WorldWideScience

Sample records for trapped radiation model

  1. The NSSDC trapped radiation model facility

    International Nuclear Information System (INIS)

    Gaffey, J.D. Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described. 17 refs

  2. Modeling of radiation-induced charge trapping in MOS devices under ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, M. A., E-mail: m.a.petukhov@gmail.com; Ryazanov, A. I. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The numerical model of the radiation-induced charge trapping process in the oxide layer of a MOS device under ionizing irradiation is developed; the model includes carrier transport, hole capture by traps in different states, recombination of free electrons and trapped holes, kinetics of hydrogen ions which can be accumulated in the material during transistor manufacture, and accumulation and charging of interface states. Modeling of n-channel MOSFET behavior under 1 MeV photon irradiation is performed. The obtained dose dependences of the threshold voltage shift and its contributions from trapped holes and interface states are in good agreement with experimental data.

  3. Radiation of electrons in an electromagnetic axial trap

    International Nuclear Information System (INIS)

    Toropova, A.I.

    1998-01-01

    The version of a trap. wherein particles move in a homogeneous constant magnetic field and electrostatic field, formed by two equipotential planes and rotation axial surface, is proposed. The solution of canonic equations is found. It is shown that interaction of electrons with the radiation field leads to damping parametric resonance. The trap model, accounting for the finite conductivity of the resonator walls and losses by collisions with gas, is studied

  4. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  5. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    International Nuclear Information System (INIS)

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  6. Revisiting the `forbidden' region: AGN radiative feedback with radiation trapping

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Ricci, C.; Celotti, A.

    2018-06-01

    Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples respect the effective Eddington limit for dusty gas in the plane defined by the observed column density versus the Eddington ratio, the so-called NH - λ plane. A `forbidden' region occurs in this plane, where obscuring clouds cannot be long-lived, due to the action of radiation pressure on dust. Here we compute the effective Eddington limit by explicitly taking into account the trapping of reprocessed radiation (which has been neglected in previous works), and investigate its impact on the NH - λ plane. We show that the inclusion of radiation trapping leads to an enhanced forbidden region, such that even Compton-thick material can potentially be disrupted by sub-Eddington luminosities. We compare our model results to the most complete sample of local AGNs with measured X-ray properties, and find good agreement. Considering the anisotropic emission from the accretion disc, we also expect the development of dusty outflows along the polar axis, which may naturally account for the polar dust emission recently detected in several AGNs from mid-infrared observations. Radiative feedback thus appears to be the key mechanism regulating the obscuration properties of AGNs, and we discuss its physical implications in the context of co-evolution scenarios.

  7. Trapping of pellet cloud radiation in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Miroshinikov, I.V.; Sudo, Shigeru; Namba, C.; Lisitsa, V.S.

    2001-01-01

    The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)

  8. Pioneer 10/11 data analysis of the trapped radiation experiment

    Science.gov (United States)

    Fillius, W.

    1982-01-01

    The data handling operations and the database produced by the Trapped Radiation Experiment on the NASA Pioneer 10 and 11 spacecraft are outlined. In situ measurements of trapped radiation at both Jupiter and Saturn, the extension of cosmic ray observations to the outer heliosphere, the presence of Jovian electrons in interplanetary space, analyses of the interaction between planetary satellites and the trapped radiation that engulfs them, and further investigations of the radiation enviroments of both planets are reported.

  9. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  10. On the thermoluminescent interactive multiple-trap system (IMTS) model: is it a simple model?

    International Nuclear Information System (INIS)

    Gil T, M. I.; Perez C, L.; Cruz Z, E.; Furetta, C.; Roman L, J.

    2016-10-01

    In the thermally stimulated luminescence phenomenon, named thermoluminescence (Tl), the electrons and holes generated by the radiation-matter interaction can be trapped by the metastable levels in the band gap of the solid. Following, the electron can be thermally releases into the conduction band and a radiatively recombination with hole close to the recombination center occurred and the glow curve is emitted. However, the complex mechanism of trapping and thermally releases occurred in the band gap of solid. Some models, such as; first, second and general-order kinetics, have been well established to explain the behaviour of the glow curves and their defects recombination mechanism. In this work, expressions for and Interactive Multiple-Trap System model (IMTS) was obtained assuming: a set of discrete electron traps (active traps At), another set of thermally disconnected trap (TDT) and a recombination center (Rc) too. A numerical analysis based on the Levenberg-Marquardt method in conjunction with an implicit Rosenbrock method was taken into account to simulate the glow curve. The numerical method was tested through synthetic Tl glow curves for a wide range of trap parameters. The activation energy and kinetics order were determined using values from the General Order Kinetics (GOK) model as entry data to IMTS model. This model was tested using the experimental glow curves obtained from Ce or Eu-doped MgF 2 (LiF) polycrystals samples. Results shown that the IMTS model can predict more accurately the behavior of the Tl glow curves that those obtained by the GOK modified by Rasheedy and by the Mixed Order Kinetics model. (Author)

  11. On the thermoluminescent interactive multiple-trap system (IMTS) model: is it a simple model?

    Energy Technology Data Exchange (ETDEWEB)

    Gil T, M. I.; Perez C, L. [UNAM, Facultad de Quimica, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Cruz Z, E.; Furetta, C.; Roman L, J., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-10-15

    In the thermally stimulated luminescence phenomenon, named thermoluminescence (Tl), the electrons and holes generated by the radiation-matter interaction can be trapped by the metastable levels in the band gap of the solid. Following, the electron can be thermally releases into the conduction band and a radiatively recombination with hole close to the recombination center occurred and the glow curve is emitted. However, the complex mechanism of trapping and thermally releases occurred in the band gap of solid. Some models, such as; first, second and general-order kinetics, have been well established to explain the behaviour of the glow curves and their defects recombination mechanism. In this work, expressions for and Interactive Multiple-Trap System model (IMTS) was obtained assuming: a set of discrete electron traps (active traps At), another set of thermally disconnected trap (TDT) and a recombination center (Rc) too. A numerical analysis based on the Levenberg-Marquardt method in conjunction with an implicit Rosenbrock method was taken into account to simulate the glow curve. The numerical method was tested through synthetic Tl glow curves for a wide range of trap parameters. The activation energy and kinetics order were determined using values from the General Order Kinetics (GOK) model as entry data to IMTS model. This model was tested using the experimental glow curves obtained from Ce or Eu-doped MgF{sub 2}(LiF) polycrystals samples. Results shown that the IMTS model can predict more accurately the behavior of the Tl glow curves that those obtained by the GOK modified by Rasheedy and by the Mixed Order Kinetics model. (Author)

  12. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  13. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  14. Effects of oxide traps, interface traps, and ''border traps'' on metal-oxide-semiconductor devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C.

    1993-01-01

    We have identified several features of the 1/f noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, ''oxide traps'' are simply defects in the SiO 2 layer of the MOS structure, and ''interface traps'' are defects at the Si/SiO 2 interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, ''fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but ''switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., ''border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. NS-39, 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/f noise of MOS devices through irradiation and elevated-temperature annealing

  15. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  16. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  17. Stability of Trapped Electrons in SiO(2)

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.

    1999-01-01

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal-oxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of ∼3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and seem to be at least qualitatively consistent with the model of Lelis et al. Deeper traps maybe part of a fundamentally distinct dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si

  18. A Monte Carlo study of radiation trapping effects

    International Nuclear Information System (INIS)

    Wang, J.B.; Williams, J.F.; Carter, C.J.

    1997-01-01

    A Monte Carlo simulation of radiative transfer in an atomic beam is carried out to investigate the effects of radiation trapping on electron-atom collision experiments. The collisionally excited atom is represented by a simple electric dipole, for which the emission intensity distribution is well known. The spatial distribution, frequency and free path of this and the sequential dipoles were determined by a computer random generator according to the probabilities given by quantum theory. By altering the atomic number density at the target site, the pressure dependence of the observed atomic lifetime, the angular intensity distribution and polarisation of the radiation field is studied. 7 refs., 5 figs

  19. Control of relative radiation pressure in optical traps : application to phagocytic membrane binding studies

    NARCIS (Netherlands)

    Kress, H.; Stelzer, E.H.K.; Griffiths, G.; Rohrbach, A.

    2005-01-01

    We show how to control the relative radiation pressure and thereby the stable trap position of an optically trapped bead by variation of the mean incident axial photon momentum. The thermal position fluctuations of a trapped bead are recorded by a three-dimensional back focal plane interferometry.

  20. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  1. TL Dating Technique Based on a Trap Model and its Application as a Geochronometer for Granitic Quartz

    International Nuclear Information System (INIS)

    Han, Y.; Li, H.; Tso, Y.W.

    1999-01-01

    A trap model is introduced to describe the behaviours of both thermally sensitive and radiation sensitive TL traps. The former are relatively shallow traps. The latter are deep traps, in which population increases with exposure to alpha dose. Thermal decay of both types of traps at ambient temperature is dependent on the trap lifetimes. A trap's population can be measured as TL sensitivity to a laboratory test dose. The trap model has been supported by observations of age dependent TL signals from granitic quartz samples with different crystallisation ages. The trap lifetimes are from 1.98 x 10 9 to 5.36 x 10 15 years estimated using the isothermal decay experiment with the assumption of first order kinetics. Dating techniques are proposed based on the trap model. For old granites (>400 Ma), ages can be obtained by measuring the total exposed alpha dose using the additive alpha dose method, whereas for young granites (<400 Ma), ages can also be obtained by interpolating the TL sensitivity to a curve of TL sensitivities for known ages. (author)

  2. Radiation trapping in atomic absorption spectroscopy at lead determination in different matricies

    International Nuclear Information System (INIS)

    El-Gohary, Z.

    2005-01-01

    The determination of lead by flame atomic absorption analysis in the presence of Sn and Fe atoms and different matrices such as OH and SO 3 was investigated with the objective of understanding the spectral interference processes at the analytical lines 283.31 nm for a wide range of concentration. The radiation trapping factor was interpreted and evaluated assuming Voigt distribution of the atomic and rotational lines in the flame. The radiation trapping factor was increased by increasing the number density (plasma of the absorbing medium is optically thick). In plasma, there is a certain point of equilibrium between the trapping and the escaping of radiation, which is relevant to 50% of absorption. The spectral background interference can cause a variation of the number density at equilibrium point as a result of the degree of overlap with the analytical line. The spectral background interference can be easily avoided by using another resonance absorption line for the analysis. The chemical modification of the matrix is applied to minimize the interference effect. Nitric acid, ammonium nitrate and magnesium nitrate are most commonly recommended as matrix modifiers

  3. Cooling of ions trapped in potential wells produced by electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1990-01-01

    The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author) [es

  4. Effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + :phosphate glasses

    CERN Document Server

    Dai Shi Xun; Wen Lei; Hu Li Li; Jiang Zhong Hon

    2003-01-01

    The effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + -doped phosphate glasses was investigated as a function of Yb sup 3 sup + concentration at different thicknesses. It was found that radiative trapping exists generally in Yb sup 3 sup + :phosphate glasses, even at low concentration. As a result, the measured lifetime of Yb sup 3 sup + in phosphate glasses is usually larger than the calculated one. The maximum discrepancies between them at high concentration are found to be <42%. The calculated lifetime should be used as a reference in determining the true value of the measured lifetime because of it being lengthened largely by radiative trapping. On the other hand, the shape of fluorescence spectrum exhibits remarkable changes due to the radiative trapping. What is more, the intensity increase of DELTA lambda sub e sub f sub f at high concentration is greater than that of low doping. The DELTA lambda sub e sub f sub f increases 36% from 53 to 72 nm with thickn...

  5. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  6. A Computer Model of Insect Traps in a Landscape

    Science.gov (United States)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  7. Status of Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  8. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  9. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  10. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    International Nuclear Information System (INIS)

    Cayton, Thomas E.

    2005-01-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, μ, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of μ and K, and for 3.5 R E E , the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R E for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits μ-dependent local minima around L = 5 R E . Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K c . Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons

  11. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  12. Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs

    Science.gov (United States)

    Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.

    2008-03-01

    The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.

  13. Trapped electrons as a free energy source for the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Louarn, P.; Roux, A.; de Feraudy, H.; Le Queau, D.; Andre, M.; Matson, L.

    1990-01-01

    Simultaneous measurements of electromagnetic fields and particle distributions, measured during the crossing by the Swedish spacecraft Viking of an auroral kilometric radiation (AKR) source, are presented. It is shown that AKR is generated within an acceleration region characterized by an upward directed parallel electric field, as evidenced by its signature on the proton and electron distributions. From particle observations inside the AKR source it is clear that the potential drop below the spacecraft produces upward moving field-aligned ion beams and a depletion in the density of low energy electrons. The potential drop above the spacecraft produces downward accelerated electrons. A large fraction of these electrons have small parallel velocities; they mirror above the ionosphere. These trapped electrons lie in a region of velocity space which should be empty in a simple adiabatic theory. The authors suggest that these electrons get trapped when they experience a time-varying (or space-varying) parallel electric field. This conclusion is supported by the comparison between the observed electron distribution function and a model distribution function built by applying Liouville theorem. Since trapped electrons can cause positive gradients (∂f e /∂V perpendicular > 0) over a broad range of parallel velocities, around v parallel ∼ 0, it is suggested that they are the free energy source for the AKR. This conclusion is substantiated by an evaluation of the convective growth rate, where the various input parameters have been determined by fitting particle data

  14. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China)

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  15. Capacity spectroscopy of minority-carrier radiation traps in n-type silicon

    International Nuclear Information System (INIS)

    Kuchinskij, P.V.; Lomako, V.M.; Shakhlevich, L.N.

    1987-01-01

    Minority charge-carrier radiation traps in n-silicon, produced by neutron transmutation doping (NTD) and zone melting method, were studied using unsteady capacity spectroscopy method. Studying the parameters of defects, formed in the lower half of the restricted zone, was performed using minority carrier injection by forward current pulses. Samples were p + -n-structures, produced on the basis of silicon with different oxygen content. It is shown, that a trap with activation energy ≅E v +0.34 eV appears to be the main defect in oxygen p-silicon. Investigation into thermal stability has shown, that centers with E v +0.34 eV and E v +0.27 eV activation energies are annealed within the same temperature interval (300-400 deg C)

  16. Effects of Electromagnetic Perturbations on Particles Trapped in the Radiation Belts

    Energy Technology Data Exchange (ETDEWEB)

    Dungey, J. W. [Imperial College of Science and Technology, London (United Kingdom)

    1965-06-15

    Since the radiation belts were discovered by Van Allen in 1958, observations of trapped particles have rapidly built up a large body of information. Knowledge of the neutral atmosphere as well as the ionosphere shows that for energetic particles the probable time before colliding with another particle of any kind may be extremely long. Then the only feature known to affect the motion of the particle is the electromagnetic field and, conversely, over a long time even weak electromagnetic disturbances can be important. Consequently, electromagnetic disturbances should be important in determining the form of the radiation belts, and it will be seen that certain features encourage an interpretation of this kind. The physics of the radiation belts may be regarded as a part of plasma physics, namely the realm in which collisions are negligible. This needs qualifying in that there is a boundary layer (the ionosphere) where collisions are important, and this is analogous to laboratory plasma containment devices. The energy range of trapped particles is wide, but includes the energy range required for fusion reactors. The mean free time in the radiation belts is extreme, but the neglect of collisions yields a great simplification in theoretical work, and an understanding of collision-free plasmas is expected to be useful. Observations in space have great advantages. The quantity measured by a particle-detector sensitive to a limited range of energy and with a limited cone of acceptance is the velocity distribution function, which is fundamental in theoretical work. Local electric and magnetic measurements are also made with very little disturbance by the spacecraft. The disadvantage is that simultaneous measurements cannot be made at many different points.

  17. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    International Nuclear Information System (INIS)

    James, Ralph B.

    2000-01-01

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of ∼ 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement

  18. Modeling of MOS radiation and post irradiation effects

    International Nuclear Information System (INIS)

    Neamen, D.A.

    1984-01-01

    The radiation response and long term recovery effects in a n-channel MOSFET due to a pulse of ionizing radiation were modeled assuming that electron tunneling from the semiconductor into the oxide and the buildup of interface states were the postirradiation recovery mechanisms. The modeling used convolution theory and took into account the effects of bias changes during the recovery period and charge yield effects. Changing the bias condition during the post-irradiation recovery period changed the recovery rate. The charge yield effects changed the density of trapped positive charge in the oxide but did not change the recovery characteristics for a given oxide thickness. The modeling results were compared to previous experimental results

  19. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  20. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  1. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  2. TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Felice, V. Di [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G., E-mail: alessandro.bruno@ba.infn.it [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2015-01-20

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  3. Experimental data available for radiation damage modelling in reactor materials

    International Nuclear Information System (INIS)

    Wollenberger, H.

    Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants

  4. Time-dependence hole and electron trapping effects in SIMOX buried oxides

    International Nuclear Information System (INIS)

    Boesch, H.E. Jr.; Taylor, T.L.; Hite, L.R.; Bailey, W.E.

    1990-01-01

    Back-channel threshold shift associated with the buried oxide layers of separation by implanted oxygen (SIMOX) and zone-melted recrystallization (ZMR) field-effect transistors (FETs) was measured following pulsed irradiation as a function of temperature and back-gate bias using a fast time-resolved I-V measurement technique. The SIMOX FETs showed large initial negative voltage shifts at 0.2 ms after irradiation followed by temperature- and bias-dependent additional negative shifts to 800s. Analysis and modeling of the results indicate efficient deep trapping of radiation-generated holes in the bulk of the oxide, substantial initial trapping of radiation-generated electrons in the oxide, and rapid removal of the trapped electrons by a thermal detrapping process. The ZMR FETs showed evidence of substantial trapping of holes alone in the oxide bulk

  5. Radiation induced traps of zinc phosphate and phosphide

    International Nuclear Information System (INIS)

    Murali, K.R.; Rao, D.R.

    1980-01-01

    Thermoluminescence (TL) glow curve (TGC) method has been used to study the traps produced by X-irradiation in Zn 3 (PO 4 ) 2 and Zn 3 P 2 . Prominent TL glow peaks were observed at 100 0 and 360 0 C for zinc phosphate while for zinc phosphide only one glow peak at 245 0 C was observed, and in the latter case the TL output was in general quite low compared to zinc phosphate. The TL spectra for both the glow peaks of zinc phosphate indicated emission band in the region around 560 nm, while for zinc phosphide the emission occurred at 575 nm (in the temperature region 200-270 0 C). The low temperature glow peaks below 270 0 C were less stable compared to those above 300 0 C and were completely destroyed when the irradiated samples were stored in darkness for 24 hr at room temperature. Shining by 470 nm light however produced preferential bleaching of the two TL peaks at 100 and 360 0 C with no effect on the 245 0 C glow peak of zinc phosphide. It is concluded that during heat treatment large numbers of Zn-vacancies are formed due to which complexes like Zn-P are produced by irradiation and the TL traps destroyed in a radiative recombination process are related with these complexes. (author)

  6. A hierarchical model for estimating density in camera-trap studies

    Science.gov (United States)

    Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.

