Flechtner, D D
1999-01-01
In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
Geometric scaling as traveling waves
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2003-01-01
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale
Parametric form of QCD travelling waves
Peschanski, R.
2005-01-01
We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.
Nonlinear interactions of counter-travelling waves
International Nuclear Information System (INIS)
Matsuuchi, Kazuo
1980-01-01
Nonlinear interactions between two waves travelling in opposite directions are investigated. When a nonlinear Klein-Gordon equation is adopted as a model equation, it is shown that such a wave system is governed by a simple set of equations for their complex amplitudes. Steady progressive waves governed by this set are investigated for various cases classified according to the signs of the coefficients. It is then found that one wave travelling in one direction appears from a certain point and the other travelling in the opposite direction has a constant amplitude from that point. This phenomenon may be regarded as a sort of reflection in spite of no rigid boundary. (author)
Kapitza–Dirac effect with traveling waves
International Nuclear Information System (INIS)
Hayrapetyan, Armen G; Götte, Jörg B; Grigoryan, Karen K; Petrosyan, Rubik G
2015-01-01
We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza–Dirac effect. To characterize the Kapitza–Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz–Kirchhoff theory of diffraction. (fast track communication)
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
where , , and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modiﬁed tanh–coth function method with computerized symbolic ...
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
The travelling wave solutions may be useful in the theoretical and numerical studies of the model systems. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious calculations. 2. Exact travelling wave solutions. The standard tanh method was developed by Malfliet [22], ...
Traveling waves for two SIV models
Directory of Open Access Journals (Sweden)
REN Jingli
2015-06-01
Full Text Available The existence of traveling waves is established for a diffusive SIV system with constant total population. The approach used is the geometric singular perturbation method. The same result is suitable to another SIV system with exponential input.
QCD traveling waves beyond leading logarithms
International Nuclear Information System (INIS)
Peschanski, R.; Sapeta, S.
2006-01-01
We derive the asymptotic traveling-wave solutions of the nonlinear 1-dimensional Balitsky-Kovchegov QCD equation for rapidity evolution in momentum space, with 1-loop running coupling constant and equipped with the Balitsky-Kovchegov-Kuraev-Lipatov kernel at next-to-leading logarithmic accuracy, conveniently regularized by different resummation schemes. Traveling waves allow us to define ''universality classes'' of asymptotic solutions, i.e. independent of initial conditions and of the nonlinear damping. A dependence on the resummation scheme remains, which is analyzed in terms of geometric scaling properties
Topological horseshoes in travelling waves of discretized nonlinear wave equations
International Nuclear Information System (INIS)
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-01-01
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan
2010-10-16
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER
DEFF Research Database (Denmark)
2010-01-01
Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
New travelling wave solutions for nonlinear stochastic evolution ...
Indian Academy of Sciences (India)
expansion method to look for travelling wave solutions of nonlinear partial differential equations. It is interesting to mention that, in this method the sign of the parameters can be used to judge the numbers and types of travelling wave solutions.
Bifurcation analysis and the travelling wave solutions of the Klein ...
Indian Academy of Sciences (India)
dynamical system approach, Zhang et al obtained the travelling wave solutions in terms of bright and dark optical solitons and the cnoidal waves. The authors found that eq. (1.5) has only three types of bounded travelling wave solutions, namely, bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and ...
Multiple pulse traveling wave excitation of neon-like germanium
International Nuclear Information System (INIS)
Moreno, J. C.; Nilsen, J.; Silva, L. B. da
1995-01-01
Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths
Hemodynamic traveling waves in human visual cortex.
Directory of Open Access Journals (Sweden)
Kevin M Aquino
Full Text Available Functional MRI (fMRI experiments rely on precise characterization of the blood oxygen level dependent (BOLD signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurable parameters, related to physiology, characterize these waves: wave velocity and damping rate. To test these predictions, high-resolution fMRI data are acquired from subjects viewing discrete visual stimuli. Predictions and experiment show strong agreement, in particular confirming BOLD waves propagating for at least 5-10 mm across the cortical surface at speeds of 2-12 mm s-1. These observations enable fundamentally new approaches to fMRI analysis, crucial for fMRI data acquired at high spatial resolution.
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
finding travelling wave solutions to nonlinear evolution equations. However, practically there is no unified method that can be used to handle all types of nonlinearity. The tanh-function method is an effective and direct algebraic method for finding the exact solutions of nonlinear evolution problems [22,23]. The concept of ...
Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming
2013-01-01
We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.
Directory of Open Access Journals (Sweden)
Huibin Jia
2017-01-01
Full Text Available The fault generated transient traveling waves are wide band signals which cover the whole frequency range. When the frequency characteristic of line parameters is considered, different frequency components of traveling wave will have different attenuation values and wave velocities, which is defined as the dispersion effect of traveling wave. Because of the dispersion effect, the rise or fall time of the wavefront becomes longer, which decreases the singularity of traveling wave and makes it difficult to determine the arrival time and velocity of traveling wave. Furthermore, the dispersion effect seriously affects the accuracy and reliability of fault location. In this paper, a novel double-ended fault location method has been proposed with compensating the dispersion effect of traveling wave in wavelet domain. From the propagation theory of traveling wave, a correction function is established within a certain limit band to compensate the dispersion effect of traveling wave. Based on the determined arrival time and velocity of traveling wave, the fault distance can be calculated precisely by utilizing the proposed method. The simulation experiments have been carried out in ATP/EMTP software, and simulation results demonstrate that, compared with the traditional traveling-wave fault location methods, the proposed method can significantly improve the accuracy of fault location. Moreover, the proposed method is insensitive to different fault conditions, and it is adaptive to both transposed and untransposed transmission lines well.
Combline antennas for launching traveling fast waves
International Nuclear Information System (INIS)
Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.
1994-01-01
The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Zhang Jian; Yu Hong; Gang Zhi
2012-01-01
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
rf traveling-wave electron gun for photoinjectors
Directory of Open Access Journals (Sweden)
Mattia Schaer
2016-07-01
Full Text Available The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.
rf traveling-wave electron gun for photoinjectors
Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo
2016-07-01
The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.
The Traveling Wave Reactor: Design and Development
Directory of Open Access Journals (Sweden)
John Gilleland
2016-03-01
Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.
Coupler tuning for constant gradient travelling wave accelerating structures
International Nuclear Information System (INIS)
Guo Xingkun; Ma Yanyun; Wang Xiulong
2013-01-01
The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)
Bifurcations and new exact travelling wave solutions for the ...
Indian Academy of Sciences (India)
2016-10-17
Oct 17, 2016 ... 3College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221,. People's Republic of China. ∗. Corresponding ... this method, all kinds of phase portraits of the reduced travelling wave system in the parametric space are given. All possible bounded travelling wave ...
The extended (G/G)-expansion method and travelling wave ...
Indian Academy of Sciences (India)
In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters.
Bifurcation analysis and the travelling wave solutions of the Klein
Indian Academy of Sciences (India)
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by ...
expansion method and travelling wave solutions for the perturbed ...
Indian Academy of Sciences (India)
Abstract. In this paper, we construct the travelling wave solutions to the perturbed nonlinear. Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (G /G)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...
Laboratory Test Results for the Travelling Wave Fault Location Scheme
Directory of Open Access Journals (Sweden)
Krzysztof Glik
2014-03-01
Full Text Available The article describes the travelling wave fault location algorithm for high voltage lines based on wavelet transform. The algorithm is implemented in a prototype and tested in the laboratory. The article presents the hardware and software part of a travelling wave fault locator, methodology and test results.
Persistence of travelling waves in a generalized Fisher equation
International Nuclear Information System (INIS)
Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2009-01-01
Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of these waves when the influence of long-range effects is small. When the long-range diffusion coefficient becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find that starting with some values, solutions of the model lose monotonicity and become oscillatory
Non-dispersive traveling waves in inclined shallow water channels
International Nuclear Information System (INIS)
Didenkulova, Ira; Pelinovsky, Efim
2009-01-01
Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.
Traveling wave behavior for a generalized fisher equation
International Nuclear Information System (INIS)
Feng Zhaosheng
2008-01-01
There is the widespread existence of wave phenomena in physics, chemistry and biology. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the Cole-Hopf transformation and the first integral method, we obtain a class of traveling solitary wave solutions for this generalized Fisher equation
Dual traveling wave rotary ultrasonic motor with single active vibrator
An, Dawei; Yang, Ming; Zhuang, Xiaoqi; Yang, Tianyue; Meng, Fan; Dong, Zhaopeng
2017-04-01
Traveling wave rotary ultrasonic motor with double vibrators can improve the output performance effectively. However, the rotor has to be energized through a slip ring, which increases the complexity and reduces the reliability. Inheriting the concept of two traveling waves propagating in the stator and rotor, a dual traveling wave rotary ultrasonic motor energized only in the stator is proposed. By analyzing the oscillatory differential equation and the contact particles motion, a traveling wave is found in the rotor and the drive mechanism of dual traveling wave is studied. With the resonant rotor adopted, the consistent eigenfrequencies are calculated by finite element method and verified by an impedance analyzer. The performance experiment presents that the dual traveling wave rotary ultrasonic motor is superior to the motor with single traveling wave. The no-load speed is 60 rpm and the stalling torque is 0.85 Nm. Additionally, compared with a reported motor with double vibrators, the proposed motor presents the better output performance and the simpler design.
Progress on traveling-wave reactor design
International Nuclear Information System (INIS)
Gilleland, John
2009-01-01
TerraPower LLC is leading a collaborative effort to develop physics and engineering designs for several kinds of sodium-cooled traveling-wave reactors. This collaboration includes nuclear engineering groups at TerraPower, M.I.T., U.N.L.V., Argonne National Laboratory, and the Columbia River Basin Consulting Group, as well as individual consultants from Lawrence Livermore National Laboratory, U.C. Berkeley, and several other institutions. The goal of this initiative is to develop innovative technologies that will enable cost-effective breed-and-burn reactors, which produce electricity from fuel composed almost wholly of depleted uranium. We will present conceptual designs ranging in reactor vessel size from five meters to 13 meters and in output from about 100 MWe to more than 1,000 MWe. Our Monte Carlo simulations for these reactors predict refueling intervals ranging from 40 to 125 years. Scaling designs from small to large sizes requires a shift in basic design approach; lessons learned from this effort will be discussed. We will also share our evolving understanding of the ways in which the core design can be simplified by improvements to certain limiting technologies. (author)
Traveling waves in twisted nematic liquid crystal cells
International Nuclear Information System (INIS)
Zakharov, A.V.; Vakulenko, A.A.
2007-01-01
We have described a novel reorientation mechanism in the form of the traveling waves, under influence of an external electric field, directed parallel to both glass plates, which occur in the twisted nematic cell (TNC). It is found that the slowest velocity of the traveling front is proportional to the field strength, and, approximately, in three times higher than the front velocity corresponding to the non-traveling solution. The value of the critical electric field E cr which may excite the traveling waves in the TNC in π times less than the value of the threshold electric field E th corresponding to the untwisted geometry
Bifurcations of traveling wave solutions for an integrable equation
International Nuclear Information System (INIS)
Li Jibin; Qiao Zhijun
2010-01-01
This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
Traveling wave solutions of a highly nonlinear shallow water equation
Geyer, A.; Quirchmayr, Ronald
2018-01-01
Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of
Traveling-wave ion mobility mass spectrometry of protein complexes
DEFF Research Database (Denmark)
Salbo, Rune; Bush, Matthew F; Naver, Helle
2012-01-01
The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...
Traveling waves in a magnetized Taylor-Couette flow
International Nuclear Information System (INIS)
Liu Wei; Ji Hantao; Goodman, Jeremy
2007-01-01
We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high...... to solve the highly demanding problem of performance prediction of the PEM. The emphasis is on the combination of the electrical network method, the physics underlying piezoelectric phenomena, the variational work and elasticity theory (Hamilton's principle), besides contact mechanics (friction...... of an ultrasonic traveling wave rotary piezoelectric motor. This approach is carried out on the basis of the experimental investigation combined with the electrical network method. Consequently, an insight in the analysis of the electromechanical coupling force factor, which is responsible for the electrical...
The classification of the single travelling wave solutions to the ...
Indian Academy of Sciences (India)
The discrimination system for the polynomial method is applied to variant Boussinesq equations to classify single travelling wave solutions. In particular, we construct corresponding solutions to the concrete parameters to show that each solution in the classification can be realized.
Traveling wave interferometry particularly for solar power satellites
International Nuclear Information System (INIS)
Ott, J.H.; Rice, J.S.
1983-01-01
A method and apparatus are described for use in scientific measurement analysis and control. Travelling interference fringes are generated by radiating at least two different periodic waves at two different frequencies, one from each of two different radiators. The waves are received, mixed and filtered to detect at least one beat signal from these waves which represents the travelling interference fringe. The phase of that beat signal is detected relative to a reference signal of the same frequency as the beat signal. The radiated waves may be received at a second antenna and the phase of the beat of the waves at the first antenna is compared to the phase of the beat as observed at the second antenna. A third wave may be radiated from the first antenna to provide a reference signal which is the beat generated by the third wave and the other wave from the same radiator
Travelling waves in a singularly perturbed sine-Gordon equation
Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.
2003-01-01
We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves
Travelling waves in a singularly perturbed sine-Gordon equations
Derks, G.L.A.; Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.
2003-01-01
We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves
A note on poroacoustic traveling waves under Forchheimer's law
International Nuclear Information System (INIS)
Jordan, P.M.
2013-01-01
Acoustic traveling waves in a gas that saturates a rigid porous medium is investigated under the assumption that the drag experienced by the gas is modeled by Forchheimer's law. Exact traveling wave solutions (TWS)s, as well as approximate and asymptotic expressions, are obtained; decay rates are determined; and acceleration wave results are presented. In addition, special cases are considered, critical values of the wave variable and parameters are derived, and comparisons with predictions based on Darcy's law are performed. It is shown that, with respect to the Darcy case, most of the metrics that characterize such waveforms exhibit an increase in magnitude under Forchheimer's law
Coupled effects of chemotaxis and growth on traveling bacterial waves.
Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus
2014-08-01
Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
Computer Simulation of a Traveling-Wave Direct Energy Converter
Katayama, Hideaki; Sato, Kunihiro; Miyawaki, Fujio
Beam-circuit code is presented to simulate a Traveling-Wave Direct Energy Converter (TWDEC), which recovers the energy of fusion protons escaping from a FRC/D3He fusion reactor. A transmission line loop for propagation of the electrostatic traveling wave is designed using lumped constant elements L.C.R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson’s equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics. Traveling wave with a fixed frequency is excited spontaneously without any external power supply. The wave is kept its equilibrium state under loading, and the wave is stable to variation of the load.
Computer simulation of a Traveling-Wave Direct Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Katayama, Hideaki [Maizuru National College of Technology, Maizuru, Kyoto (Japan); Sato, Kunihiro; Miyawaki, Fujio
1999-12-01
Beam-circuit code is presented to simulate a Traveling-Wave Direct Energy Converter (TWDEC), which recovers the energy of fusion protons escaping from a FRC/D{sup 3}He fusion reactor. A transmission line loop for propagation of the electrostatic traveling wave is designed using lumped constant elements L, C, R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson's equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics. Traveling wave with a fixed frequency is excited spontaneously without any external power supply. The wave is kept its equilibrium state under loading, and the wave is stable to variation of the load. (author)
Classification of single travelling wave solutions to the generalized ...
Indian Academy of Sciences (India)
c Indian Academy of Sciences. Vol. 80, No. 5. — journal of. May 2013 physics pp. 771–783. Classification of single travelling wave solutions to the generalized Zakharov–Kuznetsov equation ... linear ion-acoustic waves in a strongly magnetized lossless plasma composed of cold ions and hot isothermal electrons [10].
Bifurcations and new exact travelling wave solutions for the ...
Indian Academy of Sciences (India)
Bidirectional wave equations; dynamical system method; phase portrait; dark soliton solution; bright soliton solution; periodic travelling wave solution. ... HK), Kunming, 650106, People's Republic of China; College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, People's ...
Plasma particle drifts due to traveling waves with cyclotron frequencies
International Nuclear Information System (INIS)
Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi
1991-01-01
A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)
The effect of nonlinear traveling waves on rotating machinery
Jauregui-Correa, Juan Carlos
2013-08-01
The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.
Traveling waves in lattice differential equations with distributed maturation delay
Directory of Open Access Journals (Sweden)
Hui-Ling Niu
2013-07-01
Full Text Available In this paper we derive a lattice model with infinite distributed delay to describe the growth of a single-species population in a 2D patchy environment with infinite number of patches connected locally by diffusion and global interaction. We consider the existence of traveling wave solutions when the birth rate is large enough that each patch can sustain a positive equilibrium. When the birth function is monotone, we prove that there exists a traveling wave solution connecting two equilibria with wave speed $c>c^*(\\theta$ by using the monotone iterative method and super and subsolution technique, where $\\theta\\in [0,2\\pi]$ is any fixed direction of propagation. When the birth function is non-monotone, we prove the existence of non-trivial traveling wave solutions by constructing two auxiliary systems satisfying quasi-monotonicity.
Exact travelling wave solutions for the generalized shallow water wave equation
International Nuclear Information System (INIS)
Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R.
2003-01-01
Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions
Exact travelling wave solutions for the generalized shallow water wave equation
Energy Technology Data Exchange (ETDEWEB)
Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R
2003-07-01
Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions.
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Development of a fishbone travelling wave antenna for LHD
International Nuclear Information System (INIS)
Takase, Y.; Ejiri, A.; Shiraiwa, S.
2002-10-01
A travelling wave antenna in the ion cyclotron range of frequencies (ICRF) is being developed for LHD, motivated by the need to provide a capability for rotational transform profile control by noninductively driven current. Stability calculations suggest that it is possible to increase the beta limit and obtain access to the second stability regime by controlling the rotational transform profile. Current drive by the ICRF fast wave (magnetosonic wave) can be used for such a purpose. (author)
International Nuclear Information System (INIS)
Lipton, Robert; Polizzi, Anthony
2014-01-01
We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.
International Nuclear Information System (INIS)
Tang Xiaoyan; Shukla, Padma Kant
2008-01-01
Exact solutions, including the periodic travelling and non-travelling wave solutions, are presented for the nonlinear Klein-Gordon equation with imaginary mass. Some arbitrary functions are permitted in the periodic non-travelling wave solutions, which contribute to various high dimensional nonlinear structures
Study of virtual cathodes formation during beam-wave interaction in the reltron oscillator
Mahto, Manpuran; Jain, P. K.
2017-09-01
In the present work, a high power microwave oscillator—reltron has been analyzed to investigate the virtual cathode formation mechanism during the beam-wave interaction. In reltron, a side coupled modulation cavity is used as its RF interaction structure containing three metal grids along the longitudinal direction. The space charge current responsible for the virtual cathode and its steady state electric field distribution has been analyzed. Space charge and beam impedance conditions for efficient device operation have been demonstrated. It has been shown that during the beam-wave interaction in the device, first a virtual cathode forms in the post-acceleration gap, and then the second virtual cathode develops between the first and second grids of the modulation cavity. These two virtual cathodes co-exist and cause the formation of a third virtual cathode between the second and third grids. At this instant, only the third virtual cathode remains, and for sustained device oscillation, this process repeats periodically in the device. The present study would be useful in understanding the beam-wave interaction mechanism as well as the design and development of efficient reltron devices.
Counting states of black strings with traveling waves
International Nuclear Information System (INIS)
Horowitz, G.T.; Marolf, D.
1997-01-01
We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six-dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves. copyright 1997 The American Physical Society
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Traveling wave fronts and the transition to saturation
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2004-01-01
We propose a general method to study the solutions to nonlinear QCD evolution equations, based on a deep analogy with the physics of traveling waves. In particular, we show that the transition to the saturation regime of high energy QCD is identical to the formation of the front of a traveling wave. Within this physical picture, we provide the expressions for the saturation scale and the gluon density profile as a function of the total rapidity and the transverse momentum. The application to the Balitskii-Kovchegov equation for both fixed and running coupling constants confirms the effectiveness of this method
Traveling wave solutions for reaction-diffusion systems
DEFF Research Database (Denmark)
Lin, Zhigui; Pedersen, Michael; Tian, Canrong
2010-01-01
This paper is concerned with traveling waves of reaction–diffusion systems. The definition of coupled quasi-upper and quasi-lower solutions is introduced for systems with mixed quasimonotone functions, and the definition of ordered quasi-upper and quasi-lower solutions is also given for systems...... with quasimonotone nondecreasing functions. By the monotone iteration method, it is shown that if the system has a pair of coupled quasi-upper and quasi-lower solutions, then there exists at least a traveling wave solution. Moreover, if the system has a pair of ordered quasi-upper and quasi-lower solutions...
Photo-induced travelling waves in condensed Langmuir monolayers
Tabe, Y; Yokoyama, H
2003-01-01
We report the detailed properties of photo-induced travelling waves in liquid crystalline Langmuir monolayers composed of azobenzene derivatives. When the monolayer, in which the constituent rodlike molecules are coherently tilted from the layer normal, is weakly illuminated to undergo the trans-cis photo-isomerization, spatio-temporal periodic oscillations of the molecular azimuth begin over the entire excited area and propagate as a two-dimensional orientational wave. The wave formation takes place only when the film is formed at an asymmetric interface with broken up-down symmetry and when the chromophores are continuously excited near the long-wavelength edge of absorption to induce repeated photo-isomerizations between the trans and cis forms. Under proper illumination conditions, Langmuir monolayers composed of a wide variety of azobenzene derivatives have been confirmed to exhibit similar travelling waves with velocity proportional to the excitation power irrespective of the degree of amphiphilicity. T...
Traveling wave front solutions in lateral-excitatory neuronal networks
Directory of Open Access Journals (Sweden)
Sittipong Ruktamatakul
2008-05-01
Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2017-06-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
Traveling wave accelerating structures with a large phase advance
International Nuclear Information System (INIS)
Paramonov, V.V.
2012-01-01
The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.
Mechanism of travelling-wave transport of particles
International Nuclear Information System (INIS)
Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki
2006-01-01
Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency
Generation of DC toroidal current by a travelling wave
International Nuclear Information System (INIS)
Matsuura, K.; Fukuda, M.; Hirano, K.; Mohri, A.; Fukao, M.; Midzuno, Y.
1974-01-01
An rf field travelling along the torus is observed to induce a dc toroidal current in a magnetized plasma. The travelling field is applied to the plasma by employing a delay-line wound around the toroidal glass discharge tube. The phase velocity of the field is approximately equal to the electron thermal velocity. The direction of the current is opposite to that of the wave, indicating that the electrons are trapped in the magnetic mirrors composed of the travelling wave. The density of the trapped electrons reaches 10 percent of the background plasma density at an optimum condition. On the basis of the electron trapping model, the required rf power for current sustaining in a Tokamak fusion reactor is estimated and found to be reasonably small in comparison with the output power of the reactor
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
On the other hand, considerable attention has been given to problem of finding spe- cial types of analytic solutions to understand biological, physical and chemical phenomena modelled by NPDEs. Among the possible solutions, certain solutions may depend only on a single combination of variables such as travelling wave ...
Exact travelling wave solutions for some important nonlinear ...
Indian Academy of Sciences (India)
arising in mathematical physics. Keywords. Exact travelling wave solutions; nonlinear physical models; Kudryashov method. PACS Nos 02.30.Jr; 02.70.Wz; 04.20.Jb. 1. Introduction. The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering ...
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
On The Travelling Wave Solution For An SEIR Epidemic Disease ...
African Journals Online (AJOL)
We present the travelling wave solution for a Susceptible, Exposed, Infective and Removed (SEIR) epidemic disease model. For this SEIR model, the disease is driven by both the latent and infective class (the diffusion term is included in both classes). The population is closed. Keywords: Epidemic model, spatial spread, ...
The classification of the single travelling wave solutions to the ...
Indian Academy of Sciences (India)
2016-09-21
Sep 21, 2016 ... For example,. Fan used Liu's method [11,12] to invest the generalized equal width equation and Pochhammer–Chree equa- tion, and she obtained all the possible travelling wave solutions including elliptic functions and hyperelliptic functions. In this paper, we consider the variant Boussinesq equations [13].
New travelling wave solutions for nonlinear stochastic evolution ...
Indian Academy of Sciences (India)
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic ...
The classification of the single travelling wave solutions to the ...
Indian Academy of Sciences (India)
Exact solution; single travelling wave solution; complete discrimination system for the polynomial; the generalized PC ... Recently, a method named as the complete discrimination system for polynomial method has been proposed by Liu [11–16]. ...... to the generalized PC equation. By integrating and taking some trans-.
The classification of the single travelling wave solutions to the ...
Indian Academy of Sciences (India)
2016-09-21
Sep 21, 2016 ... The discrimination system for the polynomial method is applied to variant Boussinesq equations to classify single travelling wave solutions. In particular, we construct corresponding solutions to the concrete parameters to show that each solution in the classification can be realized. Keywords. Exact solution ...
A generic travelling wave solution in dissipative laser cavity
Indian Academy of Sciences (India)
2016-09-09
Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation. (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil- ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss ...
Travelling wave solutions of (2 1)-dimensional generalised time ...
Indian Academy of Sciences (India)
Youwei Zhang
2018-02-09
Feb 9, 2018 ... Keywords. Time-fractional Hirota equation; fractional complex transform; complete discrimination system; tanh- expansion; travelling wave. PACS Nos 02.30.Jr; 05.45.Yv; 04.20.Jb. 1. Introduction. We consider the solution of the (2 + 1)-dimensional generalised time-fractional Hirota equation. { i∂ α t u + uxy ...
The classification of the single travelling wave solutions to the ...
Indian Academy of Sciences (India)
The classification of the single travelling wave solutions to the generalized Pochhammer–Chree equation. HUI-LING FAN. ∗ and XIN LI. School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China. ∗. Corresponding author. E-mail: huilingnepu@126.com. MS received 11 June 2013; revised 2 ...
Symbolic computation and abundant travelling wave solutions to ...
Indian Academy of Sciences (India)
The method is reliable and useful, and gives more general exact travelling wave solutions than the existing methods. The solutions obtained are in the form of hyperbolic, trigonometricand rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and ...
Investigating The Travelling Wave Solution For an SIR Endemic ...
African Journals Online (AJOL)
This paper presents the travelling wave solution for an SIR endemic disease model with no disease related death when the spatial spread of the susceptible is not negligible. In this case the disease is driven by both the susceptible and the infective classes. The population is open since the disease is habitually prevalent in ...
Symbolic computation and abundant travelling wave solutions to ...
Indian Academy of Sciences (India)
2016-12-09
Dec 9, 2016 ... Abstract. In this article, the novel (G /G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the KdV–mKdV equation with the aid of symbolic computation. This equation is one of the most popular equation in soliton physics and appear in many practical scenarios ...
The classification of single travelling wave solutions to the Camassa ...
Indian Academy of Sciences (India)
Introduction. Classifications of single travelling wave solutions to some nonlinear differential equations have been obtained extensively by the complete discrimination system for polynomial method proposed by Liu [1–7]. Furthermore, Wang and Li [8] used Liu's method and factorization method proposed by Cornejo-Pérez ...
Exact travelling wave solutions for some important nonlinear ...
Indian Academy of Sciences (India)
Abstract. The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and ...
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
New travelling wave solutions for nonlinear stochastic evolution
Indian Academy of Sciences (India)
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic ...
Exact travelling wave solutions for some important nonlinear ...
Indian Academy of Sciences (India)
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical ...
expansion method and travelling wave solutions for the perturbed ...
Indian Academy of Sciences (India)
method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...... 2013M532169 and Hunan Province College Students Research. Learning and Innovation Experimental Program (People's Republic of China). References. [1] Z Y Zhang, Turk. J. Phys.
Numerical continuation of travelling waves and pulses in neural fields
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2013-01-01
We study travelling waves and pulses in neural fields. Neural fields are a macroscopic description of the activity of brain tissue, which mathematically are formulated as integro-differential equations. While linear and weakly nonlinear analysis can describe instabilities and small amplitude
Traveling-wave deceleration of SrF molecules
van den Berg, J.E.; Chirayath Mathavan, Sreekanth; Meinema, C.; Nauta, Janko; Nijbroek, T. H.; Jungmann, K.; Bethlem, H. L.; Hoekstra, S.
