungström, Göran; Fondell, Mattis; Lindblad, Andreas

    2015-01-01

    This article reports on plasma treatment of SU-8 epoxy in order to enhance adhesive strength for metals. Its samples were fabricated on standard silicon wafers and treated with (O 2 and Ar) RF plasma at a power of 25 W at a low pressure of (3 × 10 −3 Torr) for different time spans (10–70 s). The sample surfaces were characterized in terms of contact angle, surface (roughness and chemistry) and using a tape test. During the contact angle measurement, it was observed that the contact angle was reduced from 73° to 5° (almost wet) and 23° for (O 2 and Ar) treated samples, respectively. The root mean square surface roughness was significantly increased by 21.5% and 37.2% for (O 2 and Ar) treatment, respectively. A pattern of metal squares was formed on the samples using photolithography for a tape test. An adhesive tape was applied to the samples and peeled off at 180°. The maximum adhesion results, more than 90%, were achieved for the O 2 -treated samples, whereas the Ar-treated samples showed no change. The XPS study shows the formation of new species in the O 2 -treated sample compared to the Ar-treated samples. The high adhesive results were due to the formation of hydrophilic groups and new O 2 species in the O 2 -treated samples, which were absent in Ar-treated samples. (paper)

  19. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  20. An evaluation of technologies for the heavy metal remediation of dredged sediments.

    Science.gov (United States)

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Sediments dewatering is frequently necessary after dredging to remediate and treat contaminants. Methods include draining of the water in lagoons with or without coagulants and flocculants, or using presses or centrifuges. Treatment methods are similar to those used for soil and include pretreatment, physical separation, thermal processes, biological decontamination, stabilization/solidification and washing. However, compared to soil treatment, few remediation techniques have been commercially used for sediments. In this paper, a review of the methods that have been used and an evaluation of developed and developing technologies is made. Sequential extraction technique can be a useful tool for determining metal speciation before and after washing. Solidification/stabilization techniques are successful but significant monitoring is required, since the solidification process can be reversible. In addition, the presence of organics can reduce treatment efficiency. Vitrification is applicable for sediments but expensive. Only if a useful glass product can be sold will this process be economically viable. Thermal processes are only applicable for removal of volatile metals, such as mercury and costs are high. Biological processes are under development and have the potential to be low cost. Since few low cost metal treatment processes for sediments are available, there exists significant demand for further development. Pretreatment may be one of the methods that can reduce costs by reducing the volumes of sediments that need to be treated.

  1. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  2. Bio-inspired design of geometrically interlocked 3D printed joints

    Science.gov (United States)

    Kumar, S.; Oliva, Noel; Kumar's Lab Team

    The morphology of the adhesive-adherend interface significantly affects the mechanical behavior of adhesive joints. As seen in some biocomposites like human skull, or the nacre of some bivalve molluscs' shells, a geometrically interlocking architecture of interfaces creates toughening and strengthening mechanisms enhancing the mechanical properties of the joint. In an attempt to characterize this mechanical interlocking mechanism, this study is focused on computational and experimental investigation of a single-lap joint with a very simple geometrically interlocked interface design in which both adherends have a square waveform configuration of the joining surfaces. This square waveform configuration contains a positive and a negative rectangular teeth per cycle in such a way that the joint is symmetric about the mid-bondlength. Both physical tests performed on 3D printed prototypes of joints and computational results indicate that the joints with square waveform design have higher strength and damage tolerance than those of joints with flat interface. In order to identify an optimal design configuration of this interface, a systematic parametric study is conducted by varying the geometric and material properties of the non-flat interface. This work was supported by Lockheed Martin (Award No: 12NZZ1).

  3. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  4. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    1980-01-01

    Finely divided powders are prepared by first reacting an aqueous solution containing dissolved metal values with excess urea. After the reaction of water in the solution with urea is complete, the resulting molten urea solution is heated to cause metal values in solution to precipitate. The resulting mixture containing precipitated metal values is heated to evaporate volatile material, leaving a dry powder containing the metal values. Detailed examples are given. (U.K.)

  5. Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State

    Science.gov (United States)

    Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.

    2018-03-01

    Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.

  6. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  7. Infection or metal hypersensitivity? The diagnostic challenge of failure in metal-on-metal bearings.

    LENUS (Irish Health Repository)

    Galbraith, John G

    2011-04-01

    The use of second generation metal-on-metal hip articulations has gained favour in the past few years. A hypersensitivity reaction to the metal-on-metal bearing, although rare, is a reported complication and is a novel mode of failure of these implants. Differentiating failure secondary to infection from failure secondary to metal hypersensitivity represents a significant diagnostic challenge. A retrospective review of all cases of hip arthroplasty using metal-on-metal bearings over a 5-year period at a tertiary referral centre identified 3 cases of failure secondary to metal hypersensitivity. Clinical presentation, serological markers, radiological imaging and histological analysis of all cases identified were evaluated. Histological analysis of periprosthetic tissue in all 3 cases identified characteristic features such as perivascular lymphocytic aggregates and chronic inflammation consistent with aseptic lymphocytic vasculitis-associated lesions (ALVAL). This study highlights that failure secondary to metal hypersensitivity must be considered in patients presenting with the reappearance of persistent pain, marked joint effusion, and the development of early osteolysis in the absence of infection.

  8. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  9. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line

  10. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Saxena, S. [Indian Agricultural Research Institute, New Delhi (India). Centre for Conservation of Blue Green Algae

    2005-07-01

    Study was conducted on recycling municipal wastewaters for cultivation of Azolla microphylla biomass, which is used for inoculation into paddy fields as N biofertiliser and has other applications as green manure, animal feed and biofilter. Secondary-treated municipal wastewaters were collected from Wazirabad sewage treatment plant in New Delhi during all four seasons and tested for reactive P and heavy metal content. The reactive P levels in effluents ranged between 1-2 ppm and levels of heavy metals like Cd, Pb, Ni, Zn, Fe and Mn were well below permissible limits. A. microphylla was grown in sewage effluents and its dilutions prepared with tapwater. It showed good growth potential on sewage effluents. Doubling times during September and December months compared well with those on Espinase and Watanabe (E and W) medium and tapwater. Dried Azolla biomass produced on sewage waters did not show presence of toxic heavy metals Cd, Cr and Pb. However, levels of P in dried biomass cultivated on sewage effluents were lower as compared to those from E and W medium and tapwater. The biomass produced can be used for inoculating paddy fields or for other applications and polished wastewaters can be recycled for irrigation purposes. (author)

  11. BEHAVIOR OF CÓRDIA AFRICANA (Cordia africana Lam. CULTIVATED IN SOIL CONTAMINATED BY HEAVY METALS AND TREATED WITH AMENDMENT MATERIALS

    Directory of Open Access Journals (Sweden)

    Ana Carolina Callegario Pereira

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810544This study aimed to evaluate the remediation of two soils contaminated with heavy metals from soil excavations, located near the port of Itaguaí, through the techniques of chemical immobilization and phytostabilization using the species Cordia africana. The data were collected in the ore courtyard from ‘Companhia Siderúgica Nacional’ (CSN, in the port of Itaguaí, Rio de Janeiro state. In order to reduce the solubility of heavy metals present in these substrates, two industrial waste products produced by CSN were used as ameliorating products, the steelmaking slag and the mill scale, in different concentrations. The plant species was considered with potential to be used in programs of phytostabilization, due to its heavy metal tolerance studied and to high accumulation of such elements in roots and stem. In the substrate of low combination, the lowest accumulation of Zinc and Cadmium in stems and leaves occurred with the use of 4% of soothing. In the substrate of high accumaltion it was 6%.