    2009-01-01

    Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.

  7. Novel extension of the trap model for electrons in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  8. Stability of trapped electrons in SiO2

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1998-01-01

    Electron trapping near the Si/SiO 2 interface plays a crucial role in mitigating the response of MOS devices to ionizing radiation or high-field stress. These electrons offset positive charge due to trapped holes, and can be present at densities exceeding 10 12 cm -2 in the presence of a similar density of trapped positive charge. The nature of the defects that serve as hosts for trapped electrons in the near-interfacial SiO 2 is presently unknown, although there is compelling evidence that these defects are often intimately associated with trapped holes. This association is depicted most directly in the model of Lelis et al., which suggests that trapped electrons and holes occupy opposite sides of a compensated E center in SiO 2 . Charge exchange between electron traps and the Si can occur over a wide range of time scales, depending on the trap depth and location relative to the Si/SiO 2 interface. Here the authors report a detailed study of the stability of electron traps associated with trapped holes near the Si/SiO 2 interface

  9. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  10. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  11. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in

  12. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  13. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  14. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    Science.gov (United States)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  15. Modeling of diamond radiation detectors

    International Nuclear Information System (INIS)

    Milazzo, L.; Mainwood, A.

    2004-01-01

    We have built up a computer simulation of the detection mechanism in the diamond radiation detectors. The diamond detectors can be fabricated from a chemical vapour deposition polycrystalline diamond film. In this case, the trapping-detrapping and recombination at the defects inside the grains and at the grain boundaries degrade the transport properties of the material and the charge induction processes. These effects may strongly influence the device's response. Previous simulations of this kind of phenomena in the diamond detectors have generally been restricted to the simple detector geometries and homogeneous distribution of the defects. In our model, the diamond film (diamond detector) is simulated by a grid. We apply a spatial and time discretization, regulated by the grid resolution, to the equations describing the charge transport and, by using the Shockley-Ramo theorem, we calculate the signal induced on the electrodes. In this way, we can simulate the effects of the nonhomogeneous distributions of the trapping, recombination, or scattering centers and can investigate the differences observed when different particles, energies, and electrode configurations are used. The simulation shows that the efficiency of the detector increases linearly with the average grain size, that the charge collection distance is small compared to the dimensions of a single grain, and that for small grains, the trapping at the intragrain defects is insignificant compared to the effect of the grain boundaries

  16. Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides

    KAUST Repository

    Dursun, Ibrahim

    2018-05-26

    Cesium lead halide perovskite materials have attracted considerable attention for potential applications in lasers, light emitting diodes and photodetectors. Here, we provide the experimental and theoretical evidence for photon recycling in CsPbBr3 perovskite microwires. Using two-photon excitation, we recorded photoluminescence (PL) lifetimes and emission spectra as a function of the lateral distance between PL excitation and collection positions along the microwire, with separations exceeding 100 µm. At longer separations, the PL spectrum develops a red-shifted emission peak accompanied by an appearance of well-resolved rise times in the PL kinetics. We developed quantitative modeling that accounts for bimolecular recombination and photon recycling within the microwire waveguide and is sufficient to account for the observed decay modifications. It relies on a high radiative efficiency in CsPbBr3 perovskite microwires and provides crucial information about the potential impact of photon recycling and waveguide trapping on optoelectronic properties of cesium lead halide perovskite materials.

  17. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  18. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  19. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  20. Mathematical models for radiation effects on human health

    International Nuclear Information System (INIS)

    Negi, U.S.; Petwal, K.C.

    2015-01-01

    In this paper, we are proposing a theoretical approach of basic mathematical models for radiation effect on human health. The largest natural sources of radiation exposure to humans are radon gas. While radon gas has always been in the environment, awareness of its contribution to human radiation exposure has increased in recent years. Radon's primary pathway is through air space in soil and rock. Pressure differences between the soil and the inside of buildings may cause radon gas to move indoors. Radon decays to radon daughters, some of which emit alpha radiation. Alpha-emitting radon daughters are adsorbed on to dust particles which, when inhaled, are trapped in the lungs and may cause gene damage, mutations and finally cancer. Exposure to excess UV radiation increases risk of skin cancer but there is also a dark side. The incidence of all types of skin cancer is related to exposure to UV radiation. Non-melanoma skin cancer, eye melanoma, and lip cancer have also been related to natural UV light

  1. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  2. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    Science.gov (United States)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  3. Ionizing radiation calculations and comparisons with LDEF data

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  4. Fast and slow border traps in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1996-01-01

    Convergent lines of evidence are reviewed which show that near-interfacial oxide traps (border traps) that exchange charge with the Si can strongly affect the performance, radiation response, and long-term reliability of MOS devices. Observable effects of border traps include capacitance-voltage (C-V) hysteresis, enhanced l/f noise, compensation of trapped holes, and increased thermally stimulated current in MOS capacitors. Effects of faster (switching times between ∼10 -6 s and ∼1 s) and slower (switching times greater than ∼1 s) border traps have been resolved via a dual-transistor technique. In conjunction with studies of MOS electrical response, electron paramagnetic resonance and spin dependent recombination studies suggest that E' defects (trivalent Si centers in SiO 2 associated with O vacancies) can function as border traps in MOS devices exposed to ionizing radiation or high-field stress. Hydrogen-related centers may also be border traps

  5. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  6. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    Science.gov (United States)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  7. Comparison of high-energy trapped particle environments at the earth and jupiter

    International Nuclear Information System (INIS)

    Jun, I.; Garrett, H. B.

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source - The Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (≥100 keV) and proton ≥1 MeV) populations - The dominant radiation particles in these environments. The models used are the AP8/ AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4. largest moon) for Jupiter. The results show that the dose rates are ∼0.1 krad(Si) d -1 at the geosynchronous orbit and ∼30 krad(Si) d -1 at Europa for a 2.5 mm spherical shell aluminium shield - a factor of ∼300 between the two planets. (authors)

  8. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  9. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  10. The Multipole Plasma Trap-PIC Modeling Results

    Science.gov (United States)

    Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina

    2017-10-01

    A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.

  11. Continuous loading of cold atoms into a Ioffe-Pritchard magnetic trap

    International Nuclear Information System (INIS)

    Schmidt, Piet O; Hensler, Sven; Werner, Joerg; Binhammer, Thomas; Goerlitz, Axel; Pfau, Tilman

    2003-01-01

    We present a robust continuous optical loading scheme for a Ioffe-Pritchard (IP) type magnetic trap (MT). Chromium atoms are cooled and trapped in a modified magneto-optical trap (MOT) consisting of a conventional 2D-MOT in the radial direction and an axial molasses. The MOT and IP trap share the same magnetic field configuration. Continuous loading of atoms into the IP trap is provided by radiative leakage from the MOT to a metastable level which is magnetically trapped and decoupled from the MOT light. We are able to accumulate 30 times more atoms in the MT than in the MOT. The absolute number of 2 x 10 8 atoms is limited by inelastic collisions. A model based on rate equations shows good agreement with the data. Our scheme can also be applied to other atoms with similar level structure like alkaline earth metals

  12. Development of a continuous cold trap of fluidized bed

    International Nuclear Information System (INIS)

    Yagi, Eiji; Maeda, Mitsuru; Kagami, Haruo; Miyajima, Kazutoshi

    1977-05-01

    As part of the R and D program of Fluoride Volatility Process for the reprocessing of FBR fuel, a continuous cold trap system of fluidized-bed condenser/stripper has been developed which is designed for establishing a continuous flowsheet and also for reducing radiation decomposition of PuF 6 . Feasibility of this cold trap was revealed by an experiment with UF 6 of physical properties similar to those of PuF 6 .; more than 99% trapping efficiency, less than 15 min residence time, and 0.07 critical (UF 6 /Al 2 O 3 ) ratio were obtained in stable operation. The analytical results from a condensation model, such as mist yield, agreed well with those by experiment. Parametric study of the mist formation using the model was made with UF 6 concentration, feed gas temperature and axial temperature distribution. Existence of the optimum axial temperature distribution in the condenser was shown. (auth.)

  13. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  14. Adaptation of the continuous cold-trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-01-01

    A continuous cold-trap system consisting of fluidized condensor and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the 2-in.-dia. fluidized-bed cold-trap system are presented, and also a model of mist formation in the condensor

  15. A simple model for the trapping of deuterons in a carbon target

    International Nuclear Information System (INIS)

    Erents, S.K.; Hotston, E.S.

    1980-01-01

    A model is proposed for the trapping of deuterons in an annealed carbon target. The deuterons are assumed to be lodged in traps which are created by the ion beam implanting the deuterons. There is a saturation trap density of 6.8 x 10 22 cm -3 . A deuteron in a region of the target where all the traps are filled is free to execute a random walk until it finds a vacant trap or is released from the target surface. The number of ions trapped per unit area of the target surface has been calculated as a function of ion fluence and is in good agreement with the experimental results. (orig.)

  16. Monte Carlo Modeling the UCN τ Magneto-Gravitational Trap

    Science.gov (United States)

    Holley, A. T.; UCNτ Collaboration

    2016-09-01

    The current uncertainty in our knowledge of the free neutron lifetime is dominated by the nearly 4 σ discrepancy between complementary ``beam'' and ``bottle'' measurement techniques. An incomplete assessment of systematic effects is the most likely explanation for this difference and must be addressed in order to realize the potential of both approaches. The UCN τ collaboration has constructed a large-volume magneto-gravitational trap that eliminates the material interactions which complicated the interpretation of previous bottle experiments. This is accomplished using permanent NdFeB magnets in a bowl-shaped Halbach array to confine polarized UCN from the sides and below and the earth's gravitational field to trap them from above. New in situ detectors that count surviving UCN provide a means of empirically assessing residual systematic effects. The interpretation of that data, and its implication for experimental configurations with enhanced precision, can be bolstered by Monte Carlo models of the current experiment which provide the capability for stable tracking of trapped UCN and detailed modeling of their polarization. Work to develop such models and their comparison with data acquired during our first extensive set of systematics studies will be discussed.

  17. Modeling of electron time variations in the radiation belts

    International Nuclear Information System (INIS)

    Chan, K.W.; Teague, M.J.; Schofield, N.J.; Vette, J.I.

    1979-01-01

    A review of the temporal variation in the trapped electron population of the inner and outer radiation zones is presented. Techniques presently used for modeling these zones are discussed and their deficiencies identified. An intermediate region is indicated between the zones in which the present modeling techniques are inadequate due to the magnitude and frequency of magnetic storms. Future trends are examined, and it is suggested that modeling of individual magnetic storms may be required in certain L bands. An analysis of seven magnetic storms is presented, establishing the independence of the depletion time of the storm flux and the storm magnitude. Provisional correlation between the storm magnitude and the Dst index is demonstrated

  18. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Henshaw, W D; Wang, S L

    2008-02-04

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating

  19. Adaptation of the continuous cold trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-02-01

    A continuous cold trap system consisting of fluidized condenser and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the two inch-dia. fluidized bed cold trap system are presented, and also a model of mist formation in the condenser. (auth.)

  20. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  1. Relaxation model of radiation-induced conductivity in polymers

    Science.gov (United States)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  2. The β-decay Paul trap: A radiofrequency-quadrupole ion trap for precision β-decay studies

    International Nuclear Information System (INIS)

    Scielzo, N.D.; Li, G.; Sternberg, M.G.; Savard, G.; Bertone, P.F.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Crawford, J.; Deibel, C.M.; Fallis, J.; Greene, J.P.

    2012-01-01

    The β-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision β-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following β decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of β-decay angular correlations in the decay of 8 Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup α particles. Many other β-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  3. The {beta}-decay Paul trap: A radiofrequency-quadrupole ion trap for precision {beta}-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Li, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Sternberg, M.G.; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Bertone, P.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Buchinger, F. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Caldwell, S. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Clark, J.A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Crawford, J. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Deibel, C.M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824 (United States); Fallis, J. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Greene, J.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); and others

    2012-07-21

    The {beta}-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision {beta}-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following {beta} decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of {beta}-decay angular correlations in the decay of {sup 8}Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup {alpha} particles. Many other {beta}-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  4. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...

  5. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  6. Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery.

    Science.gov (United States)

    Budria, Alexandre; DeFaveri, Jacquelin; Merilä, Juha

    2015-12-21

    Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries.

  7. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  8. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  9. Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials

    Energy Technology Data Exchange (ETDEWEB)

    Hodille, E.A., E-mail: etienne.hodille@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Bonnin, X. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Bisson, R.; Angot, T. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Becquart, C.S. [Université Lille I, UMET, UMR 8207, 59655 Villeneuve d’Ascq cédex France (France); Layet, J.M. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Grisolia, C. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)

    2015-12-15

    Relevant parameters for trapping of Hydrogen Isotopes (HIs) in polycrystalline tungsten are determined with the MHIMS code (Migration of Hydrogen Isotopes in MaterialS) which is used to reproduce Thermal Desorption Spectrometry experiments. Three types of traps are found: two intrinsic traps (detrapping energy of 0.87 eV and 1.00 eV) and one extrinsic trap created by ion irradiation (detrapping energy of 1.50 eV). Then MHIMS is used to simulate HIs retention at different fluences and different implantation temperatures. Simulation results agree well with experimental data. It is shown that at 300 K the retention is limited by diffusion in the bulk. For implantation temperatures above 500 K, the retention is limited by trap creation processes. Above 600 K, the retention drops by two orders of magnitude as compared to the retention at 300 K. With the determined detrapping energies, HIs outgassing at room temperature is predicted. After ions implantation at 300 K, 45% of the initial retention is lost to vacuum in 300 000 s while during this time the remaining trapped HIs diffuse twice as deep into the bulk. - Highlights: • Code development to solve numerically the model equations of diffusion and trapping of hydrogen in metals. • Parametrization of the model trapping parameters (detrapping energies and density): fitting of experimental TDS spectrum. • Confrontation model/experiment: evolution of retention with fluence and implantation temperature. • Investigation of period of rest between implantation and TDS on retention and depth profile.

  10. Radiation-induced defects in LiAlO{sub 2} crystals: Holes trapped by lithium vacancies and their role in thermoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Holston, M.S.; McClory, J.W.; Giles, N.C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2015-04-15

    Electron paramagnetic resonance (EPR) is used to identify the primary hole trap in undoped lithium aluminate (LiAlO{sub 2}) crystals. Our interest in this material arises because it is a candidate for radiation detection applications involving either optically stimulated luminescence (OSL) or thermoluminescence (TL). During an x-ray irradiation at room temperature, holes are trapped at oxygen ions adjacent to lithium vacancies. Large concentrations of these lithium vacancies are introduced into the crystal during growth. With the magnetic field along the [001] direction, the EPR spectrum from these trapped-hole centers consists of eleven lines, evenly spaced but with varying intensities, caused by nearly equal hyperfine interactions with two {sup 27}Al nuclei (I=5/2, 100% abundant). The g matrix is determined from the angular dependence of the EPR spectrum and has principal values of 2.0130, 2.0675, and 2.0015. These g shifts strongly support the model of a hole in a p orbital on an oxygen ion. The adjacent lithium vacancy stabilizes the hole on the oxygen ion. A sequence of pulsed thermal anneals above room temperature shows that the EPR spectrum from the holes trapped adjacent to the lithium vacancies disappears in the 90–120 °C range. The thermal decay of these hole centers directly correlates with an intense TL peak near 105 °C. Signals at lower magnetic field in the 9.4 GHz EPR spectra suggest that the electron trap associated with this TL peak at 105 °C may be a transition-metal-ion impurity, most likely Fe, located at a cation site. Additional less intense TL peaks are observed near 138, 176, and 278 °C. - Highlights: • Undoped LiAlO{sub 2} crystals are irradiated at room temperature with x-rays. • EPR is used to identify holes trapped at oxygen ions adjacent to lithium vacancies. • Thermal decay of the EPR spectrum correlates with an intense TL peak at 105 °C.

  11. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  12. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  13. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  14. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    Science.gov (United States)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  15. Activated aging dynamics and effective trap model description in the random energy model

    Science.gov (United States)

    Baity-Jesi, M.; Biroli, G.; Cammarota, C.

    2018-01-01

    We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.

  16. A trap activation model for hydrogen retention and isotope exchange in some refractory materials

    International Nuclear Information System (INIS)

    Brice, D.K.; Doyle, B.L.

    1982-01-01

    Our recently-developed Local Mixing Model (LMM) has been successful in describing and predicting the properties of hydrogen retention and isotope exchange for a variety of refractory materials. For some materials, however, the detailed predictions of the LMM are not observed. A Trap Activation Model (TAM) is proposed here to account for the observed departures from the LMM. Comparison of experimental room temperature saturation depth profiles for H + →Si with the predictions of TAM suggests that the hydrogen traps are multiple-vacancy complexes in this system. The observed profiles result from a beam-induced competition between trap creation/annihilation and H-trapping/detrapping. (orig.)

  17. Analog quantum simulation of generalized Dicke models in trapped ions

    Science.gov (United States)

    Aedo, Ibai; Lamata, Lucas

    2018-04-01

    We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.

  18. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  19. Trapped Proton Environment in Medium-Earth Orbit (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Friedel, Reinhard Hans [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kippen, Richard Marc [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, this model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.

  20. Theoretical and Experimental Investigation of Particle Trapping via Acoustic Bubbles

    Science.gov (United States)

    Chen, Yun; Fang, Zecong; Merritt, Brett; Saadat-Moghaddam, Darius; Strack, Dillon; Xu, Jie; Lee, Sungyon

    2014-11-01

    One important application of lab-on-a-chip devices is the trapping and sorting of micro-objects, with acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force on micro-particles and trap them, when this radiation force exceeds the drag force that acts to keep the particles in motion. In this study, we theoretically evaluate the magnitudes of these two forces for varying actuation frequencies and voltages. In particular, the secondary radiation force is calculated directly from bubble oscillation shapes that have been experimentally measured for varying acoustic parameters. Finally, based on the force estimates, we predict the threshold voltage and frequency for trapping and compare them to the experimental results.

  1. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  2. An extension of the multiple-trapping model

    International Nuclear Information System (INIS)

    Shkilev, V. P.