We report on the production, deceleration and detection of a SrF molecular beam. The molecules are captured from a supersonic expansion and are decelerated in the X-2 Sigma(+) (v = 0, N = 1) state. We demonstrate the removal of up to 40% of the kinetic energy with a 2 m long modular traveling-wave
The Travelling Wave Group - 5 Departures from Dirac's Principles
Bourdillon, Antony J.
2014-03-01
The Traveling Wave Group (TWG) for a free particle is written, ψ = A(X2 / 2σ2 + X) . Here, X = i(kx - ωt) , σ is an experimental initial value, with Aa normalizing constant dependent on it, while ω is the mean angular frequency, and k the mean wave vector. Unlike Dirac's unstable wave packet; the TWG is stable. From it, the following are derived: the Uncertainty Principle; Planck's law; the de Broglie hypothesis; phase velocity; pseudo mass M'; conservation of M'PT; 5-dimensional space; mass as a local excess of energy over momentum; an explanation for entanglement at a distance, etc.
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei
2017-02-14
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.
Traveling-Wave Direct Energy Converter for Fusion Products
Sato, Kunihiro; Katayama, Hideaki
1999-11-01
A Traveling-Wave Direct Energy Converter (TWDEC), which is designed to recover kinetic energy of fusion protons escaped from a FRC/ D^3He fusion reactor, is studied by numerical calculation and computer simulation. To develop a simulation code, a transmission line loop for an electrostatic traveling wave is designed using lumped constant elements L, C, R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson's equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics of the TWDEC. Traveling wave with a fixed frequency is excited spontaneously without any external electric power supply. High energy conversion rate of the TWDEC up to 0.8 is obtained both from orbit calculation and from computer simulation as a result of improvement of proton beam bunching. The wave keeps its equilibrium state under loading, and the wave responds to variation of the electric load stably.
The origin of traveling waves in an emperor penguin huddle
Gerum, R. C.; Fabry, B.; Metzner, C.; Beaulieu, M.; Ancel, A.; Zitterbart, D. P.
2013-12-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as -50 °C and wind speeds of up to 200 km h-1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat.
The origin of traveling waves in an emperor penguin huddle
International Nuclear Information System (INIS)
Gerum, R C; Fabry, B; Metzner, C; Zitterbart, D P; Beaulieu, M; Ancel, A
2013-01-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as −50 °C and wind speeds of up to 200 km h −1 . To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat. (paper)
Evans function computation for the stability of travelling waves
Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.
2018-04-01
In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
Neutronic design of a traveling wave reactor core
International Nuclear Information System (INIS)
Lopez S, R. C.; Francois L, J. L.
2010-10-01
The traveling wave reactor is an innovative kind of fast breeder reactor, capable of operate for decades without refueling and whose operation requires only a small amount of enriched fuel for the ignition. Also, one of its advantages is its versatility; it can be designed as small modules of about 100 M We or large scale units of 1000 M We. In this paper the behaviour of the traveling wave reactor core is studied in order to determine whether the traveling breeding/burning wave moves (as theoretically predicted) or not. To achieve this, we consider a two pieces cylinder, the first one, the ignition zone, containing highly enriched fuel and the second, the breeding zone, which is the larger, containing natural or depleted uranium or thorium. We consider that both zones are homogeneous mixtures of fuel, sodium as coolant and iron as structural material. We also include a reflector material outside the cylinder to reduce the neutron leakages. Simulations were run with MCNPX version 2.6 code. We observed that the wave does move as time passes as predicted by theory, and reactor remains supercritical in the time we have simulated (3000 days). Also, we found that thorium does not perform as well as uranium for breeding in this type of reactor. Further test with different reflectors are planned for both U-Pu and Th-U fuel cycles. (Author)
Travelling wave solutions to the Kuramoto-Sivashinsky equation
International Nuclear Information System (INIS)
Nickel, J.
2007-01-01
Combining the approaches given by Baldwin [Baldwin D et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J Symbol Comput 2004;37:669-705], Peng [Peng YZ. A polynomial expansion method and new general solitary wave solutions to KS equation. Comm Theor Phys 2003;39:641-2] and by Schuermann [Schuermann HW, Serov VS. Weierstrass' solutions to certain nonlinear wave and evolution equations. Proc progress electromagnetics research symposium, 28-31 March 2004, Pisa. p. 651-4; Schuermann HW. Traveling-wave solutions to the cubic-quintic nonlinear Schroedinger equation. Phys Rev E 1996;54:4312-20] leads to a method for finding exact travelling wave solutions of nonlinear wave and evolution equations (NLWEE). The first idea is to generalize ansaetze given by Baldwin and Peng to find elliptic solutions of NLWEEs. Secondly, conditions used by Schuermann to find physical (real and bounded) solutions and to discriminate between periodic and solitary wave solutions are used. The method is shown in detail by evaluating new solutions of the Kuramoto-Sivashinsky equation
Travelling waves and spatial hierarchies in measles epidemics
Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.
2001-12-01
Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.
Snakes mimic earthworms: propulsion using rectilinear travelling waves
Marvi, Hamidreza; Bridges, Jacob; Hu, David L.
2013-01-01
In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension–contraction travelling wave are characterized by wave frequency, amplitude and speed. We find wave frequency increases with increasing body size, an opposite trend than that for legged animals. We predict body speed with 73–97% accuracy using a mathematical model of a one-dimensional n-linked crawler that uses friction as the dominant propulsive force. We apply our model to show snakes have optimal wave frequencies: higher values increase Froude number causing the snake to slip; smaller values decrease thrust and so body speed. Other choices of kinematic variables, such as wave amplitude, are suboptimal and appear to be limited by anatomical constraints. Our model also shows that local body lifting increases a snake's speed by 31 per cent, demonstrating that rectilinear locomotion benefits from vertical motion similar to walking. PMID:23635494
Dynamics and bifurcations of travelling wave solutions of R(m, n ...
Indian Academy of Sciences (India)
We shall now concentrate on the travelling wave solutions to the R(m, n) equations under consideration. By using the bifurcation theory and methods of planar dynamical systems, we obtain the global dynamical behavior and bifurcations of the travelling wave solutions of (1.2). Substituting the travelling wave transformation ...
Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell
Directory of Open Access Journals (Sweden)
Sun-Joon Byun
2018-02-01
Full Text Available We propose a wave-like design on the surface of cathode channels (wave form cathode channels to improve oxidant delivery to gas diffusion layers (GDLs. We performed experiments using proton-exchange membrane fuel cells (PEMFCs combined with wave form surface design on cathodes. We varied the factors of the distance between wave-bumps (the adhesive distance, AD, and the size of the wave-bumps (the expansion ratio, ER. The ADs are three, four, and five times the size of the half-circle bump’s radius, and the ERs are two-thirds, one-half, and one-third of the channel’s height. We evaluated the performances of the fuel cells, and compared the current-voltage (I-V relations. For comparison, we prepared PEMFCs with conventional flat-surfaced oxygen channels. Our aim in this work is to identify fuel cell operation by modifying the surface design of channels, and ultimately to find the optimal design of cathode channels that will maximize fuel cell performance.
Spent fuel utilization in a compact traveling wave reactor
Hartanto, Donny; Kim, Yonghee
2012-06-01
In recent years, several innovative designs of nuclear reactors are proposed. One of them is Traveling Wave Reactor (TWR). The unique characteristic of a TWR is the capability of breeding its own fuel in the reactor. The reactor is fueled by mostly depleted, natural uranium or spent nuclear fuel and a small amount of enriched uranium to initiate the fission process. Later on in the core, the reactor gradually converts the non-fissile material into the fissile in a process like a traveling wave. In this work, a TWR with spent nuclear fuel blanket was studied. Several parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, and fission power, were analyzed. The discharge burnup composition was also analyzed. The calculation is performed by a continuous energy Monte Carlo code McCARD.
A tuning method for nonuniform traveling-wave accelerating structures
International Nuclear Information System (INIS)
Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi
2013-01-01
The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)
On the maximal noise for stochastic and QCD travelling waves
International Nuclear Information System (INIS)
Peschanski, Robi
2008-01-01
Using the relation of a set of nonlinear Langevin equations to reaction-diffusion processes, we note the existence of a maximal strength of the noise for the stochastic travelling wave solutions of these equations. Its determination is obtained using the field-theoretical analysis of branching-annihilation random walks near the directed percolation transition. We study its consequence for the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. For the related Langevin equation modeling the quantum chromodynamic nonlinear evolution of gluon density with rapidity, the physical maximal-noise limit may appear before the directed percolation transition, due to a shift in the travelling-wave speed. In this regime, an exact solution is known from a coalescence process. Universality and other open problems and applications are discussed in the outlook
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
On a `time' reparametrization in relativistic electrodynamics with travelling waves
Fiore, Gaetano
2018-01-01
We briefly report on our method [23] of simplifying the equations of motion of charged particles in an electromagnetic (EM) field that is the sum of a plane travelling wave and a static part; it is based on changes of the dependent variables and the independent one (light-like coordinate ξ instead of time t). We sketch its application to a few cases of extreme laser-induced accelerations, both in vacuum and in plane problems at the vacuum-plasma interface, where we are able to reduce the system of the (Lorentz-Maxwell and continuity) partial differential equations into a family of decoupled systems of Hamilton equations in 1 dimension. Since Fourier analysis plays no role, the method can be applied to all kind of travelling waves, ranging from almost monochromatic to socalled "impulses".
Metastable state en route to traveling-wave synchronization state
Park, Jinha; Kahng, B.
2018-02-01
The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Analytical approximation and numerical simulations for periodic travelling water waves.
Kalimeris, Konstantinos
2018-01-28
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2008-01-01
By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.
Traveling Wave Modes of a Plane Layered Anelastic Earth
2016-05-20
is unlimited poles of the anelastic modes in the complex plane . The complex plane is tiled with boxes, and contour integrals are performed numerically... complex modes of a plane layered fluid-elastic medium. Ivansson and Karasalo (1992, 1993) and Ivansson (1997) have published a numerical algorithm based...grant, “Coupled Modes in Elastic Bottoms” (1) is the publication “Traveling wave modes of a plane layered anelastic earth” accepted for
Photo-induced travelling waves in condensed Langmuir monolayers
Energy Technology Data Exchange (ETDEWEB)
Tabe, Y [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yamamoto, T [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yokoyama, H [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan)
2003-06-01
We report the detailed properties of photo-induced travelling waves in liquid crystalline Langmuir monolayers composed of azobenzene derivatives. When the monolayer, in which the constituent rodlike molecules are coherently tilted from the layer normal, is weakly illuminated to undergo the trans-cis photo-isomerization, spatio-temporal periodic oscillations of the molecular azimuth begin over the entire excited area and propagate as a two-dimensional orientational wave. The wave formation takes place only when the film is formed at an asymmetric interface with broken up-down symmetry and when the chromophores are continuously excited near the long-wavelength edge of absorption to induce repeated photo-isomerizations between the trans and cis forms. Under proper illumination conditions, Langmuir monolayers composed of a wide variety of azobenzene derivatives have been confirmed to exhibit similar travelling waves with velocity proportional to the excitation power irrespective of the degree of amphiphilicity. The dynamics can be qualitatively explained by the modified reaction-diffusion model proposed by Reigada, Sagues and Mikhailov.
Traveling-wave antenna for fast-wave heating and current drive in tokamaks
International Nuclear Information System (INIS)
Ikezi, H.; Phelps, D.A.
1997-01-01
The travelling-wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectra that are largely independent of plasma conditions. These characteristics have been demonstrated in low-power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling-wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge-localized mode activity, and disruptions. An analytic model was developed that exhibits the features observed in the experiments. Guidelines for the design of travelling-wave antennas are derived from the validated model. 11 refs., 14 figs
Traveling wave antenna for fast wave heating and current drive in tokamaks
International Nuclear Information System (INIS)
Ikezi, H.; Phelps, D.A.
1995-07-01
The traveling wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectrum which are largely independent of plasma conditions. These characteristics have been demonstrated in low power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge localized mode activity, and disruptions. An analytic model was developed which exhibits the features observed in the experiments. Guidelines for the design of traveling wave antennas are derived from the validated model
Power transmission line fault location based on current traveling waves
Energy Technology Data Exchange (ETDEWEB)
Elhaffar, A.M.
2008-07-01
Transmission lines are designed to transfer electric power from source locations to distribution networks. However, their lengths are exposed to various faults. Protective relay and fault recorder systems, based on fundamental power frequency signals, are installed to isolate and the faulty line and provide the fault position. However, the error is high especially in transmission lines. This thesis investigates the problem of fault localization using traveling wave current signals obtained at a single-end of a transmission line and/or at multi-ends of a transmission network. A review of various signal processing techniques is presented. The wavelet transform is found to be more accurate than conventional signal processing techniques for extracting the traveling wave signals from field measurements. In this thesis, an optimization method has been developed to select the best wavelet candidate from several mother wavelets. The optimum mother wavelet was selected and used to analyze the fault signal at different details' levels. The best details' level, which carries the fault features, was selected according to its energy content. From the line and network data, the traveling wave speed is calculated for each line using the optimum mother wavelet at different detail levels. Accurate determination fault location depends on the proper details wavelet level as well as the propagation speed. A high frequency current transformer model has been verified experimentally using impulse current signals at the high voltage laboratory, Helsinki University of Technology. Single-end method has been studied for several transmission line configurations, including lines equipped with/without overhead ground wires, counterpoises, or overhead ground wires and counterpoises. The time difference between the aerial and ground mode has also been investigated for these line configurations. Multi-ended method, using recordings sparsely located in the transmission network, has been
Advantages of traveling wave resonant antennas for fast wave heating systems
International Nuclear Information System (INIS)
Phelps, D.A.; Callis, R.W.; Grassie, J.S. de
1997-04-01
The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60 degrees- 120 degrees tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode
Magnetron injection gun design for a Q-band 300 kW 30 A gyrotron traveling wave tube
Dong, Kun; Luo, Yong; Yan, Ran; Wang, Shafei
2015-09-01
This paper is intended to present the optimal design of a triode type magnetron injection gun (MIG) for a 300 kW, 30 A gyrotron traveling wave tube (gyro-TWT), which is operated at Q band fundamental TE01 mode. Based on the analysis of velocity ratio (VR) distribution along the emission strip (ES), a further optimization of cathode geometry on the basis of a preliminary optimized gun is performed, and a new cathode structure is proposed. Compared with initial optimal parameters, the new structure demonstrates a decline of transverse velocity spread (TVS) from 3.66% to 0.57% and longitudinal velocity spread (LVS) from 4.11% to 0.72%, while VR is maintained at 1.05. The achieved overall LVS reaches as low as 3.44% when considering cathode surface roughness and thermal temperature effect. The sensitivity study has been carried out by changing the gun parameters like anode voltage, beam current, and cathode magnetic field to ensure the practical operation stability.
Relative merits of travelling-wave and resonant operation of linac
International Nuclear Information System (INIS)
Shoffstall, D.R.; Gallagher, W.J.
1985-01-01
Discussion of the relative merits of so-called standing wave vis-a-vis travelling wave operation of linear accelerator waveguides is complicated by various considerations. In the first instance, standing wave should be distinguished from resonant operation. Standing wave operation is exactly the same as travelling wave, excepting that the waveguide is terminated by a total reflection of power instead of a matched load. In resonant operation a length of slow wave structure is terminated, theoretically at reflection planes of symmetry; the discrete modes of resonance consist of two oppositely directed travelling wave ensembles, one of which will provide a space harmonic of an intended phase velocity
Travelling wave solutions for a surface wave equation in fluid mechanics
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.
Traveling waves in low and intermediate rotating spherical shell convection
International Nuclear Information System (INIS)
Futterer, B; Koch, S; Egbers, C
2011-01-01
The spherical shell convection in the lower rotational regime is discussed with numerical simulation by the use of a pseudo-spectral code and experimental observation by the use of a microgravity experiment in self-gravitating force field. While a low Coriolis force produces traveling waves of cubic, five-fold and frozen tetrahedral symmetry with a prograde drift, in the transition zone to chaos an axisymmetric flow is visible. The chaotic fluid flow does neither show a specific drift nor a dominating pattern of convection. Numerical and experimental data are in a good agreement.
Traveling wave solution of the Reggeon field theory
International Nuclear Information System (INIS)
Peschanski, Robi
2009-01-01
We identify the nonlinear evolution equation in impact-parameter space for the 'Supercritical Pomeron' in Reggeon field theory as a two-dimensional stochastic Fisher-Kolmogorov-Petrovski-Piscounov equation. It exactly preserves unitarity and leads in its radial form to a high-energy traveling wave solution corresponding to a 'universal' behavior of the impact-parameter front profile of the elastic amplitude; its rapidity dependence and form depend only on one parameter, the noise strength, independently of the initial conditions and of the nonlinear terms restoring unitarity. Theoretical predictions are presented for the three typical distinct regimes corresponding to zero, weak, and strong noise.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge
International Nuclear Information System (INIS)
Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.
1999-01-01
The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
Traveling wave solutions and conservation laws for nonlinear evolution equation
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-02-01
In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
Traveling-wave-tube simulation; The IBC code
Energy Technology Data Exchange (ETDEWEB)
Morey, I.J.; Birdsall, C.K. (California Univ., Berkeley, CA (USA). Dept. of Electrical Engineering and Computer Sciences)
1990-06-01
A beam-circuit code is presented, to run interactively on fast PC's or workstations, for purposes of first-cut design of Traveling-Wave Tubes (TWT's) at small and large amplitudes. The new physics parts are the use of particle-in-cell methods to obtain the space-charge forces, and the following of the electron beam over the full length of the tube. The model is fully nonlinear and one-dimensional, with the transverse space-charge fields approximated by one mode. The slow-wave circuit is modeled by a transmission line. All variables are displayed continuously, such as the velocity displacement of all the particles (phase space), beam charge and current densities, space-charge field, circuit field, voltage and current, circuit power, and the location of the added loss. Some initial runs are presented.
Numerical study of traveling-wave solutions for the Camassa-Holm equation
International Nuclear Information System (INIS)
Kalisch, Henrik; Lenells, Jonatan
2005-01-01
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied
Bistable traveling waves for a competitive-cooperative system with nonlocal delays
Tian, Yanling; Zhao, Xiao-Qiang
2018-04-01
This paper is devoted to the study of bistable traveling waves for a competitive-cooperative reaction and diffusion system with nonlocal time delays. The existence of bistable waves is established by appealing to the theory of monotone semiflows and the finite-delay approximations. Then the global stability of such traveling waves is obtained via a squeezing technique and a dynamical systems approach.
Traveling waves in a spring-block chain sliding down a slope
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
Low power RF measurements of travelling wave type linear accelerator
International Nuclear Information System (INIS)
Reddy, Sivananda; Wanmode, Yashwant; Bhisikar, A.; Shrivastava, Purushottam
2015-01-01
RRCAT is engaged in the development of travelling wave (TW) type linear accelerator for irradiation of industrial and agricultural products. TW accelerator designed for 2π/3 mode to operate at frequency of 2856 MHz. It consists of input coupler, buncher cells, regular cells and output coupler. Low power measurement of this structure includes measurement of resonant frequency of the cells for different resonant modes and quality factor, tuning of input-output coupler and measurement of phase advance per cell and electric field in the structure. Steele's non-resonant perturbation technique has been used for measurement of phase advance per cell and electric field in the structure. Kyhl's method has been used for the tuning of input-output coupler. Computer based automated bead pull set-up has been developed for measurement of phase advance per cell and electric field profile in the structure. All the codes are written in Python for interfacing of Vector Network Analyzer (VNA) , stepper motor with computer. These codes also automate the measurement process. This paper describes the test set- up for measurement and results of measurement of travelling wave type linear accelerating structure. (author)
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
International Nuclear Information System (INIS)
F.W. Perkins; R.B. White; V.S. Chan
2001-01-01
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile
Power System Transient Diagnostics Based on Novel Traveling Wave Detection
Hamidi, Reza Jalilzadeh
Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma
International Nuclear Information System (INIS)
Yang Zonghang
2007-01-01
We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed
Existence and exponential stability of traveling waves for delayed reaction-diffusion systems
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian
2018-03-01
The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.
Design of traveling wave windows for the PEP-II RF coupling network
International Nuclear Information System (INIS)
Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.
1995-05-01
The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed
Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models
International Nuclear Information System (INIS)
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng
2013-01-01
The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)
Scale-Free Navigational Planning by Neuronal Traveling Waves.
Directory of Open Access Journals (Sweden)
Azadeh Khajeh-Alijani
Full Text Available Spatial navigation and planning is assumed to involve a cognitive map for evaluating trajectories towards a goal. How such a map is realized in neuronal terms, however, remains elusive. Here we describe a simple and noise-robust neuronal implementation of a path finding algorithm in complex environments. We consider a neuronal map of the environment that supports a traveling wave spreading out from the goal location opposite to direction of the physical movement. At each position of the map, the smallest firing phase between adjacent neurons indicate the shortest direction towards the goal. In contrast to diffusion or single-wave-fronts, local phase differences build up in time at arbitrary distances from the goal, providing a minimal and robust directional information throughout the map. The time needed to reach the steady state represents an estimate of an agent's waiting time before it heads off to the goal. Given typical waiting times we estimate the minimal number of neurons involved in the cognitive map. In the context of the planning model, forward and backward spread of neuronal activity, oscillatory waves, and phase precession get a functional interpretation, allowing for speculations about the biological counterpart.
Mean field effects for counterpropagating traveling wave solutions of reaction-diffusion systems
International Nuclear Information System (INIS)
Bernoff, A.J.; Kuske, R.; Matkowsky, B.J.; Volpert, V.
1995-01-01
In many problems, one observes traveling waves that propagate with constant velocity and shape in the χ direction, say, are independent of y, and z and describe transitions between two equilibrium states. As parameters of the system are varied, these traveling waves can become unstable and give rise to waves having additional structure, such as traveling waves in the y and z directions, which can themselves be subject to instabilities as parameters are further varied. To investigate this scenario the authors consider a system of reaction-diffusion equations with a traveling wave solution as a basic state. They determine solutions bifurcating from the basic state that describe counterpropagating traveling wave in directions orthogonal to the direction of propagation of the basic state and determine their stability. Specifically, they derive long wave modulation equations for the amplitudes of the counterpropagating traveling waves that are coupled to an equation for a mean field, generated by the translation of the basic state in the direction of its propagation. The modulation equations are then employed to determine stability boundaries to long wave perturbations for both unidirectional and counterpropagating traveling waves. The stability analysis is delicate because the results depend on the order in which transverse and longitudinal perturbation wavenumbers are taken to zero. For the unidirectional wave they demonstrate that it is sufficient to consider the cases of (1) purely transverse perturbations, (2) purely longitudinal perturbations, and (3) longitudinal perturbations with a small transverse component. These yield Eckhaus type, zigzag type, and skew type instabilities, respectively
Traveling waves in a free-electron laser with an electromagnetic wiggler
International Nuclear Information System (INIS)
Olumi, Mohsen; Maraghechi, B; Rouhani, M H
2011-01-01
The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.
Thermal analysis of gyrotron traveling-wave tube collector
International Nuclear Information System (INIS)
Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong
2013-01-01
In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)
Travelling Wave Structure of an SPS RF Cavity
CERN PhotoLab
1974-01-01
The RF cavities for acceleration of particles in the SPS have a travelling-wave structure. They operate at a fixed frequency of 200 MHz (h = 4620). With a quality factor of Q = 100, the bandwidth covers the small frequency swing for the acceleration of protons from as low as 10 GeV to the top energy of 450 GeV. Later on, for the acceleration of ions, with a larger frequency swing, turn-to-turn phase jumps did the trick. Two cavities, each consisting of 5 tank sections, were installed in long straight section 3. Each cavity is driven by a power amplifier of 750 kW CW (1 MW pulsed). Another 2 cavities were added later on. See also 7411033 and 7802190.
Existence of traveling waves for diffusive-dispersive conservation laws
Directory of Open Access Journals (Sweden)
Cezar I. Kondo
2013-02-01
Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.
Surface impedance of travelling--Wave antenna in magnetized plasma
International Nuclear Information System (INIS)
Denisenko, I.B.; Ostrikov, K.N.
1993-01-01
Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results
Bifurcations of Exact Traveling Wave Solutions for (2+1)-Dimensional HNLS Equation
International Nuclear Information System (INIS)
Xu Yuanfen
2012-01-01
For the (2+1)-Dimensional HNLS equation, what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Ten exact explicit parametric representations of the traveling wave solutions are given. (general)
Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation
International Nuclear Information System (INIS)
Deng Xijun; Han Libo; Li Xi
2009-01-01
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)
Bistable traveling wave solutions in a competitive recursion system with Ricker nonlinearity
Directory of Open Access Journals (Sweden)
Shuxia Pan
2014-03-01
Full Text Available Using an abstract scheme of monotone semiflows, the existence of bistable traveling wave solutions of a competitive recursion system is established. From the viewpoint of population dynamics, the bistable traveling wave solutions describe the strong inter-specific actions between two competitive species.
Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...
Indian Academy of Sciences (India)
Abstract. In this paper, the new generalized (G /G)-expansion method is executed to find the travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation. The efficiency of this method for finding exact and travelling wave solu- tions has been demonstrated.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
Fifth-order amplitude equation for traveling waves in isothermal double diffusive convection
International Nuclear Information System (INIS)
Mendoza, S.; Becerril, R.
2009-01-01
Third-order amplitude equations for isothermal double diffusive convection are known to hold the tricritical condition all along the oscillatory branch, predicting that stable traveling waves exist Only at the onset of the instability. In order to properly describe stable traveling waves, we perform a fifth-order calculation and present explicitly the corresponding amplitude equation.
Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation
International Nuclear Information System (INIS)
Gao Hongjun; Liu Changchun
2004-01-01
In this paper we study the instability of the traveling waves of the convective-diffusive Cahn-Hilliard equation. We prove that it is nonlinearly unstable under H 2 perturbations, for some traveling wave solution that is asymptotic to a constant as x→∞
Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...
Indian Academy of Sciences (India)
In this paper, the new generalized (′/)-expansion method is executed to find the travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation. The efficiency of this method for finding exact and travelling wave solutions has been demonstrated. It is shown ...
Recent developments in guided wave travel time tomography
Energy Technology Data Exchange (ETDEWEB)
Zon, Tim van; Volker, Arno [TNO, Stieltjesweg 1, P.O. box 155 2600 AD Delft (Netherlands)
2014-02-18
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.
TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
SERIFE MUGE EGE
2016-07-01
Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.
Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model
International Nuclear Information System (INIS)
Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao
2014-01-01
In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained
Spreading speed and travelling waves for a spatially discrete SIS epidemic model
International Nuclear Information System (INIS)
Zhang, Kate Fang; Zhao Xiaoqiang
2008-01-01
This paper is devoted to the study of the asymptotic speed of spread and travelling waves for a spatially discrete SIS epidemic model. By appealing to the theory of spreading speeds and travelling waves for monotonic semiflows, we establish the existence of asymptotic speed of spread and show that it coincides with the minimal wave speed for monotonic travelling waves. This also gives an affirmative answer to an open problem presented by Rass and Radcliffe (2003 Spatial Deterministic Epidemics (Mathematical Surveys and Monographs vol 102) (Providence, RI: American Mathematical Society)) in the case of discrete spatial habitat
RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni
2018-01-01
RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.