  12. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  14. Heavy Metals Pollution of Alluvial Soil in the Copşa Mică Area

    OpenAIRE

    , D. Popa; , I.M. Prundeanu; , R. Lăcătuşu

    2011-01-01

    The objective of our study was to determine the concentrations of heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and Fe) from soil samples, which have been previously treated with HNO3 and concentrated HClO4. The study was performed on a series of 24 soil samples and one soil profile, collected from the alluvial soil in the Copşa Mică area. The concentrations of heavy metals were determined using Atomic Absorption Spectrometry. The pH was determined by using the potentiometric method in aqueous...

  15. Simultaneous electrodialytic removal of PAH, PCB, TBT and heavy metals from sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2017-01-01

    with the need of different remedial actions for each pollutant. In this study, electrodialytic remediation (EDR) of sediments was found effective for simultaneous removal of heavy metals and organic pollutants for sediments from Arctic regions - Sisimiut in Greenland and Hammerfest in Norway. The influence...... was found to be important for the removal of heavy metals and TBT, while photolysis was significant for removal of PAH, PCB and TBT. In addition, dechlorination was found to be important for the removal of PCB. The highest removal efficiencies were found for heavy metals, TBT and PCB (>40%) and lower......Contaminated sediments are remediated in order to protect human health and the environment, with the additional benefit of using the treated sediments for other activities. Common for many polluted sediments is the contamination with several different pollutants, making remediation challenging...

  16. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  17. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    International Nuclear Information System (INIS)

    Benemann, J.R.; Wilde, E.W.

    1991-02-01

    Bioaccumulation of metals by microbes -- '' bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R ampersand D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes

  18. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  19. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  20. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  1. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds

    Energy Technology Data Exchange (ETDEWEB)

    Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Shen Zhenguo [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lou Laiqing [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: cexdli@polyu.edu.hk

    2006-12-15

    The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching. - Chrysanthemum coronarium L. was the most sensitive species to the application of chelants, and EDDS biodegrades much more rapidly than EDTA in soil.

  2. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds

    International Nuclear Information System (INIS)

    Luo Chunling; Shen Zhenguo; Lou Laiqing; Li Xiangdong

    2006-01-01

    The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching. - Chrysanthemum coronarium L. was the most sensitive species to the application of chelants, and EDDS biodegrades much more rapidly than EDTA in soil

  3. Guidance document for multi-facility recycle/reuse/free release of metals from radiological control area

    International Nuclear Information System (INIS)

    Gogol, S.; Starke, T.

    1997-01-01

    Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA's as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills

  4. Metal doped green zeolites for water treatment a sustainable remediation model

    International Nuclear Information System (INIS)

    Tabassum, N.; Rafique, U.

    2016-01-01

    The synthesis of zeolites from refused materials presents a greener model for environmental remediation. The present study offers a novel procedure to synthesize not only the basic framework but also Vanadium modified polymeric zeolites. The spent polythene bags, lunch boxes, and packaging are used as raw material for synthesis of zeolites. Characterization through EDX showed incorporation of vanadium is more than 35%, exhibiting FTIR frequencies in the range 601-995cm-1. Thermogravimetric (TG) analysis revealed a stabilizing effect of zeolites on addition of dopant upto 320 degree C as determined by higher residue percentage (> 98%). Vanadium doped synthesized zeolites (MP1, MP2, MP3) were applied in batch adsorption experiments for in-situ (synthetic metal salt solution) and ex-situ (industrial effluents) removal of metals (Pb, Cr, and Cd). Adsorption results indicated the successful metal removal of more than 90% in the sequence Pb > Cd > Cr. The sequence follows, higher is the ionic radius of the metal cation, more is the adsorption on zeolites. Application of adsorption isotherms demonstrated fitness of Freundlich and Temkin models, whereas pseudo first order kinetics depicts metal removal. The study concludes that synthesized zeolites are suitable candidates with improvised green economy for industrial sector to treat effectively industrial discharges. (author)

  5. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  6. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  7. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  8. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  9. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  10. Properties and working of special metals - meeting held in Essen in March 1977

    International Nuclear Information System (INIS)

    Lison, R.

    1977-01-01

    Metals of the groups IVa, Va and VIa of the periodic system were chosen as subjects for the papers since there are already established fields of application for these metals. Apart from these, beryllium (group IIa) was dealt with due to the special processing problems it presents. All papers were structured along the same lines: First the production process from raw material to metal was outlined followed by a discussion of the main types of alloys and the further working to obtain marketable products. Emphasis was put on working by various production techniques (cutting, cold-working, hot-working, etc.) and on the explanation of flaws induced by working which have an adverse effect on the performance of these materials. Welding and soldering were treated in a separate paper. (orig.) [de

  11. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  12. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  13. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  14. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  15. The use of chelating agents in the remediation of metal-contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lestan, Domen [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-05-15

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades.

  16. The use of chelating agents in the remediation of metal-contaminated soils: A review

    International Nuclear Information System (INIS)

    Lestan, Domen; Luo Chunling; Li Xiangdong

    2008-01-01

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades

  17. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides - 3. Influence of Chemical Speciation and Bioavailability on Contaminants Immobilization/mobilization Bio-processes

    NARCIS (Netherlands)

    Hullebusch, van E.D.; Lens, P.N.L.; Tabak, H.H.

    2005-01-01

    The biotransformation of metals is an exciting, developing strategy to treat metal contamination, especially in environments that are not accessible to other remediation technologies. However, our ability to benefit from these strategies hinges on our ability to monitor these transformations in the

  18. Treating distillable carbonaceous materials with hydrocarbon gases, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-04

    A process is described for the treatment of distillable carbonaceous materials with hydrogen gases in the presence of hydrogen halides to recover valuable hydrocarbon products, characterized by the stable halide forming the treating medium for the hot-test gasesous product of this treatment with hydrogen gases in combination with an alkaline metal or alkaline earth, able to be decomposed by an inorganic acid soluble in water, capable of driving off hydrogen halide from their salts and also with salts of ammonia of the mentioned inorganic acids, the halide being converted into halide of ammonia and halogen, and the ammonia halide or hydrogen halide being returned to the process alone or together with the feed of carbonaceous materials with which it began.

  19. Using proven, cost-effective chemical stabilization to remediate radioactive and heavy metal contaminated sites

    International Nuclear Information System (INIS)

    Jensen, R.; Sogue, A.

    1999-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS) has deployed a cost-effective metals stabilization method which can be used to reduce the cost of remediation projects where radioactivity and heavy metals are the contaminants of concern. The Envirobond TM process employs the use of a proprietary chemical process to stabilize metals in many waste forms, and provides an excellent binding system that can easily be compacted to reduce the waste into a shippable brick called Envirobric TM . The advantages of using chemical stabilization are: (1) Low cost, due to the simplicity of the process design and inexpensive reagents. (2) Chemical stabilization is easily deployed in field applications, which limit the amount of shielding and other protective measures. (3) The process does not add volume and bulk to the treated waste; after treatment the materials may be able to remain on-site, or if transportation and disposal is required the cost will be reduced due to lower volumes. (4) No secondary waste. The simplicity of this process creates a safe environment while treating the residues, and the long-term effectiveness of this type of chemical stabilization lowers the risk of future release of hazardous elements associated with the residues. (author)

  20. For successfully completed clean-ups treating different kinds of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, A.; Bentz, R.; Huerzeler, R.A.; Matter, B. [Ciba Specialty Chemicals Inc., Basel (Switzerland)