    2012-01-01

    The hopping charge transport in disordered semiconductors is considered. Using the concept of the transport energy level, macroscopic equations are derived that extend a multiple-trapping model to the case of semiconductors with both energy and spatial disorders. It is shown that, although both types of disorder can cause dispersive transport, the frequency dependence of conductivity is determined exclusively by the spatial disorder.

  3. Radiation from an excited vortex in the Abelian Higgs model

    Science.gov (United States)

    Arodź, H.; Hadasz, L.

    1996-09-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found.

  4. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  5. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.

    Science.gov (United States)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  6. A New Model of Multiphonon Excitation Trap-Assisted Band-to-Band Tunneling

    Directory of Open Access Journals (Sweden)

    J. Racko

    2012-04-01

    Full Text Available The paper describes a new approach to calculating the currents in a pn-diode based on the extension of the Shockley-Read-Hall recombination-generation model. The presented theory is an alternative to Schenk’s model of trap-assisted tunneling. The new approach takes into account generation and recombination as well as tunneling processes in pn-junctions. Using this model, the real “soft” I-V curve usually observed in the case of switching diodes and transistors was modeled as a result of the high concentration of traps that assist in the process of tunneling.

  7. Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell

    International Nuclear Information System (INIS)

    Kim, H.C.; Yang, S.S.; Lee, J.K.

    2003-01-01

    In plasma display panels (PDPs), the resonance radiation trapping is one of the important processes. In order to incorporate this effect in a PDP cell, a three-dimensional radiation transport model is self-consistently coupled with a fluid simulation. This model is compared with the conventional trapping factor method in gas mixtures of neon and xenon. It shows the differences in the time evolutions of spatial profile and the total number of resonant excited states, especially in the afterglow. The generation rates of UV light are also compared for the two methods. The visible photon flux reaching the output window from the phosphor layers as well as the total UV photon flux arriving at the phosphor layer from the plasma region are calculated for resonant and nonresonant excited species. From these calculations, the time-averaged spatial profiles of the UV flux on the phosphor layers and the visible photon flux through the output window are obtained. Finally, the diagram of the energy efficiency and the contribution of each UV light are shown

  8. Stability and delayed fragmentation of highly charged C60 trapped in a conic-electrode electrostatic ion resonator (ConeTrap)

    International Nuclear Information System (INIS)

    Bernard, J.; Wei, B.; Bourgey, A.; Bredy, R.; Chen, L.; Kerleroux, M.; Martin, S.; Montagne, G.; Salmoun, A.; Terpend-Ordaciere, B.

    2007-01-01

    We employed a conic-electrode electrostatic ion resonator (ConeTrap) to store the recoil ions (C 60 r+ ) resulting from collision between 56keV Ar 8+ ions and C 60 in order to study their stability over a long time range (several milliseconds). The originality of our method, based on the trapping of a single ion to preserve the detection in coincidence of all the products of the collision, is presented in detail. Our results show that C 60 ions produced in such collisions are stable in the considered observation time. By employing the ConeTrap as a secondary mass spectrometer in order to let the ions oscillate only for a single period, we have been able to observe delayed evaporation of cold C 60 3+ ions 20μs after the collision. We interpret quantitatively the relative yields of daughter ions with a cascade model in which the transition rates are estimated via the commonly used Arrhenius law, taking into account the contribution of the radiative decay

  9. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  10. Transcription-based model for the induction of chromosomal exchange events by ionising radiation

    International Nuclear Information System (INIS)

    Radford, I.A.

    2003-01-01

    The mechanistic basis for chromosomal aberration formation, following exposure of mammalian cells to ionising radiation, has long been debated. Although chromosomal aberrations are probably initiated by DNA double-strand breaks (DSB), little is understood about the mechanisms that generate and modulate DNA rearrangement. Based on results from our laboratory and data from the literature, a novel model of chromosomal aberration formation has been suggested (Radford 2002). The basic postulates of this model are that: (1) DSB, primarily those involving multiple individual damage sites (i.e. complex DSB), are the critical initiating lesion; (2) only those DSB occurring in transcription units that are associated with transcription 'factories' (complexes containing multiple transcription units) induce chromosomal exchange events; (3) such DSB are brought into contact with a DNA topoisomerase I molecule through RNA polymerase II catalysed transcription and give rise to trapped DNA-topo I cleavage complexes; and (4) trapped complexes interact with another topo I molecule on a temporarily inactive transcription unit at the same transcription factory leading to DNA cleavage and subsequent strand exchange between the cleavage complexes. We have developed a method using inverse PCR that allows the detection and sequencing of putative ionising radiation-induced DNA rearrangements involving different regions of the human genome (Forrester and Radford 1998). The sequences detected by inverse PCR can provide a test of the prediction of the transcription-based model that ionising radiation-induced DNA rearrangements occur between sequences in active transcription units. Accordingly, reverse transcriptase PCR was used to determine if sequences involved in rearrangements were transcribed in the test cells. Consistent with the transcription-based model, nearly all of the sequences examined gave a positive result to reverse transcriptase PCR (Forrester and Radford unpublished)

  11. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  12. Phenomenological study and modeling of tritium trapping in tritiated waste drums

    International Nuclear Information System (INIS)

    Le-Floch, Anais

    2016-01-01

    ITER (International Tokamak Experimental Reactor) is a fusion machine which should demonstrate scientific and technological feasibility of fusion energy by means of D-T fusion reaction. Therefore, most of the solid radioactive waste produced during operation and dismantling phase (around 34000 tons) will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. One of the main issues in tritiated waste management is the confinement of tritium which presents a good ability to diffusion. One of the solutions is to trap the tritium directly in waste drums. In containers tritium is under gaseous form (HT and T_2), tritiated water vapor (HTO and T_2O) and organic bounded tritium species (OBT). as an hydrogen isotope, HT and T_2 trapping and conversion is possible thanks to a reaction with a mix of metal oxides MnO_2 and Ag_2O, which can be used for hydrogen hazards mitigation. an experimental study was conducted at the CEA on the study of tritium trapping by a mixture of 90% of manganese oxide and 10% of silver oxide. The tests showed that the addition of Pt and Pd catalysts did not improve the trapping capacity of the powder mixture, such as impregnation of the powder mixture when preparing the mixture, with solutions of KOH or NaOH. Crystal-chemical analysis revealed the formation of a mixed oxide in the preparation of powders, questioning the mechanisms previously established. Two new mechanisms have been proposed and a model on the trapping kinetics was presented. The results of modeling the competition between the trapping phenomenon and the diffusion of tritium through the wall of the waste package showed that the trapper decreased the value of the quantity of tritiated hydrogen degassed from the package. (author) [fr

  13. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  14. An improved analytical model of 4H-SiC MESFET incorporating bulk and interface trapping effects

    Science.gov (United States)

    Hema Lata Rao, M.; Narasimha Murty, N. V. L.

    2015-01-01

    An improved analytical model for the current—voltage (I-V) characteristics of the 4H-SiC metal semiconductor field effect transistor (MESFET) on a high purity semi-insulating (HPSI) substrate with trapping and thermal effects is presented. The 4H-SiC MESFET structure includes a stack of HPSI substrates and a uniformly doped channel layer. The trapping effects include both the effect of multiple deep-level traps in the substrate and surface traps between the gate to source/drain. The self-heating effects are also incorporated to obtain the accurate and realistic nature of the analytical model. The importance of the proposed model is emphasised through the inclusion of the recent and exact nature of the traps in the 4H-SiC HPSI substrate responsible for substrate compensation. The analytical model is used to exhibit DC I-V characteristics of the device with and without trapping and thermal effects. From the results, the current degradation is observed due to the surface and substrate trapping effects and the negative conductance introduced by the self-heating effect at a high drain voltage. The calculated results are compared with reported experimental and two-dimensional simulations (Silvaco®-TCAD). The proposed model also illustrates the effectiveness of the gate—source distance scaling effect compared to the gate—drain scaling effect in optimizing 4H-SiC MESFET performance. Results demonstrate that the proposed I-V model of 4H-SiC MESFET is suitable for realizing SiC based monolithic circuits (MMICs) on HPSI substrates.

  15. An improved analytical model of 4H-SiC MESFET incorporating bulk and interface trapping effects

    International Nuclear Information System (INIS)

    Rao, M. Hema Lata; Murty, N. V. L. Narasimha

    2015-01-01

    An improved analytical model for the current—voltage (I–V) characteristics of the 4H-SiC metal semiconductor field effect transistor (MESFET) on a high purity semi-insulating (HPSI) substrate with trapping and thermal effects is presented. The 4H-SiC MESFET structure includes a stack of HPSI substrates and a uniformly doped channel layer. The trapping effects include both the effect of multiple deep-level traps in the substrate and surface traps between the gate to source/drain. The self-heating effects are also incorporated to obtain the accurate and realistic nature of the analytical model. The importance of the proposed model is emphasised through the inclusion of the recent and exact nature of the traps in the 4H-SiC HPSI substrate responsible for substrate compensation. The analytical model is used to exhibit DC I–V characteristics of the device with and without trapping and thermal effects. From the results, the current degradation is observed due to the surface and substrate trapping effects and the negative conductance introduced by the self-heating effect at a high drain voltage. The calculated results are compared with reported experimental and two-dimensional simulations (Silvaco®-TCAD). The proposed model also illustrates the effectiveness of the gate—source distance scaling effect compared to the gate—drain scaling effect in optimizing 4H-SiC MESFET performance. Results demonstrate that the proposed I–V model of 4H-SiC MESFET is suitable for realizing SiC based monolithic circuits (MMICs) on HPSI substrates. (semiconductor devices)

  16. Parametric trapping of electromagnetic waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Silin, V.P.; Starodub, A.N.

    1977-01-01

    Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients

  17. Radiation from an excited vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1996-01-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found. copyright 1996 The American Physical Society

  18. Derivation of the tunnelling exchange time for the model of trap-assisted tunnelling

    International Nuclear Information System (INIS)

    Racko, J.; Ballo, P.; Benko, P.; Harmatha, L.; Grmanova, A.; Breza, J.

    2014-01-01

    We present derivation of the tunnelling exchange times that play the key role in the model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes between the trapping centre lying in the forbidden band of the semiconductor and the conduction band, valence band or a metal. All exchange processes are quantitatively described by respective exchange times. The reciprocal values of these exchange times represent the frequency with which the exchange processes contribute to the probability of occupation of the trap by free charge carriers. The crucial problem in any model of TAT is the calculation of the occupation probability. In our approach this probability is expressed in terms of only thermal and tunnelling exchange times. The concept of tunnelling exchange times presents a dominant contribution to our model of TAT. The new approach allows to simply calculate the probability of occupation of the trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling generation-recombination rates occurring in the continuity equations. This is why the TAT model based on thermal and tunnelling exchange times is suitable for simulating the electrical properties of semiconductor nanostructures in which quantum mechanical phenomena play a key role. (authors)

  19. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  20. Resonant Self-Trapping and Absorption of Intense Bessel Beams

    International Nuclear Information System (INIS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    2000-01-01

    We report the observation of resonant self-trapping and enhanced laser-plasma heating resulting from propagation of high intensity Bessel beams in neutral gas. The enhancement in absorption and plasma heating is directly correlated to the spatial trapping of laser radiation. (c) 2000 The American Physical Society

  1. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  2. Radiation effects in metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Collins, J.L.

    1987-01-01

    The effects of various radiations on commercially made Al-SiO 2 -Si Capacitors (MOSCs) have been investigated. Intrinsic dielectric breakdown in MOSCs has been shown to be a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. This is interpreted in terms of a modified model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. A detailed investigation of charge trapping and interface state generation due to various radiations has revealed evidence of neutron induced interface states, and the generation of positive oxide charge in devices due to all the radiations tested. The greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the number of interface states generated. This is interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO 2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation. (author)

  3. An atom trap relying on optical pumping

    International Nuclear Information System (INIS)

    Bouyer, P.; Lemonde, P.; Ben Dahan, M.; Michaud, A.; Salomon, C.; Dalibard, J.

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a J g →J e = J g + 1 atomic transition with J g ≥1/2. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm J g = 4→J e = 5 resonance transition. The trap contained up to 3.10 7 atoms in a cloud of 1/√e radius of 330 μm. (orig.)

  4. The Formation of Charon's Red Poles from Seasonally Cold-Trapped Volatiles

    Science.gov (United States)

    Grundy, W. M.; Cruikshank, D. P.; Gladstone, D. R.; Howett, C. J. A.; Lauer, T. R.; Spencer, J. R.; Summers, M. E.; Buie, M. W.; Earle, A. M.; Ennico, K.; hide

    2016-01-01

    A unique feature of Plutos large satellite Charon is its dark red northern polar cap. Similar colours on Plutos surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charons high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  5. Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2009-09-01

    Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.

  6. Potentialities of a new sigma(+)-sigma(-)laser configuration for radiative cooling and trapping

    Energy Technology Data Exchange (ETDEWEB)

    Dalibard, J; Reynaud, S; Cohen-Tannoudji, C

    1984-11-28

    In the process of cooling and trapping neutral atoms, a new laser configuration is investigated which consists of two counterpropagating laser beams with orthogonal sigma(+) and sigma(-)polarizations. It is shown that such a configuration looks more promising than an ordinary standing wave (where the two counterpropagating waves have the same polarization), and this result is explained as being due to angular momentum conservation which prevents any coherent redistribution of photons between the two waves. The present conclusions are based on a quantitative calculation of the various parameters (potential depth, friction coefficient, diffusion coefficient) describing the mean value and the fluctuations of the radiative forces experienced, in such a laser configuration, by an atom with a J 0 ground state and a J 1 excited state. 30 references.

  7. Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding

    International Nuclear Information System (INIS)

    Bronuzzi, J.; Mapelli, A.; Moll, M.; Sallese, J.M.

    2016-01-01

    In the framework of monolithic silicon radiation detectors, a fabrication process based on a recently developed silicon wafer bonding technique at low temperature was proposed. Ideally, this new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer, which is expected to present many advantages since it would combine high performance IC's with high sensitive ultra-low doped bulk silicon detectors. But electrical properties of the bonded interface are critical for this kind of application since the mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface in order to be collected by the read-out electronics. In this work, we propose to explore and develop a model for the so-called Transient Current Technique (TCT) to identify the presence of deep traps at the bonded interface. For this purpose, we consider a simple PIN diode reversely biased where the ultra-low doped active region of interest is set in full depletion. In a first step, Synopsys Sentaurus TCAD is used to evaluate the soundness of this technique for interface traps characterization such as it may happen in bonded interfaces. Next, an analytical model is developed in details to give a better insight into the physics behind the TCT for interface layers. Further, this can be used as a simple tool to evidence what are the relevant parameters influencing the TCT signal and to set the basis for preliminary characterizations.

  8. 2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’

    International Nuclear Information System (INIS)

    Zhu, Xi-Ming; Tsankov, Tsanko Vaskov; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2015-01-01

    Collisional-radiative models for excited rare-gas atoms in low-temperature plasmas are a widely investigated topic. When these plasmas are optically thick, an ‘escape factor’ is introduced into the models to account for the reabsorption of photons (so-called radiation trapping process). This factor is usually obtained assuming a uniform density profile of the excited species; however, such an assumption is often not satisfied in a bounded plasma. This article reports for the first time a self-consistent collisional-radiative model without using an ad hoc ‘escape factor’ for excited Ar atoms in the 2p states (in Paschen’s notation). Rather, the rate balance equations—i.e. the radiation transfer equations—of the 2p states are numerically solved to yield the actual density profiles. The predictions of this self-consistent model and a model based on the escape factor concept are compared with spatially-resolved emission measurements in a low-pressure inductive Ar plasma. The self-consistent model agrees well with the experiment but the ‘escape factor’ model shows considerable deviations. By the comparative analysis the limitations and shortcomings of the escape factor concept as adopted in a significant number of works are revealed. (paper)

  9. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  10. Evidence for shallow positron traps in a neutron-irradiated Al single crystal

    International Nuclear Information System (INIS)

    Schultz, P.J.; MacKenzie, I.K.; Lynn, K.G.; West, R.N.; Snead, C.L. Jr.

    1982-01-01

    Variable energy positrons have been used to determine the dependence on temperature of positron diffusion out of a neutron-irradiated single crystal of Al. The results are interpreted in the context of a one-dimensional diffusion model which includes bulk annihilations as well as trapping at voids and other microstructural defects in the bulk material by way of a removal rate kappa/sub eff/ of freely diffusing positrons. The data show a strongly negative dependence on temperature below 125 0 K for kappa/sub eff/, indicating the presence of some additional phenomenon which we attribute to positron localization in shallow, presumably radiation-induced, traps in the crystal

  11. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C – V curve for MOS capacitors

    International Nuclear Information System (INIS)

    Lu Han-Han; Xu Jing-Ping; Liu Lu; Lai Pui-To; Tang Wing-Man

    2016-01-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C – V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi–Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. (paper)

  12. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  13. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency ω cα . This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies ω ∼ mω cα

  14. Collisional-radiative model for the visible spectrum of W{sup 26+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaobin, E-mail: dingxb@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jiaxin [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Koike, Fumihiro [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nakamura, Nobuyuki [Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Dong, Chenzhong [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2016-02-22

    Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W{sup 26+} ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio is sensitive to the electron density were selected as potential candidates of plasma diagnostics. Their electron density dependence is theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.

  15. Population trapping: The mechanism for the lost resonance lines in Pm-like ions

    Science.gov (United States)

    Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi; Nakamura, Nobuyuki

    2017-10-01

    We report a population kinetics study on line emissions of the Pm-like Bi22+ performed by using a collisional-radiative (CR) model. Population rates of excited levels are analyzed to explain the population trapping in the 4f135s2 state which causes the loss of the 5s - 5p resonance lines in emission spectra. Based on the present analysis, we elucidate why the population trapping is not facilitated for a meta-stable excited level of the Sm-like Bi21+. The emission line spectra are calculated for the Pm-like isoelectronic sequence from Au18+ through W13+ and compared with experimental measurements by electron-beam-ion-traps (EBITs). Structures of the spectra are similar for all of the cases except for calculated W13+ spectra. The calculated spectra are hardly reconciled with the measured W13+ spectrum using the compact electron-beam-ion-trap (CoBIT) [Phys. Rev. A 92 (2015) 022510].

  16. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C-V curve for MOS capacitors

    Science.gov (United States)

    Lu, Han-Han; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To; Tang, Wing-Man

    2016-11-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).

  17. Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models

    International Nuclear Information System (INIS)

    Gisler, G.; Lemons, D.