Wu, Ping; Sun, Jun; Teng, Yan
2017-12-01
The emission uniformity of explosive emission cathodes is important to the operation of high power microwave generators. Although this concept seems to be widely accepted, the concrete influence of cathode emission uniformity on microwave generation has not been researched in detail and many conclusions on this matter are ambiguous due to the lack of solid evidence. This paper makes an effort to research this issue with particle-in-cell simulations about an X-band relativistic backward wave oscillator. To keep the diode impedance unchanged, an emission model in which each emission cell is artificially assigned a specific current density is adopted. The emission non-uniformity is simulated in three ways: spaced emission, large-area no-emission, and local enhanced emission. The simulation results uncover three phenomena: first, no significant influence is found for the cathode emission uniformity on the microwave starting time as long as no obvious mode competition is excited by emission non-uniformity; second, bad emission uniformity may bring about reduction of microwave power, but this may not happen when the emission non-uniformity is just localized to a few discrete strong emission points; third, under specific circumstances, the emission non-uniformity may lead to the excitation of mode competition, which can significantly delay the starting time and lower the microwave power.
International Nuclear Information System (INIS)
Abdou, M.A.
2008-01-01
The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics
Analysis of Technical Feasibility of Traveling Wave Reactor
International Nuclear Information System (INIS)
Kim, Sang Ji; Yoo, Jae Woon; Bae, In Ho
2011-01-01
The status and trend of TWR, patent status and its major technical characteristics were examined in this study. Main technical features of traveling wave reactor can be characterized as a reactor operation without refueling up to the reactor life more than 60 years and TWR utilizes depleted uranium which would be produced from the enrichment process as a byproduct. Enriched fuel is only loaded to an igniter which is required for initiation of burning wave. In this study, quantitative analysis of TWR arising from the technical features was carried out in terms of resource utilization, safety and integrity, and proliferation resistance. In parallel with the concept review of TerraPower SWR design concepts, independent analysis of SWR design by altering a design specification and operation strategy was done in this study. The fuel rod design of SWR was also investigated based on the current database of fuel irradiation and performance. The technical issues of TWR or SWR which should be prior to detailed research and development can be summarized as follows: ·Strong physical protection is required during the shuffling or in-service inspection period to improve the proliferation resistance. ·New flow control logic or device is required for distributing the assembly-wise flow to be corresponded with power swing of fuel assembly. ·High integrity cladding material need to be developed for covering the high fast neutron fluence more than three times of current limit which result from the high burnup and long fuel cycle. The metal fuel under the high burnup condition should be validated through the irradiation test
Theory and Experiment of the Gyrotron Traveling Wave Amplifier
Chu, Kwo Ray
1997-11-01
In contrast to conventional linear beam devices, the electron beam employed in the gyrotron has a transverse motion at the electron cyclotron frequency which allows the beam to selectively interact with a high order waveguide mode at a high cyclotron harmonic. However, the multitude of cyclotron harmonics can also generate numerous spurious interactions. In this talk, we report on two recent studies of the gyrotron traveling wave tube amplifier (Gyro-TWT). The first study addresses the basic nature of mode competition in the Gyro-TWT which is intricately connected to the interplay between the absolute/convective instabilities, circuit losses, and reflective feedback. Such processes have been clarified with comprehensive theoretical modeling and verified by a sequence of experiments (K.R. Chu, L.R. Barnett, H.Y. Chen, S.H. Chen, Ch. Wang, Y.S. Yeh, Y.C. Tsai, T.T. Yang, and T.Y. Dawn, Phys. Rev. Lett. 74, 1103(1995)). Suppression of spurious oscillations based on the knowledge of these processes has resulted in the latest demonstration of a high power(65 kW), broadband(10which constitutes a significant advance of the state-of-the-art. The second study concerns the theory of a novel type of harmonic gyro-TWT which provides frequency multiplication as well as power amplification. In collaboration with the MURI project research group of the University of Maryland, we analyze physical properties of the harmonic multiplying gyro-TWT(K.R.Chu, H. Guo, and V.L. Granatstein, Phys. Rev. Lett. 78, 4661(1997)). It is shown that interference from lower harmonic perturbations can significantly degrade the interaction efficiency under low gain operations. The power/gain scaling and the phase relation between the drive and output waves are found to differ fundamentally from those of the single frequency amplifiers.
Design of hybrid electron linac with standing wave buncher and traveling wave structure
International Nuclear Information System (INIS)
Kutsaev, S.V.; Sobenin, N.P.; Smirnov, A.Yu.; Kamenschikov, D.S.; Gusarova, M.A.; Nikolskiy, K.I.; Zavadtsev, A.A.; Lalayan, M.V.
2011-01-01
A disk-loaded waveguide (DLW) is the most common structure for compact linear accelerators working in a traveling wave (TW) regime. Among its advantages are high shunt impedance and manufacturing simplicity. The other popular structure is an on-axis coupled bi-periodical accelerating structure (BAS) that works in standing wave (SW) regime. Both the standing and the traveling wave regimes have their own advantages and disadvantages. The design of the hybrid accelerator with SW buncher and TW accelerating section presented in this paper unites the advantages of both regimes. For example, the buncher in the hybrid accelerator is shorter than in a pure TW accelerator, and it requires no solenoid; this structure is more technologically convenient as it does not require a circulator. The other way to combine the advantages of DLW and BAS is to design a magnetic coupled disk-loaded waveguide (DLW-M). This paper also presents the results of a survey study that analyzed the electrodynamical parameters of such a structure and compared them with those of DLW. The experimental data is also presented. Higher order modes, multipacting discharge and thermal simulations show that DLW-M structure is more preferable to classical DLW.
Effects of traveling waves on flow separation and turbulence
Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team
2017-11-01
Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.
Travelling waves and fold localization in hovercraft seals
Wiggins, Andrew; Zalek, Steve; Perlin, Marc; Ceccio, Steve
2013-11-01
The seal system on hovercraft consists of a series of open-ended fabric cylinders that contact the free surface and, when inflated, form a compliant pressure barrier. Due to a shortening constraint imposed by neighboring seals, bow seals operate in a post-buckled state. We present results from large-scale experiments on these structures. These experiment show the hydroelastic response of seals to be characterized by striking stable and unstable post-buckling behavior. Using detailed 3-d measurements of the deformed seal shape, dominant response regimes are identified. These indicate that mode number decreases with wetted length, and that the form of the buckling packet becomes localized with increased velocity and decreased bending stiffness. Eventually, at a critical pressure, travelling waves emerge. To interpret the wide range of observed behavior, a 2-d nonlinear post-buckling model is developed and compared with the experimental studies. The model shows the importance of seal shortening and the buckling length, which is driven by the balance of hydrodynamic and bending energies. Preliminary scaling laws for the fold amplitude and mode number are presented. The experiments may ultimately provide insight into the bedeviling problem of seal wear. Sponsored by the Office of Naval Research under grant N00014-10-1-0302, Ms. Kelly B. Cooper, program manager.
Travelling waves and their bifurcations in the Lorenz-96 model
van Kekem, Dirk L.; Sterk, Alef E.
2018-03-01
In this paper we study the dynamics of the monoscale Lorenz-96 model using both analytical and numerical means. The bifurcations for positive forcing parameter F are investigated. The main analytical result is the existence of Hopf or Hopf-Hopf bifurcations in any dimension n ≥ 4. Exploiting the circulant structure of the Jacobian matrix enables us to reduce the first Lyapunov coefficient to an explicit formula from which it can be determined when the Hopf bifurcation is sub- or supercritical. The first Hopf bifurcation for F > 0 is always supercritical and the periodic orbit born at this bifurcation has the physical interpretation of a travelling wave. Furthermore, by unfolding the codimension two Hopf-Hopf bifurcation it is shown to act as an organising centre, explaining dynamics such as quasi-periodic attractors and multistability, which are observed in the original Lorenz-96 model. Finally, the region of parameter values beyond the first Hopf bifurcation value is investigated numerically and routes to chaos are described using bifurcation diagrams and Lyapunov exponents. The observed routes to chaos are various but without clear pattern as n → ∞.
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
Effect of switching-off of a plasma medium on a traveling wave
International Nuclear Information System (INIS)
Kalluri, D.K.
1989-01-01
It is known that a sudden creation of a plasma medium of plasma frequency ω ρ splits a traveling wave of frequency ω o into two new waves of frequencies. The negative value for the frequency here indicates a reflected wave. The effect of a sudden collapse of the plasma medium, on a travelling wave of frequency ω o is shown to be the creation of two new waves of frequencies. A numerical solution is obtained for the case of a gradual collapse of the plasma medium. For the case of a slow decay of the particle density an approximate WKB type solution is obtained. Several results are presented
A traveling wave direct energy converter for a D-{sup 3}He fusion reactor
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Katayama, H.; Miyawaki, F. [Himeji Inst. of Tech., Hyogo (Japan); Tajima, T.
1994-12-31
A concept of a traveling wave direct energy converter (TWDEC) is developed for 14.7-MeV fusion protons based on the principle of a backward wave oscillator. Separation of fusion protons from thermal ions is accomplished by using ExB ion drift. Energy conversion rate up to 0.87 is attained by applying three-stage modulation of the proton beam. A one-dimensional particle-circuit code is developed to examine self-excitation of the traveling wave and its stability under loading. Electrostatic wave with a fixed frequency is excited spontaneously, and stability of the wave is ensured under loading. (author).
Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators
International Nuclear Information System (INIS)
Lanford, O E III; Mintchev, S M
2015-01-01
Travelling waves are an important class of signal propagation phenomena in extended systems with a preferred direction of information flow. We study the generation of travelling waves in unidirectional chains of coupled oscillators communicating via a phase-dependent pulse-response interaction borrowed from mathematical neuroscience. Within the context of such systems, we develop a widely applicable, jointly numerical and analytical methodology for deducing existence and stability of periodic travelling waves. We provide careful numerical studies that support the existence of a periodic travelling wave solution as well as the asymptotic relaxation of a single oscillator to the wave when it is forced with the wave profile. Using this evidence as an assumption, we analytically prove global stability of waves in the infinite chain, with respect to initial perturbations of downstream sites. This rigorous stability result suggests that asymptotic relaxation to the travelling wave occurs even when the forcing is perturbed from the wave profile, a property of the motivating system that is supported by previous work as well as the convergence of the more sophisticated numerical algorithm that we propose in order to compute a high-precision approximation to the solution. We provide additional numerical studies that show that the wave is part of a one-parameter family, and we illustrate the structural robustness of this family with respect to changes in the coupling strength. (paper)
Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie
2017-11-01
Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.
Travelling waves above the canopy of aquatic vegetation
Lyubimov, D.; Lyubimova, T.; Baidina, D.
2012-04-01
When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave
Dynamics and bifurcations of travelling wave solutions of R (m, n ...
Indian Academy of Sciences (India)
The qualitative change in the physical structures of these waves is shown to depend on the systemic parameters. Under different regions of parametric spaces, various sufficient conditions to guarantee the existence of the above waves are given. Moreover, some explicit exact parametric representations of travelling wave ...
Traveling waves in a diffusive predator-prey model with holling type-III functional response
International Nuclear Information System (INIS)
Li Wantong; Wu Shiliang
2008-01-01
We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-III functional response. The analysis is in the three-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator-prey system in the traveling wave variable. The methods used to prove the results are the shooting argument, invariant manifold theory and the Hopf bifurcation theorem
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation
Directory of Open Access Journals (Sweden)
Jiuli Yin
2014-01-01
Full Text Available Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Microfabricated, 94 GHz, 25 W, Helical Traveling Wave Tube, Phase I
National Aeronautics and Space Administration — Teraphysics Corporation proposes to design and develop a microfabricated, 94 GHz, 25 W traveling wave tube (TWT) with 53% efficiency for NASA applications. In Phase...
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
Kyprianou, A.E.
2000-01-01
Recently Harris using probabilistic arguments alone has given new proofs of the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation This paper is a sequel to Kyprianou b which provides alternative probabilistic arguments for supercritical wave speeds We
Waves on the surface of a magnetic fluid layer in a traveling magnetic field
International Nuclear Information System (INIS)
Zimmermann, K.; Zeidis, I.; Naletova, V.A.; Turkov, V.A.
2004-01-01
The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots
Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation
International Nuclear Information System (INIS)
Liu Chengshi
2007-01-01
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.
Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method
International Nuclear Information System (INIS)
Saddique, I.; Nazar, K.
2009-01-01
In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)
Concentration field in traveling-wave and stationary convection in fluid mixtures
International Nuclear Information System (INIS)
Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.
1991-01-01
By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern
Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence
Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui
2018-01-01
This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.
Speed ot travelling waves in reaction-diffusion equations
International Nuclear Information System (INIS)
Benguria, R.D.; Depassier, M.C.; Mendez, V.
2002-01-01
Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)
Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R
2015-01-07
We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.
International Nuclear Information System (INIS)
Ogawa, T.; Hoshino, K.; Kanazawa, S.
2001-01-01
Several innovative applications of a travelling wave (combline) antenna designed for fast wave current drive have been demonstrated for the first time in the JFT-2M tokamak. High energy electrons of at least 10 keV were produced in the plasma core by highly directional fast waves in electron cyclotron heated plasmas. The ponderomotive potential of the beat wave, produced by fast waves at two different frequencies, was directly measured for the first time by a heavy ion beam probe. Plasma production was demonstrated using the wave fields excited by the combline antenna over a wide range of toroidal magnetic fields (0.5-2.2 T). (author)
TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW
Directory of Open Access Journals (Sweden)
PAVEL HEJZLAR
2013-11-01
Full Text Available Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ∼30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1 no reprocessing plants need to be built, 2 a reduced number of enrichment plants need to be built, 3 reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4 less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste
Digital Distortion Caused by Traveling- Wave-Tube Amplifiers Simulated
Kory, Carol L.; Andro, Monty
2002-01-01
Future NASA missions demand increased data rates in satellite communications for near real-time transmission of large volumes of remote data. Increased data rates necessitate higher order digital modulation schemes and larger system bandwidth, which place stricter requirements on the allowable distortion caused by the high-power amplifier, or the traveling-wave-tube amplifier (TWTA). In particular, intersymbol interference caused by the TWTA becomes a major consideration for accurate data detection at the receiver. Experimentally investigating the effects of the physical TWTA on intersymbol interference would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to acquiring the required digital hardware. Thus, an accurate computational model is essential to predict the effects of the TWTA on system-level performance when a communication system is being designed with adequate digital integrity for high data rates. A fully three-dimensional, time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell code MAFIA (Solution of Maxwell's equations by the Finite-Integration-Algorithm). It comprehensively takes into account the effects of frequency-dependent AM (amplitude modulation)/AM and AM/PM (phase modulation) conversion, gain and phase ripple due to reflections, drive-induced oscillations, harmonic generation, intermodulation products, and backward waves. This physics-based TWT model can be used to give a direct description of the effects of the nonlinear TWT on the operational signal as a function of the physical device. Users can define arbitrary excitation functions so that higher order modulated digital signals can be used as input and that computations can directly correlate intersymbol interference with TWT parameters. Standard practice involves using communication-system-level software packages, such as SPW, to predict if adequate signal detection will be achieved. These models
Dynamical behaviours and exact travelling wave solutions of ...
Indian Academy of Sciences (India)
Modified generalized Vakhnenko equation; cusped solitons; loop solitons; periodic cusp wave solutions; smooth periodic wave solutions; pseudopeakon solitons; ... Guangxi 541004, People's Republic of China; School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, ...
Analytical travelling wave solutions and parameter analysis for the ...
Indian Academy of Sciences (India)
By using dynamical system method, this paper considers the (2+1)-dimensional Davey–Stewartson-type equations. The analytical parametric representations of solitary wave solutions, periodic wave solutions as well as unbounded wave solutions are obtained under different parameter conditions. A few diagrams ...
Travelling wave solutions of (2+ 1)-dimensional generalised time ...
Indian Academy of Sciences (India)
In this article, we have developed new exact analytical solutions of a nonlinear evolution equation that appear in mathematical physics, a (2 + 1)-dimensional ... Wave interaction for the wave propagation strength and angle of field quantity under the long wave limit are analysed: Bell-shape solitons are found and it is found ...
Analytical travelling wave solutions and parameter analysis for the
Indian Academy of Sciences (India)
By using dynamical system method, this paper considers the (2+1)-dimensional Davey–Stewartson-type equations. The analytical parametric representations of solitary wave solutions, periodic wave solutions as well as unbounded wave solutions are obtained under different parameter conditions. A few diagrams ...
Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization
Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)
2001-01-01
Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3
Travelling wave solutions in a class of generalized Korteweg-de Vries equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei
2007-01-01
In this paper, we consider a new generalization of KdV equation u t = u x u l-2 + α[2u xxx u p + 4pu p-1 u x u xx + p(p - 1)u p-2 (u x ) 3 ] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
Electron and VLF travel time differences for wave-particle interactions at L=4: Pt. 2
International Nuclear Information System (INIS)
Rash, J.P.S.; Scourfield, M.W.J.; Dougherty, M.K.
1984-01-01
The cyclotron resonance or gyroresonance interaction has been widely invoked as a generation mechanism for discrete VLF emissions and plasmaspheric hiss. This interaction involves electrons and VLF waves travelling in opposite directions along a geomagnetic field line. We examine, for an interaction region in the equatorial plane at L=4, the energy of the resonant electrons as a function of VLF wave frequency and ambient equatorial electron density. Then for two different spatial configurations of the interaction and two standard plasma distribution models we examine the difference in travel times to a ground-based observer in the Southern hemisphere for the electrons and waves taking part in the interaction. This difference in travel times is shown as a function of VLF wave frequency and equatorial electron density. The results, and their significance for observations of auroral electrons and VLF at Sanae, Antarctica, are discussed and compared with similar results for the Cerenkov interaction discussed in an earlier paper
Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation
Li, Panxiao; Wu, Shi-Liang
2018-04-01
This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.
Diffraction of ultracold fermions by quantized light fields: Standing versus traveling waves
International Nuclear Information System (INIS)
Meiser, D.; Search, C.P.; Meystre, P.
2005-01-01
We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle manifests itself as an additional dephasing of the scattering probability
A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995
K. Hocke; K. Schlegel
1996-01-01
Recent investigations of atmospheric gravity waves (AGW) and travelling ionospheric disturbances (TID) in the Earth's thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS), the results are presented in the first part of the review. ...
Behavioral analysis of cuttlefish traveling waves and its implications for neural control.
Laan, Andres; Gutnick, Tamar; Kuba, Michael J; Laurent, Gilles
2014-08-04
Traveling waves (from action potential propagation to swimming body motions or intestinal peristalsis) are ubiquitous phenomena in biological systems and yet are diverse in form, function, and mechanism. An interesting such phenomenon occurs in cephalopod skin, in the form of moving pigmentation patterns called "passing clouds". These dynamic pigmentation patterns result from the coordinated activation of large chromatophore arrays. Here, we introduce a new model system for the study of passing clouds, Metasepia tullbergi, in which wave displays are very frequent and thus amenable to laboratory investigations. The mantle of Metasepia contains four main regions of wave travel, each supporting a different propagation direction. The four regions are not always active simultaneously, but those that are show synchronized activity and maintain a constant wavelength and a period-independent duty cycle, despite a large range of possible periods (from 1.5 s to 10 s). The wave patterns can be superposed on a variety of other ongoing textural and chromatic patterns of the skin. Finally, a traveling wave can even disappear transiently and reappear in a different position ("blink"), revealing ongoing but invisible propagation. Our findings provide useful clues about classes of likely mechanisms for the generation and propagation of these traveling waves. They rule out wave propagation mechanisms based on delayed excitation from a pacemaker but are consistent with two other alternatives, such as coupled arrays of central pattern generators and dynamic attractors on a network with circular topology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fundamental investigation on electrostatic travelling-wave transport of a liquid drop
International Nuclear Information System (INIS)
Kawamoto, Hiroyuki; Hayashi, Satoshi
2006-01-01
Basic research has been carried out on the transport of a liquid drop and a soft body in an electrostatic travelling field. A conveyer consisting of parallel electrodes was constructed and a four-phase electrostatic travelling wave was applied to the electrodes to transport the drop on the conveyer. The following were clarified by the experiment. (1) Drops and soft bodies can be transported by virtue of the travelling wave in an insulative liquid that is insoluble to the drop, because the drop was charged on the conveyer by friction and driven by the Coulomb force. (2) A drop that covered less than three arrays of the parallel electrode can be transported in the travelling wave field. (3) A threshold voltage exists for the transport. (4) Although the transport was possible not only for insulative but also for conductive drops, the insulative drop can be transported efficiently. (5) The modes of transport can be classified into three categories, namely, a synchronous region where the motion of the liquid drop is in synchrony with the travelling wave, a delayed response regime, and a regime where transport does not occur. (6) Mixing of drops for a chemical reaction was demonstrated on the conveyer with scroll electrodes. A simple model was proposed to simulate the dynamics of the drop in the electrostatic travelling field
Energy Technology Data Exchange (ETDEWEB)
Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)
2017-05-25
In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
Some Further Results on Traveling Wave Solutions for the ZK-BBM( Equations
Directory of Open Access Journals (Sweden)
Shaoyong Li
2013-01-01
Full Text Available We investigate the traveling wave solutions for the ZK-BBM( equations by using bifurcation method of dynamical systems. Firstly, for ZK-BBM(2, 2 equation, we obtain peakon wave, periodic peakon wave, and smooth periodic wave solutions and point out that the peakon wave is the limit form of the periodic peakon wave. Secondly, for ZK-BBM(3, 2 equation, we obtain some elliptic function solutions which include periodic blow-up and periodic wave. Furthermore, from the limit forms of the elliptic function solutions, we obtain some trigonometric and hyperbolic function solutions which include periodic blow-up, blow-up, and smooth solitary wave. We also show that our work extends some previous results.
Liang, G.; Wu, J. A.
2003-06-01
In this paper, we consider the growth dynamics of a single-species population with two age classes and a fixed maturation period living in a spatial transport field. A Reaction Advection Diffusion Equation (RADE) model with time delay and nonlocal effect is derived if the mature death and diffusion rates are age independent. We discuss the existence of travelling waves for the delay model with three birth functions which appeared in the well-known Nicholson's blowflies equation, and we consider and analyze numerical solutions of the travelling wavefronts from the wave equations for the problems with nonlocal temporally delayed effects. In particular, we report our numerical observations about the change of the monotonicity and the possible occurrence of multihump waves. The stability of the travelling wavefront is numerically considered by computing the full time-dependent partial differential equations with nonlocal delay.
Pierce gain analysis for a sheet beam in a rippled waveguide traveling-wave tube
International Nuclear Information System (INIS)
Carlsten, Bruce E.
2001-01-01
A Pierce-type mode analysis is presented for a planar electron beam in a rippled planar waveguide. This analysis describes the gain of a traveling-wave tube consisting of that geometry. The dispersion relation is given by the determinant of a matrix based on the coupling of different free-space modes through the boundary conditions. For the case of high-frequency, low-power amplifiers, the dispersion relation reduces to a simple cubic expression for the Compton regime, leading to three roots analogous to the Pierce solution of a standard traveling-wave tube. The analysis shows that this type of traveling-wave tube is capable of very high gain at extremely high frequencies
Pn seismic wave travel time at the Semipalatinsk Test Site - Borovoe seismic station trace
International Nuclear Information System (INIS)
An, V.A.; Kaazik, P.B.; Ovchinnikov, V.M.
2001-01-01
This paper preparation involved 160 explosions at the Degelen Site conducted in 1961-1989 and 89 explosions at the Balapan Site conducted in 1968-1989. Pn wave travel time was tied to the sea level in accordance with velocity characteristics of the explosion hypocenter medium; and to average epicentral distance for every site basing on their local travel time curves of Pn wave relative to Borovoe station. Maximum amplitude of mean-year travel times variations is 0.3-0.5 s as at the Nevada Test Site - Borovoe trace and Mirniy (Antarctica). However, the linear trend in contrast to previous traces has negative sign (0.08 s for Degelen and 0.1 s for Balapan). Thus, Pn wave velocity increases with calendar time. (author)
Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave
International Nuclear Information System (INIS)
Na, Yeong Min; Lee, Hyun Seok; Park, Jong Kyu
2014-01-01
Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined
Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave
Energy Technology Data Exchange (ETDEWEB)
Na, Yeong Min; Lee, Hyun Seok; Park, Jong Kyu [Changwon National University, Changwon (Korea, Republic of)
2014-05-15
Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined.
Direct energy recovery from 15 MeV fusion protons by using traveling waves
Energy Technology Data Exchange (ETDEWEB)
Katayama, Hideaki [Maizuru National College of Technology, Maizuru, Kyoto (Japan); Sato, Kunihiro [Faculty of Engineering, Himeji Institute of Technology, Himeji, Hyogo (Japan)
2001-07-01
Motion of a fusion-proton beam in a Traveling Wave Direct Energy Converter (TWDEC) is studied theoretically. Bunching of the proton beam at the modulator and periodic motion of trapped protons at the decelerator are analyzed in order to estimate adequate amplitude of traveling waves. It is shown that the traveling wave is required to have the amplitude about 1 MV for deceleration of 15 MeV protons. Orbital calculation is carried out in order to examine modulation, bunching, trapping and deceleration of the proton beam in the TWDEC. Numerical calculation shows that about 80% of the kinetic energy of the proton beam can be converted into the electricity when bunching of the beam is improved by applying multi-stage velocity modulation or continuous velocity modulation of the proton beam. (author)
A new auxiliary equation and exact travelling wave solutions of nonlinear equations
International Nuclear Information System (INIS)
Sirendaoreji
2006-01-01
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations
A traveling wave approach to plasma pumping for X-ray sources
International Nuclear Information System (INIS)
Jensen, R.J.
1989-01-01
Progress in high-brightness excimer lasers and in optical angular multiplexing of excimer lasers presents an opportunity to provide very intense pumping of X-ray sources, both in favorable geometry and in travelling waves, all at low cost. The traveling-wave strategy can be tailored to the parameters of the system to be pumped. This design option can be of great importance for systems lasing at wavelengths in the kilovolt regime where upper level lifetimes are short, and where mirror technology is presently tenuous. Features of several design strategies are explored. (author)
Traveling waves for a model of individual clustering with logistic growth rate
Ibrahim, H.; Nasreddine, E.
2017-08-01
We consider a traveling wave problem for a one-dimensional model of individual clustering or aggregation. This model, originally formulated by Grindrod [J. Math. Biol. 26(6), 651-660 (1988)], describes the mechanism of individual dispersion when individuals are able to utilize information about their local environment. Specifically, it assumes that each individual disperses randomly with probability δ and disperses deterministically so as to improve his reproductive rate with probability 1 -δ . In this paper, we prove the existence of a traveling wave solution when the probability of random dispersion exceeds a critical value δ* uniquely determined by the biased individual velocity.
Study of a high-order-mode gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2010-01-01
Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.
Variable coefficient Korteweg-de Vries equations and travelling waves in an inhomogeneous medium
International Nuclear Information System (INIS)
Baby, B.V.
1987-04-01
The well-known Korteweg-de Vries equations with the coefficients as two arbitrary functions of the time variable, is studied in this paper. The Painleve property analysis provides the conditions on the two variable coefficients, in order to form the Lax pairs associated with this equation. The similarity analysis shows the non-existence of travelling wave solutions when the equation has variable coefficients. These results are used to show the non-existence of travelling waves in an inhomogeneous medium. (author). 33 refs
New traveling wave solutions to AKNS and SKdV equations
International Nuclear Information System (INIS)
Ozer, Teoman
2009-01-01
We analyze the traveling wave solutions of Ablowitz-Kaup-Newell-Segur (AKNS) and Schwarz-Korteweg-de Vries (SKdV) equations. As the solution method for differential equations we consider the improved tanh approach. This approach provides to transform the partial differential equation into the ordinary differential equation and then obtain the new families of exact solutions based on the solutions of the Riccati equation. The different values of the coefficients of the Riccati equation allow us to obtain new type of traveling wave solutions to AKNS and SKdV equations.
New binary travelling-wave periodic solutions for the modified KdV equation
International Nuclear Information System (INIS)
Yan Zhenya
2008-01-01
In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation
Streshinsky, Matthew; Ayazi, Ali; Xuan, Zhe; Lim, Andy Eu-Jin; Lo, Guo-Qiang; Baehr-Jones, Tom; Hochberg, Michael
2013-02-11
We present measurements of the nonlinear distortions of a traveling-wave silicon Mach-Zehnder modulator based on the carrier depletion effect. Spurious free dynamic range for second harmonic distortion of 82 dB·Hz(1/2) is seen, and 97 dB·Hz(2/3) is measured for intermodulation distortion. This measurement represents an improvement of 20 dB over the previous best result in silicon. We also show that the linearity of a silicon traveling wave Mach-Zehnder modulator can be improved by differentially driving it. These results suggest silicon may be a suitable platform for analog optical applications.