    2003-07-01

    In this Special Session 4 remediation projects are presented, that were run in different environments and under different constraints. The projects / sites showed the following characteristics: Amponville (F) This project represents a successful clean up of an uncontrolled dump by drums containing Chlorophenol-wastes from an old agrochemical production site. Contaminated sandy soil had to be excavated and treated in a Thermal Desorption unit on site. An interactive CD-ROM data medium was created for documentation. Niederglatt (CH) A old industrial area contaminated by organics (hydrocarbons, polyaromatics) as well as by chromium Cr(VI) was remediated by soil-excavation. The soil had to be analysed, separated and treated accordingly. Chromium-contaminated material had to be treated physically and chemically. The soil affected by organic pollutants had to be washed off-site. Special attention was given to the water flowing off the site, groundwater control and to dust deposit measures in the near environment. Dielsdorf (CH) This site contained wastes from former Lindane-production, containing HCH, Dinitro-o-Cresol and metals like As, Cu and Pb. The contaminated soil and the wastes had to be excavated, analysed, partly backfilled and the rest treated in different ways. Residual pollutants concentration was calculated following a risk-analysis/mobility-calculation and agreed upon with the authorities before starting the remediation work. Schweizerhalle (CH) A huge fire left an area of contaminated soil that was affected by argo-chemicals and their incineration-products. The most harmful pollutants were mercury and phosphoric esters. After coverage by a tent and lowering of the groundwater level the gravel and the sandy soil was excavated and treated in an on-site large-scale Soil Washing and Treating installation by using surfactants and other reagents to separate the pollutants. Most of the soil could be backfilled on-site. Less than 5% of the soil volume containing

  1. DOE mixed waste metals partition in a rotary kiln wet off-gas system

    International Nuclear Information System (INIS)

    Burns, D.B.; Looper, M.G.

    1994-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. Test burns were conducted using surrogate CIF wastes spiked with hazardous metals and organics. The partition of metals between the kiln bottom ash, scrubber blowdown solution, and stack gas was measured as a function of kiln temperature, waste chloride content, and waste form (liquid or solid). Three waste simulants were used in these tests, a high and low chloride solid waste mix (paper, plastic, latex, PVC), and a liquid waste mix (benzene and chlorobenzene). An aqueous solution containing: antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and thallium was added to the waste to determine metals fate under various combustion conditions. Test results were used to divide the metals into three general groups, volatile, semi-volatile, and nonvolatile metals. Mercury was the only volatile metal. No mercury remained in the kiln bottom ash under any incineration condition. Lead, cadmium, thallium, and silver exhibited semi-volatile behavior. The partition between the kiln ash, blowdown, and stack gas depended on incineration conditions. Chromium, nickel, barium, antimony, and arsenic exhibited nonvolatile behavior, with greater than 90 wt % of the metal remaining in the kiln bottom ash. Incineration temperature had a significant effect on the partition of volatile and semi-volatile metals, and no effect on nonvolatile metal partition. As incineration temperatures were increased, the fraction of metal leaving the kiln increased. Three metals, lead, cadmium, and mercury showed a relationship between chloride concentration in the waste and metals partition. Increasing the concentration of chlorides in the waste or burning liquid waste versus solid waste resulted in a larger fraction of metal exiting the kiln

  2. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  3. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  4. Metal release from simulated fixed orthodontic appliances.

    Science.gov (United States)

    Hwang, C J; Shin, J S; Cha, J Y

    2001-10-01

    Most orthodontic appliances and archwires are stainless steel or nickel-titanium (NiTi) alloys that can release metal ions, with saliva as the medium. To measure metal released from the fixed orthodontic appliances currently in use, we fabricated simulated fixed orthodontic appliances that corresponded to half of the maxillary arch and soaked them in 50 mL of artificial saliva (pH 6.75 +/- 0.15, 37 degrees C) for 3 months. We used brackets, tubes, and bands made by Tomy (Tokyo, Japan). Four groups were established according to the appliance manufacturer and the type of metal in the .016 x .022-in archwires. Groups A and B were stainless steel archwires from Ormco (Glendora, Calif) and Dentaurum (Ispringen, Germany), respectively, and groups C and D were both NiTi archwires with Ormco's copper NiTi and Tomy's Bioforce sentalloy, respectively. Stainless steel archwires were heat treated in an electric furnace at 500 degrees C for 1 minute and quenched in water. We measured the amount of metal released from each group by immersion time. Our conclusions were as follows: (1) there was no increase in the amount of chromium released after 4 weeks in group A, 2 weeks in group B, 3 weeks in group C, and 8 weeks in group D; (2) there was no increase in the amount of nickel released after 2 weeks in group A, 3 days in group B, 7 days in group C, and 3 weeks in group D; and (3) there was no increase in the amount of iron released after 2 weeks in group A, 3 days in group B, and 1 day in groups C and D. In our 3-month-long investigation, we saw a decrease in metal released as immersion time increased.

  5. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress

    International Nuclear Information System (INIS)

    Odjegba, V. J.; Fasidi, I. O.

    2007-01-01

    Whole plants of Eichhornia crassipes and Pistia stratiotes were exposed to various concentrations (0,0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mM) of 8 heavy metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn) hydroponically for 21 days. Spectrometric assays for the total activity of catalase, peroxidase, and superoxide dismutase in the leaves were studied. At the end of the experimental period, data referred to metal treated plants were compared to data of untreated ones (control). Heavy metals increased the activity of catalase, peroxidase and superoxide dismutase in both species and there was differential inducement among metals. Overall, Zn had the least inducement of antioxidant enzymes in both species while Hg had the highest inducement. The increase in antioxidant enzymes in relation to the control plants was more in E. crassipes than P. stratiotes. The results showed that E. crassipes tolerated higher metal concentrations in a greater number of metals than P. stratiotes. (author)

  6. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    Science.gov (United States)

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Palacio, Manuel; Kwak, Kwang Joo

    2008-01-01

    In ferroelectric data storage, a conductive atomic force microscopy (AFM) probe with a noble metal coating is placed in contact with a lead zirconate titanate (PZT) film. The understanding and improvement of probe tip wear, particularly at high velocities, is needed for high data rate recording. A commercial Pt-coated silicon AFM probe was thermally treated in order to form platinum silicide at the near-surface. Nanoindentation, nanoscratch and wear experiments were performed to evaluate the mechanical properties and wear performance at high velocities. The thermally treated tip exhibited lower wear than the untreated tip. The tip wear mechanism is adhesive and abrasive wear with some evidence of impact wear. The enhancement in mechanical properties and wear resistance in the thermally treated film is attributed to silicide formation in the near-surface. Auger electron spectroscopy and electrical resistivity measurements confirm the formation of platinum silicide. This study advances the understanding of thin film nanoscale surface interactions

  8. Research on treatment of wastewater containing heavy metal by microbial fuel cell

    Science.gov (United States)

    Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui

    2018-02-01

    With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.

  9. Influence of heat treatments for laser welded semi solid metal cast A356 alloy on the fracture mode of tensile specimens

    CSIR Research Space (South Africa)

    Kunene, G

    2008-09-01

    Full Text Available were then butt laser welded. It was found that the pre-weld as cast, T4 and post-weld T4 heat treated specimens fractured in the base metal. However, the pre-weld T6 heat treated specimens were found to have fractured in the heat affected zone (HAZ)...

  10. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    International Nuclear Information System (INIS)

    Wagner, R.N.

    1994-01-01

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability

  11. Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Lorraine Ortiz-Candelaria; Donald S. Stone; Douglas R. Rammer

    2009-01-01

    Currently, many of the polymer-coated fasteners on the market are designed for improved corrosion performance in treated wood; yet, there is no way to evaluate their corrosion performance. In this study, a common technique for measuring the corrosion performance of polymer-coated metals, electrochemical impedance spectroscopy (EIS), was used to evaluate commercial...