    1990-01-01

    The authors consider the heating and acceleration of electrons trapped on magnetic field lines between approaching magnetic mirrors. Such a collapsing magnetic trap and consequent electron energization can occur whenever a curved (or straight) flux tube drifts into a relatively straight (or curved) perpendicular shock. The relativistic, three-dimensional, collisionless test particle simulations show that an initial thermal electron distribution is bulk heated while a few individual electrons are accelerated to many times their original energy before they escape the trap. Upstream field-aligned beams and downstream pancake distributions perpendicular to the field are predicted. In the appropriate limit the simulation results agree well with a nonrelativistic analytic model of the distribution of escaping electrons which is based on the first adiabatic invariant and energy conservation between collisions with the mirrors. Space science and astrophysical applications are discussed

  18. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  19. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2017-06-01

    Full Text Available Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic peristaltic propulsive flow of a non-Newtonian (Jefferys viscoelastic dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls. Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional with appropriate variables and the resulting system of reduced ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body

  20. Photoionization of radiation-induced traps in quartz and alkali feldspars.

    Science.gov (United States)

    Hütt, G; Jaek, I; Vasilchenko, V

    2001-01-01

    For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.

  1. Photoionization of radiation-induced traps in quartz and alkali feldspars

    International Nuclear Information System (INIS)

    Huett, G.; Jaek, I.; Vasilchenko, V.

    2001-01-01

    For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction

  2. Photoionization of radiation-induced traps in quartz and alkali feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Huett, G. E-mail: hutt@pdos.gi.ee; Jaek, I.; Vasilchenko, V

    2001-01-15

    For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.

  3. Simulating tritium retention in tungsten with a multiple trap model in the TMAP code

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Shimada, Masashi; Humrickhouse, Paul W.

    2013-01-01

    Accurately predicting the quantity of tritium retained in plasma facing components is a key safety issue for licensing future fusion power reactors. Retention of tritium in the lattice damage caused when high energy neutrons collide with atoms in the structural material of the reactor's plasma facing components (PFCs) is an area of ongoing experimental research at the Idaho National Laboratory (INL) under the US/Japan TITAN collaboration. Recent experiments with the Tritium Plasma Experiment (TPE), located in the INL's Safety and Tritium Applied Research (STAR) facility, demonstrate that this damage can only be simulated by computer codes like the Tritium Migration Analysis Program (TMAP) if one assumes that the lattice damage produced by these neutrons results in multiple types of hydrogen traps (energy wells) within the material, each possessing a different trap energy and density. Previous attempts to simulate the quantity of deuterium released from neutron irradiated TPE tungsten targets indicated that at least six different traps are required by TMAP to model this release. In this paper we describe a recent extension of the TMAP trap site model to include as many traps as required by the user to simulate retention of tritium in neutron damaged tungsten. This model has been applied to data obtained for tungsten irradiated to a damage level of 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) after exposure to a plasma in TPE. (author)

  4. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  5. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  6. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  7. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-08

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  8. Description of radiation damage in diamond sensors using an effective defect model

    International Nuclear Information System (INIS)

    Kassel, Florian; Guthoff, Moritz; Dabrowski, Anne; Boer, Wim de

    2017-01-01

    The Beam Condition Monitoring Leakage (BCML) system is a beam monitoring device in the CMS experiment at the LHC consisting of 32 poly-crystalline (pCVD) diamond sensors. The BCML sensors, located in rings around the beam, are exposed to high particle rates originating from the colliding beams. These particles cause lattice defects, which act as traps for the ionized charge carrier leading to a reduced charge collection efficiency (CCE). The radiation induced CCE degradation was, however, much more severe than expected from low rate laboratory measurements. Measurement and simulations presented in this paper show that this discrepancy is related to the rate of incident particles. At high particle rates, the trapping rate of the ionization is strongly increased compared to the detrapping rate leading to an increased build-up of space charge. This space charge locally reduces the internal electric field increasing the trapping rate and hence reducing the CCE even further. In order to connect these macroscopic measurements with the microscopic defects acting as traps for the ionization charge, the TCAD simulation program SILVACO was used. It allows to introduce the defects as effective donor and acceptor levels, and can calculate the electric field from Transient Current Technique (TCT) signals and CCE as a function of the effective trap properties, like density, energy level, and trapping cross section. After each irradiation step, these properties were fitted to the data on the electric field from the TCT signals and CCE. Two effective acceptor and donor levels were needed to fit the data after each step. It turned out that the energy levels and cross sections could be kept constant and the trap density was proportional to the cumulative fluence of the irradiation steps. The highly non-linear rate dependent diamond polarization and the resulting signal loss can be simulated using this effective defect model and is in agreement with the measurement results

  9. Description of radiation damage in diamond sensors using an effective defect model

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); CERN, Meyrin (Switzerland); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland); Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany)

    2017-11-15

    The Beam Condition Monitoring Leakage (BCML) system is a beam monitoring device in the CMS experiment at the LHC consisting of 32 poly-crystalline (pCVD) diamond sensors. The BCML sensors, located in rings around the beam, are exposed to high particle rates originating from the colliding beams. These particles cause lattice defects, which act as traps for the ionized charge carrier leading to a reduced charge collection efficiency (CCE). The radiation induced CCE degradation was, however, much more severe than expected from low rate laboratory measurements. Measurement and simulations presented in this paper show that this discrepancy is related to the rate of incident particles. At high particle rates, the trapping rate of the ionization is strongly increased compared to the detrapping rate leading to an increased build-up of space charge. This space charge locally reduces the internal electric field increasing the trapping rate and hence reducing the CCE even further. In order to connect these macroscopic measurements with the microscopic defects acting as traps for the ionization charge, the TCAD simulation program SILVACO was used. It allows to introduce the defects as effective donor and acceptor levels, and can calculate the electric field from Transient Current Technique (TCT) signals and CCE as a function of the effective trap properties, like density, energy level, and trapping cross section. After each irradiation step, these properties were fitted to the data on the electric field from the TCT signals and CCE. Two effective acceptor and donor levels were needed to fit the data after each step. It turned out that the energy levels and cross sections could be kept constant and the trap density was proportional to the cumulative fluence of the irradiation steps. The highly non-linear rate dependent diamond polarization and the resulting signal loss can be simulated using this effective defect model and is in agreement with the measurement results

  10. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  11. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  12. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  13. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  14. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association.

    Science.gov (United States)

    Ozgurel, O; Pauzat, F; Pilmé, J; Ellinger, Y; Bacchus-Montabonel, M-C; Mousis, O

    2017-10-07

    The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H 3 + in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H 3 + , especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H 3 + only, considering that the protonated ions produced in the destruction of H 3 + by its main competitors present in the primitive nebula, i.e., H 2 O, CO, and N 2 , might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H 2 O, CO, and N 2 , expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10 -16 to 10 -19 cm 3 s -1 , which is reasonable for such reactions and has to be compared to the rates of 10 -16 to 10 -18 cm 3 s -1 , obtained with H 3 + . We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

  15. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    Science.gov (United States)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  16. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    Science.gov (United States)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  17. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  18. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  19. The role of electron-phonon interaction and non-Gaussian transport in spectral changes of trapped electrons in glasses

    International Nuclear Information System (INIS)

    Funabishi, K.; Hamill, W.H.

    The continuous-time-random-walk (CTRW) model which was developed for electron scavenging reactions in polar glasses is extended to the phenomenon of spectral relaxation of electrons in shallow traps esub(t) - in a wider range of systems. The central role of electron-phonon coupling in understanding the initial electron localization, the ''pre-existing trap'', and electron transfer processes are emphasized. The reactivity of esub(t) - with scavengers, including protons, is discussed in terms of the theory of multi-phonon non-radiative transitions. (author)

  20. Modeling of the effect of intentionally introduced traps on hole transport in single-crystal rubrene

    KAUST Repository

    Dacuñ a, Javier; Desai, Amit; Xie, Wei; Salleo, Alberto

    2014-01-01

    Defects have been intentionally introduced in a rubrene single crystal by means of two different mechanisms: ultraviolet ozone (UVO) exposure and x-ray irradiation. A complete drift-diffusion model based on the mobility edge (ME) concept, which takes into account asymmetries and nonuniformities in the semiconductor, is used to estimate the energetic and spatial distribution of trap states. The trap distribution for pristine devices can be decomposed into two well defined regions: a shallow region ascribed to structural disorder and a deeper region ascribed to defects. UVO and x ray increase the hole trap concentration in the semiconductor with different energetic and spatial signatures. The former creates traps near the top surface in the 0.3-0.4 eV region, while the latter induces a wider distribution of traps extending from the band edge with a spatial distribution that peaks near the top and bottom interfaces. In addition to inducing hole trap states in the transport gap, both processes are shown to reduce the mobility with respect to a pristine crystal. © 2014 American Physical Society.

  1. Modeling of the effect of intentionally introduced traps on hole transport in single-crystal rubrene

    KAUST Repository

    Dacuña, Javier

    2014-06-05

    Defects have been intentionally introduced in a rubrene single crystal by means of two different mechanisms: ultraviolet ozone (UVO) exposure and x-ray irradiation. A complete drift-diffusion model based on the mobility edge (ME) concept, which takes into account asymmetries and nonuniformities in the semiconductor, is used to estimate the energetic and spatial distribution of trap states. The trap distribution for pristine devices can be decomposed into two well defined regions: a shallow region ascribed to structural disorder and a deeper region ascribed to defects. UVO and x ray increase the hole trap concentration in the semiconductor with different energetic and spatial signatures. The former creates traps near the top surface in the 0.3-0.4 eV region, while the latter induces a wider distribution of traps extending from the band edge with a spatial distribution that peaks near the top and bottom interfaces. In addition to inducing hole trap states in the transport gap, both processes are shown to reduce the mobility with respect to a pristine crystal. © 2014 American Physical Society.

  2. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  3. IRSL dating of K-feldspars: Modelling natural dose response curves to deal with anomalous fading and trap competition

    International Nuclear Information System (INIS)

    Kars, Romee H.; Wallinga, Jakob

    2009-01-01

    We recently proposed a model that reconstructs the natural dose response curve for K-rich feldspars, using laboratory fading measurements and dose response as input parameters. The model is based on the relationship between recombination centre density and trap lifetime. In this study we test the working of the model by comparing modelled feldspar ages with known quartz OSL ages of the same samples and with anomalous fading-corrected feldspar ages. The modelled feldspar ages are in good agreement with quartz OSL ages and corrected feldspar ages, opening possibilities for future use of the model on samples without independent age constraints. Furthermore, we investigate the effects of trap competition on the build-up of IRSL signal using two new variations of the model. Results show that incorporating trap competition into the model reduces the agreement between feldspar IRSL ages and quartz OSL ages.

  4. Trapped surfaces due to concentration of gravitational radiation

    International Nuclear Information System (INIS)

    Beig, R.; O Murchadha, N.

    1991-01-01

    Sequences of global, asympotically flat solutions to the time-symmetric initial value constraints of general relativity in vacuo are constructed which develop outer trapped surfaces for large values of the argument. Thus all such configurations must gravitationally collapse. A new proof of the positivity of mass in the strong-field regime is also found. (Authors) 22 refs

  5. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  6. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  7. Modelling formation of new radiation belts and response to ULF oscillations following March 24, 1991 SSC

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kotelnikov, A.D.; Li, X.; Lyon, J.G.; Roth, I.; Temerin, M.; Wygant, J.R.; Blake, J.B.; Gussenhoven, M.S.; Yumoto, K.; Shiokawa, K.

    1996-01-01

    The rapid formation of a new proton radiation belt at L≅2.5 following the March 24, 1991 Storm Sudden Commencement (SSC) observed at the CRRES satellite is modelled using a relativistic guiding center test particle code. The new radiation belt formed on a time scale shorter than the drift period of eg. 20 MeV protons. The SSC is modelled by a bipolar electric field and associated compression and relaxation in the magnetic field, superimposed on a background dipole magnetic field. The source population consists of solar protons that populated the outer magnetosphere during the solar proton event that preceeded the SSC and trapped inner zone protons. The simulations show that both populations contribute to drift echoes in the 20 endash 80 MeV range measured by the Aerospace instrument and in lower energy channels of the Protel instrument on CRRES, while primary contribution to the newly trapped population is from solar protons. Proton acceleration by the SSC differs from electron acceleration in two notable ways: different source populations contribute and nonrelativistic conservation of the first adiabatic invariant leads to greater energization of protons for a given decrease in L than for relativistic electrons. Model drift echoes, energy spectra and flux distribution in L at the time of injection compare well with CRRES observations. On the outbound pass, ∼2 hours after the SSC, the broad spectral peak of the new radiation belt extends to higher energies (20 endash 40 MeV) than immediately after formation. Electron flux oscillations observed at this later time are attributed to post-SSC impulses evident in ground magnetograms, while two minute period ULF oscillations also evident in CRRES field data appear to be cavity modes in the inner magnetosphere. copyright 1996 American Institute of Physics

  8. Survey of trapped low energy electrons near the inner boundary of the inner radiation zone from the OSO-7

    International Nuclear Information System (INIS)

    Neighbors, J.E.; Clark, G.W.

    1974-01-01

    Data from the MIT x-ray experiment on the OSO-7 satellite were used to delineate the regions in B-L and geographic spaces where trapped radiation was encountered. The results pertain specifically to electrons with energies in a range of 10 keV centered on 55 keV which were encountered in an orbit between altitudes of 330 and 570 km and latitudes of +-33.3 0 . A typical pitch angle distribution is fitted by a Gaussian with a FWHM of 28 degrees. (U.S.)

  9. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    Science.gov (United States)

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  10. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  11. Superfluorescence with cold trapped neon atoms

    International Nuclear Information System (INIS)

    Zachorowski, Jerzy

    2003-01-01

    A method for observation of superfluorescence in a cloud of cold metastable Ne atoms is proposed. Means of achieving a cold sample of trapped metastable atoms are discussed. The feasibility of obtaining conditions for a superfluorescence pulse is studied. The paper also discusses the prospects for obtaining intense pulses of extreme ultraviolet radiation

  12. Kinetic model of the bichromatic dark trap for atoms

    Science.gov (United States)

    Krasnov, I. V.

    2017-08-01

    A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.

  13. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  14. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  15. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  16. Trapping time statistics and efficiency of transport of optical excitations in dendrimers

    OpenAIRE

    Heijs, D.J.; Malyshev, V.A.; Knoester, J.

    2004-01-01

    We theoretically study the trapping time distribution and the efficiency of the excitation energy transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on a trap located at its core, is used as a probe of the efficiency of the energy transport across the dendrimer. The transport process is treated as incoherent hopping of excitations between nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative and non-r...

  17. Tornado type closed magnetic trap for an ECR source

    CERN Document Server

    Abramova, K B; Voronin, A V; Zorin, V G

    1999-01-01

    We propose to use a Tornado type closed magnetic trap for creation of a source of mul-ticharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is deter-mined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap [1]. We propose to extract ions with the aid of additional coils which partially destroy the closed structure of the magnetic lines in the trap, but don not influence the total confinement time. This allows for producing a controlled plasma flux that depends on the magnetic field of the additional coil. The Tornado trap also possesses merits such as an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; plasma stability to magneto-hydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carrie...

  18. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  19. Electron collisions in the trapped gyro-Landau fluid transport model

    International Nuclear Information System (INIS)

    Staebler, G. M.; Kinsey, J. E.

    2010-01-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  20. Model of a thermoreactor based on an adiabatic trap with MHD stabilizers

    International Nuclear Information System (INIS)

    Dimov, G.I.

    1984-01-01

    The model of a thermonuclear reactor (MTR) is intended for production and study of a deuterium-tritium plasma with thermonuclear parameters and to solve the basic engineering and technological problems connected with a thermonuclear reactor based on an ambipolar trap

  1. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers.

    Science.gov (United States)

    Lin, Yuan; Zhang, Zhongzhi

    2013-03-07

    The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.

  2. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  3. Gamma radiation induced sensitization and photo-transfer in Mg2SiO4:Tb TLD phosphor

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Vohra, K.G.

    1979-01-01

    Mg 2 SiO 4 :Tb TLD phosphor was found to show enhanced TL sensitivity to both gamma and UV radiations after high pre-gamma exposures (>100 R) and a post-annealing treatment at 300 0 C for 1 h. Maximum sensitization factors of 2.8 and 55 were obtained at the pre-expsoure levels of 5.2x10 1 C/kg and 1.3x10 3 C/kg for gamma and UV test radiations respectively. The near constancy of the intensity of the residual TL (RTL) peak at 500 0 C for the sensitized sample with increasing test-gamma exposures has ruled out the re-trapping model proposed earlier for the gamma radiation induced sensitization in this phosphor. The Tsub(max) for the sensitized phosphor was found to occur at a higher temperature compared to that for the virgin phosphor. The dependence of sensitization on RTL was explained qualitatively on the basis of competition between sensitization traps (having higher energy than the dosimetry traps) and RTL traps while capturing the charge carriers generated during the test-gamma exposure. The sensitization observed in this phosphor to UV test radiation was found to be a consequence of the photo-transfer of charge carriers from deep (RTL) traps to the shallow (dosimetry) traps. The reduction in RTL peak (500 0 C) intensity of the sensitized sample with increasing test-UV exposure has demonstrated the photo-transfer mechanism in this phosphor. The TL response of the virgin Mg 2 SiO 4 :Tb phosphor was found to be supralinear to both gamma and UV radiations. The TL response of the sensitized phosphor was found to be linear to gamma radiation and sublinear to UV radiation. (Auth.)

  4. Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding

    CERN Document Server

    Bronuzzi, J.; Moll, M.; Sallese, J.M.

    2016-01-01

    In the framework of monolithic silicon radiation detectors, a fabrication process based on a recently developed silicon wafer bonding technique at low temperature was proposed. Ideally, this new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer, which is expected to present many advantages since it would combine high performance IC's with high sensitive ultra-low doped bulk silicon detectors. But electrical properties of the bonded interface are critical for this kind of application since the mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface in order to be collected by the read-out electronics. In this work, we propose to explore and develop a model for the so-called Transient Current Technique (TCT) to identify the presence of deep traps at the bonded interface. For this purpose, we consider a simple PIN diode reversely biased where the ultra-low doped active region of interest is set ...

  5. Laser trapping of radioactive francium atoms

    International Nuclear Information System (INIS)

    Sprouse, G.D.; Orozco, L.A.; Simsarian, J.E.; Shi, W.; Zhao, W.Z.

    1997-01-01

    The difficult problem of quickly slowing and cooling nuclear reaction products so that they can be injected into a laser trap has been solved by several groups and there are now strong efforts to work with the trapped atoms. The atoms are confined in the trap to a small spatial volume of the order of 1 mm 3 , but more importantly, they are also confined in velocity, which makes them an ideal sample for spectroscopic measurements with other lasers. We have recently trapped radioactive francium and have embarked on a program to further study the francium atom as a prelude to a test of the Standard Model analogous to previous work with Cs. Our sample of 3 min 210 Fr now contains over 20 000 atoms, and is readily visible with an ordinary TV camera. We work on-line with the accelerator, and continuously load the trap to replace losses due to decay and collisions with background gas. We have maintained a sample of Fr atoms in the trap for over 10 hours, with occasional adjustment of the trapping laser frequency to account for drifts. The proposed test of the Standard Model will require accurate calculation of its atomic properties. We are currently testing these calculations by measuring other predicted quantities. (orig.)