Directory of Open Access Journals (Sweden)
Md. Nur Alam
2014-03-01
Full Text Available The new approach of generalized (G′/G-expansion method is significant, powerful and straightforward mathematical tool for finding exact traveling wave solutions of nonlinear evolution equations (NLEEs arise in the field of engineering, applied mathematics and physics. Dispersive effects due to microstructure of materials combined with nonlinearities give rise to solitary waves. In this article, the new approach of generalized (G′/G-expansion method has been applied to construct general traveling wave solutions of the strain wave equation in microstructured solids. Abundant exact traveling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering fields.
First tests of a traveling-wave chopper for the ATLAS positive ion linac
International Nuclear Information System (INIS)
Pardo, R. C.
1998-01-01
A ten segment traveling-wave chopper has been constructed and successfully tested at 5% of the design 12 MHz repetition rate. The chopper must remove unbunched tails from a partially bunched heavy-ion beam in order to avoid undue emittance growth in the linac and the production of undesirable satellite beam bunches. When poorly bunched beams traverse the traditional sine-wave chopper, it produces unacceptable transverse emittance growth and unnecessary beam loss. These effects are expected to be much reduced in the traveling wave chopper. First tests have confirmed the validity of these claims, clearly showing much reduced transverse emittance growth as compared to the original sine wave chopper and excellent selectivity for the desired beam. Details of these tests will be presented and compared to calculations. Operation of the new chopper at the full 12 MHz rate is the next goal. Development of a driver power supply capable of full CW operation will also be described
Dynamical behaviours and exact travelling wave solutions of ...
Indian Academy of Sciences (India)
2016-12-13
Dec 13, 2016 ... 2School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang,. Guizhou 550025 ... By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we .... system (5): a solitary wave solution corresponds to a homoclinic orbit at a ...
Bifurcations and new exact travelling wave solutions for the ...
Indian Academy of Sciences (India)
2016-10-17
Oct 17, 2016 ... the distance along the channel, t is the elapsed time, v is the dimensionless deviation of the water surface from its undisturbed position and u is the dimension- less horizontal velocity [1]. The bidirectional wave equations are a type of important mathematical physics equation which is used as a model ...
Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator
International Nuclear Information System (INIS)
Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.
2004-01-01
Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed
Polarization of concave domains by traveling wave pinning.
Directory of Open Access Journals (Sweden)
Slawomir Bialecki
Full Text Available Pattern formation is one of the most fundamental yet puzzling phenomena in physics and biology. We propose that traveling front pinning into concave portions of the boundary of 3-dimensional domains can serve as a generic gradient-maintaining mechanism. Such a mechanism of domain polarization arises even for scalar bistable reaction-diffusion equations, and, depending on geometry, a number of stationary fronts may be formed leading to complex spatial patterns. The main advantage of the pinning mechanism, with respect to the Turing bifurcation, is that it allows for maintaining gradients in the specific regions of the domain. By linking the instant domain shape with the spatial pattern, the mechanism can be responsible for cellular polarization and differentiation.
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a...monitored with a comparator that generates a digital signal edge thereby coding the analog voltage into a pulse. The pulse is then passed to the TDC. It...is interesting to observe that while the VTC and TDC perform distinct functions, there is no need for a sample/hold function to pass a signal from
International Nuclear Information System (INIS)
Xu Rui; Chaplain, M.A.J.; Davidson, F.A.
2006-01-01
In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model
Travelling wave solutions for a singularly perturbed Burgers–KdV ...
Indian Academy of Sciences (India)
Abstract. This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, ...
Transverse kick in misaligned traveling wave structures driven at the fundamental mode
International Nuclear Information System (INIS)
Whittum, D.H.
1998-04-01
Fabrication errors in traveling wave structures result in non-axisymmetric RF fields that couple to the rf drive at the fundamental mode frequency. The authors calculate the excitation of the dipole mode and the integrated effect on the beam, using the thin iris and small hole approximation
Experimental simulation on direct energy converter for D-3He fusion using RF traveling wave
Yasaka, Yasuyoshi; Kawasaki, Akio; Takeno, Hiromasa; Tomita, Yukihiro; Momota, Hiromu
2001-10-01
A small-scale experiment is performed to prove and evaluate the principle of a direct energy converter for D-3He fusion reactor. Discrimination of charged particles by using a cusp magnetic field and energy conversion from the ion beam simulating fusion protons by using traveling RF waves are demonstrated and are compared with calculations.
A New Scheme for Experimental-Based Modeling of a Traveling Wave Ultrasonic Motor
DEFF Research Database (Denmark)
Mojallali, Hamed; Amini, R.; Izadi-Zamanabadi, Roozbeh
2005-01-01
In this paper, a new method for equivalent circuit modeling of a traveling wave ultrasonic motor is presented. The free stator of the motor is modeled by an equivalent circuit containing complex circuit elements. A systematic approach for identifying the elements of the equivalent circuit...
Traveling wave nanosecond optical parametric oscillator close to the Fourier-transform limit
Mes, J.; Hogervorst, W.; Tugbaev, V.
2001-01-01
We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.
Travelling-wave nanosecond optical parametric oscillator close to the Fourier-transform limit
Mes, J.; Hogervorst, W.; Tugbaev, V.
2001-01-01
We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.
Lewis, Mark A; Marculis, Nathan G; Shen, Zhongwei
2018-01-13
To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.
The SPS acceleration system: travelling wave drift-tube structure for the CERN SPS
International Nuclear Information System (INIS)
Dome, G.
1976-01-01
The SPS accelerating structure is essentially a high energy proton linac, except for a small frequency swing during the acceleration cycle. It is operated almost CW with a travelling wave giving an energy gain around 0.1 MeV/m. The guide-lines for the design of such a structure are explained, and practical solutions are described. (author)
Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation
International Nuclear Information System (INIS)
Olsen, M.K.
2004-01-01
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal
Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating
International Nuclear Information System (INIS)
Gerasev, Alexander P.
2017-01-01
This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.
Travelling wave solutions for a singularly perturbed Burgers–KdV ...
Indian Academy of Sciences (India)
This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...
Dynamics and bifurcations of travelling wave solutions of R(m, n ...
Indian Academy of Sciences (India)
Dynamics and bifurcations of travelling wave solutions of R(m, n) equations. DAHE FENG1 and JIBIN LI2. 1School of Mathematics and Computing Science, Guilin University of Electronic. Technology, Guilin, Guangxi 541004, People's Republic of China. 2Department of Mathematics, Zhejiang Normal University, Jinhua, ...
Kosmahl, H.; Ramins, P.
1975-01-01
Design and performance of a small size, 4-stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
Electromagnetic Excitation of a Thin Wire: A traveling-Wave Approach
Bogerd, J.C.; Tijhuis, A.G.; Klaasen, J.J.A.
1998-01-01
An approximate representation for the current along a perfectly conducting straight thin wire is presented. The current is approximated in terms of pulsed waves that travel along the wire with the velocity of the exterior medium. At the ends of the wire, these pulses are partially reflected, with a
Travelling wave solutions of (2++1)-dimensional generalised time-fractional Hirota equation
Zhang, Youwei
2018-03-01
In this article, we have developed new exact analytical solutions of a nonlinear evolution equation that appear in mathematical physics, a (2+1)-dimensional generalised time-fractional Hirota equation, which describes the wave propagation in an erbium-doped nonlinear fibre with higher-order dispersion. By virtue of the tanh-expansion and complete discrimination system by means of fractional complex transform, travelling wave solutions are derived. Wave interaction for the wave propagation strength and angle of field quantity under the long wave limit are analysed: Bell-shape solitons are found and it is found that the complex transform coefficient in the system affects the direction of the wave propagation, patterns of the soliton interaction, distance and direction.
Atom-field interaction in the single-quantum limit in a two dimensional travelling-wave cavity
International Nuclear Information System (INIS)
Youn, Sun Hyun; Chough, Young Tak; An, Kyung Won
2003-01-01
We analyze the interaction of an atom with two dimensional travelling-wave cavity modes in the strong coupling region, with the quantized atomic center of mass motion taken into account. Analytic and numerical calculation shows that the atom in two independent pairs of travelling wave modes can be made to interact only with a particular travelling mode by matching the initial momentum and the detuning of the cavities. We also numerically investigate the atomic momentum deflection in the cavities
Directory of Open Access Journals (Sweden)
Dong Wang
2015-01-01
Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.
International Nuclear Information System (INIS)
Jin, T.; Yang, R.; Wang, Y.; Feng, Y.; Tang, K.
2016-01-01
Highlights: • Key issues for a highly efficient thermoacoustic conversion are analyzed. • A looped thermoacoustic refrigerator with one engine stage and one refrigerator stage is proposed. • Effective refrigeration powered by heat sources below 250 °C is demonstrated in the simulation. • Impact of cooling/heating temperatures on system performance is analyzed in view of acoustic field. - Abstract: This paper focuses on a looped travelling-wave thermoacoustic refrigerator powered by thermal energy. Based on a simplified model for the regenerator, key issues for a highly efficient thermoacoustic conversion, including both thermal-to-acoustic and heat-pumping processes, are summarized. A looped travelling-wave thermoacoustic refrigerator with one engine stage and one refrigerator stage is proposed, with emphasis on high normalized acoustic impedance, sufficient volumetric velocity and appropriate phase relation close to travelling wave in the regenerators of both engine and refrigerator. Simulation results indicate that for the ambient temperature of 30 °C, the looped travelling-wave thermoacoustic refrigerator can be powered by the heat at 210–250 °C to achieve the refrigeration at −3 °C with the overall coefficient of performance above 0.4 and the relative Carnot coefficient of performance over 13%. The characteristics of the acoustic field inside the loop configuration are analyzed in detail to reveal the operation mechanism of the looped travelling-wave thermoacoustic refrigerator. Additional analyses are conducted on the impact of the cooling and the heating temperatures, which are of great concern to the refrigeration applications and the utilization of low-grade thermal energy.
Reduced field TE01 X-Band traveling wave window
International Nuclear Information System (INIS)
Fowkes, W.R.; Callin, R.S.; Tantawi, S.G.; Wright, E.L.
1995-01-01
The RF electric field is reduced by more than a factor of two using a pair of symmetrically located irises in a new type of klystron window operating in the TE 01 mode at X-Band. The advantages of this window over the usual TE 01 half-wave resonant window are discussed as well as theory and operating results. Ultra high purity alumina formed by the HIP process is used. This window has been successfully tested at 100 MW with a 1.5 microsecond RF pulse width and is being used on the XL series klystrons
Pattern formation and traveling waves in myxobacteria: Theory and modeling
Igoshin, Oleg A.; Mogilner, Alex; Welch, Roy D.; Kaiser, Dale; Oster, George
2001-01-01
Recent experiments have provided new quantitative measurements of the rippling phenomenon in fields of developing myxobacteria cells. These measurements have enabled us to develop a mathematical model for the ripple phenomenon on the basis of the biochemistry of the C-signaling system, whereby individuals signal by direct cell contact. The model quantitatively reproduces all of the experimental observations and illustrates how intracellular dynamics, contact-mediated intercellular communication, and cell motility can coordinate to produce collective behavior. This pattern of waves is qualitatively different from that observed in other social organisms, especially Dictyostelium discoideum, which depend on diffusible morphogens. PMID:11752439
Matching of the coupler cavity to travelling wave structures at any operating mode
International Nuclear Information System (INIS)
Chanudet, M.
1993-06-01
For the realization of an accelerating travelling wave structure, it is important to adjust the coupler so that the rf power arriving through a rectangular waveguide is coupled to the structure without reflection from the input aperture of the first cavity, the coupler cavity. The problem consists in carefully determining the dimensions of the coupling aperture. A method is proposed to measure this coupling in the case of monoperiodic forward and backward wave structures. The theory is based on the possibility of representing the properties of electromagnetic modes in periodic structures by coupled RLC circuits. The study of current I and voltage V versus frequency ω allows the simulation of H and E fields, respectively, for the different modes appearing in a travelling wave structure. (K.A.) 4 refs.; 14 figs
Abdulrahman S. Abduljalil; Zhibin Yu; Artur J. Jaworski; Lei Shi
2009-01-01
In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle ...
Traveling Wave RF Systems for Helical Cooling Channels
Yonehara, K; Moretti, A; Popovic, M; Romanov, G; Neubauer, M; Johnson, R P; Thorndahl, L
2010-01-01
The great advantage of the helical ionization cooling channel (HCC) is its compact structure that enables the fast cooling of muon beam 6-dimensional phase space. This compact aspect requires a high average RF gradient, with few places that do not have cavities. Also, the muon beam is diffuse and requires an RF system with large transverse and longitudinal acceptance. A traveling wave system can address these requirements. First, the number of RF power coupling ports can be significantly reduced compared with our previous pillbox concept. Secondly, by adding a nose on the cell iris, the presence of thin metal foils traversed by the muons can possibly be avoided. We show simulations of the cooling performance of a traveling wave RF system in a HCC, including cavity geometries with inter-cell RF power couplers needed for power propagation.
Benchmark on traveling wave fast reactor with negative reactivity feedback obtained with MCNPX code
International Nuclear Information System (INIS)
Gann, V.V.; Gann, A.V.
2012-01-01
This paper presents results of computer simulations of traveling wave fast reactor with negative reactivity feedback. The results were obtained using MCNPX code combined with CINDER90 subroutine for depletion calculations. We considered 1-D model of TWR containing 4 m long core made of mixture of 66 at. % 238 U and 34 at. % 10 B. Ignitor made of 235 U was located in the center of the core. Boron was included as imitator of structural in-core materials and coolant. Negative reactivity feedback was adjusted to reactor power of 500 MW. In this case two burning waves originated from the igniter and travel to the ends of the core during the following 40 years; coefficient of utilization of 238 U reached 80 %. Distribution of specific power in traveling wave, isotope concentration of fission products and actinides, neutron flux, fast neutron spectrum, specific activity were calculated. Data of the computer simulation is in qualitative agreement with theoretical results obtained in slow burning wave approximation
A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept
Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg
2017-08-01
This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.
The nuclear news interview. John Gilleland. On the traveling-wave reactor
International Nuclear Information System (INIS)
Michal, Rick; Blake, E. Michael
2010-01-01
The traveling-wave reactor, in concept, would use depleted uranium to produce vast amounts of energy without the need for enrichment plants and reprocessing facilities, which is why billionaire Bill Gates is interested in developing it. TerraPower LLC has been launched by the company Intellectual Ventures to design a traveling-wave nuclear reactor that could run for 100 years without refueling or removing spent fuel. So convincing is the science behind the concept that billionaire Bill Gates has gotten involved to help finance the project. Led by John Gilleland, TerraPower's chief executive officer, a team of researchers has run computer simulations and is doing engineering studies that have produced evidence that a wave of fission moving slowly through a fuel core could generate a billion watts of electricity continuously without refueling. Gilleland noted that these new reactors could reduce the amount of nuclear waste by using existing stockpiles of depleted uranium as fuel. ''By extracting centuries' worth of energy from waste at enrichment plants, these reactors would turn a social and financial liability into an asset,'' he said. Gilleland, a member of the American Nuclear Society, talked about the traveling-wave reactor with Nuclear News editors Rick Michal and E. Michael Blake. (orig.)
International Nuclear Information System (INIS)
Peter, W.; Faehl, R.J.
1983-01-01
A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed
Analytical studies on a traveling wave direct energy converter for D-{sup 3}He fusion
Energy Technology Data Exchange (ETDEWEB)
Syu, L.Y.; Tomita, Yukihiro; Momota, Hiromu [National Inst. for Fusion Science, Nagoya (Japan); Miley, G.H. [Univ. of Illinois, IL (United States)
1995-04-01
Analytical studies on a traveling wave direct energy converter (TWDEC) for D-{sup 3}He fueled fusion are carried out. The energy of 15 MeV carried by fusion protons is too high to handle with an electrostatic device. The TWDEC controls these high energy particles on the base of the principle of a Linac. This traveling wave method is discussed and the details of proton dynamics and excitation mechanism of electric power are clarified. The TWEDC consists of a modulator and decelerator. The applied traveling wave potential to the modulator modulates the velocity of fusion proton beams. This modulation makes a form of bunched protons at a down stream of the modulator. The decelerator has a set of meshed grids, each of which is connected to a transmission circuit. The phase velocity of excited wave on the transmission circuit is controlled the same way as that of decelerated protons. The kinetic energy 15 MeV of proton beams changes into an oscillating electromagnetic energy on the transmission circuit. This highly efficient direct energy converter of fusion protons brings a fusion reactor with a high plant efficiency. 4 refs., 4 figs.
Directory of Open Access Journals (Sweden)
Yingxiang Liu
Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.
A novel ultrasonic surface machining tool utilizing elastic traveling waves.
Ji, Ruinan; Jin, Jiamei; Wang, Liang; Zhang, Jianhui
2017-09-01
With the rapid development of modern industrial technology and high performance technology products, ultra-precision machining technology becomes increasingly important. However, joint clearance of kinematic pairs, lack of feeding accuracy and overlarge contact stress still limit the further improvement of ultra-precision machining technology. In this study, a novel surface machining method utilizing structural elastic waves was proposed, and a machining tool using the piezoelectric actuating principle was presented for verifying the proposed method. Two vibration modes with a phase shift of π/2 in both space and time domains are exited simultaneously in the elliptical motion of points on the structural surface. By means of adjusting driving signal parameters, such as frequency, voltage amplitude and phase shift, different machining performances could be achieved. The configuration and working vibration modes of the proposed machining tool were firstly calculated by the finite element method, and then the optimal working frequency of the machining tool prototype was determined by vibration characteristic experiments. At last, machining characteristic experiments were conducted to validate the proposed machining method. Experimental results showed that the minimum working contact force between the machining tool and workpiece was 1N, and the chipped depth of 1.93μm was achieved at the same contact force after machining for 5min. And at the conditions of the contact force of 6N, two driving voltages of 400V pp with a phase shift of π/2, and machining time of 5min, the prototype could achieve to machine the workpiece most efficiently and the roughness of the machined workpiece surface could be reached approximating 0.20μm. In conclusion, this proposed machining method could achieve a good quality machined surface with low residual stress and little damage by applying low contact force. Furthermore, it also had the advantage of no joint clearance error due to no
International Nuclear Information System (INIS)
Thode, L.E.; Kwan, T.J.T.
1984-01-01
Microwave generation from a virtual cathode system is investigated using two-dimensional particle-in-cell simulation. In the typical virtual cathode geometry, the electron beam diode is separated from the output waveguide by a ground plane which is a thin foil or screen. By lowering the diode impedance sufficiently, it is possible to form a virtual cathode in the waveguide region a short distance from the ground plane. In this configuration two mechanisms can lead to microwave generation: 1) electron bunching due to reflection between the real and virtual cathode and 2) electron bunching due to virtual cathode oscillation. Both mechanisms are typically present, but it appears possible to make one mechanism dominant by adjusting the output waveguide radius. Although such a configuration might generate 1-10 GW output, electron deposition into the ground plane, waveguide wall, and output window causes breakdown. To overcome these disadvantages, the authors have investigated a configuration with no ground plane coupled with the use of an inhomogeneous external magnetic field and waveguide wall
African Journals Online (AJOL)
homes very soon becomes a misplaced sentiment. However well planned a journey may be and how- ever important and tiring the attendances at meet- ings are, at some stage of every day the traveller finds himself in an hotel room and loneliness starts closing in from all four walls. No matter how luxu- rious the hotel may ...
Kyprianou, A.E.
2000-01-01
Recently Harris using probabilistic methods alone has given new proofs for the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation Following in this vein we outline alternative probabilistic proofs for wave speeds exceeding the critical minimal wave speed
Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G-expansion method
Directory of Open Access Journals (Sweden)
M.G. Hafez
2014-01-01
Full Text Available The novel (G′/G-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein–Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G′/G-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs in applied mathematics, mathematical physics and engineering.
Exact traveling wave solutions to the Klein-Gordon equation using the novel (G‧/G)-expansion method
Hafez, M. G.; Alam, Md. Nur; Akbar, M. Ali
The novel (G‧/G)-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein-Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G‧/G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs) in applied mathematics, mathematical physics and engineering.
International Nuclear Information System (INIS)
Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M
2014-01-01
In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
On new traveling wave solutions and conserved densities for the 2D Ricci flow model
Cimpoiasu, Rodica
2018-01-01
In this paper some travelling wave solutions and conservation laws for the 2D Ricci flow model in conformal gauge are investigated. A guideline able to classify the types of solutions according to the values of some parameters is provided by making use of two versions of the auxiliary equation method. The key feature of these approaches is to take a second order linear ordinary differential equation (ODE), respectively a first order nonlinear ODE with at most an eighth-degree nonlinear term as auxiliary equations. Conserved forms of the travelling wave equation for the Ricci flow are derived through three specific approaches, namely the variational approach, the Ibragimov method for nonlinear self-adjoint differential equations and the one based upon a relationship between conserved forms and their associated symmetries. The former two methods generated similar results, while the latter one has revealed new conserved densities.
Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.
A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995
Directory of Open Access Journals (Sweden)
K. Hocke
1996-09-01
Full Text Available Recent investigations of atmospheric gravity waves (AGW and travelling ionospheric disturbances (TID in the Earth\\'s thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS, the results are presented in the first part of the review. The second part describes the progress towards understanding the AGW/TID characteristics. It points to the AGW/TID relationship which has been recently revealed with the aid of model-data comparisons and by the application of new inversion techniques. We describe the morphology and climatology of gravity waves and their ionospheric manifestations, TIDs, from numerous new observations.
A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available Recent investigations of atmospheric gravity waves (AGW and travelling ionospheric disturbances (TID in the Earth's thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS, the results are presented in the first part of the review. The second part describes the progress towards understanding the AGW/TID characteristics. It points to the AGW/TID relationship which has been recently revealed with the aid of model-data comparisons and by the application of new inversion techniques. We describe the morphology and climatology of gravity waves and their ionospheric manifestations, TIDs, from numerous new observations.
Astronomy's New Messengers: A traveling exhibit on gravitational-wave physics
International Nuclear Information System (INIS)
Cavaglia, Marco; Hendry, Martin; Marka, Szabolcs; Reitze, David H; Riles, Keith
2010-01-01
The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.
Numerical studies of current generation by radio-frequency traveling waves
International Nuclear Information System (INIS)
Karney, C.F.F.; Fisch, N.J.
1979-01-01
By injecting radio-frequency traveling waves into a tokamak, continuous toroidal electron currents may be generated. This process is studied by numerically solving the two-dimensional Fokker-Planck equation with an added quasilinear term. The results are compared with the one-dimensional analytic treatment of Fisch, which predicted a reduced plasma resistivity when high-phase-velocity waves are employed. It is shown here that two-dimensional velocity space effects, while retaining the predicted scaling, further reduce the ratio of power dissipated to current generated by about 40%. These effects enhance the attractiveness of steady-state tokamak reactors utilizing this method of current generation
Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System
International Nuclear Information System (INIS)
Souleymanou, Abbagari; Kuetche, Victor K.; Bouetou, Thomas B.; Kofane, Timoleon C.
2012-01-01
In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys. B 18 (2009) 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta's computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied. (general)
International Nuclear Information System (INIS)
Gao, J.
1993-09-01
Starting from a single resonant rf cavity, disk-loaded travelling (forward or backward) wave accelerating structures' properties are determined by rather simple analytical formulae. They include the coupling coefficient K in the dispersion relation, group velocity v g , shunt impedance R, wake potential W (longitudinal and transverse), the coupling coefficient β of the coupler cavity and the coupler cavity axis shift δ r which is introduced to compensate the asymmetry caused by the coupling aperture. (author) 12 refs., 18 figs
Stress analysis applications to service failures of the traveling wave tubes
Yeh, H.-Y.
By utilizing the mathematical analogy between the electrostatic fields and the elastic stress fields, the electrostatic stresses in high voltage electronic devices such as Traveling Wave Tubes (TWT) can be obtained from finite element technique. A new point of view about the vacuum electrical breakdown from the theory of elastic stress concentration has been proposed. The elastic stress concentration factors may be used as a good reference figure for TWT design works.
Generation and growth rates of nonlinear distortions in a traveling wave tube.
Wöhlbier, John G; Dobson, Ian; Booske, And John H
2002-11-01
The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results.
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.
2015-01-01
A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.
Directory of Open Access Journals (Sweden)
Haci Mehmet Baskonus
2016-07-01
Full Text Available In this paper, we apply the sine-Gordon expansion method which is one of the powerful methods to the generalized-Zakharov equation with complex structure. This algorithm yields new complex hyperbolic function solutions to the generalized-Zakharov equation with complex structure. Wolfram Mathematica 9 has been used throughout the paper for plotting two- and three-dimensional surface of travelling wave solutions obtained.
A travelling wave model of ripple formation on ion bombarded surfaces
Energy Technology Data Exchange (ETDEWEB)
Numazawa, Satoshi, E-mail: s.numazawa@hzdr.de; Smith, Roger, E-mail: R.Smith@lboro.ac.uk
2013-05-15
We present a mathematical model describing surface modification resulting from atomic motion after ion bombardment. The model considers only the defect production and recovery process induced by the local atom rearrangement and is essentially independent of surface topography changes formed by both sputtering and surface diffusion. A stable analytic, travelling wave solution is presented for a specific incident angle, which agrees with experimental observation excellently.
2D Traveling Wave Driven Piezoelectric Plate Robot for Planar Motion
Hariri , Hassan; Bernard , Yves; Razek , Adel
2018-01-01
International audience; —In this paper, a concept design of a novel Traveling Wave Driven Piezoelectric Plate Robot (TWDPPR) for planar motion is presented. The TWDPPR consists of an aluminium plate structure, with four non-collocated piezoelectric patches bonded on its surface. A two dimensions modeling of non-collocated piezoelectric patches bonded on thin structures developed and validated in previous work is used in this paper to model the TWDPPR based on the " two modes excitation " meth...
Da-Quan, Xian
2010-08-01
In this paper, the new idea of a combination of Lie group method and homoclinic test technique is first proposed to seek non-traveling wave solutions of (2 + 1)-dimensional breaking soliton equation. The system is reduced to some (1 + 1)-dimensional nonlinear equations by applying the Lie group method and solves reduced equation with homoclinic test technique. Based on this idea and with the aid of symbolic computation, some new explicit solutions of similar systems can be obtained.
Travelling wave solutions for some time-delayed equations through factorizations
International Nuclear Information System (INIS)
Fahmy, E.S.
2008-01-01
In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases
Generation and growth rates of nonlinear distortions in a traveling wave tube
International Nuclear Information System (INIS)
Woehlbier, John G.; Dobson, Ian; Booske, John H.
2002-01-01
The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results
Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz
International Nuclear Information System (INIS)
Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.
1997-05-01
A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum
International Nuclear Information System (INIS)
Yang Jinghe; Li Jinhai; Li Chunguang
2014-01-01
Disk-loaded waveguide traveling wave structure (TWS), which is widely used in scientific research and industry, is a vital accelerating structure in electron linear accelerator. The power efficiency is an important parameter for designing TWS, which greatly effects the expenses for the fabrication and commercial running. The key parameters related with power efficiency were studied for TWS optimization. The result was proved by experiment result, and it shows some help for accelerator engineering. (authors)
Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations
International Nuclear Information System (INIS)
Xu Guiqiong; Li Zhibin
2005-01-01
In this paper, an interesting fact is found that the auxiliary equation method is also applicable to a coupled system of two different equations involving both even-order and odd-order partial derivative terms. Furthermore, singular travelling wave solutions can also be obtained by considering other types of exact solutions of auxiliary equation. The Whitham-Broer-Kaup and the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations are chosen as examples to illustrate the effectiveness of the auxiliary equation method
Ming, Y; Peiwen, Q
2001-03-01
The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.