  12. Transport of significant metals recovered in real sea experiment of adsorbents

    International Nuclear Information System (INIS)

    Takeda, Hayato; Tamada, Masao; Kasai, Noboru; Katakai, Akio; Hasegawa, Shin; Seko, Noriaki; Sugo, Takanobu; Kawabata, Yukiya

    2001-10-01

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  13. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  14. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.

    Science.gov (United States)

    Azcón, Rosario; Medina, Almudena; Roldán, Antonio; Biró, Borbála; Vivas, Astrid

    2009-04-01

    In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB amended soil, increased plant growth similarly to PO4(3-) addition, and both treatments matched in P acquisition but bacterial biodiversity estimated by denaturing gradient gel electrophoresis of amplified 16S rDNA sequences, was more stimulated by the presence of the AM fungus than by PO4(3-) fertilization. The SB amendment plus AM inoculation increased the microbial diversity by 233% and also changed (by 215%) the structure of the bacterial community. The microbial inoculants and amendment used favoured plant growth and the phytoextraction process and concomitantly modified bacterial community in the rhizosphere; thus they can be used for remediation. Therefore, the understanding of such microbial ecological aspects is important for phytoremediation and the recovery of contaminated soils.

  15. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice

    Institute of Scientific and Technical Information of China (English)

    Qixiao Zhai; Tianqi Li; Leilei Yu; Yue Xiao; Saisai Feng; Jiangping Wu; Jianxin Zhao; Hao Zhang; Wei Chen

    2017-01-01

    Oral exposure to toxic metals such as cadmium (Cd),lead (Pb),copper (Cu) and aluminum (Al) can induce various adverse health effects in humans and animals.However,the effects of these metals on the gut microbiota have received limited attention.The present study demonstrated that long-term toxic metal exposure altered the intestinal microbiota of mice in a metal-specific and time-dependent manner.Subchronic oral Cu exposure for eight weeks caused a profound decline in gut microbial diversity in mice,whereas no significant changes were observed in groups treated with other metals.Cd exposure significantly increased the relative abundances of organisms from the genera Alistipes and Odoribacter and caused marked decreases in Mollicutes and unclassified Ruminococcaceae.Pb exposure significantly decreased the abundances of eight genera:unclassified and uncultured Ruminococcaceae,unclassified Lachnospiraceae,Ruminiclostridium_9,Rikenellaceae_RC9_gut_group,Oscillibacter,Anaerotruncus and Lachnoclostridium.Cu exposure affected abundances of the genera Alistipes,Bacteroides,Ruminococcaceae_UCG-014,Allobaculum,Mollicutes_RFg_norank,Rikenellaceae_RC9_gut_group,Ruminococcaceae_unclassified and Turicibacter.Al exposure increased the abundance of Odoribacter and decreased that of Anaerotruncus.Exposure to any metal for eight weeks significantly decreased the abundance of Akkermansia.These results provide a new understanding regarding the role of toxic metals in the pathogenesis of intestinal and systemic disorders in the host within the gut microbiota framework.

  16. Electron states in thulium and other rare-earth metals

    International Nuclear Information System (INIS)

    Strange, P.; Fairbairn, W.M.; Lee, P.M.

    1983-01-01

    The LMTO method has been applied to calculate band structures for the heavier rare-earth metals. The calculations are relativistic. Thulium in particular has been considered, where a frozen core approximation is used, and the outer electrons are treated selfconsistently. Problems associated with the localisation and interactions of the 4f electrons are discussed. Teh comparisons between experimental data and calculated quantities are encouraging, but more data on high-purity single crystals would be helpful. (author)

  17. The Effect of Rare-Earth Metals on Cast Steels

    Science.gov (United States)

    1954-04-01

    sullide inclusions found in two afuminum-Jriffed steefs treated with fire pounds of misch metal per ton of steef (SOOX) 15 manganese sulfides and...deoxidation treatment by ad- ditions in the monorail ladle were better than those not given the secondary deoxidation treatment. The aluminum analyses...Suliur Addition lb/ton Place BHN Area % it-lbs It-lbs Content Regular Secondary Deoxidation (0.028%Ca as CaMnSi + o.ossy.Ai) Added to 300 lb. Monorail

  18. The use of non-living biomass to recover heavy metals from aqueous solutions

    International Nuclear Information System (INIS)

    Darnall, D.W.

    1993-01-01

    The use of microorganisms in the treatment of hazardous wastes containing both inorganic and organic pollutants is becoming more and more attractive. There have been two approaches to the use of microorganisms in waste treatment. One involves the use of living organisms and the other involves the use of non-viable biomass derived from microorganisms. While the use of living organisms is often successful in the treatment of toxic organic contaminants, living organisms have not been found to be useful in the treatment of solutions containing heavy metal ions. This is because once the metal ion concentration becomes too high or sufficient metal ions are adsorbed by the microorganism, metabolism is disrupted causing the organism to die. This disadvantage is not encountered if non-living organisms or biological materials derived from microorganisms are used to adsorb metal ions from solution. Instead the biomass is treated as another reagent, a surrogate ion exchange resin. The binding, or biosorption, of metal ions by the biomass results from coordination of the metal ions to various functional groups in or on the cell. These chelating groups, contributed by the cell biopolymers, include carboxyl, imidazole, sulfhydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties (Darnall et al.)

  19. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  20. Hard metal lung disease: a case series.

    Science.gov (United States)

    Mizutani, Rafael Futoshi; Terra-Filho, Mário; Lima, Evelise; Freitas, Carolina Salim Gonçalves; Chate, Rodrigo Caruso; Kairalla, Ronaldo Adib; Carvalho-Oliveira, Regiani; Santos, Ubiratan Paula

    2016-01-01

    To describe diagnostic and treatment aspects of hard metal lung disease (HMLD) and to review the current literature on the topic. This was a retrospective study based on the medical records of patients treated at the Occupational Respiratory Diseases Clinic of the Instituto do Coração, in the city of São Paulo, Brazil, between 2010 and 2013. Of 320 patients treated during the study period, 5 (1.56%) were diagnosed with HMLD. All of those 5 patients were male (mean age, 42.0 ± 13.6 years; mean duration of exposure to hard metals, 11.4 ± 8.0 years). Occupational histories were taken, after which the patients underwent clinical evaluation, chest HRCT, pulmonary function tests, bronchoscopy, BAL, and lung biopsy. Restrictive lung disease was found in all subjects. The most common chest HRCT finding was ground glass opacities (in 80%). In 4 patients, BALF revealed multinucleated giant cells. In 3 patients, lung biopsy revealed giant cell interstitial pneumonia. One patient was diagnosed with desquamative interstitial pneumonia associated with cellular bronchiolitis, and another was diagnosed with a hypersensitivity pneumonitis pattern. All patients were withdrawn from exposure and treated with corticosteroid. Clinical improvement occurred in 2 patients, whereas the disease progressed in 3. Although HMLD is a rare entity, it should always be included in the differential diagnosis of respiratory dysfunction in workers with a high occupational risk of exposure to hard metal particles. A relevant history (clinical and occupational) accompanied by chest HRCT and BAL findings suggestive of the disease might be sufficient for the diagnosis. Descrever aspectos relacionados ao diagnóstico e tratamento de pacientes com doença pulmonar por metal duro (DPMD) e realizar uma revisão da literatura. Estudo retrospectivo dos prontuários médicos de pacientes atendidos no Serviço de Doenças Respiratórias Ocupacionais do Instituto do Coração, localizado na cidade de S

  1. Historical review of the sanitary filling of Rio Azul and considerations about heavy metals treated in it and the presents in our homes

    International Nuclear Information System (INIS)