  6. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  7. Mental models of radiation

    International Nuclear Information System (INIS)

    Saito, Kiyoko

    2005-01-01

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  8. Application of Fokker-Planck equation in positron diffusion trapping model

    International Nuclear Information System (INIS)

    Bartosova, I.; Ballo, P.

    2015-01-01

    This paper is a theoretical prelude to future work involving positron diffusion in solids for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful tool used to study defects present in materials. However, the behavior of positrons in solids is a process hard to describe. Various models have been established to undertake this task. Our preliminary model is based on the Diffusion Trapping Model (DTM) described by partial differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck equation describes the time evolution of the probability density function of velocity of a particle under the influence of various forces. (authors)

  9. Measurements and TCAD Simulations of Bulk and Surface Radiation Damage Effects

    CERN Document Server

    F. Moscatelli; G. M. Bilei; A. Morozzi; G.-F. Dalla Betta; R. Mendicino; M. Boscardin; N. Zorzi; L. Servoli; P. Maccagnani

    2016-01-01

    In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1÷2×1016 1-MeV equivalent neutrons per square centimeter) combined with a surface damage model developed by using experimental parameters extracted from measurements from gamma irradiated p-type dedicated test structures.

  10. Camera Traps Can Be Heard and Seen by Animals

    Science.gov (United States)

    Meek, Paul D.; Ballard, Guy-Anthony; Fleming, Peter J. S.; Schaefer, Michael; Williams, Warwick; Falzon, Greg

    2014-01-01

    Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals’ hearing and produce illumination that can be seen by many species. PMID:25354356

  11. Camera traps can be heard and seen by animals.

    Directory of Open Access Journals (Sweden)

    Paul D Meek

    Full Text Available Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5 and infrared illumination outputs (n = 7 of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21 and assessed the vision ranges (n = 3 of mammals species (where data existed to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals' hearing and produce illumination that can be seen by many species.

  12. Trapping time statistics and efficiency of transport of optical excitations in dendrimers

    Science.gov (United States)

    Heijs, Dirk-Jan; Malyshev, Victor A.; Knoester, Jasper

    2004-09-01

    We theoretically study the trapping time distribution and the efficiency of the excitation energy transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on a trap located at its core, is used as a probe of the efficiency of the energy transport across the dendrimer. The transport process is treated as incoherent hopping of excitations between nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative and nonradiative decay of the excitations while diffusing across the dendrimer. We derive exact expressions for the Laplace transform of the trapping time distribution and the efficiency of trapping, and analyze those for various realizations of the energy bias, number of dendrimer generations, and relative rates for decay and hopping. We show that the essential parameter that governs the trapping efficiency is the product of the on-site excitation decay rate and the trapping time (mean first passage time) in the absence of decay.

  13. Optical levitation and long-working-distance trapping: From spherical up to high aspect ratio ellipsoidal particles

    International Nuclear Information System (INIS)

    Mihiretie, Besira; Loudet, Jean-Christophe; Pouligny, Bernard

    2013-01-01

    Radiation pressure forces from a moderately focused vertical laser beam are used to levitate transparent particles, a few micrometers in size. Having recalled basic results about levitation of spheres, and applications to long-working distance trapping, we turn to ellipsoid-shaped particles. Experiments are carried out with polystyrene particles, inside a glass chamber filled with water. The particles are lifted up to contact with the chamber top surface. We examine particle equilibrium in such conditions and show that the system “bifurcates” between static on-axis equilibrium with short ellipsoids, to sustained oscillations with longer ones. A similar Hopf bifurcation is found using a simple ray-optics model of the laser-ellipsoid interaction, providing a qualitative account of the observed oscillations. -- Highlights: ► We study optical levitation of non-spherical micrometer-sized particles. ► Short ellipsoids get trapped on laser beam axis, similarly to spheres. ► Long ellipsoids oscillate, through coupled translation and tilt motions. ► We propose a simple ray-optics model of light interaction with an ellipsoid. ► From computed radiation pressure forces, we explain the observed oscillations

  14. Effects of impurity trapping on irradiation-induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L. K.; Yoo, M. H.

    1977-12-01

    A general theory of the effects of point defect trapping on radiation-induced swelling and creep deformation rates is developed. The effects on the fraction of defects recombining, and on void nucleation, void growth and creep due to the separate processes of dislocation climb-glide and dislocation climb (the so-called SIPA mechanism) are studied. Trapping of vacancies or interstitials increases total recombination and decreases the rates of deformation processes. For fixed trapping parameters, the reduction is largest for void nucleation, less for void growth and creep due to dislocation climb-glide, and least for creep due to dislocation climb. With this formation, the effects of trapping at multiple vacancy and interstitial traps and of spatial and temporal variation in trap concentrations may be determined. Alternative pictures for viewing point defect trapping in terms of effective recombination and diffusion coefficients are derived. It is shown that previous derivations of these coefficients are incorrect. A rigorous explanation is given of the well-known numerical result that interstitial trapping is significant only if the binding energy exceeds the difference between the vacancy and interstitial migration energies, while vacancy trapping is significant even at small binding energies. Corrections which become necessary at solute concentrations above about 0.1% are described. Numerical results for a wide range of material and irradiation parameters are presented.

  15. Positron-trapping mechanism at dislocations in Zn

    DEFF Research Database (Denmark)

    Hidalgo, Carlos; Linderoth, Søren; Diego, Nieves de

    1987-01-01

    the average lifetime and the intensity of the long component decrease with increasing temperature. The experimental results are very well described in terms of a generalized trapping model where it is assumed that positrons become trapped in deep traps (jogs) via shallow traps (dislocation lines......). The temperature dependence of the positron-lifetime spectra below 120 K is attributed to the temperature dependence of the trapping rate to the dislocation line. The experimental results have demonstrated that detrapping processes from the dislocation line take place above 120 K. The positron binding energy...

  16. Effect of using type A radiation for dose reconstruction in type B irradiated material: A microdosimetry approach

    International Nuclear Information System (INIS)

    Piters, T.M.; Chernov, V.

    2008-01-01

    A model is proposed to explain that in previously γ irradiated calcite, the yield after additive β irradiation tends to incline to the saturation yield of the β radiation even if that yield is lower than the yield after the γ irradiation. However, the proposed model is not specific for calcite and in fact all calculations are done in a fictive material. The proposed model considers, in contrast to existing models, the track nature of γ and β radiations and that these different types of radiations can be distinguished by the dose distribution inside their tracks. The determination of the dose distribution in the tracks for the different types of irradiations is quite complicated and instead we approximate the γ and β tracks by type A and B tracks that have different but homogeneously distributed dose in their track volumes. The trapping of generated free charges in the track was calculated with a simple one electron-one hole trap model. To obtain the total dose response (the average concentration of occupied traps as a function of dose), the yield in one point was averaged over all possible configurations of track overlapping in that point. We determined the slope of the initial part of the response curve (low dose sensitivity) and the saturation yield as function of the track dose. It is observed that the low dose sensitivity and saturation yield both decrease with increasing track dose. Simulations of the response to sequential irradiation first by type A radiation with a 64 Gy track dose and then followed by type B radiation with a track dose of 128 Gy using our model show a similar effect as observed in calcite demonstrating that the track nature of radiation is a plausible cause for the observed effect

  17. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    Science.gov (United States)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along

  18. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  19. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    Science.gov (United States)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  20. A simplified model exploration research of new anisotropic diffuse radiation model

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin

    2016-01-01

    Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for

  1. A way for evaluating parameters of electron transport in non-polar molecular liquids derived from analysis of the trapped electron recombination kinetics

    International Nuclear Information System (INIS)

    Lukin, L.V.

    2012-01-01

    The geminate recombination kinetics of electron-ion pairs produced by high energy radiation in liquid hydrocarbons is considered in the two state model of electron transport. The purpose of the study is to relate the trapped electron transient optical absorption, observed in the pulse radiolysis experiments, to fundamental parameters of electron transport in liquid. It is shown that measurements of the half-life time and amplitude of the trapped electron decay curve allow one to find the electron life time in a localized state. - Highlights: ► A two state electron model is applied to geminate charge recombination. ► Time dependence of trapped electrons is computed for liquid isooctane and squalane. ► Electron decay kinetics depends on electron life time in a localized state. ► Key parameters of electron transport are found from the pulse radiolysis studies.

  2. Model for thickness dependence of radiation charging in MOS structures

    Science.gov (United States)

    Viswanathan, C. R.; Maserjian, J.

    1976-01-01

    The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.

  3. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  4. Photoconductivity and bleaching of trapped electrons at 770C in irradiated methylcyclohexane

    International Nuclear Information System (INIS)

    Dolivo, G.; Gaeumann, T.

    1977-01-01

    The influence of the wavelength and intensity of the bleaching radiation on the thermoluminescence, thermoconductivity, optical absorption and photoconductivity of the methylcyclohexane, protonated and deuterated, was studied. The energy level scheme of the trapped electron in this alkane is very similar to that found in MTHF and 3-MP. The rate of bleaching of the trapped electrons is less in the deuterated product. (U.K.)

  5. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  6. A robust single-beam optical trap for a gram-scale mechanical oscillator.

    Science.gov (United States)

    Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E

    2017-11-06

    Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

  7. Ageing in the trap model as a relaxation further away from equilibrium

    International Nuclear Information System (INIS)

    Bertin, Eric

    2013-01-01

    The ageing regime of the trap model, observed for a temperature T below the glass transition temperature T g , is a prototypical example of non-stationary out-of-equilibrium state. We characterize this state by evaluating its ‘distance to equilibrium’, defined as the Shannon entropy difference ΔS (in absolute value) between the non-equilibrium state and the equilibrium state with the same energy. We consider the time evolution of ΔS and show that, rather unexpectedly, ΔS(t) continuously increases in the ageing regime, if the number of traps is infinite, meaning that the ‘distance to equilibrium’ increases instead of decreasing in the relaxation process. For a finite number N of traps, ΔS(t) exhibits a maximum value before eventually converging to zero when equilibrium is reached. The time t* at which the maximum is reached however scales in a non-standard way as t * ∼N T g /2T , while the equilibration time scales as τ eq ∼N T g /T . In addition, the curves ΔS(t) for different N are found to rescale as ln t/ln t*, instead of the more familiar scaling t/t*. (paper)

  8. Frequency drift of 3-kHz interplanetary radio emissions: evidence of Fermi accelerated trapped radiation in a small heliosphere?

    International Nuclear Information System (INIS)

    Czechowski, A.; Grzedzielski, S.

    1990-01-01

    Neither the termination shock wave formed where the solar wind ceases to be supersonic, nor the slightly more distant heliopause, where the wind runs into the interstellar medium, have been directly observed, but estimates based on observed cosmic-ray modulations and on pressure balance between the two media suggest that they are 50-200 AU from the Sun. We argue here that the well-known interplanetary radio emission of 2-3 kHz in frequency is trapped in the electromagnetic cavity formed by the heliopause, and furthermore that the fluctuating solar wind will cause the frequency of this trapped radiation to increase at a rate dependent on the geometry of the cavity. Applying this interpretation to the previously unexplained frequency drift, amounting to ∼ 1 kHz yr -1 , of the 3-kHz burst, we estimate an average heliopause distance of 60-100 AU. This agrees with recent data from Pioneer 10 and Voyager 2, suggesting that the termination shock is located at a distance of ∼50 AU, and implies that Voyager 1 may reach the shock in about 1993 and the heliopause as early as 1996. (author)

  9. Optical Manipulation System Using a Plurality of Optical Traps

    DEFF Research Database (Denmark)

    2006-01-01

    The present invention relates to an optical manipulation system (10) for generation of a plurality of optical traps for manipulation of micro-objects including nano-objects using electromagnetic radiation forces in a micro-object manipulation volume (14), the system comprising a spatially modulat...

  10. Cryogenic trapping of keV ion beams at the CSR prototype

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Blaum, Klaus; Froese, Michael; Grieser, Manfred; Lange, Michael; Orlov, Dimitry; Sieber, Thomas; Hahn, Robert von; Varju, Jozef; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Zajfman, Daniel [Weizmann Institut of Science, Rehovot (Israel)

    2009-07-01

    A Cryogenic Trap for Fast ion beams (CTF) was built to explore cooling techniques and test thermal decoupling of ion optics for the development of the electrostatic Cryogenic Storage Ring (CSR). These challenging projects will lead to a new experimental field of atomic and molecular physics with keV ion beams. The cold conditions of 2-10 K minimize the blackbody radiation field and are expected to lead to extremely low restgas densities (equivalent pressure at room temperature {approx}10{sup -13} mbar) which result in long storage lifetimes and for molecular ions to radiative cooling to their ro-vibrational ground states. The CTF consists of two stacks of electrostatic mirror electrodes allowing the storage of up to 20 keV ion beams. Cryogenic ion beam storage has been realized with this device using a liquid helium refrigeration system to cool down the experimental trapping area to few-Kelvin cryogenic temperatures and experiments with cryogenically trapped molecular nitrogen ions have been performed to verify the low vacuum conditions by measuring their storage lifetimes.

  11. MAGNETIC GRAIN TRAPPING AND THE HOT EXCESSES AROUND EARLY-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, G. H.; Gáspár, András; Ballering, N. P., E-mail: grieke@as.arizona.edu, E-mail: agaspar@as.arizona.edu, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-01-10

    A significant fraction of main sequence stars observed interferometrically in the near-infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (<200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at ∼2σ) than those for stars without such excesses.

  12. Empirical investigation on modeling solar radiation series with ARMA–GARCH models

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Yan, Dong; Zhao, Na; Zhou, Jianzhong

    2015-01-01

    Highlights: • Apply 6 ARMA–GARCH(-M) models to model and forecast solar radiation. • The ARMA–GARCH(-M) models produce more accurate radiation forecasting than conventional methods. • Show that ARMA–GARCH-M models are more effective for forecasting solar radiation mean and volatility. • The ARMA–EGARCH-M is robust and the ARMA–sGARCH-M is very competitive. - Abstract: Simulation of radiation is one of the most important issues in solar utilization. Time series models are useful tools in the estimation and forecasting of solar radiation series and their changes. In this paper, the effectiveness of autoregressive moving average (ARMA) models with various generalized autoregressive conditional heteroskedasticity (GARCH) processes, namely ARMA–GARCH models are evaluated for their effectiveness in radiation series. Six different GARCH approaches, which contain three different ARMA–GARCH models and corresponded GARCH in mean (ARMA–GARCH-M) models, are applied in radiation data sets from two representative climate stations in China. Multiple evaluation metrics of modeling sufficiency are used for evaluating the performances of models. The results show that the ARMA–GARCH(-M) models are effective in radiation series estimation. Both in fitting and prediction of radiation series, the ARMA–GARCH(-M) models show better modeling sufficiency than traditional models, while ARMA–EGARCH-M models are robustness in two sites and the ARMA–sGARCH-M models appear very competitive. Comparisons of statistical diagnostics and model performance clearly show that the ARMA–GARCH-M models make the mean radiation equations become more sufficient. It is recommended the ARMA–GARCH(-M) models to be the preferred method to use in the modeling of solar radiation series

  13. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  14. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  15. Quasi-Linear Evolution of Trapped Electron Fluxes Under the Influence of Realistic Whistler-Mode Waves

    Science.gov (United States)

    Agapitov, O. V.; Mourenas, D.; Artemyev, A.; Krasnoselskikh, V.

    2014-12-01

    The evolution of fluxes of energetic trapped electrons as a function of geomagnetic activity is investigated using brand new statistical models of chorus waves derived from Cluster observations in the radiation belts. The new wave models provide the distributions of wave power and wave-normal angle with latitude as a function of either Dst or Kp indices. Lifetimes and energization of energetic electrons are examined, as well as the relevant uncertainties related to some of the wave models implicit assumptions.From the presented results, different implications concerning the characterization of relativistic flux enhancements and losses are provided.

  16. WATER-TRAPPED WORLDS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2013-01-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO 2 as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe

  17. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  18. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René

    2013-03-15

    Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.

  19. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  20. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  1. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    International Nuclear Information System (INIS)

    Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)

  2. ATHENA radiation model

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs

  3. Out-of-equilibrium dynamics in a Gaussian trap model

    International Nuclear Information System (INIS)

    Diezemann, Gregor

    2007-01-01

    The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures

  4. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    Science.gov (United States)

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  5. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  6. Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps

    International Nuclear Information System (INIS)

    Ortega, F.; Marcazzó, J.; Molina, P.; Santiago, M.; Lester, M.; Henniger, J.; Caselli, E.

    2013-01-01

    The glow curve of Al 2 O 3 :C compounds has been analyzed by employing a model consisting of two active traps, thermally disconnected traps and one recombination centre. The analysis takes into account interaction among traps and the thermal quenching of the thermoluminescent emission. - Highlights: • Glow curves of Al 2 O 3 :C for two doses have been analysed taking into account interactions among traps. • The system of differential equations describing the kinetics has been uncoupled. • The new system of equations takes into account equations without derivatives. • The algorithm used will not become stiff. • The kinetics parameters obtained do not depend on the dose

  7. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  8. Model for hydrogen isotope backscattering, trapping and depth profiles in C and a-Si

    International Nuclear Information System (INIS)

    Cohen, S.A.; McCracken, G.M.