Alexander, David M; Trengove, Chris; van Leeuwen, Cees
2015-11-01
An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.
Numerical study of radial stepwise fuel load reshuffling traveling wave reactor
International Nuclear Information System (INIS)
Zhang Dalin; Zheng Meiyin; Tian Wenxi; Qiu Suizheng; Su Guanghui
2015-01-01
Traveling wave reactor is a new conceptual fast breeder reactor, which can adopt natural uranium, depleted uranium and thorium directly to realize the self sustainable breeding and burning to achieve very high fuel utilization fraction. Based on the mechanism of traveling wave reactor, a concept of radial stepwise fuel load reshuffling traveling wave reactor was proposed for realistic application. It was combined with the typical design of sodium-cooled fast reactors, with which the asymptotic characteristics of the inwards stepwise fuel load reshuffling were studied numerically in two-dimension. The calculated results show that the asymptotic k eff parabolically varies with the reshuffling cycle length, while the burnup increases linearly. The highest burnup satisfying the reactor critical condition is 38%. The power peak shifts from the fuel discharging zone (core centre) to the fuel uploading zone (core periphery) and correspondingly the power peaking factor decreases along with the reshuffling cycle length. In addition, at the high burnup case the axial power distribution close to the core centre displays the M-shaped deformation. (authors)
Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response
International Nuclear Information System (INIS)
Lee, T.H.; Charman, C.M.
1981-01-01
The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)
Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas
Directory of Open Access Journals (Sweden)
G. M. Webb
2008-02-01
Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, P_{y}^{(d} and P_{z}^{(d}, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case P_{y}^{(d}=P_{z}^{(d}=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component u_{x} of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components u_{jy} and u_{jz} (j=e, p of the waves exhibit complex, rosette type patterns over several periods for u_{x}. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.
Uni-directional waves over slowly varying bottom, part II: Deformation of travelling waves
Pudjaprasetya, S.R.; Pudjaprasetya, S.R.; van Groesen, Embrecht W.C.
1996-01-01
A new Korteweg-de Vries type of equation for uni-directional waves over slowly varying bottom has been derived in Part I. The equation retains the Hamiltonian structure of the underlying complete set of equations for surface waves. For flat bottom it reduces to the standard Korteweg-de Vries
Bassiri, Sassan; Hajj, George A.
1993-01-01
Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.
Multi-directional thrusting using oppositely traveling waves in knifefish swimming
Curet, Oscar; Maciver, Malcolm; Patankar, Neelesh
2009-11-01
Apteronotus albifrons, also known as the black ghost knifefish, generate a weak electric field for omnidirectional sensing. This is matched by an extraordinary multi-directional swimming ability that is achieved by undulating a ribbon-like anal fin. Forward or backward motion is generated by a traveling wave on the ribbon fin. We have discovered that, for hovering and vertical swimming, the knifefish use two oppositely traveling waves on the ribbon fin. To understand the hydrodynamic mechanism of hovering and heave we performed fully resolved simulations of self-propulsion of the knifefish. We used kinematic inputs based on experimental observations. We found that the counter propagating waves generate two opposite streamwise jets along the bottom edge of the ribbon fin. These two jets meet approximately at the mid-section along the fin length and are deflected downward. The resultant downward momentum imparted to the fluid creates an upward force on the fish body which can be used for hovering or vertical swimming. There is a vortex ring pair of opposite directions at the middle of the fin that is associated with this fluid flow. Further insight into how the knifefish control heave and hovering was obtained from the measurements of force generated by a robotic ribbon fin for different wave parameters.
Energy Technology Data Exchange (ETDEWEB)
Xie, Wenqiu; He, Fangming [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zicheng; Luo, Jirun; Zhao, Ding; Liu, Qinglun [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-04-15
Based on a rectilinear sheet electron beam propagating through the tunnel of a staggered double-grating arrays waveguide (SDGAW) slow-wave structure (SWS), a three dimensional field theory for describing the modes and the beam-wave interaction is presented, in which the higher order terms inside the grooves are retained. The fields' distribution and the conductivity losses are also calculated utilizing the theoretical model. With the optimized parameters of the SWS and the electron beam, a 1 THz SDGAW Cerenkov traveling wave amplifier may obtain a moderate net gain (the peak gain is 12.7 dB/cm) and an ultra 3 dB wideband (0.19 THz) considering the serious Ohmic losses. The theoretical results have been compared with those calculated by 3D HFSS code and CST STUDIO particle-in-cell simulations.
Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction
Directory of Open Access Journals (Sweden)
Lin JianJhong
2009-01-01
Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.
Spatial quantum correlations in the fluorescence of traveling-wave second-harmonic generation
International Nuclear Information System (INIS)
Scotto, Pierre
2003-01-01
We investigate theoretically the spatial quantum correlations of the light produced by spontaneous emission in type-I second-harmonic generation in the traveling-wave configuration. It is first shown that spontaneous emission occurs at both fundamental and second-harmonic frequency. Considering the quantum fluctuations of the intensities collected in symmetrical parts of the far-field plane, nonclassical correlations below the shot noise are predicted not only at fundamental frequency, but also at second-harmonic frequency. The latter cannot be traced back to any twin-photon emission mechanism, but are generated by a secondary process acting on twin photons. This mechanism also creates correlations between fundamental and second-harmonic field, at a given transverse wave number, and at opposite wave numbers. The analysis of a simplified few-mode model, on a quantum level, provides a good qualitative understanding of these correlations
International Nuclear Information System (INIS)
Witte, N.S.
1997-01-01
The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed
SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS
Wang, Haiyan; Castillo-Chavez, Carlos
2014-01-01
The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868
Body wave travel times and amplitudes for present-day seismic model of Mars
Raevskiy, Sergey; Gudkova, Tamara
At the moment Martian interior structure models are constrained by the satellite observational data (the mass, the moment of inertia factor, the Love number k _{2}) (Konopliv et al., 2011) and high pressure experimental data (Bertka and Fei, 1997). Seismological observations could provide unparalleled capability for studying Martian interiors. Future missions include seismic experiments on Mars (Lognonné et al., 2012). The main instrument for these seismic experiments is a broadband seismometer (Robert et al., 2012). When seismic measurements are not yet available, physically consistent interior models, characterized by properties of relevant minerals, make possible to study of the seismic response of the planet. \\To estimate travel times for direct P, S, core reflected PcP, ScS and core refracted PKP body waves as a function of epicentral distance and hypocentral depth, as well as their amplitudes at the surface for a given marsquake, software product was developed in MatLab, as it encompasses many plotting routines that plot resulting travel times and ray paths. The computational results have been compared with the program TTBox (Knapmeyer, 2004). The code computes seismic ray paths and travel times for a one-dimentional spherical interior model (density and seismic velocities are functions of a radius only). Calculations of travel times tables for direct P, S, core reflected PcP, ScS and core refracted PKP waves and their amplitudes are carried out for a trial seismic model of Mars M14_3 from (Zharkov et al., 2009): the core radius is 1800 km, the thickness of the crust is 50 km. Direct and core reflected P and S waves are recorded to a maximum epicentral distance equal to about 100(°) , and PKP arrivals can be detected for epicental distances larger than 150(°) . The shadow zone is getting wider in comparison with previous results (Knapmeyer, 2010), as the liquid core radius of the seismic model under consideration is larger. Based on the estimates of
Expression for time travel based on diffusive wave theory: applicability and considerations
Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.
2017-12-01
Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the
International Nuclear Information System (INIS)
Liu Yang; Wei Yan-Yu; Xu Jin; Yin Hai-Rong; Yue Ling-Na; Gong Yu-Bin; Wang Wen-Xiang
2012-01-01
An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved. (interdisciplinary physics and related areas of science and technology)
Physical design of 9 MeV travelling wave electron linac accelerating tube
International Nuclear Information System (INIS)
Chen Huaibi; Ding Xiaodong; Lin Yuzheng
2000-01-01
An accelerating tube is described. It is a part of an accelerator used for inspection of vehicle cargoes in rail cars, trucks, shipping containers, or airplanes in customs. A klystron with power of 4 MW and frequency of 2856 MHz will be applied to supply microwave power. The electrons can be accelerated by a travelling wave in the accelerating tube about 220 cm long, with a buncher whose capture efficiency is more than 80%. Energy of electrons after travelling through the tube can reach 9 MeV (pulse current intensity 170 mA) or 6 MeV (pulse current intensity 300 mA). Physical design of the accelerating tube, including the calculations of longitudinal particle dynamics, structure parameter and working character is carried out
Phase defects and spatiotemporal disorder in traveling-wave convection patterns
International Nuclear Information System (INIS)
La Porta, A.; Surko, C.M.
1997-01-01
Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral measures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic change in the topological structure of the order parameter. Specific arrangements of defects are found to be associated with the elements of traveling-wave patterns, and the net charge and total number of defects is introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumulation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of the patterns is closely related to the apparent defect-defect interactions. copyright 1997 The American Physical Society
AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION
International Nuclear Information System (INIS)
ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.
2002-01-01
Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined
Control of wake vortex street behind a square cylinder using surface travelling waves
Dash, Sunil Manohar; Triantafyllou, Michael S.; Alvarado, Pablo Valdivia Y.
2017-11-01
A novel travelling wave (TW) flow separation control strategy is developed to suppress the adverse downstream wake effects on a square cylinder of side, L, at low Reynolds number (Re =100). Our 2D numerical simulations suggest that when the downstream cylinder surface carries appropriately designed TWs, in the presence of an incoming flow of velocity U, a series of small scale vortices are formed in the trough regions of TWs. These small vortices inhibit momentum transfer between the thin fluid layer adjacent to the wall and the freestream. Consequently, the von-Karman vortex street behind the cylinder is suppressed and more than 70% reduction in drag force and complete elimination of fluctuating lift force is observed. The optimum TW control mechanism is determined by conducting a series of numerical simulations with various wave speeds (c) and wave amplitudes (A) for a fixed wave number (N =L/ λ = 4, where λ is the wavelength). Total suppression of the von-Karman vortex street is achieved when c/U is greater than 5, whereas only limited suppression of wake effects is seen at lesser c/U. The effect of wave amplitude is insignificant in the range of A/L =0.02 to 0.03. Energy efficiency to generate TW is also investigated in this study.
Travel at low energetic cost by swimming and wave-riding bottlenose dolphins.
Williams, T M; Friedl, W A; Fong, M L; Yamada, R M; Sedivy, P; Haun, J E
1992-02-27
Over the past 50 years there has been much speculation about the energetic cost of swimming and wave-riding by dolphins. When aligned properly in front of the bow of moving ships in the stern wake of small boats, on wind waves, and even in the wake of larger cetaceans, the animals appear to move effortlessly through the water without the benefit of propulsive strokes by the flukes. Theoretically, body streamlining as well as other anatomical and behavioural adaptations contribute to low transport costs in these animals. The economy of movement permitted by wave-riding has been perceived as an energetic advantage for the swimming dolphin, but has been hard to prove in the absence of physiological data for exercising cetaceans. Here we determine the aerobic and anaerobic costs of swimming and wave-riding in bottlenose dolphins and find that the minimum cost of transport for swimming dolphins is 1.29 +/- 0.05 J kg-1 m-1 at a cruising speed of 2.1 m s-1. Aerobic costs are nearly twice as high for swimming seals and sea lions, and 8-12 times higher for human swimmers. Wave-riding by dolphins provides additional benefits in terms of speed. The results indicate that behavioural, physiological and morphological factors make swimming an economical form of high-speed travel for dolphins.
Non-cooperative Fisher–KPP systems: traveling waves and long-time behavior
Girardin, Léo
2018-01-01
This paper is concerned with non-cooperative parabolic reaction–diffusion systems which share structural similarities with the scalar Fisher–KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.
Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model
Autry, E. A.; Bayliss, A.; Volpert, V. A.
2017-08-01
We consider an analytically tractable switching model that is a simplification of a nonlocal, nonlinear reaction-diffusion model of population growth where we take the source term to be piecewise linear. The form of this source term allows us to consider both the monostable and bistable versions of the problem. By transforming to a traveling frame and choosing specific kernel functions, we are able to reduce the problem to a system of algebraic equations. We construct solutions and examine the propagation speed and monotonicity of the resulting waves.
Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard
2006-12-01
I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.
CONDOR simulation of an 11.4-GHz traveling wave output cavity
International Nuclear Information System (INIS)
Goren, Y.; Yu, D.
1991-01-01
The CONDOR code is used to simulate the cold test and the beam-induced microwave amplification of an 11.4-GHz, six-cell, disk-loaded, traveling wave cavity. Cold test simulation results are in agreement with a modified Slater's theory. Power extraction at the output port is calculated by launching a train of Gaussian electron bunches through the structure. Results are consistent with recent relativistic klystron experiments using a similar TW output cavity. It is further shown that, depending on operating beam parameters, the power extraction efficiency can be maximized by modification of various cells in the TW structure
Simulation of TunneLadder Traveling-Wave Tube Input/Output Coupler Characteristics Using MAFIA
Kory, Carol L.; Qureshi, A. Haq
1996-01-01
RF input/output coupler characteristics for the TunneLadder traveling-wave tube have been calculated using the three-dimensional computer code, MAFIA and compared to experimental data with good agreement. Theory behind coupling of the TunneLadder interaction circuit to input and output waveguides is presented and VSWR data is calculated for variations on principal coupler dimensions to provide insight into manufacturing tolerances necessary for acceptable performance. Accuracy of results using MAFIA demonstrates how experimental hardware testing of three-dimensional coupler designs can be reduced.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es
2008-12-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
Analytical theory of frequency-multiplying gyro-traveling-wave-tubes
International Nuclear Information System (INIS)
Nusinovich, G.S.; Chen, W.; Granatstein, V.L.
2001-01-01
The theory is developed which describes analytically the gain and bandwidth in frequency-multiplying gyro-traveling-wave-tubes. In this theory the input waveguide is considered in the small-signal approximation. Then, in the drift region separating the input and output waveguides, the electron ballistic bunching evolves which causes the appearance in the electron current density of the harmonics of the signal frequency. The excitation of the output waveguide by one of these harmonics is considered in a specified current approximation. This makes the analytical study of a large-signal operation possible. The theory is illustrated by using it to analyze the performance of an existing experimental tube
Itoh, Motoyuki; Tamano, Shinji; Yokota, Kazuhiko; Taniguchi, Shinya
The effect of a spanwise traveling-wave motion on a zero-pressure-gradient turbulent boundary layer over a flexible sheet was investigated at low Reynolds numbers using a single hot-wire anemometer for turbulence statistics and two laser displacement sensors for displacements of the flexible sheet. It was found that the log-law region of the mean velocity on the flexible sheet was slightly narrower compared with a rigid wall. The energy spectra of streamwise velocity fluctuations on the flexible sheet undergoing the spanwise traveling-wave motion were smaller in a region of frequency which corresponded to the bursting frequency in the canonical wall turbulence. This indicates that the bursting event near the flexible sheet was directly affected by the surface wave motion. It was revealed that a drag reduction of up to 7.5% could be obtained by the spanwise traveling-wave motion, estimating the friction coefficients through the growth rate of the momentum thickness.
A computational role for bistability and traveling waves in motor cortex
Directory of Open Access Journals (Sweden)
Stewart eHeitmann
2012-09-01
Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.
Standing and travelling waves in a spherical brain model: The Nunez model revisited
Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.
2017-06-01
The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.
Bandwidth broadening effect in a traveling-wave-tube amplifier by using impulse electron beam
International Nuclear Information System (INIS)
Jung, Sang Wook; Choi, Jin Joo; Kim, Seon Joo
2012-01-01
This paper reports on a wideband amplification mechanism involving an impulse electron beam. To prove broadband amplification with the impulse beam, we perform 3-dimensional particle-in-cell (3D PIC) code simulation. An impulse electron beam with a pulse width of 1 ns with electric potential 17.2 kV is injected into an interaction circuit of a coupled-cavity traveling-wave-tube (CCTWT) driven by a continuous-wave (CW) signal of 29.1 GHz. The resulting output bandwidth was 2.96%, and the peak output power of 713 W was the same as that obtained with CW operation at a single frequency. The simulation yielded very similar results with ultra short impulse signal from the simulation.
A near-quantum-limited Josephson traveling-wave parametric amplifier.
Macklin, C; O'Brien, K; Hover, D; Schwartz, M E; Bolkhovsky, V; Zhang, X; Oliver, W D; Siddiqi, I
2015-10-16
Detecting single-photon level signals—carriers of both classical and quantum information—is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics. Copyright © 2015, American Association for the Advancement of Science.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an
International Nuclear Information System (INIS)
Bani-Hani, M A; Karami, M A
2015-01-01
This paper presents vibration analysis and structural optimization of a swimming–morphing structure. The swimming of the structure is achieved by utilization of piezoelectric patches to generate traveling waves. The third mode shape of the structure in the longitudinal direction resembles the body waveform of a swimming eel. After swimming to its destination, the morphing structure changes shape from an open box to a cube using shape memory alloys (SMAs). The SMAs used for the configuration change of the box robot cannot be used for swimming since they fail to operate at high frequencies. Piezoelectric patches are actuated at the third natural frequency of the structure. We optimize the thickness of the panels and the stiffness of the springs at the joints to generate swimming waveforms that most closely resemble the body waveform of an eel. The traveling wave is generated using two piezoelectric sets of patches bonded to the first and last segments of the beams in the longitudinal direction. Excitation of the piezoelectric results in coupled system dynamics equations that can be translated into the generation of waves. Theoretical analysis based on the distributed parameter model is conducted in this paper. A scalar measure of the traveling to standing wave ratio is introduced using a 2-dimensional Fourier transform (2D-FFT) of the body deformation waveform. An optimization algorithm based on tuning the flexural transverse wave is established to obtain a higher traveling to standing wave ratio. The results are then compared to common methods in the literature for assessment of standing to traveling wave ratios. The analytical models are verified by the close agreement between the traveling waves predicted by the model and those measured in the experiments. (paper)
Cloud-based design of high average power traveling wave linacs
Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.
2017-12-01
The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.
Deceleration in a traveling wave direct energy converter for advanced fusion
Energy Technology Data Exchange (ETDEWEB)
Takeno, H. [Department of Electrical and Electronic Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)], E-mail: takeno@eedept.kobe-u.ac.jp; Yamamoto, T.; Takada, K.; Omoya, D.; Yasaka, Y. [Department of Electrical and Electronic Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)
2008-12-15
A traveling wave direct energy converter (TWDEC) is desirable for the direct energy conversion of fast protons produced by deuterium-helium-3 fusion, since the proton energy is so great that conventional electrostatic converters cannot be used. This paper presents the results of high-energy TWDEC simulation experiments as a follow-up to the previously reported proof-of-principle experiments for low energy. As the beam energy increases, the efficiency of energy recovery is expected to improve, and since the variation in the beam velocity becomes large, its effect cannot be neglected. The decelerator electrodes intervals were designed to take into account the velocity matching between the decelerated beam and the traveling wave. The variable intervals also dictate the small size of the hole in the electrode through which the beam passes. A more appropriate hole size results in deceleration efficiency over 20% for a unit wavelength. The effectiveness of the matching design was confirmed by the dependence of deceleration efficiency on the beam energy. The experimental scaling of the deceleration efficiency for a unit wavelength was extended to approach the level of a commercial-scale device.
Directory of Open Access Journals (Sweden)
Koichi Narahara
2012-01-01
Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.
Watt-Meyer, O.; Kushner, P. J.
2015-12-01
The winter season over North America during 2013/14 was dominated by a persistent ridge-trough that brought warm and dry conditions to the southwestern U.S., and markedly cold temperatures to central and eastern North America [Wang et al., 2014; Hartmann, 2015]. In addition, several cold air outbreaks occurred during the winter season, the strongest of which was around 7 January 2014 and led to minimum daily temperature records being set at many weather stations including Atlanta, Austin, Chicago and New York [Screen et al., in press]. This study uses a novel decomposition of wave variability into standing and travelling components [Watt-Meyer and Kushner, 2015] to diagnose the anomalous circulation of the 2013/14 winter season. This spectral decomposition is an improvement on previous methods because it explicitly accounts for the covariance between standing and travelling waves, and because the real-space components of the signal can be easily reconstructed. An index representing the ridge-trough dipole is computed using mid-tropospheric heights and shown to be well correlated with surface temperatures over central and eastern North America. The contributions to this dipole index from standing waves, westward travelling waves, and eastward travelling waves are calculated. The analysis demonstrates that the cold air outbreak of 7 January 2014 was driven by a synoptic wave of record breaking amplitude intensifying a persistent background amplification of the typical ridge-trough structure seen during North American winter.
National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...
Harko, Tiberiu; Mak, Man Kwong
2015-02-01
We consider quasi-stationary (travelling wave type) solutions to a nonlinear reaction-diffusion equation with arbitrary, autonomous coefficients, describing the evolution of glioblastomas, aggressive primary brain tumors that are characterized by extensive infiltration into the brain and are highly resistant to treatment. The second order nonlinear equation describing the glioblastoma growth through travelling waves can be reduced to a first order Abel type equation. By using the integrability conditions for the Abel equation several classes of exact travelling wave solutions of the general reaction-diffusion equation that describes glioblastoma growth are obtained, corresponding to different forms of the product of the diffusion and reaction functions. The solutions are obtained by using the Chiellini lemma and the Lemke transformation, respectively, and the corresponding equations represent generalizations of the classical Fisher-Kolmogorov equation. The biological implications of two classes of solutions are also investigated by using both numerical and semi-analytical methods for realistic values of the biological parameters.
International Nuclear Information System (INIS)
Santos, Allan Xavier dos
2010-01-01
During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)
Energy Technology Data Exchange (ETDEWEB)
Takeno, Hormasa; Yamamoto, Takayoshi; Takada, Kousuke; Yasaka, Yasuyoshi [Kobe Univ. (Japan). Dept. of Electrical and Electronics Engineering
2007-07-01
Advanced fusion is attractive in the view point of utilization of high efficiency direct energy conversion from fusion produced ions. Deuterium-helium-3 reaction is the most possible, however, the energy of created fast proton is so enormous that conventional electro-static converters cannot be applied. Use of a traveling wave direct energy converter (TWDEC), the principle of which was inverse process of a linear accelerator, was proposed for recovering energy of the fast protons. In order to realize the TWDEC, the authors are continuing experimental study by employing a small-scale simulator. A TWDEC consists of a modulator and a decelerator. Fast proton beam extracted from a reactor is introduced in the modulator where radio frequency (RF) electrostatic field modulate the beam velocity, and hence, the protons are bunched and density-modulated in the downstream. The density-modulated protons flow into the decelerator where a number of electrodes connected to a transmission circuit are axially aligned. The flowing protons induce RF current which creates RF traveling voltage on the electrodes. The RF traveling field between aligned electrodes decelerates the protons, thus their energy is recovered into RF power. In this paper, deceleration process of TWDEC is experimentally examined. In our experimental simulator, because of the small beam current, the induced potential, i.e. the deceleration field is so weak that the beam cannot be decelerated. Thus, we examined the process by dividing into two: one was induction of the deceleration field by the modulated beam, which was called as passive decelerator. The other was energy recovery through interaction between the deceleration field and the modulated beam. In this latter experiment, the deceleration field was supplied externally, and we called this as active decelerator. As for the active decelerator mode, we performed higher beam energy experiment than previous one. As the beam energy increases, the divergence of
Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band
International Nuclear Information System (INIS)
Yeh, Y. S.; Chen, C. H.; Yang, S. J.; Lai, C. H.; Lin, T. Y.; Lo, Y. C.; Hong, J. W.; Hung, C. L.; Chang, T. H.
2012-01-01
Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) allow for magnetic field reduction and frequency multiplication. To avoid absolute instabilities, this work proposes a W-band harmonic multiplying gyro-TWA operating at low-order modes. By amplifying a fundamental harmonic TE 11 drive wave, the second harmonic component of the beam current initiates a TE 21 wave to be amplified. Absolute instabilities in the gyro-TWA are suppressed by shortening the interaction circuit and increasing wall losses. Simulation results reveal that compared with Ka-band gyro-TWTs, the lower wall losses effectively suppress absolute instabilities in the W-band gyro-TWA. However, a global reflective oscillation occurs as the wall losses decrease. Increasing the length or resistivity of the lossy section can reduce the feedback of the oscillation to stabilize the amplifier. The W-band harmonic multiplying gyro-TWA is predicted to yield a peak output power of 111 kW at 98 GHz with an efficiency of 25%, a saturated gain of 26 dB, and a bandwidth of 1.6 GHz for a 60 kV, 7.5 A electron beam with an axial velocity spread of 8%.
International Nuclear Information System (INIS)
Ginzburg, N. S.; Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.
2015-01-01
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam
Basic Experimental Simulation of a Traveling Wave Direct Energy Converter for a D-3He Fusion Reactor
Takeno, Hiromasa; Ikeda, Youichi; Yamada, Takashi; Noda, Kazuyuki; Yasaka, Yasuyoshi
2000-09-01
We simulated a traveling wave direct energy converter for application in a D-3He fusion reactor. The deceleration of a simulated ion beam was studied, and the dependence of the efficiency of the decelerator on its length was examined. The effectiveness of spatial variation in the phase velocity of the traveling wave was demonstrated experimentally. Optimization of the structure of the decelerator is discussed with the aid of numerical simulations. By employing the proper decelerator structure, the efficiency per unit length of about 0.2 with the normalized decelerator length of about 2.5 is expected.
International Nuclear Information System (INIS)
Takeno, Hiromasa; Ikeda, Youichi; Yamada, Takashi; Noda, Kazuyuki; Yasaka, Yasuyoshi
2000-01-01
We simulated a traveling wave direct energy converter for application in a D- 3 He fusion reactor. The deceleration of a simulated ion beam was studied, and the dependence of the efficiency of the decelerator on its length was examined. The effectiveness of spatial variation in the phase velocity of the traveling wave was demonstrated experimentally. Optimization of the structure of the decelerator is discussed with the aid of numerical simulations. By employing the proper decelerator structure, the efficiency per unit length of about 0.2 with the normalized decelerator length of about 2.5 is expected. (author)
Directory of Open Access Journals (Sweden)
Heng Wang
2016-01-01
Full Text Available By using the method of dynamical system, the exact travelling wave solutions of the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms are studied. Based on this method, all phase portraits of the system in the parametric space are given with the aid of the Maple software. All possible bounded travelling wave solutions, such as solitary wave solutions, kink and anti-kink wave solutions, and periodic travelling wave solutions, are obtained, respectively. The results presented in this paper improve the related previous conclusions.
Invariant manifolds and the stability of traveling waves in scalar viscous conservation laws
Beck, Margaret; Wayne, C. Eugene
The stability of traveling wave solutions of scalar viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coefficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be applied to study the evolution of these components, allowing for the construction of invariant manifolds and the determination of their temporal decay rate. The large time evolution of the near-field component is shown to be governed by that of the far-field components, thus giving it the same temporal decay rate. We also give a discussion of the relationship between this geometric approach and previous results, which demonstrate that the decay rate of perturbations can be increased by requiring that initial data lie in appropriate algebraically weighted spaces.
Invariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws
Beck, M
2006-01-01
The stability of traveling wave solutions of scalar, viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coeficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be applied to study the evolution of these components, allowing for the construction of invariant manifolds and the determination of their temporal decay rate. The large time evolution of the near-field component is shown to be governed by that of the far-field components, thus giving it the same temporal decay rate. We also give a discussion of the relationship between this geometric approach and previous results, which demonstrate that the decay rate of perturbations can be increased by requiring that initial data lie in appropriate algebraically weighted spaces.
Directory of Open Access Journals (Sweden)
Eric Dumonteil
2017-09-01
Full Text Available The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations. We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.
Traveling wave-like Fabry-Perot resonator-based add-drop filters.