    Mora Chinchilla, Rolando; Mora Amador, Raul

    2003-01-01

    A summary has been done on the most outstanding events during the history of Rio Azul sanitary landfill by consultating documents and local newspapers. The historical outline starts in 1972, when the Inter municipal Cooperative Agreement (COCIM) was created, until May 27, 2002, when a warning was issued on the possible harmful effects on health due to technological waste disposal. Likewise, the method for estimating the mass of metals deposited in the landfill is disclosed. In this landfill the mass of metals varies between 70000 and 100000 tm. Finally, some considerations on household chemical products are made and recommendations are presented to improve metal waste management. (Author) [es

  2. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, DuBok; Kikuchi, Shintaro

    2012-01-01

    For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillusbulgaricus and Streptococcusthermophilus were highest. The chemical extraction rates were depended on the amounts of pyruvic acid and lactic acid. Especially, the extraction rates using mixed pyruvic acid and lactic acid were increased compared to those of sole one. They were also enhanced in the mixed culture of L. bulgaricus and S. thermophilus. To improve the extraction of CCA, a two-step processing procedure with the mixed culture of L. bulgaricus and S. thermophilus was conducted. A maximum of 93% of copper, 86.5% of chromium, and 97.8% of arsenic were extracted after 4 days. These results suggest that a two-step process with the mixed culture of L. bulgaricus and S. thermophilus is most effective to extract heavy metals from CCA treated wood. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Summary of treat experiments on oxide core-disruptive accidents

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rothman, A.B.; Klickman, A.E.; Spencer, B.W.; DeVolpi, A.

    1979-02-01

    A program of transient in-reactor experiments is being conducted by Argonne National Laboratory in the Transient Reactor Test (TREAT) facility to guide and support analyses of hypothetical core-disruptive accidents (HCDA) in liquid-metal fast breeder reactors (LMFBR). Test results provide data needed to establish the response of LMFBR cores to hypothetical accidents producing fuel failure, coolant boiling, and the movement of coolant, molten fuel, and molten cladding. These data include margins to fuel failure, the modes of failure and movements, and evidence for identification of the mechanisms which determine the failure and movements. A key element in the program is the fast-neutron hodoscope, which detects fuel movement as a function of time during experiments

  4. Desarrollo de materiales sorbentes para la eliminación de metales pesados de las aguas residuales mineras

    OpenAIRE

    Vera Cabezas, Luisa Mayra

    2016-01-01

    Biosorption is one of the most promising technologies in the removal of heavy metals, not only for its low cost, but because it is a quick process that can treat large volumes of water with low concentrations of metal effectively. To study the adsorption mechanism is necessary to have information about the physical and chemical structure of the cell wall of biomass, functional groups present, the type and size of pores, polysaccharide chains, etc. In this paper the characterizatio...

  5. Metal leaching in mine tailings: short-term impact of biochar and wood ash amendments.

    Science.gov (United States)

    Beauchemin, Suzanne; Clemente, Joyce S; MacKinnon, Ted; Tisch, Bryan; Lastra, Rolando; Smith, Derek; Kwong, John

    2015-01-01

    Biochar is perceived as a promising amendment to reclaim degraded, metal-contaminated lands. The objective of this study was to compare the potential of biochar and wood ash amendments to reduce metal(loid) leaching in mine tailings. A 2-mo leaching experiment was conducted in duplicate on acidic and alkaline tailings, each mixed with 5 wt.% of one of the following amendments: three wood-derived, fast-pyrolysis biochars (OC > 57 wt.%) and two wood ash materials (organic carbon [OC] ≤ 16 wt.%); a control test with no carbon input was also added. The columns were leached with water after 1, 2, 4, 8, 16, 32, and 64 d, and the leachates were monitored for dissolved metals, OC, and pH. For the acidic and alkaline tailings, the most significant impact on metal mobility was observed with wood ash materials due to their greater neutralization potential (>15% CaCO eq.) compared with biochar (≤3.3% CaCO eq.). An increase of 1 pH unit in the wood ash-treated alkaline tailings led to an undesirable mobilization of As and Se. The addition of biochar did not significantly reduce the leaching of the main contaminants (Cu and Ni in the acidic tailings and As in the alkaline tailings) over 2 mo. The Se attenuation noted in some biochar-treated acid tailings may be mainly due to a slight alkaline effect rather than Se removal by biochar, given the low capacity for the fresh biochars to retain Se under acidic conditions (pH 4.5). The increased loss of dissolved OC in the biochar-amended systems was of short duration and was not associated with metal(loid) mobilization. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada.

  6. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    Science.gov (United States)

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  7. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO. The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  8. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  9. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  10. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  11. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  12. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    International Nuclear Information System (INIS)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance

  13. Heavy metal partitioning from electronic scrap during thermal End-of-Life treatment

    International Nuclear Information System (INIS)

    Scharnhorst, Wolfram; Ludwig, Christian; Wochele, Joerg; Jolliet, Olivier

    2007-01-01

    Samples of identical Printed Wiring Board Assemblies (PWBA) have been thermally treated in a Quartz Tube Reactor (QTR) in order to detect the volatility of selected heavy metals contained in electronic scrap being of environmental concern. In preparation, evaporation experiments were performed using a Thermo Gravimeter (TG) in connection with an Inductively Coupled Plasma-Optical Emissions Spectrometer (ICP-OES). The QTR experiments were performed under reducing and under oxidising conditions at 550 and at 880 deg. C. The volatilisation has been determined for As, Cd, Ni, Ga, Pb, and Sb using ICP-OES analysis of the ash residues. The results were evaluated by thermodynamic equilibrium calculations, the TG-ICP measurements and in comparison with similar studies. In coincidence with the preparative TG-ICP measurements as well as with thermodynamic equilibrium calculations neither As nor Cd could be detected in the residuals of the thermally treated PWBA samples, suggesting a high volatility of these metals. Ga does not show a distinct volatilisation mechanism and seems to be incorporated in the siliceous fraction. Ni remains as stable compound in the bottom ash. Sb shows a high volatility nearly independent of temperature and oxygen supply. The results imply that, if electronic scrap is thermally processed, attention has to be paid in particular to Sb, As, and Ga. These metals are increasingly used in new electronic equipment such as mobile phone network equipment of the third generation

  14. Application of amorphous filler metals in production of fusion reactor high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Fedotov, V T [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Grigoriev, A E [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Sevriukov, O N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Pliushev, A N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Skuratov, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Polsky, V I [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Yakushin, V L [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Virgiliev, Yu S [State Research Institute of Graphite, Electrodnaya St. 2, 115524 Moscow (Russian Federation); Vasiliev, V L [TRINITI, Troitsk, 142092 Moscow District (Russian Federation); Tserevitinov, S S [TRINITI, Troitsk, 142092 Moscow District (Russian Federation)

    1995-03-01

    Amorphous ribbon-type filler metals represent a promising facility for fastening heterogeneous materials together. The advantage results from the homogeneity of element and phase compositions and the strictly specified geometrical dimensions of such fillers. Amorphous fillers Zr-Ti-Fe-Be, Zr-Ti-Ni-Cu and Ti-Zr-Ni-Cu and microcrystalline fillers Al-Si and Cu-Sn-Mn-In-Ni were produced by quenching at a rate of about 10{sup 6}Ks{sup -1}. Brazing of graphite with metals (Cu+MPG-6, Cu+RGT, Mo+MIG-1, V+MIG-1, V+RGT) was accomplished using ribbon-type fillers. Two types of metal-based samples were produced in the form of plates and rakes. The rakes were made by brazing three small graphite bars to the metal, the 2mm space between the bars being 0.25 of the bar height. The results of metallographic studies of the brazing zone and of tests on brazed structures treated by pulsed energy fluxes are discussed. (orig.).