    1979-03-01

    A model of low energy hydrogen trapping and backscattering in carbon and a-silicon is described. Depth profiles are calculated and numerical results presented for various incident angular and energy distributions. The calculations yield a relation between depth profiles and the incident ion energy distribution. The use of this model for tokamak plasma diagnosis is discussed

  9. Field evaluation of a new light trap for phlebotomine sand flies.

    Science.gov (United States)

    Gaglio, Gabriella; Napoli, Ettore; Falsone, Luigi; Giannetto, Salvatore; Brianti, Emanuele

    2017-10-01

    Light traps are one of the most common attractive method for the collection of nocturnal insects. Although light traps are generally referred to as "CDC light traps", different models, equipped with incandescent or UV lamps, have been developed. A new light trap, named Laika trap 3.0, equipped with LED lamps and featured with a light and handy design, has been recently proposed into the market. In this study we tested and compared the capture performances of this new trap with those of a classical light trap model under field conditions. From May to November 2013, a Laika trap and a classical light trap were placed biweekly in an area endemic for sand flies. A total of 256 sand fly specimens, belonging to 3 species (Sergentomyia minuta, Phlebotomus perniciosus, Phlebotomus neglectus) were collected during the study period. The Laika trap captured 126 phlebotomine sand flies: P. perniciosus (n=38); S. minuta (n=88), a similar number of specimens (130) and the same species were captured by classical light trap which collected also 3 specimens of P. neglectus. No significant differences in the capture efficiency at each day of trapping, neither in the number of species or in the sex of sand flies were observed. According to results of this study, the Laika trap may be a valid alternative to classical light trap models especially when handy design and low power consumption are key factors in field studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing

    Directory of Open Access Journals (Sweden)

    A. K. Chauhan

    2016-09-01

    Full Text Available The PCDTBT:PCBM solar cells were fabricated adopting a tandem layer approach to investigate the critical issues of charge trapping, radiation absorption, and efficiency in polymer solar cells. This layered structure was found to be a source of charge trapping which was identified and confirmed by impedance spectroscopy. The low efficiency in multilayered structures was related to trapping of photo-generated carriers and low carrier mobility, and thus an increased recombination. Solvent annealing of the structures in tetrahydrofuran vapors was found beneficial in homogenizing the active layer, dissolving additional interfaces, and elimination of charge traps which improved the carrier mobilities and eventually the device efficiencies.

  11. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  12. Foam flow in a model porous medium: II. The effect of trapped gas.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  13. Hawking radiation

    Science.gov (United States)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  14. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  15. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  16. Plasmas in compact traps: From ion sources to multidisciplinary research

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Galatà, A.; Romano, F. P.; Gammino, S.

    2017-09-01

    In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and confinement times ( n_eτ_i>10^{13} cm ^{-3} s; T_e>10 keV) are similar to the ones of thermonuclear plasmas. The research in this field -devoted to heating and confinement optimization- has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the field of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS.

  17. Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions

    Directory of Open Access Journals (Sweden)

    P. Hauke

    2013-11-01

    Full Text Available We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints, provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-dependent properties, we study the underlying microscopic model and discuss undesired interaction terms and other imperfections. As our analysis shows, the proposed scheme allows for the observation in realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay. Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of only four ions in a simpler experimental setup, which enables us to probe basic physical phenomena related to the full many-body problem. The proposal opens a new route for analog quantum simulation of high-energy and condensed-matter models where gauge symmetries play a prominent role.

  18. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light tr...... light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.......Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light...... traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas...

  19. A simplified model for tritium permeation transient predictions when trapping is active

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1994-01-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement. ((orig.))

  20. A simplified model for tritium permeation transient predictions when trapping is active

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Fusion Safety Program, Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States))

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement. ((orig.))

  1. The mass of $^{22}$Mg and a concept for a novel laser ion source trap

    CERN Document Server

    Mukherjee, Manas

    Clean and high-quality radioactive ion beams can be prepared by combining ion trap and resonance laser ionization techniques. A feasibility study for such a laser ion source trap has been carried out which shows enormous improvement in the beam emittance, purity, and in addition allows for a variation of the ion beam time structure. Direct high-precision mass measurements around mass number A=22 are of utmost importance. First, the masses of the superallowed $\\beta$-emitter $^{22}$Mg and its daughter $^{22}$Na are needed to test the conserved-vector-current(CVC) hypothesis and the Cabibbo-Kobayashi-Maskawa(CKM) matrix unitarity, both being predictions of the Standard Model. Second, to calculate the reaction rate of $^{21}$Na($p,\\gamma$)$^{22}$Mg the involved masses are required very accurately. This rate is needed in order to extract an upper limit on the amount of a characteristic $\\gamma$-radiation emitted from classical nova bursts which has been searched for but not yet detected. At the triple trap mass s...

  2. Precision mass measurements at THe-trap and the FSU trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin Juergen

    2016-07-26

    THe-Trap is a Penning-trap mass spectrometer at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, that aims to measure the T/{sup 3}He mass ratio with a relative uncertainty of 10{sup -11}. Improvements of the measurement technique, in particular the measurement of systematic shifts, enabled measurements of mass ratios with relative uncertainties of 7.10{sup -11}, as demonstrated by a cyclotron frequency ratio determination on {sup 12}C{sup 4+}/{sup 16}O{sup 5+}. This uncertainty was limited by the lineshape. An improved theoretical model based on a rotating wave approximation can be used to describe dynamical interactions between the detection system and the ion, in order to better understand the lineshape and to further reduce the uncertainty. The Florida State University trap is a Penning-trap mass spectrometer located in Tallahassee, Florida (USA). In the context of this thesis, three mass ratios were measured, and further 20 mass ratio measurements analyzed, which resulted in the publication of the masses of {sup 82,83}Kr, {sup 131,134}Xe, {sup 86-88}Sr, and {sup 170-174,176}Yb with relative uncertainties between (0.9 - 1.3).10{sup -10}. These masses serve as reference masses for other experiments and have applications in the determination of the fine-structure constant alpha via the photon-recoil method.

  3. Gamma ray induced sensitization in CaSO4:Dy and competing trap model

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Kher, R.K.; Gangadharan, P.

    1979-01-01

    Gamma ray induced sensitization in CaSO 4 :Dy has been compared (by measurement of TL glow curves) for different temperatures during irradiation (25 0 , 120 0 and 250 0 C). Enhanced sensitization at elevated temperatures seems to support the competing trap model for supralinearity and sensitization in CaSO 4 :Dy. (author)

  4. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere

    International Nuclear Information System (INIS)

    Atwell, W.; Townsend, L.; Miller, T.; Campbell, C.

    2005-01-01

    Earlier particle experiments in the 1970's on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results. Published by Oxford Univ. Press. All right reserved. (authors)

  5. Study of PIN diode energy traps created by neutrons

    International Nuclear Information System (INIS)

    Sopko, V; Dammer, J; Sopko, B; Chren, D

    2013-01-01

    Characterization of radiation defects is still ongoing and finds greater application in the increasing radiation doses on semiconductor detectors in experiments. Studying the changes of silicon PIN diode for high doses of radiation is the fundamental motivation for our measurements. In this article we describe the behavior of the PIN diode and development of the disorder caused by neutrons from a 252Cf and doses up to 8 Gy. The calibration curve for PIN diode shows the effect of disorders as the changes of the voltampere characteristics depending on the dose of neutron irradiation. The measured values for defects are in good agreement with created energy traps.

  6. Prediction of LDEF exposure to the ionizing radiation environment

    Science.gov (United States)

    Watts, J. W.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Predictions of the LDEF mission's trapped proton and electron and galactic cosmic ray proton exposures have been made using the currently accepted models with improved resolution near mission end and better modeling of solar cycle effects. An extension of previous calculations, to provide a more definitive description of the LDEF exposure to ionizing radiation, is represented by trapped proton and electron flux as a function of mission time, presented considering altitude and solar activity variation during the mission and the change in galactic cosmic ray proton flux over the mission. Modifications of the AP8MAX and AP8MIN fluence led to a reduction of fluence by 20%. A modified interpolation model developed by Daly and Evans resulted in 30% higher dose and activation levels, which better agreed with measured values than results predicted using the Vette model.

  7. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  8. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  9. Study of grown-in and radiation-induced defects in indium phosphide

    International Nuclear Information System (INIS)

    Shaban, E.H.

    1986-01-01

    This research is focused on (1) conducting detailed theoretical and experimental study of grown-in and radiation-induced defects in liquid encapsulated Czohralski (LEC) grown, Zn-doped P-type indium phosphide (InP), (2) identifying the physical origin of the defects detected using Deep Level Transient Spectroscopy (DLTS) method, and (3) and developing a second-order model to interpret the presence of nonexponential capacitance transients in DLTS method. Analysis of grown-in and radiation-induced defects in P-type InP is undertaken. The main research results are summarized as follows: (1) DLTS analysis of grown-in defects in liquid LEC-grown, Zn-doped, P-type InP is made in this study. A single-hole trap of E/sub v/ + 0.52 eV is detected with a trap density of 1.8 x 10 15 cm -3 . The physical origin of this hole trap is attributed to a phosphorus vacancy or phosphorus interstitial-related defect. (2) One-MeV electron-irradiated P-type InP introduced two new hole traps, namely E/sub v/ + 0.34 and E/sub v/ + 0.58 eV with introduction rates (dN/sub T/d phi) of 0.4 and 1.2 per electron-cm, respectively. (3) A theoretical model is developed to interpret nonexponential capacitance transients in a deep-level transient spectroscopy method when the capture process competes with the dominant thermal-emission process

  10. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  11. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  12. Origin of the main deep electron trap in electron irradiated InP

    International Nuclear Information System (INIS)

    Sibille, A.

    1986-01-01

    The electrical activity and annealing behavior of the main electron trap in electron irradiated InP p + n junctions has been investigated. A very marked depth dependence of the annealing rate has been found. Moreover, this center apparently acts as if it were a deep donor, leading to an increase of carrier concentration on the n side. All these results are coherently interpreted with a model in terms of radiation defect D(P) (phosphorus interstitial or vacancy), residual shallow acceptor complexing, the final annealing resulting from a dissociation of the complex followed by a diffusion and either recapture or annihilation of D(P)

  13. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  14. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  15. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    Science.gov (United States)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  16. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1979-10-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile may be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments

  17. Tunnelling Dynamics of Bose—Einstein Condensates in a Five-Well Trap

    International Nuclear Information System (INIS)

    Ai-Xia, Zhang; Shi-Ling, Tian; Rong-An, Tang; Ju-Kui, Xue

    2008-01-01

    We develop a five-well model for describing the tunnelling dynamics of Bose-Einstein condensates (BECs) trapped in 2D optical lattices. The tunnelling dynamics of BECs in this five-well model are investigated both analytically and numerically. We focus on the self-trapped states and the difference of the tunnelling dynamics among two-well, three-well and five-well systems. The criterions for the self-trapped states and the phase diagrams of the five trapped BECs in zero-phase mode and π-phase mode are obtained. We find that the criterions and the phase diagrams are largely modified by the dimension of the system and the phase difference between wells. The five-well model is a good model and can give us an insight into the tunnelling dynamics of BECs trapped in 2D optical lattices

  18. Uncondensed atoms in the regime of velocity-selective coherent population trapping

    International Nuclear Information System (INIS)

    Il’ichov, L. V.; Tomilin, V. A.

    2016-01-01

    We consider the model of a Bose condensate in the regime of velocity-selective coherent population trapping. As a result of interaction between particles, some fraction of atoms is outside the condensate, remaining in the coherent trapping state. These atoms are involved in brief events of intense interaction with external resonant electromagnetic fields. Intense induced and spontaneous transitions are accompanied by the exchange of momenta between atoms and radiation, which is manifested as migration of atoms in the velocity space. The rate of such migration is calculated. A nonlinear kinetic equation for the many-particle statistical operator for uncondensed atoms is derived under the assumption that correlations of atoms with different momenta are insignificant. The structure of its steady-state solution leads to certain conclusions about the above-mentioned migration pattern taking the Bose statistics into consideration. With allowance for statistical effects, we derive nonlinear integral equations for frequencies controlling the migration. The results of numerical solution of these equations are represented in the weak interatomic interaction approximation.

  19. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  20. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  1. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  2. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  3. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24-25, 2001 storm

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2009-04-01

    We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.

  4. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  5. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Klapisch, M.

    2000-01-01

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  6. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  7. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  8. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  9. Trap-size scaling in confined-particle systems at quantum transitions

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  10. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027

  11. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Directory of Open Access Journals (Sweden)

    Achmad Ariefiandy

    Full Text Available Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis, an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψand varied detection probabilities (p according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site, p (site survey; ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  12. Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Suresh, I.; Shankar, R.; Nagarajan, B.; Sharma, R.; Shenoi, S.S.C.; Unnikrishnan, A.S.; Sundar, D.

    the Makran coast and at Karachi were the result of trapping of the tsunami-wave energy on the continental shelf off the Makran coast and that these coastally-trapped edge waves were trapped in the alongshore direction within a approx 300-km stretch...

  13. A low earth orbit dynamic model for the proton anisotropy validation

    Science.gov (United States)

    Badavi, Francis F.

    2011-11-01

    Ionizing radiation measurements at low earth orbit (LEO) form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the LEO environment. Previous studies using computer aided design (CAD) models of the international space station (ISS) have demonstrated that the dosimetric prediction for a spacecraft at LEO requires the description of an environmental model with accurate anisotropic as well as dynamic behavior. This paper describes such a model for the trapped proton. The described model is a component of a suite of codes collectively named GEORAD (GEOmagnetic RADiation) which computes cutoff rigidity, trapped proton and trapped electron environments. The web version of GEORAD is named OLTARIS (On-line Tool for the Assessment of Radiation in Space). GEORAD suite is applicable to radiation environment prediction at LEO, medium earth orbit (MEO) and geosynchronous earth orbit (GEO) at quiet solar periods. GEORAD interest is in the study of long term effect of the trapped environment and therefore it does not account for any short term external field contribution due to solar activity. With the concentration of the paper on the LEO protons only, the paper presents the validation of the trapped proton model within GEORAD with reported measurements from the compact environment anomaly sensor (CEASE) science instrument package, flown onboard the tri-service experiment-5 (TSX-5) satellite during the period of June 2000 to July 2006. The spin stabilized satellite was flown in a 410 × 1710 km, 69° inclination elliptical orbit, allowing it to be exposed to a broad range of the LEO regime. The paper puts particular emphasize on the validation of the

  14. Selectivity of primary events in the radiation chemistry of organic solids and polymers as revealed by model studies of ionized molecules

    International Nuclear Information System (INIS)

    Feldman, V.

    2006-01-01

    Selectivity of the primary chemical events induced by ionizing radiation in molecular systems is the key issue of basic radiation chemistry, which is crucially important for controlling the radiation sensitivity of various-type organic and polymeric materials and designing new effective approaches to the radiation modification. In the past decade we have demonstrated that many features of selective localization of the radiation-induced effects in molecular solids can be understood on the basis of model studies of the primary ionized molecules in rigid low-temperature matrices. This talk will outline the key results of these studies and possible implications for radiation chemistry of vatious systems. In particular, the following aspects will be considered: (1) Spectroscopic characteristics of ustable ionized molecules in low-temperature matrices and their correlations with the site-selective reactivity. (2) Experimental modeling of the effect of excess energy on the properties of primary ionized molecules in condensed phases. (3) Intramolecular long-range effects with particular impact on the properties of ionized bifunctional molecules of X-(CH 2 ) n -X and X-(CH 2 ) n -Y types. (4) Modeling of intermolecular long-range positive hole transfer between molecular traps with close ionization energy and manifestations of 'fine tuning' effects resulting from conformation variations and intermolecular interactions. Several illustrative examples of correlation between the properties of primary ionized molecules and selectivity of the radiation-chemical transformations in organic solids and macromolecules will be presented. Finally, the problem of prediction of the radiation-chemical behaviour of complex organic systems on the basis of limited spectroscopic information and quantum-chemical data obtained for model systems will be addressed. This work was supported by the Russian Foundation for Basic Research (Project No. 06-03-33104) and the Russian Academy of Sciences

  15. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  16. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  17. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  18. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  19. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  20. Formation of interface traps in MOSFETs during annealing following low temperature irradiation

    International Nuclear Information System (INIS)

    Saks, N.S.; Griscom, D.L.; Klein, R.B.

    1988-01-01

    The formation of interface traps N/sub it/ has been studied in MOSFETs during isochronal annealing up to 350 K following exposure to ionizing radiation at 78K. Two distinct N/sub it/ formation processes are observed: (1) A small (1-10% of total) process occurs at 100-150K which the authors argue is caused by neutral atomic hydrogen, and (2) a second higher temperature (200-300K) process which accounts for most (>90%) of the N/sub it/ formation. The characteristics of the high temperature process support the proton (H/sup +/) model of N/sub it/ formation and are not in agreement with several other common models. In the second part of this paper, the authors compare charge pumping and inversion layer mobility techniques for measuring N/sub it/. The authors find that the mobility cannot be used to determine N/sub it/ at 78K (in contrast to its successful use at 295K), probably because of lateral non-uniformities (LNUs) in the large radiation-induced fixed oxide charge

  1. Comparative efficacy of small commercial traps for the capture of adult Phlebotomus papatasi.

    Science.gov (United States)

    Junnila, Amy; Kline, Daniel L; Müller, Günter C

    2011-03-01

    We tested the performance of ten commercial mosquito traps with varying attractive features, against three CDC traps (an unlit model 512, an incandescently lit model 512, and a UV lit model 1212) as well as simple sticky paper, for their ability to attract and capture Phlebotomus papatasi in Israel. The commercial traps tested were the Sentinel 360, the Combo Trap, the Mega Catch Premier, the Bug Eater, the EcoTrap, the Galaxie Power-Vac, the Biter Fighter, the Black Hole, the Mosquito Trap, the Mosquito Catcher, the Sonic Web, the Solar Pest Killer, and a Bug Zapper. The four best performing traps with the highest nightly catches were the Sentinel 360 (85.96 ±19.34), the Combo Trap (70.00±7.78), the Mega Catch Premier (51.93±1.82) and the UV lit CDC 1212 trap (47.64±3.43). Five traps--the Mosquito Trap, the Mosquito Catcher, the Sonic Web, the Solar Pest Killer, and the Bug Zapper--performed exceptionally poorly, catching an average of less than two sand flies per day. To our knowledge, this is the first comprehensive attempt to evaluate commercial traps for their effectiveness in catching sand flies, and we show here that some traps that have been effective in catching mosquitoes are also effective in catching sand flies. © 2011 The Society for Vector Ecology.

  2. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Science.gov (United States)

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...

  3. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  4. Ionizing radiation induced conductivity in Mylar (PET) and Kapton (Polyimide)

    International Nuclear Information System (INIS)

    Gregorio Filho, R.

    1986-01-01

    The extensive results of measurements of the prompt and delayed radiation-induced conductivity of samples of PET and Kapton are presented. Experimental parameters, such as the effective energy of the radiation, the exposure rate, the total dose, the value of the applied electric field, the nature of the electrodes, and the ambiental conditions were changed within wide limits. We also report measurement of thermally stimulated currents for non-irradiated and for irradiated samples which allowed us to investigate the trap-structure of the materials. Measurements of photo-Compton currents with different electrode materials and sample thicknesses gave information about the relation between the nature of the electrodes and the amplitudes of the currents. Based on the generalized rate theory of radiation-induced conduction we developed a theoretical model which includes the effect of the applied electric field on the carrier generation yield (geminate recombination, Onsager effect). Comparison of experimental and theoretical curves allowed us to determine the values of the main conduction parameters, such as carrier mobility, recombination coefficient, trap densities, for the materials under investigation. (Author) [pt

  5. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  6. A simplified model for tritium permeation transient predictions when trapping is active*1

    Science.gov (United States)

    Longhurst, G. R.