Huang, Qingzhong; Liu, Qiang; Xia, Jinsong
2017-12-15
We have proposed and studied a novel channel add-drop filter (ADF) based on a single Fabry-Perot resonator. The resonator consists of two mode-conversion Bragg grating reflectors separated by a wide waveguide that laterally coupled to two narrow waveguides. It behaves like a traveling-wave resonator where fields are coupled to the buses in one direction. Compact and narrowband ADFs are achieved with dropping efficiencies higher than 95%, as shown by the three-dimensional finite-difference time-domain simulations. In addition, the proposed device is applied to realize an eight-channel add-drop multiplexer in the C-band by cascading the ADFs with adjusted channel wavelengths.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
Development of an engineering model traveling wave tube amplifier for space communication systems
Eallonardo, C. M.; Songli, J.; Basiulis, A.
1972-01-01
A design has been made of a 100 watt traveling-wave tube amplifier for use in space communication applications. The features of very high overall efficiency and heat rejection of waste heat at low thermal densities were predominant in the design concept. The design concept was proven by building a series of tubes, operating at efficiencies up to 50%. These tubes utilized heat pipe cooling and heat distribution such that 150 watts of waste heat was rejected at a density of less than 1.5 watts per square inch. A power supply to convert a 28 volt primary line of the needs of the TWT was built and operated at 85% efficiency.
Engineering feasibility of a grid mesh structure in a traveling wave direct energy converter
Energy Technology Data Exchange (ETDEWEB)
Shu, Liyong; Tomita, Yukihiro [National Inst. for Fusion Science, Nagoya (Japan)
1996-05-01
In D-{sup 3}He/FRC fusion reactor such as `ARTEMIS-L`, a traveling wave direct energy converter (TWDEC) was proposed to recover the energy of fusion protons of 15 MeV. In this paper, engineering feasibility of grid meshes in TWDEC is studied. The fusion protons are guided from burning plasma to the direct energy converter, where the incident power is as high as 3.5 MW/m{sup 2}. In order to remove incident heat to grid meshes, a radiative cooling without liquid flow is ineffective because of the high heat flux. The method by the flow of the pressurized water of 15 MPa with a flow velocity of higher than 10 m/sec is feasible to remove the incident heat. However, it is necessary to exchange grid meshes attributed to the irradiation effect, such as displacements of atoms, several times during a lifetime of a reactor. (author).
Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models
Lewis, Mark A.
2012-08-15
How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.
Travelling-wave amplitudes as solutions of the phase-field crystal equation
Nizovtseva, I. G.; Galenko, P. K.
2018-01-01
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
International Nuclear Information System (INIS)
Masopust, R.
1983-01-01
The paper presents only the results related to the first part of the research program directed toward the development of engineering methods and computer programs for assessing the effects of travelling seismic waves on the response of nuclear power plant civil structures. Phenomena related to travelling seismic waves are briefly summarized on the basis of many foregoing studies. Two basic approximate methods - direct and indirect - currently being used in a dynamic analysis and taking structure-soil interaction and travelling wave effects into account are discussed as well. In the second part of the paper, the rigid or hybrid finite element model and method are proposed for this purpose. Both the structure and the soil are modelled not only by means of conventional deformable finite elements, but as well considerably using rigid finite elements in a single system. The hybrid finite element method proposed herein is basically the direct method which can efficiently simulate structure-soil interaction and travelling wave effects. The corresponding single finite element system has three differently discretizated subsystems: the structure, the near-field and the far-field of the soil. An accurate using of the rigid finite elements in the structure and in the far-field of the soil permits to reduce essentially the total number of degrees of freedom for all the system which is the most important advantage in comparison with the classical finite element modelling. (orig./HP)
Directory of Open Access Journals (Sweden)
Shahnam Javadi
2013-07-01
Full Text Available In this paper, the $(G'/G$-expansion method is applied to solve a biological reaction-convection-diffusion model arising in mathematical biology. Exact traveling wave solutions are obtained by this method. This scheme can be applied to a wide class of nonlinear partial differential equations.
Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...
Indian Academy of Sciences (India)
We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...
Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...
Indian Academy of Sciences (India)
2016-10-11
Oct 11, 2016 ... Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications. NITA S KULKARNI. ∗. , RINKY DHINGRA and VINIT KUMAR. Accelerator and Beam Physics Laboratory, Materials and Advanced Accelerator Sciences Division,. Raja Ramanna Centre for Advanced Technology, ...
Manning, Robert M.
1993-01-01
The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.
Stability analysis of a coaxial-waveguide gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Hung, C.L.; Yeh, Y.S.
2005-01-01
The gyrotron traveling-wave tube (gyro-TWT) amplifier is known to be highly susceptible to spurious oscillations. This study develops a simulation approach to analyze the stability of a coaxial-waveguide gyro-TWT with distributed wall losses. The interplay among the absolute instabilities, the gyrotron backward-wave oscillations, and the circuit parameters is analyzed. Simulation results reveal that the distributed wall losses effectively stabilize spurious oscillations in the coaxial gyro-TWT. Furthermore, the wall resistivity of the center conductor is shown to be an additional effective mechanism for suppressing oscillations. Under stable operation conditions, the coaxial gyro-TWT with distributed losses is predicted to generate 435 kW in the Ka band with 31% efficiency, a saturated gain of 45 dB, and a bandwidth of 1.86 GHz (≅5.8%) for a 70 kV, 20 A electron beam with an α(=ν perpendicular )/ν z )=1.0 and an axial velocity spread of Δν z /ν z =5%
Traveling-wave-tube simulation: The IBC (Interactive Beam-Circuit) code
Energy Technology Data Exchange (ETDEWEB)
Morey, I.J.; Birdsall, C.K.
1989-09-26
Interactive Beam-Circuit (IBC) is a one-dimensional many particle simulation code which has been developed to run interactively on a PC or Workstation, and displaying most of the important physics of a traveling-wave-tube. The code is a substantial departure from previous efforts, since it follows all of the particles in the tube, rather than just those in one wavelength, as commonly done. This step allows for nonperiodic inputs in time, a nonuniform line and a large set of spatial diagnostics. The primary aim is to complement a microwave tube lecture course, although past experience has shown that such codes readily become research tools. Simple finite difference methods are used to model the fields of the coupled slow-wave transmission line. The coupling between the beam and the transmission line is based upon the finite difference equations of Brillouin. The space-charge effects are included, in a manner similar to that used by Hess; the original part is use of particle-in-cell techniques to model the space-charge fields. 11 refs., 11 figs.
International Nuclear Information System (INIS)
Liu, Weiyu; Shao, Jinyou; Ding, Yucheng; Ren, Yukun; Jiang, Hongyuan
2014-01-01
The phenomenon of induction electrohydrodynamics (EHD) has recently received great attention as a promising driving mechanism for microfluidic pumping due to its miniaturization capability. To obtain a high working efficiency of induction micropumps, a vertical temperature gradient can be imposed along the depth of a pump channel. A travelling wave (TW) potential signal propagating along an electrode array at the channel substrate interacts with this conductive heat flux, resulting in a local free charge distribution inside the bulk fluid. The induced charge wave lags behind the voltage wave in the spatial phase, and this out-of-phase polarization based pumping effect exhibits a single structural dispersion at charge relaxation frequency of the dielectric system. The classical model of electrothermal flow has always been used to numerically obtain the flow field of TW pumps, but the effect of its small temperature gradient approximation has rarely been investigated. In this study, an enhanced treatment for induction EHD modelling is developed, in which the deflection of potential contour lines caused by large temperature gradients is successfully characterized by an advection–diffusion equation, and a more accurate expression of electrothermal body force is derived and introduced to fluid dynamics as a source term of electrical origin. For the calculation of a repulsion-type induction micropump, although both models present similar results in a small thermal gradient, the enhanced one can provide more exact frequency-dependence of the pump performance and spatial distribution of electrostatic force as well as the resulting velocity profile in an excessive heat flux. Furthermore, a model extension for Joule heating induced TW pumping is also presented, and surprisingly matches the unexpected nonlinear fluid flow behaviour at higher conductivities as reported in a pioneering literature. These results can provide valuable insights into induction pumping of lab
Haynes, Sarah E; Polasky, Daniel A; Dixit, Sugyan M; Majmudar, Jaimeen D; Neeson, Kieran; Ruotolo, Brandon T; Martin, Brent R
2017-06-06
High mass accuracy, data-dependent acquisition is the current standard method in mass spectrometry-based peptide annotation and quantification. In high complexity samples, limited instrument scan speeds often result in under-sampling. In contrast, all-ion data-independent acquisition methods bypass precursor selection, alternating high and low collision energies to analyze product and precursor ions across wide mass ranges. Despite capturing data for all events, peptide annotation is limited by inadequate alignment algorithms or overlapping ions. Ion mobility separation can add an orthogonal analytical dimension, reducing ion interference to improve reproducibility, peak capacity, and peptide identifications to rival modern hybrid quadrupole orbitrap systems. Despite the advantages of ion mobility separation in complex proteomics analyses, there has been no quantitative measure of ion mobility resolution in a complex proteomic sample. Here, we present TWIMExtract, a data extraction tool to export defined slices of liquid chromatography/ion mobility/mass spectrometry (LC-IM-MS) data, providing a route to quantify ion mobility resolution from a commercial traveling-wave ion mobility time-of-flight mass spectrometer. Using standard traveling-wave ion mobility parameters (600 m/s, 40 V), 90% of the annotated peptides occupied just 23% of the ion mobility drift space, yet inclusion of ion mobility nearly doubled the overall peak capacity. Relative to fixed velocity traveling-wave ion mobility settings, ramping the traveling-wave velocity increased drift space occupancy, amplifying resolution by 16%, peak capacity by nearly 50%, and peptide/protein identifications by 40%. Overall, variable-velocity traveling-wave ion mobility-mass spectrometry significantly enhances proteomics analysis in all-ion fragmentation acquisition.
Saltiel, Philippe; d'Avella, Andrea; Wyler-Duda, Kuno; Bizzi, Emilio
2016-11-01
Locomotion is produced by a central pattern generator. Its spinal cord organization is generally considered to be distributed, with more rhythmogenic rostral lumbar segments. While this produces a rostrocaudally traveling wave in undulating species, this is not thought to occur in limbed vertebrates, with the exception of the interneuronal traveling wave demonstrated in fictive cat scratching (Cuellar et al. J Neurosci 29:798-810, 2009). Here, we reexamine this hypothesis in the frog, using the seven muscle synergies A to G previously identified with intraspinal NMDA (Saltiel et al. J Neurophysiol 85:605-619, 2001). We find that locomotion consists of a sequence of synergy activations (A-B-G-A-F-E-G). The same sequence is observed when focal NMDA iontophoresis in the spinal cord elicits a caudal extension-lateral force-flexion cycle (flexion onset without the C synergy). Examining the early NMDA-evoked motor output at 110 sites reveals a rostrocaudal topographic organization of synergy encoding by the lumbar cord. Each synergy is preferentially activated from distinct regions, which may be multiple, and partially overlap between different synergies. Comparing the sequence of synergy activation in locomotion with their spinal cord topography suggests that the locomotor output is achieved by a rostrocaudally traveling wave of activation in the swing-stance cycle. A two-layer circuitry model, based on this topography and a traveling wave reproduces this output and explores its possible modifications under different afferent inputs. Our results and simulations suggest that a rostrocaudally traveling wave of excitation takes advantage of the topography of interneuronal regions encoding synergies, to activate them in the proper sequence for locomotion.
A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes
Directory of Open Access Journals (Sweden)
R. L. Balthazor
Full Text Available A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs and associated travelling ionospheric disturbances (TIDs originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.
The 938 MHz resonant damping loops for the 200 MHz SPS travelling wave cavities
Caspers, F
2012-01-01
Measurements of the beam stability in the SPS in 1982 - 1983 have shown a transversal instability for high intensity beams [1]. The fact that this related technical note is published nearly 30 years later, is related to the revival of interest in the frame of SPS impedance evaluation for LS1. Until now there was just a barely known paper folder available which could be consulted on request. The instability mentioned above was identified from beam measurements as raised by a deflecting mode at approximately 940 MHz in the 200 MHz travelling wave cavities of the SPS. Estimates showed that an attenuation of this particular mode by 20 dB would be desirable. In order to achieve this attenuation some vacuum ports on top of the cavities were available. For the damping devices three requirements had to be met: - sufficient damping at about 940 MHz - no serious change of cavity input VSWR at 200 MHz - no water cooling requirement for this higher order mode coupler.
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
Joye, Colin D; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J
2009-05-01
The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE(06) mode of an overmoded quasi-optical waveguide using a gyrating electron beam. The electromagnetic theory, interaction theory, design processes, and experimental procedures are described in detail. At 37.7 kV and a 2.7-A beam current, the experiment has produced over 820 W of peak power with a -3-dB bandwidth of 0.8 GHz and a linear gain of 34 dB at 34.7 kV. In addition, the amplifier produced a -3-dB bandwidth of over 1.5 GHz (1.1%) with a peak power of 570 W from a 38.5-kV 2.5-A electron beam. The electron beam is estimated to have a pitch factor of 0.55-0.6, a radius of 1.9 mm, and a calculated perpendicular momentum spread of approximately 9%. The gyro-amplifier was nominally operated at a pulselength of 2 μs but was tested to amplify pulses as short as 4 ns with no noticeable pulse broadening. Internal reflections in the amplifier were identified using these short pulses by time-domain reflectometry. The demonstrated performance of this amplifier shows that it can be applied to dynamic nuclear polarization and electron paramagnetic resonance spectroscopy.
Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines
Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto
2017-12-01
This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.
International Nuclear Information System (INIS)
Muley, P.D.; Henkel, C.E.; Aguilar, G.; Klasson, K.T.; Boldor, D.
2016-01-01
Highlights: • Ex-situ microwave reactor was used to heat catalyst bed for pyrolysis upgrading. • Results were compared with conventional catalytic reactor. • Microwave heating yielded higher aromatic compounds. • Catalyst deactivation due to coking was lower in microwave reactor. • 30% decrease in energy input for microwave reactor. - Abstract: Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the catalyst bed for thermo-catalytic upgrading of pyrolysis vapors. HZSM-5 catalyst was tested at three different temperatures (290°, 330° and 370 °C) at a catalyst to biomass ratio of 2. Results were compared with conventional heating and induction heating method of catalyst bed. The yields of aromatic compounds and coke deposition were dependent on temperature and method of heating. Microwave heating yielded higher aromatic compounds and lower coke deposition. Microwave heating was also energy efficient compared to conventional reactors. The rate of catalyst deterioration was lower for catalyst heated in microwave system.
A traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator
Li, Jinbang; Liu, Shuo; Zhou, Ningning; Yu, Aibing; Cui, Yuguo; Chen, Pengfei
2018-01-01
This study proposes a traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator. The stator is composed of a metal ring and polymer-matrix teeth. The resonance frequency of the stator with different structural dimensions was analyzed by the finite element method. From the results, the structure parameters of the metal ring were obtained. The effects of the density and elastic modulus of the tooth material on the resonance frequency were also investigated. A viscoelastic contact model was built to explore the contact state between the compound stator and rotor. Considering the density, elastic modulus and tribological properties, the tooth material was prepared by a molding process. The load-torque and efficiency-torque characteristics of the motor with different tooth thicknesses were measured under different preloads using a preload controlled ultrasonic motor test device. The maximum no-load speed of the motor was about 85 r min-1 with a tooth thickness of 3 mm and a preload of 100 N, the maximum stall torque of the motor was about 0.5 N · m with a tooth thickness of 4 mm and a preload of 125 N, and a maximum efficiency of about 5.5% occurred with a tooth thickness of 4 mm, a preload of 100 N and a torque of 0.3 N · m. The main merits of the proposed ultrasonic motor are low cost, light weight, high processing efficiency and long life.
Thermal analysis of a transmission line for Traveling Wave Tube TWT
International Nuclear Information System (INIS)
Chbiki, Mounir; Laraqi, Najib; Jarno, Jean-François; Herrewyn, Jacques; Silva Botelho, Tony da
2012-01-01
A new analytical method has been developed to study the delay line of Traveling Waves Tubes (TWT). Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In this work, we highlight the influence of the macro-constriction on the heat transfer rate in the various parts of a TWT the geometry of which is also relatively complex. We propose in this work an analytical study of the thermal behavior of a transmission line in established regime. First, we determine the individual thermal resistance of each component. Secondly, we estimate the global resistance of the device according to the geometrical parameters and the respective conductivities of the various elements of this line. In this analytical model, we proceed to parametric studies in order to determine the geometrical configurations that will provide the lowest global thermal resistance. We will emphasize the potential gain according to the used materials and the increase of contact areas.
Design criteria for brush commutation in high speed traveling wave coilguns
International Nuclear Information System (INIS)
Snow, W.R.; Willig, R.L.
1991-01-01
Barrel current in a traveling wave coilgun must be commutated on and off and remain synchronized with the position of the armature coils. Brushes on the armature can be used to satisfy these two requirements. First, they provide synchronization of the currents by being physically attached to the armature coil. Second, they provide a means of shorting the turns of the barrel so that motion induced commutation can take place. Motion induced commutation is the process where the current in a shorted barrel turn is caused to rise or fall because of the voltage induced by the moving armature. This change in barrel current must take place during the time the turn is shorted by the brush. Residual current in the trailing edge of the brush must be made small at the instant the circuit is opened to minimize arcing. A set of design criteria are presented for designing a brush commutated coilgun so as to achieve the required synchronous commutation. The design variables include the barrel coil configuration and its pitch, the armature coil configuration and its number of turns, and the brush length. The number of turns in the barrel undergoing commutation at the same instant in time is directly related to the length of the brush. In this paper the results of applying the design criteria to a specific design are presented
Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun
Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.
1994-01-01
The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.
International Nuclear Information System (INIS)
Feng Zhaosheng
2003-01-01
In this paper, we study the two-dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation by analysing an equivalent two-dimensional autonomous system, which indicates that under some particular conditions, the 2D-BKdV equation has a unique bounded travelling wave solution. Then by using a direct method, a travelling solitary wave solution to the 2D-BKdV equation is expressed explicitly, which appears to be more efficient than the existing methods proposed in the literature. At the end of the paper, the asymptotic behaviour of the proper solutions of the 2D-BKdV equation is established by applying the qualitative theory of differential equations
International Nuclear Information System (INIS)
Sotelo Herrera, Ma Dolores; San Martin, Jesus
2009-01-01
Several theorems are demonstrated that determine sufficient conditions for the existence of synchronized states (both periodical and chaotic) and also of traveling waves in a CML. The existence of period-doubling cascades for the described patterns are also established. Thus, many numerical procedures in CML are given rigorous mathematical foundations. Furthermore, numerical results in CML published to date, are much more general than previously thought.
Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.
2017-12-01
Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired
Matsuda, Eiji; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu
This paper describes experimental results of NO removal from a simulated exhausted gas using a barrier-type plasma reactor subjected to reciprocal traveling wave voltage pulses. A pulse-forming cable was charged and then grounded at one end without any resistance, so that a traveling wave reciprocated along the cable with a change in its polarity because the traveling wave was negatively reflected at the grounded-end. Transient discharge light between point-plane electrodes with a glass barrier was observed using a gated image-intensifier. Photographs of the transient discharge light indicated that many streamer channels extended widely in the gap at the initial stage in the voltage oscillation, while only an intense discharge channel was observed at the latter stage. NO removal tests were carried out using the reciprocal pulse generator and a coaxial plasma reactor with a cylindrical glass-barrier. Results indicated that the discharges at the first and the second polarity reversals contributed largely to the oxidation reaction from NO into NO2, whereas the contribution of the subsequent discharges in the latter stage to NO removal was small.
Energy Technology Data Exchange (ETDEWEB)
Ambrose, David M.; Wilkening, Jon
2008-12-11
We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the other side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.
Renteria Marquez, I A; Bolborici, V
2017-05-01
This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved traveling-wave efficiency in 7T human MRI using passive local loop and dipole arrays.
Yan, Xinqiang; Zhang, Xiaoliang; Gore, John C; Grissom, William A
2017-06-01
Traveling-wave MRI, which uses relatively small and simple RF antennae, has robust matching performance and capability for large field-of-view (FOV) imaging. However, the power efficiency of traveling-wave MRI is much lower than conventional methods, which limits its application. One simple approach to improve the power efficiency is to place passive resonators around the subject being imaged. The feasibility of this approach has been demonstrated in previous works using a single small resonant loop. In this work, we aim to explore how much the improvements can be maintained in human imaging using an array design, and whether electric dipoles can be used as local elements. First, a series of electromagnetic (EM) simulations were performed on a human model. Then RF coils were constructed and the simulation results using the best setup for head imaging were validated in MR experiments. By using the passive local loop and transverse dipole arrays, respectively, the transmit efficiency (B 1 + ) of traveling-wave MRI can be improved by 3-fold in the brain and 2-fold in the knee. The types of passive elements (loops or dipoles) should be carefully chosen for brain or knee imaging to maximize the improvement, and the enhancement depends on the local body configuration. Copyright © 2017 Elsevier Inc. All rights reserved.
Oversized 250 GHz Traveling Wave Tube with a Photonic Band-Gap Structure
Rosenzweig, Guy; Shapiro, Michael A.; Temkin, Richard J.
2017-10-01
The challenge in manufacturing traveling wave tubes (TWTs) at high frequencies is that the sizes of the structures scale with, and are much smaller than, the wavelength. We have designed and are building a 250 GHz TWT that uses an oversized structure to overcome fabrication and power handling issues that result from the small dimensions. Using a photonic band-gap (PBG) structure, we succeeded to design the TWT with a beam tunnel diameter of 0.72 mm. The circuit consists of metal plates with the beam tunnel drilled down their center. Twelve posts are protruding on one side of each plate in a triangular array and corresponding sockets are drilled on the other side. The posts of each plate are inserted into the sockets of an adjacent plate, forming a PBG lattice. The vacuum spacing between adjacent plates forms the `PBG cavity''. The full structure is a series of PBG coupled cavities, with microwave power coupling through the beam tunnel. The PBG lattice provides confinement of microwave power in each of the cavities and can be tuned to give the right amount of diffraction per cavity so that no sever is needed to suppress oscillations in the operating mode. CST PIC simulations predict over 38 dB gain with 67 W peak power, using a 30 kV, 310 mA electron beam, 0.6 mm in diameter. Research supported by the AFOSR Program on Plasma and Electro-Energetic Physics and by the NIH National Institute of Biomedical Imaging and Bioengineering.
Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility
Phillips, Nancy J.; John, Constance M.; Jarvis, Gary A.
2016-07-01
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.
A PPM-focused klystron at X-band with a traveling-wave output structure
International Nuclear Information System (INIS)
Eppley, K.R.
1995-01-01
We have developed algorithms for designing disk-loaded traveling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 Ghz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a PPM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m. copyright 1995 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Kumar Samanta, Utpal [Department of Mathematics, Bankura Christian College, Bankura 722101 (India); Department of Mathematics, Visva Bharati University, Santinekatan 731235 (India); Saha, Asit [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Chatterjee, Prasanta [Department of Mathematics, Visva Bharati University, Santinekatan 731235 (India)
2013-05-15
Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas.
International Nuclear Information System (INIS)
Kumar Samanta, Utpal; Saha, Asit; Chatterjee, Prasanta
2013-01-01
Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas
Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube
Swanson, L. W.; Davis, P. R.; Schwind, G. A.
1984-01-01
The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.
Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses
Harris, Jeremy D.; Ermentrout, Bard
2018-04-01
Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.
Wu, Sheng-Hsun; Li, Chia-Chin; Chen, Tsun-Hsu; Hsu, Yu-Hsiang; Wu, Wen-Jong; Lee, Chih-Kung
2017-04-01
Piezoelectric motor is based on generating traveling waves on a finite structure. It can be classified into linear and rotary types. Among them, linear motors have an inevitable problem since finite boundaries are always exist, and reflected waves can hinder the formation of propagating waves. To solve this problem, a linear motor based on a single driving frequency and two induced resonant molds are previously reported. However, the driving frequencies are not at structure resonant frequency, the efficiency of linear motor is based on the superposition of two adjacent bending modes. The traveling wave is created by two piezoelectric actuators driven by a single frequency in between these two resonant molds with a 90° phase difference. Based on previous report, it shows that by placing these two 0.178/L length actuators at 0.22/L and 0.78/L on a one-dimensional beam with length L, an optimal performance could be reached. It suggested that the location and size of the two piezoelectric actuators can be used to optimize the performance of the linear motor. In this study, finite element simulation was used to study the contributions of the temporal and spatial correlations between the two actuators with respect to a 1-D linear motor. The position and size of these two piezoelectric actuators are studied for optimizing the performance of the linear motor.
Investigations of Dielectric-Rod Focusing for Traveling-Wave Tubes
1976-06-01
imm in diameter, as shown in Fig. 4, was then placed into the "cathode" and collector electrodes. A sap - phire rod was used because of its availability...pnr nfr Pectrr n eaa= Diaper - sion Ph.enorena at High Vacuums," Stanford [’niversirv Ph.D. Thesis, March 1044. 14a. R. K. earker, R. E. Anderson, and
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
2015-09-01
Full Text Available This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r_{w}. The average axial electric field is expressed as ⟨E_{z}⟩=-(∂/∂z⟨ϕ⟩=-e_{b}g_{0}∂λ_{b}/∂z-e_{b}g_{2}r_{w}^{2}∂^{3}λ_{b}/∂z^{3}, where g_{0} and g_{2} are constant geometric factors, λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t is the line density of beam particles, and F_{b}(z,p_{z},t satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i the nonlinear waterbag distribution, where F_{b}=const in a bounded region of p_{z}-space; and (ii nonlinear Bernstein-Green-Kruskal (BGK-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field ⟨E_{z}⟩.
Mohanty, D. D.
2015-12-01
The variations in crustal thickness and topography may affect the travel time anomalies and hence attribute significant contributions in the travel time delays into mantle. The delayed arrivals in Tibet and Himalaya are expected due to the thick crust and low average crustal velocities whereas the arrivals are early in the regions of Indian shield compared to IASP 91 and need significant crustal correction term to decipher an exact tomographic model of the whole region. As the near vertical arrivals of teleseismic P waves (distance range 30-900) make it difficult to resolve crustal scale features for their inability to cross at crustal depths, station terms along with crustal corrections can be used to incorporate the effects of unresolved features of crust and upper mantle and to avoid the mapping of crustal travel time anomalies into the mantle. Keeping in view that these corrections using 3D models are as good as their resolution, we prefer CRUST1.0 over CRUST 2.0 to modify IASP91 for the crustal part and the modified velocity model has been used to obtain the travel time delays which may happen due to changes in velocity and thickness. The corrections are obtained for each event-station pair (ray or ray path) used in tomography and the times are subtracted from the input delay time vectors prior to inversion to prepare a modified tomographic model.
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-03-01
In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.
International Nuclear Information System (INIS)
Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei
2015-01-01
Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under −15 dB, transmission up to −1.5 dB, and meanwhile isolation under −20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation
Geological structure analysis in Central Java using travel time tomography technique of S waves
International Nuclear Information System (INIS)
Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.
2016-01-01
Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho. (paper)
Directory of Open Access Journals (Sweden)
Hasibun Naher
2012-12-01
Full Text Available In this article, we investigate the compound KdV-Burgers equation involving parameters by applying the improved (G′/G-expansion method for constructing some new exact traveling wave solutions including solitons and periodic solutions. The second order linear ordinary differential equation with constant coefficients is used, in this method. The obtained solutions are presented through the hyperbolic, the trigonometric and the rational functions. Further, it is significant to point out that some of our solutions are in good agreement for special cases with the existing results which validates our other solutions. Moreover, some of the obtained solutions are described in the figures.
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
Christensen, J. A.; Tammaru, I.
1974-01-01
The design, development, and test results are reported for an experimental PPM focused, traveling-wave tube that produces 235 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 30 percent basic efficiency. Overall efficiency of 51 percent is achieved by means of a nine stage depressed collector designed at NASA Lewis Research Center. This collector is cooled by direct radiation to deep space.
International Nuclear Information System (INIS)
Chang, Dong Eui; Loire, Sophie; Mezic, Igor
2003-01-01
We derive closed-form solutions of electric fields, dielectrophoretic (DEP) forces, and time-averaged DEP forces in a parallel electrode array for three cases: first, the case of a two-phase DEP electrode array with a first-order approximate boundary condition; second, the case of a two-phase DEP electrode array with the exact boundary condition; and last, the case of a four-phase travelling wave DEP electrode array with a first-order approximate boundary condition. We also compare these analytic solutions with numerical solutions
Barnoud, A.; Coutant, O.; Bouligand, C.