  15. The treatment of complex airway diseases with inverted Y-shaped self-expandable metal stent

    International Nuclear Information System (INIS)

    Li Jianming; Jia Guangzhi

    2011-01-01

    Objective: To investigate the application and therapeutic effects of inverted Y-shaped self-expandable metal airway stent in treating complex airway diseases (stenosis or fistula). Methods: According to the distinctive anatomic structure and the pathological changes of complex airway stenosis or fistula, the inverted y-shaped self-expandable metal airway stent was designed. Under fluoroscopic monitoring, a total of 12 inverted Y-shaped self-expandable metal stents were implanted in 12 patients with complex airway diseases. Results: Stent placement in the trachea-bronchial tree was technically successful in all patients. After the operation, the symptom of dyspnea was immediately relieved and the bucking following food intake disappeared. The general physical condition and living quality were much improved in all patients. Conclusion: The use of inverted Y-shaped self-expandable metal airway stent for the management of complex airway stenosis involving the tracheal carina was a simple and safe procedure and it has satisfactory short-term clinical results. (authors)

  16. Case report: heavy metal burden presenting as Bartter syndrome.

    Science.gov (United States)

    Crinnion, Walter J; Tran, Jessica Q

    2010-12-01

    Maternal transfer of heavy metals during fetal development or lactation possibly contributed to the clinical manifestations of Bartter syndrome and developmental delay in the offspring. An 11-month-old child diagnosed with Bartter syndrome and failure to thrive was treated concurrently for elevated metal burden while he was undergoing standard medical interventions. Treatment with body-weight doses of meso-2,3-dimercaptosuccinic acid (DMSA) reduced the body burden of lead, beryllium, copper, mercury, and cadmium at the three- and sixth-month follow-up tests. During the course of the six-month treatment, the patient gained 2.4 kg (5.2 lb) and grew approximately 9.5 cm (3.75 in). His weight shifted from significantly below the 5th percentile in weight to within the 5th percentile, and from below the 5th to within the 10th percentile for length. The child's acquisition of lead, beryllium, and copper correspond to his mother's history of stained glass assembly and occurred during fetal development or lactation, since there were no other identifiable sources that could have contributed to the heavy metal burden. Tests for known genetic mutations leading to Bartter syndrome were all negative. This case report highlights the potential benefit of DMSA for treatment of heavy metal body burden in infants who present with Bartter syndrome.

  17. Clinical remission following endoscopic placement of retrievable, fully covered metal stents in patients with esophageal achalasia.

    Science.gov (United States)

    Zeng, Y; Dai, Y-M; Wan, X-J

    2014-01-01

    Metal stents may represent an alternative therapy in the treatment of achalasia. We therefore evaluated the effectiveness of retrievable, fully covered metal stents in patients with achalasia. Fifty-nine patients with achalasia were treated with retrievable, fully covered metal stents. Symptoms using a global symptom score (0-10), lower esophageal sphincter (LES) resting pressure, LES relaxation, and simultaneous contraction of the esophagus were analyzed before and 1 week and 1 month after intervention. Complications and treatment outcomes were followed up at 6, 12, 18, and 24 months postoperatively. Stent placement was successful, and clinical symptoms resolved (P treatment in patients with achalasia. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  18. Phragmites karka as a Biosorbent for the Removal of Mercury Metal Ions from Aqueous Solution: Effect of Modification

    Directory of Open Access Journals (Sweden)

    Muhammad Hamid Raza

    2015-01-01

    Full Text Available Batch scale studies for the adsorption potential of novel biosorbent Phragmites karka (Trin, in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R model, Freundlich isotherm, and Langmuir isotherm were applied. The values of qmax for natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both natural P. karka and treated P. karka. RL values indicate that comparatively treated P. karka was more feasible for mercury adsorption compared to natural P. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.

  19. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  20. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter

  1. Ion-Exchange Treating of Cyanide-Contained Waste Water of Some Hydrometallurgy Plants

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    The paper presents results of investigation of possibility to apply strong base anionite for treating waste water of a hydrometallurgical plant from cyanide compounds of heavy metals and to utilize value component (Au, Cu, Zn and so on). As an object of the investigation thickener outlets of a processing plant were chosen. Sorption researches were carried out with model solutions allied to the thickener outlet and with the thickener outlets too in static and dynamic conditions. The main technological parameters were determined, technological schemes of value component sorption and ignite regeneration were developed

  2. Process for producing metal oxide kernels and kernels so obtained

    International Nuclear Information System (INIS)

    Lelievre, Bernard; Feugier, Andre.

    1974-01-01

    The process desbribed is for producing fissile or fertile metal oxide kernels used in the fabrication of fuels for high temperature nuclear reactors. This process consists in adding to an aqueous solution of at least one metallic salt, particularly actinide nitrates, at least one chemical compound capable of releasing ammonia, in dispersing drop by drop the solution thus obtained into a hot organic phase to gel the drops and transform them into solid particles. These particles are then washed, dried and treated to turn them into oxide kernels. The organic phase used for the gel reaction is formed of a mixture composed of two organic liquids, one acting as solvent and the other being a product capable of extracting the anions from the metallic salt of the drop at the time of gelling. Preferably an amine is used as product capable of extracting the anions. Additionally, an alcohol that causes a part dehydration of the drops can be employed as solvent, thus helping to increase the resistance of the particles [fr

  3. Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25 - SiC Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    G Elango

    2014-06-01

    Full Text Available The basic aim of this paper is to increase awareness amongst the researchers and to draw their attention towards the present approach to deal with the cryogenic treatment for the nonferrous metals. Cryogenic treated nonferrous metals will exhibit longer wear and more durability. During metal making process, when solidification takes place, some molecules get caught in a random pattern. The molecules do move about at subzero and deep cryogenic treatment slowly. In this experimental study, the effect of cryogenic treatment on microstructure changes and the hardness properties varies for LM25 alloy and LM25-SiC metal matrix composite at -196°C. It is analyzed for different durations. The execution of cryogenic treatment on both alloy and MMCs changed the distribution of

  4. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment.

    Science.gov (United States)

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-08-01

    Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Studies on the fate of poisonous metals in experimental animal, (7)

    International Nuclear Information System (INIS)

    Onoda, Kin-ichi; Hasegawa, Akira; Sunouchi, Momoko; Tanaka, Satoru; Takanaka, Akira

    1978-01-01

    Solutions of 54 MnCl 2 (0.5 mg manganese chloride/kg, low dose; 10 mg manganese chloride/kg, high dose) were intravenously injected to groups of pregnant rats on the 10th, 13th, 17th and 19th days of gestation, and the manganese distribution in maternal and fetal tissues were examined 3 hours after each injection and on the 20th day of gestation. Three hours after the injection, placental distribution of the metal was predominantly higher in the 19th and the 17th days treated groups than in the 13th and the 10th days groups. However, the difference related to the stage of gestation was not evident concerning the manganese distribution in other maternal organs. The stage-linked difference of manganese distribution was also not recognized in fetal whole body. The distribution pattern of the metal in the whole body of pregnant rats at the 20th day of gestation showed rather rapid decrease in the high dose group than in the low dose group. In maternal brain, bone and ovary of both dose groups, accumulation and/or slow elimination of manganese was observed. In all of the fetal organs of both dose groups, the earlier the stage of administration, the lower the distribution of manganese was observed, and, as compared with the maternal organs, remarkably higher concentrations of the metal were detected in fetal brain, heart, lung, liver and bone in the groups treated after the 13th day of gestation. (auth.)