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement.

  7. Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT

    Science.gov (United States)

    Panda, D. K.; Lenka, T. R.

    2017-12-01

    In this paper the drain current low-frequency noise (LFN) of E-mode GaN MOS-HEMT is investigated for different gate insulators such as SiO2, Al2O3/Ga2O3/GdO3, HfO2/SiO2, La2O3/SiO2 and HfO2 with different trap densities by IFM based TCAD simulation. In order to analyze this an analytical model of drain current low frequency noise is developed. The model is developed by considering 2DEG carrier fluctuations, mobility fluctuations and the effects of 2DEG charge carrier fluctuations on the mobility. In the study of different gate insulators it is observed that carrier fluctuation is the dominant low frequency noise source and the non-uniform exponential distribution is critical to explain LFN behavior, so the analytical model is developed by considering uniform distribution of trap density. The model is validated with available experimental data from literature. The effect of total number of traps and gate length scaling on this low frequency noise due to different gate dielectrics is also investigated.

  8. Reduction of charge trapping and electron tunneling in SIMOX by supplemental implantation of oxygen

    International Nuclear Information System (INIS)

    Stahlbush, R.E.; Hughes, H.L.; Krull, W.A.

    1993-01-01

    Silicon-on-insulator, SOI, technologies are being aggressively pursued to produce high density, high speed, radiation tolerant electronics. The dielectric isolation of the buried oxide makes it possible to design integrated circuits that greatly minimize single event upset and eliminate dose-rate induced latchup and upset. The reduction of excess-silicon related defects in SIMOX by the supplemental implantation of oxygen has been examined. The supplemental implant is 6% of the oxygen dose used to form the buried oxide, and is followed by a 1,000 C anneal, in contrast to the >1,300 C anneal used to form the buried oxide layer of SIMOX. The defects examined include shallow electron traps, deep hole traps, and silicon clusters. The radiation-induced shallow electron and deep hole trapping are measured by cryogenic detrapping and isothermal annealing techniques. The low-field (3 to 6 MV/cm) electron tunneling is interpreted as due to a two phase mixture of stoichiometric SiO 2 and Si clusters a few nm in size. Single and triple SIMOS samples have been examined. All of the defects are reduced by the supplemental oxygen processing. Shallow electron trapping is reduced by an order of magnitude. Because of the larger capture cross section for hole trapping, hole trapping is not reduced as much. The low-field electron tunneling due to Si clusters is also significantly reduced. Both uniform and nonuniform electron tunneling have been observed in SIMOX samples without supplement processing. In samples exhibiting only uniform tunneling, electron capture at holes has been observed. The nonuniform tunneling is superimposed upon the uniform tunneling and is characterized by current spiking

  9. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  10. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  11. The Use of Camera Traps in Wildlife

    Directory of Open Access Journals (Sweden)

    Yasin Uçarlı

    2013-11-01

    Full Text Available Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the models. Crossover points and feeding or mating areas of the focal species are addressed as a priority camera trap set locations. The population size can be finding out by the images combined with Capture-Recapture methods. The population density came out the population size divided to effective sampling area size. Mating and breeding season, habitat choice, group structures and survival rates of the focal species can be achieved from the images. Camera traps are very useful to obtain the necessary data about the particularly mysterious species with economically in planning and conservation efforts.

  12. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  13. Development of a radiofrequency linear ion trap for {beta} decay study

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. [McGill Univ., Montreal, Quebec (Canada); Argonne National Laboratory, Argonne, Illinois (United States); Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Segel, R.E. [Northwestern Univ., Illinois (United States); and others

    2010-07-01

    A Beta decay Paul Trap (BPT) has been constructed at Argonne National Laboratory for the precise measurement of beta decay. We have demonstrated the capability of producing and transferring a low-energy, bunched, and isotopically pure ions beam. In BPT the ions are cooled to sub-eV energies, and confined in a volume of less than 1 mm{sup 3}. The trap has an open geometry which allows four sets of radiation detectors covering a substantial potion of solid angle. In combination with versatile detectors, BPT is able to precisely determine the entire decay kinematics of many isotopes. (author)

  14. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Science.gov (United States)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  15. Trap Generation Dynamics in Photo-Oxidised DEH Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2015-07-01

    Full Text Available A series of polyester films doped with a hole transport molecule, p-diethylaminobenzaldehyde-1,1'-diphenylhydrazone (DEH, have been systematically exposed to ultraviolet radiation with a peak wavelength of about 375 nm. The electronic performance of the films, evaluated using time-of-flight and space-charge current injection methods, is observed to continuously degrade with increasing ultraviolet exposure. The degradation is attributed to photo cyclic oxidation of DEH that results in the creation of indazole (IND molecules which function as bulk hole traps. A proposed model for the generation dynamics of the IND traps is capable of describing both the reduction in current injection and the associated time-of-flight hole mobility provided around 1% of the DEH population produce highly reactive photo-excited states which are completely converted to indazole during the UV exposure period. The rapid reaction of these states is incompatible with bulk oxygen diffusion-reaction kinetics within the films and is attributed to the creation of excited states within the reaction radius of soluble oxygen. It is suggested that encapsulation strategies to preserve the electronic integrity of the films should accordingly focus upon limiting the critical supply of oxygen for photo cyclic reaction.

  16. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  17. Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion

    Science.gov (United States)

    Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2017-12-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.

  18. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10 18 cm -3 and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10 17 cm -3 , a thicker silicon film (300 nm) must be used

  19. Artificial covering on trap nests improves the colonization of trap-nesting wasps

    OpenAIRE

    Taki, Hisatomo; Kevan, Peter G.; Viana, Blandina Felipe; Silva, Fabiana O.; Buck, Matthias

    2008-01-01

    Acesso restrito: Texto completo. p. 225-229 To evaluate the role that a trap-nest cover might have on sampling methodologies, the abundance of each species of trap-nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap-nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae...

  20. Applying and improving a sedimentary facies model for exploration of stratigraphic traps in the Austrian Molasse basin

    Energy Technology Data Exchange (ETDEWEB)

    Hinsch, R.; Kofler, N. [Rohoel-Aufsuchungs AG (RAG), Vienna (Austria); Hubbard, S. [Calgary Univ., Calgary (Canada). Dept. of Geology and Geophysics

    2007-09-13

    In the Molasse foreland basin of Upper Austria gas is produced from deep-water sandstones and conglomerates of the Puchkirchen and basal Hall formations (Oligocene-Lower Miocene). The basin is mature, with >750 wells drilled by RAG to date. An extensive 3-D seismic reflection dataset that covers much of the paleo-basin foredeep has been acquired in the study area over the last 15 years. Seismic stratigraphic analysis has revealed that deepwater sedimentation in the basin was dominated by a channel belt up to 5 km wide that transported sediment derived from the Central and Eastern Alps eastward along the basin axis (Linzer, 2001; de Ruig, 2003). Based on these findings, a detailed sedimentary facies model has been developed, outlining several distinct depositional elements that reveal numerous possible stratigraphic trap types (de Ruig and Hubbard, 2006). This depositional model is currently being applied and tested in exploration and refined by ongoing research. Channel abandonment and migration are important processes that resulted in stratigraphic configurations consisting of coarse-grained sandstones and conglomerates overlain by channel and overbank mudstones. This represents ideal reservoir architecture, including porous reservoir facies sealed by impermeable deposits. Additional stratigraphic trapping conditions can result from special spatial arrangements of depositional elements, for example a sandstone-filled tributary channel that is sealed by an overlying mudstone-filled abandonment channel. Recognizing and further improving such stratigraphic trapping configurations are important for future exploration in Upper Austria, where most of the structural traps have been drilled. (orig.)

  1. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  2. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  3. On-chip particle trapping and manipulation

    Science.gov (United States)

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to

  4. Review of statistical analysis of trapped gas

    International Nuclear Information System (INIS)

    Schmittroth, F.A.

    1996-01-01

    A review was conducted of trapped gas estimates in Hanford waste tanks. Tank waste levels were found to correlate with barometric pressure changes giving the possibility to infer amounts of trapped gas. Previous models of the tank waste level were extended to include other phenomena such as evaporation in a more complete description of tank level changes

  5. Is There a Fiscal Free Lunch in a Liquidity Trap?

    OpenAIRE

    Jesper Linde; Christopher J. Erceg

    2010-01-01

    This paper uses a DSGE model to examine the effects of an expansion in government spending in a liquidity trap. If the liquidity trap is very prolonged, the spending multiplier can be much larger than in normal circumstances, and the budgetary costs minimal. But given this "fiscal free lunch," it is unclear why policymakers would want to limit the size of fiscal expansion. Our paper addresses this question in a model environment in which the duration of the liquidity trap is determined endoge...

  6. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1982-01-01

    Positron annihilation spectroscopy (PAS) has in recent years become a valuable new tool for investigating defects in metals. The ability of the positron to localize in a trapped state at various defect sites, in which the positron annihilates with unique characteristics, has enabled the positron to be used as a localized probe of these defect sites. Several reviews of the application of PAS to the study of defects in metals have been published, as have more general treatises on the applications of positron annihilation to the study of solids. PAS has made, and has considerably greater potential for, a significant contribution to radiation damage analysis in two areas of importance: (1) the determination of atomic-defect properties, a knowledge of which is necessary for the modeling required to couple the results of model experiments using electron and ion irradiation with the expected irradiation conditions of reactor systems, and (2) the monitoring and characterization of irradiation-induced microstructure development. A unique aspect of PAS for radiation damage analysis is the defect specificity of the annihilation characteristics of a trapped positron. In addition to its value as an independent analytical tool, PAS can be a useful complement to more traditional techniques for defect studies

  7. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  8. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  9. Trapping of deuterium in argon-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; Rehn, L.E.; Baldo, P.

    1985-01-01

    Argon ions with energy 250 keV were implanted at fluences of 2 x 10 16 cm -2 at temperatures of 500, 250, and 21 0 C, in the specimen of relatively pure polycrystalline nickel. Deuterium was introduced into the surface and implanted regions by making the specimen the negative electrode of an electrolytic cell containing 1-N pure deuterated sulfuric acid. Deuterium trapped in the vacancy complexes of the implanted regions was analyzed as a function of temperature using the vacancy complexes of the implanted regions was analyzed as a function of temperature using the 2 H( 3 He, 1 H) 4 He nuclear reaction during an isochronal annealing process. The results indicate that the types of traps and trap densities found in the regions implanted at 21 and 250 0 C were essentially identical while the trap density found in the region implanted at 500 0 C was approximately 40% of that found in the other regions. Math model comparison with the experimental results suggests the existence of at least two types of traps in each region. Trap binding enthalpies used in the math model to fit the experimental data were slightly higher for the region implanted with argon at 500 0 C than for the regions implanted at the lower temperatures. TEM studies revealed the presence of small voids in the region implanted at 500 0 as well as dislocation loops similar to those found in the regions implanted at the lower temperatures. 20 references, 2 figures

  10. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  11. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  12. Effects of impurities on radiation damage in InP

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Ando, K.

    1986-01-01

    Strong impurity effects upon introduction and annealing behavior of radiation-induced defects in InP irradiated with 1-MeV electrons have been found. The main defect center of 0.37-eV hole trap H4 in p-InP, which must be due to a point defect, is annealed even at room temperature. Its annealing rate is found to be proportional to the 2/3 power of the preirradiation carrier concentration in InP. Moreover, the density of the hole trap H5 (E/sub v/+0.52 eV) in p-InP, which must be due to a point defect--impurity complex, increases with increase in the InP carrier concentration. These results suggest that the radiation-induced defects in InP must recover through long-range diffusion mediated by impurity atoms. A model is proposed in which point defects diffuse to sinks through impurities so as to disappear or bind impurities so as to form point defect--impurity complexes. In addition to the long-range diffusion mechanism, the possibility of charge-state effects responsible for the thermal annealing of radiation-induced defects in InP is also discussed

  13. γ radiation effects on Collembola

    International Nuclear Information System (INIS)

    Loring, S.J.

    1985-01-01

    Pitfall traps were used to collect surface-active Collembola at intervals of 10-100 m from a γ radiation source on Long Island, N.Y., during the summer of 1968. Thirty-two species of Collembola were collected along the radiation transect. Community diversities were similar at all intervals except 10 m. Collembola appeared resistant to γ radiation; only chronic, very high γ radiation exposure seriously affected population levels and community diversity of surface Collembola

  14. Curious behavior of optically trapped neutral atoms

    International Nuclear Information System (INIS)

    Wieman, C.; Walker, T.; Sesko, D.; Monroe, C.

    1991-01-01

    We have studied the behavior of clouds of neutral atoms contained in a spontaneous force optical trap. Because of the low temperatures of the atoms ( 5 atoms. These include the expansion of the cloud as the number is increased and dramatic changes in the distribution of the atoms at higher numbers. We can explain much of the collective behavior using a simple model that includes a 1/r 2 force between the atoms arising from the multiple scattering of photons. Finally, we discuss the optical trapping of atoms directly from a low pressure vapor in a small glass cell. We have used these optically trapped atoms to load a magnetostatic trap in the same cell. This provided a high density sample of atoms with a temperature of less than 2 μK

  15. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  16. Blueprint for a microwave trapped ion quantum computer.

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  17. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  18. Influence of transfer gate design and bias on the radiation hardness of pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    Goiffon, V.; Estribeau, M.; Cervantes, P.; Molina, R.; Magnan, P.; Gaillardin, M.

    2014-01-01

    The effects of Cobalt 60 gamma-ray irradiation on pinned photodiode (PPD) CMOS image sensors (CIS) are investigated by comparing the total ionizing dose (TID) response of several transfer gate (TG) and PPD designs manufactured using a 180 nm CIS process. The TID induced variations of charge transfer efficiency (CTE), pinning voltage, equilibrium full well capacity (EFWC), full well capacity (FWC) and dark current measured on the different pixel designs lead to the conclusion that only three degradation sources are responsible for all the observed radiation effects: the pre-metal dielectric (PMD) positive trapped charge, the TG sidewall spacer positive trapped charge and, with less influence, the TG channel shallow trench isolation (STI) trapped charge. The different FWC evolutions with TID presented here are in very good agreement with a recently proposed analytical model. This work also demonstrates that the peripheral STI is not responsible for the observed degradations and thus that the enclosed layout TG design does not improve the radiation hardness of PPD CIS. The results of this study also lead to the conclusion that the TG OFF voltage bias during irradiation has no influence on the radiation effects. Alternative design and process solutions to improve the radiation hardness of PPD CIS are discussed. (authors)

  19. A model to optimize trap systems used for small mammal (Rodentia, Insectivora density estimates

    Directory of Open Access Journals (Sweden)

    Damiano Preatoni

    1997-12-01

    Full Text Available Abstract The environment found in the upper and lower Padane Plain and the adjoining hills isn't very homogeneous. In fact it is impossible to find biotopes extended enough to satisfy the necessary criteria for density estimate of small mammals based on the Removal method. This limitation has been partially overcome by adopting a reduced grid, counting 39 traps whose spacing depends on the studied species. Aim of this work was to verify - and eventually measure - the efficiency of a sampling method based on a "reduced" number of catch points. The efficiency of 18 trapping cycles, realized from 1991 to 1993, was evaluated as percent bias. For each of the trapping cycles, 100 computer simulations were performed, so obtaining a Monte-Carlo estimate of bias in density values. Then later, the efficiency of different trap arrangements was examined by varying the criteria. The numbers of traps ranged from 9 to 49, with trap spacing varying from 5 to 15 m and a trapping period duration from 5 to 9 nights. In this way an optimal grid system was found both for dimensions and time duration. The simulation processes involved, as a whole, 1511 different grid types, for 11347 virtual trapping cycles. Our results indicate that density estimates based on "reduced" grids are affected by an average -16% bias, that is an underestimate, and that an optimally sized grid must consist of 6x6 traps square, with about 8.7 m spacing. and be in operation for 7 nights.

  20. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  1. Effect of dose on radiation-induced conductivity in polymers

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Saenko, V.S.; Pozhidaev, E.D.; Ikhsanov, R.Sh.

    2007-01-01

    Numerical simulation of radiation-induced conductivity in polymers upon long-term irradiation on the basis of the generalized Rose-Fowler-Vaisberg model, which allows for both dipolar carrier transport and generation of radiation traps during irradiation, was performed. The unusual properties of radiation-induced conductivity, such as the appearance of a maximum on current transients, the absence of a steady state, and a substantial difference between these curves for the first and subsequent irradiation, are rationalized in terms of the formation of free radicals, the major feature of radiolysis in the chemical aspect. This interpretation does not require the involvement of degradation or crosslinking processes, unlike other interpretations that appear in the literature. With the use of low-density polyethylene as an example, it was shown that radiation-induced conductivity both upon pulse and continuous irradiation can satisfactorily be described with the unified set of parameters of the generalized Rose-Fowler-Vaisberg model [ru

  2. Microstructure Hierarchical Model of Competitive e+-Ps Trapping in Nanostructurized Substances: from Nanoparticle-Uniform to Nanoparticle-Biased Systems.

    Science.gov (United States)

    Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter

    2017-12-01

    Microstructure hierarchical model considering the free-volume elements at the level of interacting crystallites (non-spherical approximation) and the agglomerates of these crystallites (spherical approximation) was developed to describe free-volume evolution in mechanochemically milled As 4 S 4 /ZnS composites employing positron annihilation spectroscopy in a lifetime measuring mode. Positron lifetime spectra were reconstructed from unconstrained three-term decomposition procedure and further subjected to parameterization using x3-x2-coupling decomposition algorithm. Intrinsic inhomogeneities due to coarse-grained As 4 S 4 and fine-grained ZnS nanoparticles were adequately described in terms of substitution trapping in positron and positronium (Ps) (bound positron-electron) states due to interfacial triple junctions between contacting particles and own free-volume defects in boundary compounds. Compositionally dependent nanostructurization in As 4 S 4 /ZnS nanocomposite system was imagined as conversion from o-Ps trapping sites to positron traps. The calculated trapping parameters that were shown could be useful to characterize adequately the nanospace filling in As 4 S 4 /ZnS composites.