2016-12-01
We aim at jointly inverting surface wave dispersion curves, earthquake travel times and gravimetric data to image the 3D structure of the volcanic island of Basse-Terre in Guadeloupe (Lesser Antilles). Imaging the 3D structure of this island is challenging, in particular due to the rough topography, the difficult access associated with the dense vegetation and the high level of seismic noise associated with tropical climate. The joint inversion of different types of data allows to derive a model compatible with all datasets, improving the resolution of the resulting model, due to the intrinsic sensitivities of the methods and to the different data coverages. Surface wave dispersion curves were obtained from ambient noise cross-correlations and provide seismic velocities with a good resolution in the upper 4 to 6 km. Travel times from the Lesser Antilles earthquake catalogue (CDSA/IPGP, Massin et al. 2013, Massin et al. 2014) are also included to improve the resolution at depth. Five datasets of terrestrial gravimetric data covering the whole island are available (Coron et al. 1975, Barthes et al. 1984, Gunawan 2005, Matthieu et al. 2011, Barnoud et al. 2016), constraining mostly the shallow lateral density variations. However coupling such datasets is not straightforward as it requires defining a coupling, a discretization and an inversion scheme adapted to the three methods. Our problem is coupled via the surface wave data and a P-wave velocity/density relationship (Carlson & Raskin 1984). We regularize the inverse problem using a Bayesian formalism (Tarantola & Valette 1982) and we discuss the advantages and limitations of two approaches to model the velocities of the subsurface: 1) a grid of nodes regularly spaced and 2) a Lagrangian interpolation on Gauss-Chebychev colocation nodes, equivalent to the use of a base of Chebychev polynomials (Boyd 2001). This work leads to the first 3D seismic velocity model of the island of Basse-Terre and therefore constitute a
Directory of Open Access Journals (Sweden)
Rodríguez, H.
2004-06-01
Full Text Available Articles from different areas which are closely related to the modelling of the stator of travelling wave ultrasonic motors (TWUMs are reviewed in this work. Thus, important issues relevant to this problem are identified from the areas of vibration of annular plates, laminated plate theories, and modelling of piezoelectric transducers. From this integrated point of view, it becomes clear that there are some very important issues yet to be addressed in the modelling of TWUMs. Firstly, the influence of material properties and stator dimensions on output efficiency, electromechanical coupling coefficients (EMCC and maximum output energy is to be investigated in more detail. Secondly, the modelling of the electric potential field (by explicitly including the charge equation for TWUMs seems to be a must for better prediction of displacements and electric fields close to the resonance, as suggested by some recent works [1]. Moreover, the improvement of current models by using shear deformation (or higher order laminated plate theories (LPTs in conjunction with approximated methods of solution are discussed. In addition to analytical models, those works using Finite Element and Finite difference Methods (FEM and FDM for the modelling and simulation of the TWUM stator dynamics are reviewed.
En este trabajo se realiza una revisión de los trabajos de investigación realizados en diversas áreas sobre el modelado del estátor de los motores ultrasónicos de onda viajera (TWUMs. Entre los problemas relevantes que se han estudiado podemos citar la vibración de placas anulares, las teorías de placas laminadas y el modelado de transductores piezoeléctricos. A raíz de este punto de vista integral se hace manifiesto que todavía quedan asuntos importantes que estudiar en el modelado de los TWUMs. En primer lugar, la influencia de las propiedades del material y las dimensiones del estátor en la eficiencia del motor, los coeficientes de acoplamiento
Rand, Kasper D; Pringle, Steven D; Murphy, James P; Fadgen, Keith E; Brown, Jeff; Engen, John R
2009-12-15
Accumulating evidence suggests that solution-phase conformations of small globular proteins and large molecular protein assemblies can be preserved for milliseconds after electrospray ionization. Thus, the study of proteins in the gas phase on this time scale is highly desirable. Here we demonstrate that a traveling wave ion guide (TWIG) of a Synapt mass spectrometer offers a highly suitable environment for rapid and efficient gas-phase hydrogen/deuterium exchange (HDX). Gaseous ND(3) was introduced into either the source TWIG or the TWIG located just after the ion mobility cell, such that ions underwent HDX as they passed through the ND(3) on the way to the time-of-flight analyzer. The extent of deuterium labeling could be controlled by varying the quantity of ND(3) or the speed of the traveling wave. The gas-phase HDX of model peptides corresponded to labeling of primarily fast exchanging sites due to the short labeling times (ranging from 0.1 to 10 ms). In addition to peptides, gas-phase HDX of ubiquitin, cytochrome c, lysozyme, and apomyoglobin were examined. We conclude that HDX of protein ions in a TWIG is highly sensitive to protein conformation, enables the detection of conformers present on submilliseconds time scales, and can readily be combined with ion mobility spectrometry.
International Nuclear Information System (INIS)
Huber, Alfred
2007-01-01
In this paper, Lie's method is used to calculate solutions of a third order non-linear system of partial differential equations (nPDE). In our previous paper [Huber A. Appl Math Comput 2005;166/2:464], we have applied the tanh-method to generate solutions, in this case special class of solutions in form of traveling wave results (single soliton solutions as well as class of irregular solutions). Therefore, general families of solutions are of basic interest. Moreover, a complete characterization of the group properties is given. We determine the Lie point symmetry vector fields and calculate similarity 'ansaetze' for the first time. Further, we also derive a few non-linear transformations and some similarity solutions are obtained. The main purpose for the application of Lie's method is of course the fact that we are able to calculate class of general solutions which do not underlie such strong restrictions as in the case of traveling wave 'ansaetze'. Otherwise, it is necessary to perform a group analysis in order to improve the solution manifold by an alternative way. Moreover, a criterion for the integrability via the Painleve-conjecture is given and further, families of solutions in term of elliptic functions are derived via Lie's approach for the first time. Although no extensive studies are known up to this time a physical background of the considered system cannot exclude in future
Directory of Open Access Journals (Sweden)
M.G. Hafez
2015-03-01
Full Text Available The (1+1-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma. By the execution of the exp(-Φ(ξ-expansion, we obtain new explicit and exact traveling wave solutions to this equation. The obtained solutions include kink, singular kink, periodic wave solutions, soliton solutions and solitary wave solutions of bell types. The variety of structure and graphical representation make the dynamics of the equations visible and provides the mathematical foundation in plasma physics and engineering.
Energy Technology Data Exchange (ETDEWEB)
Sanchez M, H.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Francois, J. L. [UNAM, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec 62550, Morelos (Mexico); Lopez S, R., E-mail: heribertosanchez7@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2016-09-15
In this work the nuclear fuel burn wave in a fast traveling wave reactor (TWR) is presented, using the reduced model of the neutron diffusion equation, considering only the axial component, and the equations of the transuranic dynamics of U-Pu and a radionuclide of Pu. Two critical zones of the reactor are considered, one enriched with U-Pu called ignition zone and the other impoverished zone or of U-238, named breeding zone. Occupying Na as refrigerant within TWR, and Fe as structural material; both are present in the ignition and breeding zones. Considering as a fissile material the Pu, since by neutron capture the U is transformed into Pu, thus increasing the quantity of Pu more than that of U; in this way the fuel burn stability with the wave dynamics is understood. The calculation of the results was approached numerically to determine the temporal space evolution of the neutron flux in this system and of the main isotopes involved in the burning process. (Author)
Directory of Open Access Journals (Sweden)
Tarikul Islam
2018-03-01
Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.
A traveling wave approach to plasma pumping for x-ray sources
International Nuclear Information System (INIS)
Jensen, R.J.
1988-01-01
Optical angular multiplexing allows the extraction of multiple short pulses from a single long pulse amplifier. In the ICF case a single short pulse is divided into many short pulses of the same temporal profile using beam splitters. The pulses are routed through the amplifier system at slightly different angles and then are played onto a small target simultaneously to produce higher instantaneous power. In the proposed scheme the pulses can be arranged to provide traveling waver excitation to facilitate amplification of spontaneous emission. 14 refs., 2 figs
Traveling neutral disturbances. [acoustic-gravity wave coupling to minor species in atmosphere
Gross, S. H.; Eun, H.
1976-01-01
The coupling of acoustic-gravity waves in the main atmosphere to acoustic waves characteristic of individual minor species in the atmosphere is postulated. Such coupling would exist as a result of resonances in the response of the minor species, and its likelihood depends on the mass of the atmospheric particle relative to the major species mass, the diffusion of the minor species, and the direction of propagation of the main disturbance. These minor-species disturbances may explain some AE-C measurements in the thermosphere and could possibly play a role in the distribution of minor species and their chemistry in the mesosphere.
Directory of Open Access Journals (Sweden)
Fabrizio Consoli
2013-07-01
Full Text Available The Single Bunch Selector (SBS will be used on the Spiral2 linear accelerator to reduce the rate of high energy bunches reaching the target with, in principle, no residual particles from the suppressed bunches. For this purpose, a pulsed electromagnetic wave will travel along the 100 Ω microstrip meander line electrode of the SBS. In this work we describe the broadband accurate characterization of the electrode electromagnetic features. The method applied here leads to the analytical determination of complex characteristic impedance, propagation constant, and group velocity from a measurement of the 50 Ω scattering parameters on the meander transmission line. Particular care is given to the de-embedding phase of the transitions required to connect the meander electrode to the measurement device.
Yatim, Y. M.
2013-01-01
A novel family of three-dimensional travelling-wave similarity solutions describing a steadily translating slender dry patch in an infinitely wide thin fluid film on an inclined planar substrate when surface-tension effects are negligible is obtained, the flow being driven by gravity and/or a prescribed constant shear stress on the free surface of the film. For both driving mechanisms, the dry patch has a parabolic shape (which may be concave up or concave down the substrate), and the film thickness increases monotonically away from the contact lines to its uniform far-field value. The two most practically important cases of purely gravity-driven flow and of purely surface-shear-stress-driven flow are analysed separately. © 2013 AIP Publishing LLC.
Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.
A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.
International Nuclear Information System (INIS)
Joo, Y. D.; Park, G. S.; Sinha, A. K.
2004-01-01
A stationary one-dimensional nonlinear code, as a design tool, for a helix traveling wave tube (TWT) is developed using Lagrangian large-signal approach. The analytic solutions of the electronic and the circuit equation are derived and combined to establish a set of simple expressions for developing a simple code without using any numerical method. The present simple code quickly finds the TWT performance parameters, such as the output power, gain, and efficiency, in an analytic and straightforward manner. The results from the present simple code are compared with those from numerical work and the particle-in-cell (PIC) code and are found to be in good agreement. Also, design of a helix TWT with over 200 watts of output power in frequency range of 2-18 GHz is carried out using present code.
Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.
1987-01-01
A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.
Loss mechanisms of travelling wave direct energy converters for D-{sup 3}He FRC fusion reactors
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, M. E-mail: misikawa@kz.tsukuba.ac.jp; Yamane, T.; Shimizu, Y.; Momota, H.; Tomita, Y.; Miley, G.H
2000-11-01
Loss mechanisms of TWDEC for a D-{sup 3}He fuelled FRC fusion reactor are studied with numerical analysis. (1) The self-excitation of a travelling wave has been attained with external electric circuits, which shows the conversion efficiency is about 70-73%. (2) Three-dimensional behavior has been studied by axisymmetric approximation, showing that the loss related to the radial non-uniformity effect without collision with grids is about 5%. (3) The loss related to the collision with grids is the most important, being about 11%. (4) Effects of secondary electrons produced by the collision with the grids are rather small and subrings can suppress the effects of secondary electrons. (5) The loss related to leaked 3.6 MeV {alpha} particles is about 45-60% of the total energy of leaked {alpha} particles. (6) The gross efficiency of TWDEC is estimated to be over 60%.
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, Motoo [Tsukuba Univ., Ibaraki (Japan); Shimizu, Yuuki [Kyoto Univ. (Japan); Momota, Hiromu; Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-06-01
Nuclear fusion is expected as a main energy source in the future. D-{sup 3}He nuclear fusion has some better characteristics such as low neutron emission and capability of direct energy conversion than D-T or D-D nuclear fusion. The present paper studies effects of secondary electrons produced at grids of TWDEC (Traveling Wave Direct Energy Conversion) by the high-energy protons. It is found that the loss caused by the acceleration of electrons is about 1% of the input kinetic energy of protons, and effects of the electrical charge and the radiation are small. Therefore, all the effects are much smaller than the input power of protons. (author)
Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.
2013-01-01
A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.
Ragona, R.; Messiaen, A.
2016-07-01
For the central heating of a fusion reactor ion cyclotron radio frequency heating (ICRH) is the first choice method as it is able to couple RF power to the ions without density limit. The drawback of this heating method is the problem of excitation of the magneto-sonic wave through the plasma boundary layer from the antenna located along the wall, without exceeding its voltage standoff. The amount of coupling depends on the antenna excitation and the surface admittance at the antenna output due to the plasma profile. The paper deals with the optimization of the antenna excitation by the use of sections of traveling-wave antennas (TWAs) distributed all along the reactor wall between the blanket modules. They are mounted and fed in resonant ring system(s). First, the physics of the coupling of a strap array is studied by simple models and the coupling code ANTITER II. Then, after the study of the basic properties of a TWA section, its feeding problem is solved by hybrids driving them in resonant ring circuit(s). The complete modeling is obtained from the matrices of the TWA sections connected to one of the feeding hybrid(s). The solution is iterated with the coupling code to determine the loading for a reference low-coupling ITER plasma profile. The resulting wave pattern up to the plasma bulk is derived. The proposed system is totally load resilient and allows us to obtain a very selective exciting wave spectrum. A discussion of some practical implementation problems is added.
Czech Academy of Sciences Publication Activity Database
Menietti, J. D.; Mutel, R. L.; Santolík, Ondřej; Scudder, J. D.; Christopher, I. W.; Cook, J. M.
2006-01-01
Roč. 111, č. A4 (2006), A04214/1-A04214/9 ISSN 0148-0227 Grant - others:GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : Space physics * Waves in plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.800, year: 2006
Time Travel: The Role of Temporality in Enabling Semantic Waves in Secondary School Teaching
Matruglio, Erika; Maton, Karl; Martin, J. R.
2013-01-01
Based on the theoretical understandings from Legitimation Code Theory (Maton, 2013) and Systemic Functional Linguistics (Martin, 2013) underpinning the research discussed in this special issue, this paper focuses on classroom pedagogy to illustrate an important strategy for making semantic waves in History teaching, namely "temporal shifting". We…
Performance analysis of experimental device of travelling wave direct energy converter
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, M. [Department of Engineering Mechanics and Energy, University of Tsukuba, Tsukuba 305-8573 (Japan)]. E-mail: misikawa@kz.tsukuba.ac.jp; Horita, K. [Department of Engineering Mechanics and Energy, University of Tsukuba, Tsukuba 305-8573 (Japan); Yasaka, Y. [Department of Electrical Engineering, Kobe University, Kobe 625-8511 (Japan); Takeno, T. [Department of Electrical Engineering, Kobe University, Kobe 625-8511 (Japan); Tomita, Y. [National Institute for Fusion Science, Gifu 509-5292 (Japan)
2006-02-15
Numerical analyses with the one-dimensional approximation have been carried out for a small-scale experimental device of TWDEC. The following results have been obtained. Numerical results agree well with experimental results on the conversion efficiency and the energy distribution when the phase difference between voltages of the modulator and the decelerator is the same as the experiment. It has been found that the phase difference should be determined properly in order to obtain a high efficiency. The position of electrodes in the decelerator has been optimized to obtain higher efficiency. The optimization is carried out for ions to move with the travelling electric field. It has been shown that the optimization can make the efficiency more than 58% when the number of electrodes is 16 even with the present small device.
Development of a 39.5 GHz Karp traveling wave tube for use in space
Jacquez, A.; Wilson, D.
1988-10-01
A millimeter-wave TWT was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'Tunneladder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics on a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to each ridge of a double ridged waveguide. Cold-test data are presented, representing the omega-Beta and impedance characteristics of the modified ladder circuit These results were used in small and large-signal computer programs to predict TWT gain and efficiency. A laboratory model tube was designed and fabricated, including all major subassemblies.
Traveling waves and spreading speed on a lattice model with age structure
Directory of Open Access Journals (Sweden)
Zongyi Wang
2012-09-01
Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.
Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube
Guan, Xiaotong; Fu, Wenjie; Yan, Yang
2018-02-01
A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.
Energy Technology Data Exchange (ETDEWEB)
Gee, Anthony; Shin, Young-Min
2013-01-01
A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2cm long slow wave structure (SWS) has 1-5dB insertion loss over the passband (TM31 mode) with ~28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM31-mode is amplified with 15–20 dB/beam at 64–84GHz with three elliptical beams of 10kV and 150mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation.
Miyoshi, Y.; Jin, H.; Fujiwara, H.; Shinagawa, H.
2017-12-01
It has been recognized that gravity waves (GWs) play an important role on the momentum and energy budget in the thermosphere/ionosphere. In this study, using a whole atmosphere-ionosphere coupled model (GAIA), behaviors of Traveling Ionospheric Disturbances (TIDs) generated by upward propagating GWs in the thermosphere are investigated. The horizontal resolution of GAIA is 1 degree longitude by 1 degree latitude, which is adequate to simulate large-scale GWs. The GAIA contains the region from the ground surface to the upper thermosphere, so that we can simulate excitation of gravity waves in the lower atmosphere, their upward propagation to the mesosphere and thermosphere, and their impacts on the thermosphere/ionosphere system. The GAIA can simulate TIDs because interaction processes between the ionosphere and neutral atmosphere are included. We focus on seasonal and longitudinal variations of TIDs and their relation to GW activity in the thermosphere. Our results indicate that many TIDs are generated by upward propagating GWs in the thermosphere, and these TIDs propagate equatorward. TIDs are much stronger in winter than in summer. Moreover, day-to-day variability of GW activity in the stratosphere and mesosphere are examined, and their impacts on temporal variability of TIDs are discussed.
Autopsy on an RF-Processed X-band Travelling Wave Structure
International Nuclear Information System (INIS)
Le Pimpec, Frederic
2002-01-01
In an effort to locate the cause(s) of high electric-field breakdown in x-band accelerating structures, we have cleanly-autopsied (no debris added by post-operation structure disassembly) an RF-processed structure. Macroscopic localization provided operationally by RF reflected wave analysis and acoustic sensor pickup was used to connect breakdowns to autopsied crater damage areas. Surprisingly, the microscopic analyses showed breakdown craters in areas of low electric field. High currents induced by the magnetic field on sharp corners of the input coupler appears responsible for the extreme breakdown damage observed
Influence of surface tension changes on hydrodynamic flow induced by traveling chemical waves
Matthiessen, Kai; Wilke, Hermann; Müller, Stefan C.
1996-06-01
Chemical waves in a thin layer of a Belousov-Zhabotinsky reaction solution induce convective flow in the reaction medium. The mechanism of this chemically driven convection is investigated with space-resolved velocimetry, and simulated numerically solving modified Oregonator model equations and the Navier-Stokes equation. To decide whether the flow is driven by surface tension gradients or density gradients the results of the simulations are compared with experimental data. Analysis of the vertical distribution of the horizontal flow velocity suggests that in the mechanism of flow generation surface effects are dominant.
Yamaga, Keisuke; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu
This paper describes experimental results of NO removal using barrier discharges produced by a reciprocal pulse generator. When a coaxial cable is charged and then grounded at one end of the cable without any resistance, a reciprocal traveling voltage pulse is repeatedly applied to a barrier-type reactor at the opposite end with a change in its polarity. 50% streamer initiation voltage for the reciprocal pulse generator was much smaller than that with the self-matched pulse generator having a matching resistance. The reason for the low initiation voltage in the reciprocal pulse was that space charges which accumulated on the barrier surface during cable charging had an effect on field enhancement in the reactor after the first polarity reversal. High speed photographs of discharge light produced by the reciprocal pulse showed that the voltage oscillation caused by one switching induced alternate propagation of positive and negative streamers with a very high frequency. In measurements of NO concentration, the reciprocal pulse generator gave a better performance for NO removal ratio than the self-matched pulse generator even though the stored energy in the recipocal pulse generator was very low.
Directory of Open Access Journals (Sweden)
V. O. Kaledin
2014-01-01
Full Text Available In this paper we consider a moving orthotropic cylindrical shell of rotation. The purpose is to assess the choice of kinematic hypothesis for calculating the phase velocities of cylindrical shells. The comparison was done for the two hypotheses, namely: those of Timoshenko and Kirchhoff-Love. The calculation was performed under the following assumptions: all Poisson's ratios of orthotropic material were taken to be zero; the principal axes of anisotropy coincide with the lines of curvature, the coefficients of mutual influence of forces per unit length and bending moments were taken to be zero, which is valid for sufficiently thin shells. Analysis of the phase velocity of the cylindrical shell has shown that at low frequencies of traveling wave Timoshenko’s hypothesis gives an infinite value of the phase velocity. However, with increasing frequency of the traveling wave phase velocities obtained with different kinematic hypotheses, in the limit approach each other. Additionally, this article presents a numerical calculation of the phase velocity of the traveling waves. Calculation technique developed by V.O. Kaledin is based on the assumption that the traveling (direct and reflected waves, forming a standing wave, are in superposition at sustained forced vibrations of a shell. Next, the analytical results, obtained for a cylindrical shell with the harmonic disturbing force acting at the front edge, have been compared with the numerical results obtained under the same assumptions. The difference between the numerical and analytical results is less than 1,5%.We note that many of the well-known works mention low accuracy when using the Kirchhoff-Love hypothesis to calculate phase velocities of the second and higher forms in thin cylindrical shells of rotation. This work is soundly refutes this claim and can form the basis of further studies of wave processes in shells of rotation of arbitrary Gaussian curvature using the Kirchhoff
Directory of Open Access Journals (Sweden)
Rashida Hussain
2017-04-01
Full Text Available In this paper, Novel (Gʹ/G-expansion method is used to find new generalized exact travelling wave solutions of fractional order coupled Burger’s equations in terms of trigonometric functions, rational functions and hyperbolic functions with arbitrary parameters. For the conversion of the partial differential equation to the ordinary differential equation, complex transformation method is used. Novel (Gʹ/G-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear equations. Moreover, for the representation of these exact solutions we have plotted graphs for different values of parameters which were in travelling waveform.
Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L
2012-02-29
Human porphyrias, diseases caused by enzyme defects in haem biosynthesis, are characterised by the excessive production, accumulation and excretion of porphyrins and/or 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG). A method for the simultaneous separation, detection and identification of ALA, PBG and porphyrins would greatly facilitate the screening and diagnosis of porphyrias. Such a method would also be invaluable for the biochemical study of the haem, chlorophyll and corrin pathways. An aqueous mixture containing ALA, PBG and type I isomer porphyrins was diluted with acetonitrile and infused (10 μL/min) into a Waters Synapt G2 high-definition mass spectrometer, equipped with a Z-Spray electrospray ionisation (ESI) source. Mass spectra were acquired in positive ionisation mode and the optimised ion mobility spectrometry (IMS) conditions were as follows: IMS wave height (V), 40; IMS wave velocity (m/s), 648; IMS gas flow (mL/min) 90.40; helium gas flow (mL/min), 182.60. The IMS drift-time increased with increasing ion mass in the order of ALA, PBG, mesoporphyrin, coproporphyrin I, penta-, hexa- and heptacarboxylic acid porphyrin I and uroporphyrin I. The ESI-IMS-MS spectra shows that PBG could form two different positively charged ions by protonation [M+H](+) , m/z 227, or deprotonation [M - H](+) , m/z 225. The protonated PBG (m/z 227) easily eliminated ammonia in source and the fragment ion (m/z 210) was monitored instead. Doubly charged ions of porphyrins having different drift times from the protonated singly charged molecules were observed in high abundance, providing further structural characterisation. We have shown, for the first time, an analytical method capable of simultaneously separating haem biosynthetic intermediates and metabolites, for a potential rapid clinical screening method for the porphyrias. IMS-MS allowed the separation of doubly charged porphyrin ions, which will be advantageous for the analysis of natural and synthetic
Yun, S J; Nam, K S
1998-01-01
Zinc sulfide (ZnS) and terbium-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (ALE). In the present work, ZnCl sub 2 , H sub 2 S, and tris (2,2,6,6-tetramethyl-3,5-heptandionato) terbium (Tb(tmhd) sub 3) were used as the precursors. The dependence of crystallinity and Cl content of ZnS films was investigated on the growth temperature. ZnS and ZnS:Tb films grown at temperatures ranging from 400 to 500 .deg. C showed a hexagonal-2H crystalline structure. The crystallinity of ZnS film was greatly enhanced as the temperature increased. At growth temperatures higher than 450.deg.C, the films showed preferred orientation with mainly (002) diffraction peak. The Cl content decreased from approximately 9 to 1 at.% with the increase in growth temperature from 400 to 500 .deg. C. The segregation of Cl near the surface region and the incorporation of O from Tb(tmhd) sub 3 during ALE process were also observed using Auger electron spectroscopy. The ALE-grown ZnS and ZnS:Tb films re...
Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip C.
2010-01-01
The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA), is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA's International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is greater than 40 W and the saturated RF gain is greater than 46 dB. The saturated AM-to-PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45%.
Tarditi, Alfonso; Chap, Andrew; Miley, George; Scott, John
2013-10-01
A study based on both Particle-in-cell (PIC) simulation and experiments is being developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC,) with the perspective of application to aneutronic fusion reaction products and space propulsion. The PIC model is investigating in detail the key TWDEC physics process by simulating the time-dependent transfer of energy from the ion beam to an electric load connected to ring-type electrodes in cylindrical symmetry. An experimental effort is in progress on a TWDEC test article at NASA, Johnson Space Center with the purpose of studying the conditions for improving the efficiency of the direct energy conversion process. Using a scaled-down ion energy source, the experiment is primarily focused on the effect of the (bunched) beam density on the efficiency and on the optimization of the electrode design. The simulation model is guiding the development of the experimental configuration and will provide details of the beam dynamics for direct comparison with experimental diagnostics. Work supported by NASA, Johnson Space Center.
Tarditi, Alfonso
2012-03-01
Due to the appeal of aneutronic fusion, a variety of reactor concepts have been proposed in past. In most cases, to achieve a positive net power balance these reactor concepts rely on a significant re-circulation of the energy produced to maintain a non-equilibrium configuration (unlike ignited plasmas). The availability of a direct conversion process with high efficiency is then critical for determining the feasibility of a reactor (particularly when the ``almost true aneutronic'' reaction like p-^11B is considered). A Traveling Wave Direct Energy Converter (TWDEC, [1]) is considered for the energy conversion of a high-density beam formed by the fusion products (MeV-range α-particles). As in [2], a PIC code is utilized for a realistic beam model. The study is focused on the possibility of obtaining high-efficiency coupling between a modulated high-density ``bunched'' beam, accounting also for a neutralizing electron environment, and the TWDEC electrode collector structure.[4pt] [1] Momota et al. (1999) Fus. Tech., 35, 60[0pt] [2] Y.Yasaka et al. (2009), Nucl. Fus., 49, 075009
Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip
2010-01-01
The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA) is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA s Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA s International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is >40 W and the saturated RF gain is >46 dB. The saturated AM-to- PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45 percent.
Molnar, P.; Chen, W.-P.
1984-01-01
S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.
Energy Technology Data Exchange (ETDEWEB)
Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics
2013-03-15
We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in
Downey, Joseph A.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by
Energy Technology Data Exchange (ETDEWEB)
Shores, D.A.; Selman, J.R.; Ong, E.T.