  6. Expandable metallic stents in the palliative treatment of malignant tracheobronchial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woong; Jung, Gyoo Sik; Kim, Seong Min; Lee, Seung Ryong; Kim, Hyun Sook; Huh, Jin Do; Joh, Young Duk [Kosin Medical College, Pusan (Korea, Republic of)

    1998-05-01

    The purpose of this study is to report the outcome of using expandable metallic stent in the management of malignant tracheobronchial stenosis with dyspnea. Under fluoroscopic and bronchoscopic guidance, seven patients with malignant airway stenosis were treated with ten expandable metallic stents. The cause of stenosis was metastasis from esophageal cancer in five patients, recurrent adenoid cystic carcinoma of the trachea in one, and primary lung cancer in one. The major sites of obstruction were the trachea in four patients, the left main bronchus in one, the trachea and left main bronchus in one, and the trachea and both bronchi in one. Chest radiography (n=7), bronchoscopy (n=5), pulmonary function test (PFT)(n=3), and spirometry(n=1) were performed before and after stent placement. In all seven patients, the stent was successfully placed at the lesion sites and dyspnea began to improve immediately. After the procedure, chest radiography and bronchoscopy showed an increase in airway diameter. After the procedure, chest radiography and bronchoscopy showed an increase in airway diameter. After stent placement, forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) improved 53% and 56%, respectively. Peak flow velocity also changed from 46 L/min to 200 L/min. During median follow-up of 67 (41-1565) days, one stent migration occurred. In one patient, proximal tumor overgrowth occurred, and in one, tumor ingrowth was treated with balloon dilatation. For in the palliative treatment of malignant tracheobronchial stenosis with dyspnea, placement of expandable metal stents is safe and effective. (author). 21 refs., 1 tabs., 3 figs.

  7. Expandable metallic stents in the palliative treatment of malignant tracheobronchial stenosis

    International Nuclear Information System (INIS)

    Park, Jong Woong; Jung, Gyoo Sik; Kim, Seong Min; Lee, Seung Ryong; Kim, Hyun Sook; Huh, Jin Do; Joh, Young Duk

    1998-01-01

    The purpose of this study is to report the outcome of using expandable metallic stent in the management of malignant tracheobronchial stenosis with dyspnea. Under fluoroscopic and bronchoscopic guidance, seven patients with malignant airway stenosis were treated with ten expandable metallic stents. The cause of stenosis was metastasis from esophageal cancer in five patients, recurrent adenoid cystic carcinoma of the trachea in one, and primary lung cancer in one. The major sites of obstruction were the trachea in four patients, the left main bronchus in one, the trachea and left main bronchus in one, and the trachea and both bronchi in one. Chest radiography (n=7), bronchoscopy (n=5), pulmonary function test (PFT)(n=3), and spirometry(n=1) were performed before and after stent placement. In all seven patients, the stent was successfully placed at the lesion sites and dyspnea began to improve immediately. After the procedure, chest radiography and bronchoscopy showed an increase in airway diameter. After the procedure, chest radiography and bronchoscopy showed an increase in airway diameter. After stent placement, forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) improved 53% and 56%, respectively. Peak flow velocity also changed from 46 L/min to 200 L/min. During median follow-up of 67 (41-1565) days, one stent migration occurred. In one patient, proximal tumor overgrowth occurred, and in one, tumor ingrowth was treated with balloon dilatation. For in the palliative treatment of malignant tracheobronchial stenosis with dyspnea, placement of expandable metal stents is safe and effective. (author). 21 refs., 1 tabs., 3 figs

  8. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W. [DOE-Oak Ridge Operations Office, TN (United States)

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  9. Improvement of selective removal of heavy metals in cyanobacteria by NaOH treatment.

    Science.gov (United States)

    Nagase, Hiroyasu; Inthorn, Duangrat; Oda, Aiko; Nishimura, Jun; Kajiwara, Yumiko; Park, Myong-Oku; Hirata, Kazumasa; Miyamoto, Kazuhisa

    2005-04-01

    In the freshwater cyanobacterium, Tolypothrix tenuis, treatment with 0.1 M NaOH increased its Cd-selective adsorption ability in the presence of Ca(2+) or Mg(2+). The selective adsorption was also achieved by other alkaline treatments. Energy-distributed spectroscopy analysis revealed that Cd(2+) was found mainly on the surface of non-treated cells, whereas it was distributed throughout the cell after NaOH treatment. The alkaline treatment was effective in increasing the selective adsorption ability of the cyanobacterium for other bivalent heavy metals such as Cu(2+), Pb(2+) and Zn(2+). The treatment was also applicable to Anabaena variabilis and Microcystis aeruginosa, which are typical cyanobacteria causing algal blooms. The main binding site of Cd(2+) in NaOH-treated cells is assumed to be the carboxyl groups because the binding ability of the cells was diminished by the esterification of carboxyl groups. These results suggest that alkaline treatment of cyanobacteria is a useful technique for producing biosorbents having highly specific binding abilities for heavy metals.

  10. Chemical composition of Clarias Lazera (cuv and val., 1840) as an indicator of fish raising in treated sewage effluents

    International Nuclear Information System (INIS)

    Awad Elkareem, Manal Mohamed El Hassan

    1998-07-01

    The present study is one of the pioneer studies dealing with the possibility of growing fish in treated sewage water in Sudan. Khartoum sewage treatment plant - Green Belt area - was the main study site for this work, where fish was some how introduced to the canal which receives water from the last stage of treatment. Fish have reached large sizes and numbers, they are highly consumed by people of the area and widely marketed in the nearby localities. So this study aimed to discuss the potential health associated with the utilization of such fish for food, throwing light, on the advantages and disadvantages of fish culture in treated sewage effluent. The research was directed towards the study of the chemical composition of Clarias lazera (Cuv. and Val., 1840) (Garmout fish) being the only fish species in the area during the course of this study . Fish samples were collected from the Green Belt and the White Nile at the vicinity of Jebel Aulia reservoir which was taken as a control area for (April 1995 - April 1996). Basic biology was studies for each specimen, the concentrations of some of the hazardous and potentially hazardous heavy metals were investigated in the flesh of 30, randomly selected fish samples from both study sites, beside the major chemical body constituents : fats, proteins, moisture and ash in all specimens, to determine the quality of the flesh> Data obtained was analyzed, trying to correlate fish chemical composition to the surrounding environment. Treated sewage-fish showed higher weights and lengths than natural water-fish from the White Nile. Most of the hazardous metals investigated in the muscle tissues of treated sewage-fish were found to be of insignificant variation from that of natural water-fish (Mercury and Lead). They were found to be at lower levels than what is recommended by the International Agencies human consumption. The essential micronutrients for fish like Copper, Ferric (Iron) and Zinc showed significantly higher levels

  11. Quantitative proteomics of heavy metal exposure in Arabidopsis thaliana reveals alterations in one-carbon metabolism enzymes upon exposure to zinc.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Miranda-Vergara, María Cristina; Pantoja, Omar

    2014-12-05

    Plant zinc (Zn) homeostasis must be tightly regulated as the requirement for this micronutrient necessitates its uptake. However, excessive Zn can lead to toxicity and the plant must respond rapidly and effectively within its capacity to minimize damage. To detect mechanisms that may be important for coping with excess Zn we carried out a quantitative proteomics approach using 2D-DIGE to identify Zn-responsive proteins in microsomal fractions from leaves of 4day, 200μM Zn-treated, Arabidopsis thaliana plants. Of the eight proteins which showed significant changes in abundance in the Zn-treated samples and which met all of the selection criteria following statistical analysis, six were successfully identified by LC-MS/MS with 2 or more unique peptides. Three of the proteins were found to be involved in the one-carbon metabolism pathway; including glycine decarboxylase P protein, serine hydroxymethyltransferase (SHMT) and methionine synthase, all of which showed reduced abundance in the Zn-treated samples. Western blot analysis confirmed the decrease in SHMT, while changes in metal tolerance protein indicated plants were most likely actively sequestering Zn. Interestingly, excess Zn led to increased petiole length, a phenotype which may reflect the reduced levels of methionine, a key product of the one-carbon metabolism pathway. Metal contamination is becoming an increasingly common environmental problem. High levels of zinc can be found in certain soils naturally or as a result of long-term anthropogenic activity which leads to its accumulation; i.e. use of fertilizers or industrial waste. The study of metal tolerant plants, particularly those classified as hyperaccumulators has been driven by the potential use of these plants for bioremediation purposes. However, the effects of heavy metal exposure on sensitive plants and the different cellular processes that are affected have received significantly less attention. We are interested in identifying proteins in A