1989-12-01
This report describes the results of a three-year study of cathode degradation in molten carbonate fuel cells involving both experimental and theoretical work. A keystone of the study is the development of a mathematical model, which describes cathode degradation in terms of the fundamental processes of a fluxing mechanism, i.e., dissolution, transport and precipitation. New fundamental data have been obtained on the solubility of NiO, especially on the effect of water vapor, and on the kinetics of NiO dissolution in (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, and these data have been incorporated in the model. Laboratory cell testing in 3 cm{sup 2} cells has been carried out to obtain experimental data on degradation rates for direct comparison with the calculated results from the model. These comparisons have helped to verify several aspects of the model. For example, the model predicts with fair accuracy the location of the Ni deposit in the tile and the deposition rate. It is also fair to point out that the model is a relatively simple representation of complex processes, and it does not answer all questions about cathode degradation. Further work is needed. Because of its fundamental basis, the model can readily be upgraded and extended when further experimental data become available. The solubility studies, modeling efforts and cell testing have interacted iteratively to optimize progress. 94 figs., 24 tabs.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng
2018-05-01
Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a
He, Jun; Wei, Yan-Yu; Gong, Yu-Bin; Wang, Wen-Xiang
2009-11-01
A novel slow-wave structure (SWS), the folded double-ridged waveguide structure, is presented and its linear gain properties are investigated. The perturbed dispersion equation is derived and the small signal growth rate is calculated for dimensions of the ridge-loaded region and the parameters of the electron beam. The novel structure has potential applications in the production of high power and broad band radiation. For a cold beam, the linear theory predicts a gain of 1.1-1.27 dB/period and a 3-dB small-signal gain bandwidth of 30% in W-band. A comparison between the folded double-ridged waveguide SWS and folded waveguide SWS (FWSWS) shows that with the same physical parameters, the novel SWS has an advantage over the FWSWS on the bandwidth and electron efficiency.
X-Band Thermionic Cathode RF Gun at UTNL
Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji
2005-01-01
The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.
Zaroli, C.; Nolet, G.; Charlety, J.; Debayle, E.; Sambridge, M.
2011-12-01
-band tomographic inversion (using period bands centred at 10, 15, 22, 34 s) against a single-band inversion (22 s centre period) using various degrees of damping. This leads to a limited choice of damping values allowing us to fully exploit multi-band data. Our results indicate a need for very fine model parameterization and more sophisticated regularization technique (e.g. Loris et al., 2010), if we wish to fully exploit the spatial structure of FF kernels. This is particularly essential for small-scale features of the mantle (e.g. plumes, slabs) that are small enough to give rise to body wave travel time dispersion.
International Nuclear Information System (INIS)
Eppley, K.R.
1994-01-01
The authors have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. They use either a four or five cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, they obtain excellent cold-test agreement between the 2-D and 3-D models. They use hot-test simulations with CONDOR to design the structure with maximum efficiency and minimum surface fields. The azimuthal asymmetry due to the coupling iris can increase the peak fields by 20 to 30 percent. They can reduce this problem by making the final cavity with a non-circular cross section. With proper dimensions, they can keep a good match while reducing the azimuthal asymmetry to 6 percent. They have designed circuits at 11.424 Ghz for several different perveances. At 440 kV, microperveance 1.2, they calculate 83 MW, 54 percent efficiency, peak surface field 76 MV/m. At microperveance 0.8, they calculate 60 MW, 58 percent efficiency, peak field 67 MV/m. At 465 kV, microperveance 0.6, they calculate 55 MW, 62 percent efficiency, peak field 63 MV/m
A ppM-focused klystron at X-band with a travelling-wave output structure
International Nuclear Information System (INIS)
Eppley, K.R.
1994-10-01
We have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 GHz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a ppM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m
Directory of Open Access Journals (Sweden)
A. Vlasov
2011-11-01
Full Text Available We present a statistical study of Traveling Ionospheric Disturbances (TIDs as observed by the EISCAT Svalbard Radar (ESR during the continuous IPY-run (March 2007–February 2008 with field-aligned measurements. We have developed a semi-automatic routine for searching and extracting Atmospheric Gravity Wave (AGW activity. The collected data shows that AGW-TID signatures are common in the high-latitude ionosphere especially in the field-aligned ion velocity data (244 cases of AGW-TID signatures in daily records, but they can be observed also in electron density (26 cases, electron temperature (12 cases and ion temperature (26 cases. During the IPY campaign (in solar minimum conditions AGW-TID events appear more frequently during summer months than during the winter months. It remains still as a topic for future studies whether the observed seasonal variation is natural or caused by seasonal variation in the performance of the observational method that we use (AGW-TID signature may be more pronounced in a dense ionosphere. In our AGW-TID dataset the distribution of the oscillation periods has two peaks, one around 0.5–0.7 h and the other around 1.1–1.3 h. The diurnal occurrence rate has a deep minimum in the region of magnetic midnight, which might be partly explained by irregular auroral activity obscuring the TID signatures from our detection routines. As both the period and horizontal phase speed estimates (as derived from the classical AGW dispersion relation show values typical both for large scale TIDs and mesoscale TIDs it is difficult to distinguish whether the generator for high-latitude AGW-TIDs resides typically in the troposphere or in the near-Earth space. The results of our statistical analysis give anyway some valuable reference information for the future efforts to learn more about the dominating TID source mechanisms in polar cap conditions, and to improve AGW simulations.
Cryar, Adam; Groves, Kate; Quaglia, Milena
2017-06-01
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. [Figure not available: see fulltext.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yan; Liu, Guo, E-mail: liuguo@uestc.edu.cn; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Shafei, E-mail: rockingsandstorm@163.com [North Electronic Device Research Institution, Box 947, Beijing 100141 (China)
2016-03-15
A technique to launch a circular TE{sub 13} mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE{sub 13} mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE{sub 32} and TE{sub 71} modes are suppressed to allow the transmission of the dominant TE{sub 13} mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ∼−1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5–98.7 GHz) and port reflection is less than −15 dB. The conversion efficiency to the TE{sub 32} and TE{sub 71} modes are, respectively, under −15 dB and −24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.
International Nuclear Information System (INIS)
Heus, H.; Heutenik, B.; Kroes, F.; Maaskant, A.; Sluyk, T.
The signals of the monitors, by means of ''Prodlines,'' are first brought out of the radiation surroundings of the tunnel. These coaxial cables have a very low attenuation for 2856 Mc and they couple well thermally, thus originating the least possible phase differentials through thermal expansion. To remove the last tenths of millimeters, a calibration can then still be applied. Only after calibration does the relative measurement become absolute. The conversion electronics are located in the instrument boxes. Here the signals are first mixed to a lower frequency (10 Mc) from where it is easier to perform an amplitude-independent phase detection. To this effect, the signals are first ''limited,'' after which a phase detection can take place, independently of the amplitude (i.e., of the beam current). Subsequently, there is an amplification in the Lf amplifiers and 50 ohm driver steps. The signal can, even via long cables, be carried to an oscilloscope; it can also be sent via the video highway
Directory of Open Access Journals (Sweden)
M.G. Hafez
2016-06-01
Full Text Available In this paper, the novel (G′/G-expansion method is applied to construct exact travelling wave solutions of the cubic nonlinear Schrodinger equation. This technique is straightforward and simple to use, and gives more new general solutions than the other existing methods. Various types of solitary and periodic wave solutions of this equation are derived. The obtained results may be helpful to describe the wave propagation in soliton physics, such as soliton propagation in optical fibers, modulus instability in plasma physics, etc. and provided us the firm mathematical foundation in soliton physics or any varied instances. Furthermore, three-dimensional modules plot of the solutions are also given to visualize the dynamics of the equation.
Travelers' Health: Pregnant Travelers
... las picaduras de insectos Business Travel Cold Climates Counterfeit Medicines Cruise Ship Travel Families with Children Fish ... and motion sickness and appear to have a good safety record. VACCINES In the best possible scenario, ...
... Stamaril clinics Disease Directory Resources Resources for Travelers Adventure Travel Animal Safety Blood Clots Bug Bites Evite ... Minute Travel Long-Term Travel Mass Gatherings Medical Tourism Mental Health Motion Sickness Natural Disasters Pregnant Travelers ...
Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.
2018-04-01
Despite advancements in developing physics-based formulations to estimate the sheet-flow travel time (tSHF), the quantification of the relative impacts of influential parameters on tSHF has not previously been considered. In this study, a brief review of the physics-based formulations to estimate tSHF including kinematic wave (K-W) theory in combination with Manning's roughness (K-M) and with Darcy-Weisbach friction formula (K-D) over single and multiple planes is provided. Then, the relative significance of input parameters to the developed approaches is quantified by a density-based global sensitivity analysis (GSA). The performance of K-M considering zero-upstream and uniform flow depth (so-called K-M1 and K-M2), and K-D formulae to estimate the tSHF over single plane surface were assessed using several sets of experimental data collected from the previous studies. The compatibility of the developed models to estimate tSHF over multiple planes considering temporal rainfall distributions of Natural Resources Conservation Service, NRCS (I, Ia, II, and III) are scrutinized by several real-world examples. The results obtained demonstrated that the main controlling parameters of tSHF through K-D and K-M formulae are the length of surface plane (mean sensitivity index T̂i = 0.72) and flow resistance (mean T̂i = 0.52), respectively. Conversely, the flow temperature and initial abstraction ratio of rainfall have the lowest influence on tSHF (mean T̂i is 0.11 and 0.12, respectively). The significant role of the flow regime on the estimation of tSHF over a single and a cascade of planes are also demonstrated. Results reveal that the K-D formulation provides more precise tSHF over the single plane surface with an average percentage of error, APE equal to 9.23% (the APE for K-M1 and K-M2 formulae were 13.8%, and 36.33%, respectively). The superiority of Manning-jointed formulae in estimation of tSHF is due to the incorporation of effects from different flow regimes as
Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping
2015-04-01
The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.
Energy Technology Data Exchange (ETDEWEB)
Lopez S, R. C.; Francois L, J. L. [UNAM, Facultad de Ingeniera, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Becker, M., E-mail: rcarlosls@yahoo.com.mx [Institut fur Neutronenphysik und Reaktortechnik (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)
2012-10-15
Problems with the computation time in a based code on the Monte Carlo method, they conduct to explore the option of the deterministic codes to be able to develop a model of robust reactor of traveling wave, and where short term results are obtained to carry out experimentation work to the moment to study an assemblies exchange scheme as method of fuel administration. KANEXT is a versatile and reliable code, developed in Germany that has satisfied our development necessities until the moment. In this article is described the KANEXT operation, and like it was implemented to develop a preliminary model of reactor core of traveling wave with operation way of stationary wave. The results obtained until the moment, as for the neutrons multiplication factor and the isotopic balance, are encouraging and they lead to refine the model removing completely the axial covering. The adoption of deterministic codes has allowed carrying out tests of complete core in a conventional computer in question of only hours; this will be valuable in the next stage of the research, where developing a re situate scheme of fuel assemblies will involve a great quantity of sprints. (Author)
Mohammed, K. Elboree
2015-10-01
In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.
Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.
1981-01-01
A comparison of analytical and experimental results is presented for a high performance dual-mode traveling wave tube (TWT) operated over a wide range conditions. The computations are carried out with advanced multidimensional computer programs. These programs model the electron beam as a series of disks or rings of charge and follow their trajectories from the rf input of the TWT through the slow-wave structure refocusing system to their points of impacts in the depressed collector. TWT performance, collector efficiency, and collector current distribution are computed and compared with measurements. Very good agreement was obtained between computed and measured TWT performance and collector efficiencies, and the computer design of a highly efficient collector was demonstrated.
International Nuclear Information System (INIS)
Higashi, Cristiane
2006-01-01
In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)
Energy Technology Data Exchange (ETDEWEB)
Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert
2006-11-01
Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still
International Nuclear Information System (INIS)
Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert
2006-01-01
Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still
Energy Technology Data Exchange (ETDEWEB)
Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.
2016-09-20
We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RF parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.
Wu, S.; Yang, Y.; Wang, K.
2017-12-01
The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with
Travelers' Health: Cruise Ship Travel
... Travel Chapter 6 - Death during Travel Cruise Ship Travel Joanna J. Regan, Kara Tardivel, Susan A. Lippold, ... Insurance, & Medical Evacuation Insurance ). Box 6-01. Cruise travel health precautions ADVICE FOR CLINICIANS GIVING PRETRAVEL CRUISE ...
Energy Technology Data Exchange (ETDEWEB)
Santos, Allan Xavier dos
2010-07-01
During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)
Slack, P.D.; Davis, P.M.; Baldridge, W.S.; Olsen, K.H.; Glahn, A.; Achauer, U.; Spence, W.
1996-01-01
The lithosphere beneath a continental rift should be significantly modified due to extension. To image the lithosphere beneath the Rio Grande rift (RGR), we analyzed teleseismic travel time delays of both P and S wave arrivals and solved for the attenuation of P and S waves for four seismic experiments spanning the Rio Grande rift. Two tomographic inversions of the P wave travel time data are given: an Aki-Christofferson-Husebye (ACH) block model inversion and a downward projection inversion. The tomographic inversions reveal a NE-SW to NNE-SSW trending feature at depths of 35 to 145 km with a velocity reduction of 7 to 8% relative to mantle velocities beneath the Great Plains. This region correlates with the transition zone between the Colorado Plateau and the Rio Grande rift and is bounded on the NW by the Jemez lineament, a N52??E trending zone of late Miocene to Holocene volcanism. S wave delays plotted against P wave delays are fit with a straight line giving a slope of 3.0??0.4. This correlation and the absolute velocity reduction imply that temperatures in the lithosphere are close to the solidus, consistent with, but not requiring, the presence of partial melt in the mantle beneath the Rio Grande rift. The attenuation data could imply the presence of partial melt. We compare our results with other geophysical and geologic data. We propose that any north-south trending thermal (velocity) anomaly that may have existed in the upper mantle during earlier (Oligocene to late Miocene) phases of rifting and that may have correlated with the axis of the rift has diminished with time and has been overprinted with more recent structure. The anomalously low-velocity body presently underlying the transition zone between the core of the Colorado Plateau and the rift may reflect processes resulting from the modern (Pliocene to present) regional stress field (oriented WNW-ESE), possibly heralding future extension across the Jemez lineament and transition zone.
Travelers' Health: Immunocompromised Travelers
... Traveler Registration During Trip After Your Trip CDC-TV Videos Resources For Clinicians In-Clinic Quick Links ... Menactra or Menveo 3 years after the primary series. Boosters should be repeated every 5 years thereafter. ...
Cathodic protection -- Rectifier 46
Energy Technology Data Exchange (ETDEWEB)
Lane, W.M. [Westinghouse Hanford Co., Richland, WA (United States)
1995-06-14
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste.
Cathodic protection -- Rectifier 47
Energy Technology Data Exchange (ETDEWEB)
Lane, W.M. [Westinghouse Hanford Co., Richland, WA (United States)
1995-06-14
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste.
Cathodic protection -- Rectifier 47
International Nuclear Information System (INIS)
Lane, W.M.
1995-01-01
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste
Chevalier, C. T.; Herrmann, K. A.; Kory, C. L.; Wilson, J. D.; Cross, A. W.; Williams, W. D. (Technical Monitor)
2001-01-01
Previously, it was shown that MAFIA (solutions of Maxwell's equations by the Finite Integration Algorithm), a three-dimensional simulation code, can be used to produce accurate cold-test characteristics including frequency-phase dispersion, interaction impedance, and attenuation for traveling-wave tube (TWT) slow-wave structures. In an effort to improve user-friendliness and simulation time, a model was developed to compute the cold-test parameters using the electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS). Cold-test parameters were calculated for several slow-wave circuits including a ferruled coupled-cavity, a folded waveguide, and a novel finned-ladder circuit using both MWS and MAFIA. Comparisons indicate that MWS provides more accurate cold-test data with significantly reduced simulation times. Both MAFIA and MWS are based on the finite integration (FI) method; however, MWS has several advantages over MAFIA. First, it has a Windows based interface for PC operation, making it very user-friendly, whereas MAFIA is UNIX based. MWS uses a new Perfect Boundary Approximation (PBA), which increases the accuracy of the simulations by avoiding stair step approximations associated with MAFIA's representation of structures. Finally, MWS includes a Visual Basic for Applications (VBA) compatible macro language that enables the simulation process to be automated and allows for the optimization of user-defined goal functions, such as interaction impedance.
Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin
2017-09-15
The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Schroeder, Alex
2015-11-01
The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.
Munro, K J; Smith, R; Thornton, A R
1995-02-01
The ABR Delta V technique involves measuring the difference in latency of the wave V click-evoked ABR in the presence of ipsilateral high-pass noise filtered at 1.42 kHz and at 5.68 kHz. It has been reported that a small latency difference between the two conditions is suggestive of Ménière's disease. The aim of this study was to establish normative data for two commercially available systems. The latency differences obtained in the present study are considerably smaller than those previously reported in the literature. Other problems, including difficulty in identifying wave V in the masked conditions, prevent us from currently using this test technique. There are a number of technical problems which may account for some of the problems experienced when implementing the Delta V technique with commercial equipment and there is at least the possibility that the problems may be overcome in the future.
International Nuclear Information System (INIS)
Trimeche, Azer
2013-01-01
This work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner. The understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. Deceleration paramagnetic molecules, free radicals and neutrons are possible. (author) [fr
Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.
1979-01-01
Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required.
Pištěková, Petra
2014-01-01
The thesis "Travel expenses" is dedicated to the travel expenses according to Czech legislation. The aim is to describe the travel reimbursement and to analyze the providing of compensation travel expenses on example of the elementary art school Zruč nad Sázavou. The purpose of this analysis is primarily to find an optimal solution to the problem of determining the place of regular workplace for the travel expenses. The theoretical part focuses on the identification and definition of all prin...
Cathodic Protection Model Facility
Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...
Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian
2014-01-01
Abstract Objective To define the practice of travel medicine, provide the basics of a comprehensive pretravel consultation for international travelers, and assist in identifying patients who might require referral to travel medicine professionals. Sources of information Guidelines and recommendations on travel medicine and travel-related illnesses by national and international travel health authorities were reviewed. MEDLINE and EMBASE searches for related literature were also performed. Main message Travel medicine is a highly dynamic specialty that focuses on pretravel preventive care. A comprehensive risk assessment for each individual traveler is essential in order to accurately evaluate traveler-, itinerary-, and destination-specific risks, and to advise on the most appropriate risk management interventions to promote health and prevent adverse health outcomes during travel. Vaccinations might also be required and should be personalized according to the individual traveler’s immunization history, travel itinerary, and the amount of time available before departure. Conclusion A traveler’s health and safety depends on a practitioner’s level of expertise in providing pretravel counseling and vaccinations, if required. Those who advise travelers are encouraged to be aware of the extent of this responsibility and to refer all high-risk travelers to travel medicine professionals whenever possible. PMID:25500599
Energy Technology Data Exchange (ETDEWEB)
2016-06-01
The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
Mukhopadhyay, A; Calaga, R; Caspers, F; Paoluzzi, M
2014-01-01
The feasibility of cleanly separating the main 10.128MHz bunches from the 101.28MHz satellite bunches with a travelling-wave type chopper at HIE-ISOLDE was investigated using a simple model comprising a chain of synchronised capacitors pulsed at high-voltage. Even with a relatively large transverse aperture of 30mm it appears feasible to remove the satellite bunches spaced at 75mm without significantly perturbing the main bunch. We estimate that for a chopping voltage of 1.2 kV a string of 20 capacitors is required to impart the required deflection of 4 mrad to beams with A=q = 4:5 and the mechanical length of the system can be kept under 0.5 m. The deflection imparted on the main pulse is . 1% of that received by the discarded satellite bunches and the transverse emittance growth of the beam is small if the rise/fall times are kept below 5 ns. The HIE-ISOLDE specification is similar to the specification of the meander strip-line chopper developed at CERN for Linac4 and the application of this technology at ...
Jonah, O. F.; Kherani, E. A.; De Paula, E. R.
2016-03-01
In the present study, we document daytime total electron content (TEC) disturbances associated with medium-scale traveling ionospheric disturbances (MSTIDs), on few chosen geomagnetically quiet days over Southern Hemisphere of Brazilian longitude sector. These disturbances are derived from TEC data obtained using Global Navigation Satellite System (GNSS) receiver networks. From the keograms and cross-correlation maps, the TEC disturbances are identified as the MSTIDs that are propagating equatorward-eastward, having most of their average wavelengths longer in latitude than in longitude direction. These are the important outcomes of the present study which suggest that the daytime MSTIDs over Southern Hemisphere are similar to their counterparts in the Northern Hemisphere. Another important outcome is that the occurrence characteristics of these MSTIDs and that of atmospheric gravity wave (AGW) activities in the thermosphere are found to be similar on day-to-day basis. This suggests a possible connection between them, confirming the widely accepted AGW forcing mechanism for the generation of these daytime MSTIDs. The source of this AGW is investigated using the Geostationary Operational Environmental Satellite system (GOES) and Constellation Observing System for Meteorology, Ionosphere, and Climate satellite data. Finally, we provided evidences that AGWs are generated by convection activities from the tropospheric region.
Ramins, P.; Fox, T. A.
1980-01-01
An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.
Sabelnikov, V A; Lipatnikov, A N
2014-09-01
The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.
Merenbloom, Samuel I.; Flick, Tawnya G.; Daly, Michael P.; Williams, Evan R.
2011-11-01
The gas-phase conformations of ubiquitin, cytochrome c, lysozyme, and α-lactalbumin ions, formed by electrospray ionization (ESI) from aqueous solutions containing 5 mM ammonium perchlorate, ammonium iodide, ammonium sulfate, ammonium chloride, ammonium thiocyanate, or guanidinium chloride, are examined using traveling-wave ion mobility spectrometry (TWIMS) coupled to time-of-flight (TOF) mass spectrometry (MS). For ubiquitin, cytochrome c, and α-lactalbumin, adduction of multiple acid molecules results in no significant conformational changes to the highest and lowest charge states formed from aqueous solutions, whereas the intermediate charge states become more compact. The transition to more compact conformers for the intermediate charge states occurs with fewer bound H2SO4 molecules than HClO4 or HI molecules, suggesting ion-ion or salt-bridge interactions are stabilizing more compact forms of the gaseous protein. However, the drift time distributions for protein ions of the same net charge with the highest levels of adduction of each acid are comparable, indicating that these protein ions all adopt similarly compact conformations or families of conformers. No significant change in conformation is observed upon the adduction of multiple acid molecules to charge states of lysozyme. These results show that the attachment of HClO4, HI, or H2SO4 to multiply protonated proteins can induce compact conformations in the resulting gas-phase protein ions. In contrast, differing Hofmeister effects are observed for the corresponding anions in solution at higher concentrations.
... las picaduras de insectos Business Travel Cold Climates Counterfeit Medicines Cruise Ship Travel Families with Children Fish ... alcohol-based hand sanitizer. In general, it’s a good idea to keep your hands away from your ...
Energy Technology Data Exchange (ETDEWEB)
Simmons, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Myers, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johannesson, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-10-06
[1] We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 millionP and Pnarrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0–97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed.
International Nuclear Information System (INIS)
Liu Chengshi
2008-01-01
Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc, are reduced to an integrable ODE expressed by u + p(u)(u') 2 + q(u) = 0 whose general solution can be given. Furthermore, combining complete discrimination system for polynomial, the classifications of all single travelling wave solutions to these equations are obtained. The equation u + p(u)(u') 2 + q(u) = 0 includes the equation (u') 2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
Directory of Open Access Journals (Sweden)
Tim Herrmann
Full Text Available Neuroimaging of macaques at ultra-high field (UHF is usually conducted by combining a volume coil for transmit (Tx and a phased array coil for receive (Rx tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI.The TW Primate System (TWPS uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil.The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired.The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.
Rad, Farshid Mashayekhy; Leck, Caroline; Ilag, Leopold L; Nilsson, Ulrika
2018-03-09
Fatty acids are enriched in the ocean surface microlayer (SML) and have as a consequence been detected worldwide in sea spray aerosols. In searching for a relationship between the properties of the atmospheric aerosol and its ability to form cloud condensation nuclei and to promote cloud droplet formation over remote marine areas, the role of surface active fatty acids sourced from the SML is of interest to be investigated. Here is presented a fast method for profiling of major fatty acids in SML samples collected in the high Arctic (89 °N, 1 °W) in the summer of 2001. UHPLC/travelling-wave ion mobility spectrometry (TWIMS)/time-of-flight (TOF) mass spectrometry (MS) for profiling was evaluated and compared with UHPLC/TOFMS. No sample preparation, except evaporation and centrifugation, was necessary to perform prior to the analysis. TOFMS data on accurate mass, isotopic ratios and fragmentation patterns enabled identification of the fatty acids. The TWIMS dimension added to the selectivity by extensive reduction of the noise level and the entire UHPLC/TWIMS/TOFMS method provided a fast profiling of the acids, ranging from C 8 to C 24 . Hexadecanoic and octadecanoic acids were shown to yield the highest signals among the fatty acids detected in a high Arctic SML sample, followed by the unsaturated octadecenoic and octadecadienoic acids. The predominance of signal from even-numbered carbon chains indicates a mainly biogenic origin of the detected fatty acids. This study presents a fast alternative method for screening and profiling of fatty acids, which has the advantage of not requiring any complicated sample preparation thus limiting the loss of analytes. Almost no manual handling, together with the very small sample volumes needed, is certainly beneficial for the determination of trace amounts and should open up the field of applications to also include atmospheric aerosol and fog. This article is protected by copyright. All rights reserved.
Ramins, P.; Ebihara, B. T.
1986-01-01
Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.
Nanostructured sulfur cathodes
Yang, Yuan
2013-01-01
Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...
Interaction of cosmic strings with gravitational waves
International Nuclear Information System (INIS)
Frolov, V.P.; Garfinkle, D.
1990-01-01
We find solutions of Einstein's equation representing a gravitational wave interacting with a cosmic-string traveling wave. The motion of test cosmic strings in the gravitational field of a cosmic-string traveling wave is also examined. A solution representing traveling waves on several parallel cosmic strings is also found
Directory of Open Access Journals (Sweden)
Vernon Cooray
2017-02-01
Full Text Available Recently, we published two papers in this journal. One of the papers dealt with the action of the radiation fields generated by a traveling-wave element and the other dealt with the momentum transferred by the same radiation fields and their connection to the time energy uncertainty principle. The traveling-wave element is defined as a conductor through which a current pulse propagates with the speed of light in free space from one end of the conductor to the other without attenuation. The goal of this letter is to combine the information provided in these two papers together and make conclusive statements concerning the connection between the energy dissipated by the radiation fields, the time energy uncertainty principle and the elementary charge. As we will show here, the results presented in these two papers, when combined together, show that the time energy uncertainty principle can be applied to the classical radiation emitted by a traveling-wave element and it results in the prediction that the smallest charge associated with the current that can be detected using radiated energy as a vehicle is on the order of the elementary charge. Based on the results, an expression for the fine structure constant is obtained. This is the first time that an order of magnitude estimation of the elementary charge based on electromagnetic radiation fields is obtained. Even though the results obtained in this paper have to be considered as order of magnitude estimations, a strict interpretation of the derived equations shows that the fine structure constant or the elementary charge may change as the size or the age of the universe increases.
Ibrahim, R. S.; El-Kalaawy, O. H.
2006-10-01
The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.
Atkinson, Joan A.
1986-01-01
Four after-school workshops for hearing impaired high school students focused on the independent transportation skills of riding a bus alone, using a transfer, figuring out routes and schedules, and securing additional travel information. (CL)
DEFF Research Database (Denmark)
Simonsen, Karen-Margrethe
2013-01-01
Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012......Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012...
Travel motivations of package tour travelers
Chang, Jui Chi
2007-01-01
Managers in the travel industry are keen to know what influences customer decision-making and how customers make their decisions. Travel motivation reflects one’s needs and wants and can be viewed as a critical variable in relation to their purchase decisions. Travel motives for joining group travel may be different from those of free independent travelers. This study examined travel motives as well as travel decision-making of Taiwanese travellers with a group package tour abroad. The qualit...
... Management Education & Events Advocacy For Patients About ACOG Travel During Pregnancy Home For Patients Search FAQs Travel ... Travel During Pregnancy FAQ055, April 2017 PDF Format Travel During Pregnancy Pregnancy Is travel safe during pregnancy? ...