  12. Armeria maritima from a calamine heap--initial studies on physiologic-metabolic adaptations to metal-enriched soil.

    Science.gov (United States)

    Olko, A; Abratowska, A; Zyłkowska, J; Wierzbicka, M; Tukiendorf, A

    2008-02-01

    Plants of Armeria maritima are found both on unpolluted sites and on soils strongly polluted with heavy metals. Seedlings of A. maritima from a zinc-lead calamine heap in ore-mining region (Bolesław population) and from unpolluted area (Manasterz population) were tested to determine the zinc, cadmium and lead tolerance. In hydroponic experiments Bolesław population was more tolerant to zinc, cadmium and lead. Localization of heavy metals in roots was determined using the histochemical method for detecting metal-complexes with dithizone. Their accumulation was found in root hairs, rhizoderma and at the surface of the central cylinder. Glutathione level in plants increased after metal treatment of both populations. However, its high level was not correlated with phytochelatin production. These metal-binding complexes were not detected in plants exposed to zinc, cadmium or lead. Changes of organic acids concentrations in Armeria treated with metals may suggest their role in metal translocation from roots to shoots. The content of organic acids, especially malate, decreased in the roots and increased in the leaves. These changes may be important in Pb-tolerance of Manasterz population and in Zn-, Cd-tolerance of calamine population from Bolesław.

  13. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John F. [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-19

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M2(ligand)4, where M = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.

  14. Stone extraction balloon-guided repeat self-expanding metal stent placement

    Institute of Scientific and Technical Information of China (English)

    Hyung; Hun; Kim; Jeong; Seop; Moon; Soo; Hyung; Ryu; Jung; Hwan; Lee; You; Sun; Kim

    2010-01-01

    Self-expanding metal stent (SEMS) placement offers safe and effective palliation in patients with upper gastrointestinal obstruction due to a malignancy. Well described complications of SEMS placement include tumor growth, obstruction, and stent migration. SEMS occlusions are treated by SEMS redeployment, argon plasma coagulation application, balloon dilation, and surgical bypass. At our center, we usually place the second SEMS into the first SEMS if there is complete occlusion by the tumor. We discovered a...

  15. Supply and demand of some critical metals and present status of their recycling in WEEE.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Chang, Chein-Chi

    2017-07-01

    New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    Science.gov (United States)

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  17. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.).

    Science.gov (United States)

    Hladun, Kristen R; Di, Ning; Liu, Tong-Xian; Trumble, John T

    2016-02-01

    Metal pollution has been increasing rapidly over the past century, and at the same time, the human population has continued to rise and produce contaminants that may negatively impact pollinators. Honey bees (Apis mellifera L.) forage over large areas and can collect contaminants from the environment. The primary objective of the present study was to determine whether the metal contaminants cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) can have a detrimental effect on whole-colony health in the managed pollinator A. mellifera. The authors isolated small nucleus colonies under large cages and fed them an exclusive diet of sugar syrup and pollen patty spiked with Cd, Cu, Pb, and Se or a control (no additional metal). Treatment levels were based on concentrations in honey and pollen from contaminated hives around the world. They measured whole-colony health including wax, honey, and brood production; colony weight; brood survival; and metal accumulation in various life stages. Colonies treated with Cd or Cu contained more dead pupae within capped cells compared with control, and Se-treated colonies had lower total worker weights compared to control. Lead had a minimal effect on colony performance, although many members of the hive accumulated significant quantities of the metal. By examining the honey bee as a social organism through whole-colony assessments of toxicity, the authors found that the distribution of toxicants throughout the colony varied from metal to metal, some caste members were more susceptible to certain metals, and the colony's ability to grow over time may have been reduced in the presence of Se. Apiaries residing near metal-contaminated areas may be at risk and can suffer changes in colony dynamics and survival. © 2015 SETAC.

  18. [Treatment of tracheobronchomalacia with expandable metallic stents].

    Science.gov (United States)

    Antón-Pacheco Sánchez, J; García Vázquez, A; Cuadros García, J; Cano Novillo, I; Villafruela Sanz, M; Berchi García, F J

    2002-10-01

    Tracheomalacia is an unfrequent disease that causes tracheal collapse during breathing. It is generally associated to esophageal atresia, but cases of primary tracheomalacia and others secondary to extrinsic compression, have also been described. Spontaneous resolution is generally the rule and only a few cases need surgical treatment. When this therapy fails or is not indicated for any reason, endoluminal tracheobronchial stents may be used. We have treated two patients with four expandable metallic stents: one had severe tracheomalacia associated to esophageal atresia and the other tracheobronchomalacia secondary to cardiomegaly. Results have been good in both cases.

  19. Data acquisition testing in supercritical water oxidation using machine cutting oils and metals

    International Nuclear Information System (INIS)

    Garcia, K.M.

    1996-01-01

    The Department of Energy, the Navy, and SERDP provided funding for an extensive series of testing of a Supercritical Water Oxidation (SCWO) system. The goal of the testing was to create performance data on the process when dealing with highly chlorinated wastes containing heavy metals, and radionuclides. The testing was performed in a MODAR vessel oxidizer. Performance was measured by the ability of the process to achieve greater than 99.99% destruction of the organic content, to partition the metals and radionuclide surrogates for mass balance, and survive the highly corrosive species in the effluent. The test data has shown that these goals were accomplished. 30 gal/day of highly chlorinated machine cutting oil was treated for 130 hrs. There were no significant corrosion or solids handling problems. This machine cutting oil, TRIM reg-sign SOL was chosen by DOE for its complex nature and has proven to be one of the more refractory organic feeds encountered by MODAR. The Navy provided 8 waste streams collected from their shore facilities operation. These paints varied in solids content with wastes such as paint chips, and adhesives. The ninth test run was with all 8 series of wastes combined. The MODAR system successfully treated all of these waste streams providing performance data on the ability of SCWO to treat difficult sludges

  20. Microbiological metal extraction processes

    International Nuclear Information System (INIS)

    Torma, A.E.

    1991-01-01

    Application of biotechnological principles in the mineral processing, especially in hydrometallurgy, has created new opportunities and challenges for these industries. During the 1950's and 60's, the mining wastes and unused complex mineral resources have been successfully treated in bacterial assisted heap and dump leaching processes for copper and uranium. The interest in bio-leaching processes is the consequence of economic advantages associated with these techniques. For example, copper can be produced from mining wastes for about 1/3 to 1/2 of the costs of copper production by the conventional smelting process from high-grade sulfide concentrates. The economic viability of bio leaching technology lead to its world wide acceptance by the extractive industries. During 1970's this technology grew into a more structured discipline called 'bio hydrometallurgy'. Currently, bio leaching techniques are ready to be used, in addition to copper and uranium, for the extraction of cobalt, nickel, zinc, precious metals and for the desulfurization of high-sulfur content pyritic coals. As a developing technology, the microbiological leaching of the less common and rare metals has yet to reach commercial maturity. However, the research in this area is very active. In addition, in a foreseeable future the biotechnological methods may be applied also for the treatment of high-grade ores and mineral concentrates using adapted native and/or genetically engineered microorganisms. (author)