  3. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  4. Measurement of radical scavenging activity of irradiated Kampo extracts using ESR spin-trap method

    International Nuclear Information System (INIS)

    Ohta, Yui; Kawamura, Shoei; Ukai, Mitsuko; Nakamura, Hideo; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2014-01-01

    The radical scavenging activity (RSA) of 13 kinds of γ-ray irradiated Kampo extracts were studied by ESR spin-trap method. The RSA against alkoxy radical and hydroxyl radical were measured using new spin trapping reagent CYPMPO. The RSA against these two radicals were evaluated using GSH for alkoxy RSA and L-ascorbic acid for hydroxy RSA as a standard antioxidant reagent. We revealed that a few Kampo extracts showed high RSA against alkoxy radical and also hydroxy radical. This RSA of Kampo extracts was changed by γ-ray irradiation treatment. Using ESR spin-trap method, it is concluded that the effect of radiation treatment on RSA of Kampo extracts were able to detect. (author)

  5. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  6. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  7. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  8. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  9. Memory effects in the relaxation of the Gaussian trap model

    Science.gov (United States)

    Diezemann, Gregor; Heuer, Andreas

    2011-03-01

    We investigate the memory effect in a simple model for glassy relaxation, a trap model with a Gaussian density of states. In this model, thermal equilibrium is reached at all finite temperatures and we therefore can consider jumps from low to high temperatures in addition to the quenches usually considered in aging studies. We show that the evolution of the energy following the Kovacs protocol can approximately be expressed as a difference of two monotonously decaying functions and thus show the existence of a so-called Kovacs hump whenever these functions are not single exponentials. It is well established that the Kovacs effect also occurs in the linear response regime, and we show that most of the gross features do not change dramatically when large temperature jumps are considered. However, there is one distinguishing feature that only exists beyond the linear regime, which we discuss in detail. For the memory experiment with inverted temperatures, i.e., jumping up and then down again, we find a very similar behavior apart from an opposite sign of the hump.

  10. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  11. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  12. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization.

    Science.gov (United States)

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P dry eye group. Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery.

  13. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  14. Random-walk simulation of diffusion-controlled processes among static traps

    International Nuclear Information System (INIS)

    Lee, S.B.; Kim, I.C.; Miller, C.A.; Torquato, S.; Department of Mechanical and Aerospace Engineering and Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910)

    1989-01-01

    We present computer-simulation results for the trapping rate (rate constant) k associated with diffusion-controlled reactions among identical, static spherical traps distributed with an arbitrary degree of impenetrability using a Pearson random-walk algorithm. We specifically consider the penetrable-concentric-shell model in which each trap of diameter σ is composed of a mutually impenetrable core of diameter λσ, encompassed by a perfectly penetrable shell of thickness (1-λ)σ/2: λ=0 corresponding to randomly centered or ''fully penetrable'' traps and λ=1 corresponding to totally impenetrable traps. Trapping rates are calculated accurately from the random-walk algorithm at the extreme limits of λ (λ=0 and 1) and at an intermediate value (λ=0.8), for a wide range of trap densities. Our simulation procedure has a relatively fast execution time. It is found that k increases with increasing impenetrability at fixed trap concentration. These ''exact'' data are compared with previous theories for the trapping rate. Although a good approximate theory exists for the fully-penetrable-trap case, there are no currently available theories that can provide good estimates of the trapping rate for a moderate to high density of traps with nonzero hard cores (λ>0)

  15. The JPL Uranian Radiation Model (UMOD)

    Science.gov (United States)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.

  16. Radiation detection system

    Science.gov (United States)

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  17. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  18. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  19. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  20. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  1. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  2. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  3. Neutron generator based on adiabatic trap

    International Nuclear Information System (INIS)

    Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.

    1988-01-01

    A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2

  4. Effect of trap position on the efficiency of trapping in treelike scale-free networks

    International Nuclear Information System (INIS)

    Zhang Zhongzhi; Lin Yuan; Ma Youjun

    2011-01-01

    The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.

  5. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  6. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-05-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  7. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-01-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  8. Two-species mixing in a nested Penning trap for antihydrogen trapping

    International Nuclear Information System (INIS)

    Ordonez, C. A.; Weathers, D. L.

    2008-01-01

    There exists an international quest to trap neutral antimatter in the form of antihydrogen for scientific study. One method that is being developed for trapping antihydrogen employs a nested Penning trap. Such a trap serves to mix positrons and antiprotons so as to produce low energy antihydrogen atoms. Mixing is achieved when the confinement volumes of the two species overlap one another. In the work presented here, a theoretical understanding of the mixing process is developed by analyzing a mixing scheme that was recently reported [G. Gabrielse et al., Phys. Rev. Lett. 100, 113001 (2008)]. The results indicate that positron space charge or collisions among antiprotons may substantially reduce the fraction of antiprotons that have an energy suitable for antihydrogen trapping

  9. Single and dual fiber nano-tip optical tweezers: trapping and analysis

    OpenAIRE

    Decombe , Jean-Baptiste; Huant , Serge; Fick , Jochen

    2013-01-01

    International audience; An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decre...

  10. Nonlinear PIC simulation in a Penning trap

    International Nuclear Information System (INIS)

    Lapenta, G.; Delzanno, G.L.; Finn, J. M.

    2002-01-01

    We study the nonlinear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids

  11. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    Science.gov (United States)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  12. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  13. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  14. Deployable micro-traps to sequester motile bacteria

    Science.gov (United States)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  15. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  16. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  17. The nature of trapping sites and recombination centres in PVK and PVK-PBD electroluminescent matrices seen by spectrally resolved thermoluminescence

    International Nuclear Information System (INIS)

    Glowacki, Ireneusz; Szamel, Zbigniew

    2010-01-01

    Two electroluminescent polymer matrices poly(N-vinylcarbazole) (PVK) and PVK with 40 wt% of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) were studied using spectrally resolved thermoluminescence (SRTL) in the temperature range 15-325 K. The comparison of the SRTL results with the electroluminescence (EL) spectra has allowed identification of the localized (trapping) sites and the radiative recombination centres present in the investigated matrices. In the neat PVK films deep traps with a depth about 200 meV, related to triplet excimers dominate, while in the PVK-PBD (40 wt%) blend films the traps that are related to triplet exciplexes formed by the carbazole groups and the PBD molecules dominate. Depth of the traps in the PVK-PBD blend is somewhat lower than that in the neat PVK. An analysis of the EL spectra shows that in the PVK and in the PVK-PBD blend the dominant radiative centres are singlet excimers and singlet exciplexes, respectively. However, in the neat PVK some contributions of the triplet monomer and the triplet excimer states in the EL were also detected.

  18. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    Science.gov (United States)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle

  19. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.

    Science.gov (United States)

    De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo

    2015-11-30

    We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

  20. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  1. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  2. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  3. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    Science.gov (United States)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  4. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  5. Developing Antimatter Containment Technology: Modeling Charged Particle Oscillations in a Penning-Malmberg Trap

    Science.gov (United States)

    Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.

    2003-01-01

    The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.

  6. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    Science.gov (United States)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  7. Galileo Measurements of the Jovian Electron Radiation Environment

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-12-01

    The Galileo spacecraft Energetic Particle Detector (EPD) has been used to map Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). The electron count rates from the instrument were averaged into 10-minute intervals over the energy range 0.2 MeV to 11 MeV to form an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and end of mission in 2003. These data were then used to provide differential flux estimates in the jovian equatorial plane as a function of radial distance (organized by magnetic L-shell position). These estimates provide the basis for an omni-directional, equatorial model of the jovian electron radiation environment. The comparison of these results with the original Divine model of jovian electron radiation and their implications for missions to Jupiter will be discussed. In particular, it was found that the electron dose predictions for a representative mission to Europa were about a factor of 2 lower than the Divine model estimates over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeded the Divine model by about 50% for thicker shielding for the assumed Europa orbiter trajectories. The findings are a significant step forward in understanding jovian electron radiation and represent a valuable tool for estimating the radiation environment to which jovian science and engineering hardware will be exposed.

  8. Sampling density for the quantitative evaluation of air trapping

    International Nuclear Information System (INIS)

    Goris, Michael L.; Robinson, Terry E.

    2009-01-01

    Concerns have been expressed recently about the radiation burden on patient populations, especially children, undergoing serial radiological testing. To reduce the dose one can change the CT acquisition settings or decrease the sampling density. In this study we determined the minimum desirable sampling density to ascertain the degree of air trapping in children with cystic fibrosis. Ten children with cystic fibrosis in stable condition underwent a volumetric spiral CT scan. The degree of air trapping was determined by an automated algorithm for all slices in the volume, and then for 1/2, 1/4, to 1/128 of all slices, or a sampling density ranging from 100% to 1% of the total volume. The variation around the true value derived from 100% sampling was determined for all other sampling densities. The precision of the measurement remained stable down to a 10% sampling density, but decreased markedly below 3.4%. For a disease marker with the regional variability of air trapping in cystic fibrosis, regardless of observer variability, a sampling density below 10% and even more so, below 3.4%, apparently decreases the precision of the evaluation. (orig.)

  9. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    Science.gov (United States)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  10. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  11. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  12. Defects spectroscopy by means of the simple trapping model of the Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F.

    2007-01-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe 78 Si 9 B 13 alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C d ) and the electronic density associated to the defect (n d ); both first parameters, (K, C d ) its increase and n d diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  13. Applications of EPR in radiation research

    CERN Document Server

    Lund, Anders

    2014-01-01

    Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical

  14. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  15. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  16. Fueling profile sensitivities of trapped particle mode transport to TNS

    International Nuclear Information System (INIS)

    Mense, A.T.; Attenberger, S.E.; Houlberg, W.A.

    1977-01-01

    A key factor in the plasma thermal behavior is the anticipated existence of dissipative trapped particle modes. A possible scheme for controlling the strength of these modes was found. The scheme involves varying the cold fueling profile. A one dimensional multifluid transport code was used to simulate plasma behavior. A multiregime model for particle and energy transport was incorporated based on pseudoclassical, trapped electron, and trapped ion regimes used elsewhere in simulation of large tokamaks. Fueling profiles peaked toward the plasma edge may provide a means for reducing density-gradient-driven trapped particle modes, thus reducing diffusion and conduction losses

  17. Trapping of deuterium in krypton-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; McManus, S.P.; Rehn, L.E.; Baldo, P.

    1986-01-01

    Krypton ions with energy 600 keV were implanted in nickel to fluences of 2 x 10 16 cm -2 under three different conditions. Deuterium was subsequently introduced into the implanted regions by electrolysis at room temperature. After the diffusible deuterium was permitted to escape, the 2 H( 3 He, 1 H) 4 He nuclear reaction was used to analyze for the trapped deuterium during an isochronal annealing program. The region implanted at 100 0 C with no higher temperature anneal had the largest number of traps; the region implanted at 100 0 C and annealed for 100 min at 500 0 C had considerably less; the region implanted at 500 0 C had the least. Electron diffraction patterns confirmed the existence of solid crystalline krypton in all three regions. Transmission electron microscope studies revealed precipitates with an average diameter of 8 nm in the region implanted at 500 0 C. The two regions implanted at 100 0 C contained smaller precipitates. Trap binding enthalpies were obtained by math modeling. In addition to the traps with binding enthalpy of 0.55 eV reported earlier by other investigators for helium implanted in nickel, a smaller number of traps with binding enthalpies up to 0.83 eV were also found. The trapping of deuterium by various types of imperfections, including the solid krypton precipitates, is discussed

  18. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biophysical models for the induction of cancer by radiation. Final report

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Ballarini, F.; Brugmans, M.

    2000-01-01

    The overall project is organised into seven work packages. WP1 concentrates on the development of mechanistic, quantitative models for radiation oncogenesis using selected data sets from radiation epidemiology and from experimental animal studies. WP2 concentrates on the development of mechanistic, mathematical models for the induction of chromosome aberrations. WP3 develops mechanistic models for radiation mutagenesis, particularly using the HPRT-mutation as a paradigm. WP4 will develop mechanistic models for damage and repair of DNA, and compare these with experimentally derived data. WP5 concentrates on the improvement of our knowledge on the chemical reaction pathways of initial radiation chemical species in particular those that migrate to react with the DNA and on their simulation in track structure codes. WP6 models by track structure simulation codes the production of initial physical and chemical species, within DNA, water and other components of mammalian cells, in the tracks of charged particles following the physical processes of energy transfer, migration, absorption, and decay of excited states. WP7 concentrates on the determination of the start spectra of those tracks considered in WP6 for different impinging radiation fields and different irradiated biological objects. (orig.)

  19. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  20. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    mammals. G.C. Hickman. An effective live-trap was designed for Cryptomys hottentotus .... that there is an animal in the burrow system, and to lessen the likelihood of the .... the further testing and modification of existing trap types. Not only is it ...

  1. Microkinetic Modeling of Lean NOx Trap Sulfation and Desulfation

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-08-01

    A microkinetic reaction sub-mechanism designed to account for the sulfation and desulfation of a commercial lean NOx trap (LNT) is presented. This set of reactions is appended to a previously developed mechanism for the normal storage and regeneration processes in an LNT in order to provide a comprehensive modeling tool. The reactions describing the storage, release, and reduction of sulfur oxides are patterned after those involving NOx, but the number of reactions is kept to the minimum necessary to give an adequate simulation of the experimental observations. Values for the kinetic constants are estimated by fitting semi-quantitatively the somewhat limited experimental data, using a transient plug flow reactor code to model the processes occurring in a single monolith channel. Rigorous thermodynamic constraints are imposed in order to ensure that the overall mechanism is consistent both internally and with the known properties of all gas-phase species. The final mechanism is shown to be capable of reproducing the principal aspects of sulfation/desulfation behavior, most notably (a) the essentially complete trapping of SO2 during normal cycling; (b) the preferential sulfation of NOx storage sites over oxygen storage sites and the consequent plug-like and diffuse sulfation profiles; (c) the degradation of NOx storage and reduction (NSR) capability with increasing sulfation level; and (d) the mix of H2S and SO2 evolved during desulfation by temperature-programmed reduction.

  2. Multi-Dimensional Radiation Transport in Dense Z-pinch Wire Array Plasmas

    Science.gov (United States)

    Jennings, C. A.; Chittenden, J. P.; Ciardi, A.; Sherlock, M.; Lebedev, S. V.

    2004-11-01

    Z-pinch wire arrays have proven to be an extremely efficient high yield, short pulse x-ray source with potential application to ICF. The characteristics of the x-ray pulse produced have been shown to be largely determined by non-uniform break up of the wires leading to a highly irregular distribution of mass which implodes towards the axis. Modelling the inherent 3D nature of these plasmas is already computationally very expensive, and so energy exchange through radiation is frequently neglected, assuming instead an optically thin radiation loss model. With a significant fraction of the total energy at late stages being radiated through a dense, optically thick plasma this approach is potentially inadequate in fully describing the implosion. We analyse the effects of radiative cooling and radiation transport on stagnation and precursor development in wire array z-pinch implosions. A three temperature multidimensional MHD code using a single group radiation diffusion model is used to study radiation trapping in the precursor, and the effects of preheating on the implosion dynamics. Energy exchange in the final stagnated plasma and its effects on the x-ray pulse shape is also discussed. This work was partially supported by the SSAA program of the NNSA through DoE cooperative agreement DE-F03-02NA00057.

  3. Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe–9Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Iwakir, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [Faculty and Graduate School of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tani, Munechika [Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan); Watanabe, Yoshiyuki [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Yoshida, Naoaki [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-01-15

    Thermal desorption of deuterium (D{sub 2}) from deuterium-ion (D{sub 2}{sup +})-irradiated Fe–9Cr was correlated with the microstructural evolution of the alloy during irradiation with 8-keV D{sub 2}{sup +} ions following annealing to determine the retention and desorption behavior of the implanted deuterium and to identify effective traps for them, particularly at high temperature. After irradiation at 573 K, a new desorption stage formed between 650 and 1100 K at higher fluences, and cavities were observed using transmission electron microscopy. The total amount of trapped deuterium following irradiation with a fluence of 3.0 × 10{sup 22} ions/m{sup 2} was 6.8 × 10{sup 17} D{sub 2}/m{sup 2}, or approximately 0.007%. These results indicate that the deuterium atoms recombined to form D{sub 2} molecules at the surfaces of the cavities.

  4. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  5. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  6. Mean-field model for the interference of matter-waves from a three-dimensional optical trap

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.; Muruganandam, Paulsamy

    2003-01-01

    Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by Greiner et al. [Nature (London) 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally

  7. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  8. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  9. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    Science.gov (United States)

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  10. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  11. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  12. Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode high-electron-mobility transistor

    International Nuclear Information System (INIS)

    Quan Si; Hao Yue; Ma Xiao-Hua; Yu Hui-You

    2011-01-01

    AlGaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60 Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transconductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of G p /ω data yields the trap densities D T = (1 − 3) × 10 12 cm −2 · eV −1 and D T = (0.2 − 0.8) × 10 12 cm −2 · eV −1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60 Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment. (interdisciplinary physics and related areas of science and technology)

  13. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  14. Breather trapping and breather transmission in a DNA model with an interface

    DEFF Research Database (Denmark)

    Alvarez, A.; Romero, F.R.; Archilla, J.F.R.

    2006-01-01

    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian...... of the Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped...

  15. Kinetics of light sum collection in solid dosemeters with several trapping levels

    International Nuclear Information System (INIS)

    Vlasov, V.K.; Tarasov, M.Yu.

    1983-01-01

    On the basis of a stochastic model of filling up the electron-hole capture centres following irradiation, the kinetics of light sum accumulation in crystallophosphors with any number of capture levels has been considered. Using as an example a crystallophosphor with two hole- and two electron capture centres, solution of equations for the kinetics of light sum accumulation in solid dosemeters is presented. It is shown that in the presence of two competing capture centres the filling-up of one of the traps is always described by the function with a bent and superlinear section, whereas the filling-up of the competing trap is described by the function without a bent. The dose-effect functional relationship for competing traps does not depend either on the energetic depth of the trap or absolute values of capture micro cross-sections, but depends solely on relative values of macro- and micro cross-sections for competing traps. The theoretical model has been checked when studying radiothermoluminescence of synthetic quartz. The experimental results are shown to agree well with the model suggested

  16. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  17. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...

  18. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  19. Evidences of trapping in tungsten and implications for plasma-facing components

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Holland, D. F.

    Trapping effects that include significant delays in permeation saturation, abrupt changes in permeation rate associated with temperature changes, and larger than expected inventories of hydrogen isotopes in the material, were seen in implantation-driven permeation experiments using 25- and 50-micron thick tungsten foils at temperatures of 638 to 825 K. Computer models that simulate permeation transients reproduce the steady-state permeation and reemission behavior of these experiments with expected values of material parameters. However, the transient time characteristics were not successfully simulated without the assumption of traps of substantial trap energy and concentration. An analytical model based on the assumptions of thermodynamic equilibrium between trapped hydrogen atoms and a comparatively low mobile atom concentration successfully accounts for the observed behavior. Using steady-state and transient permeation data from experiments at different temperatures, the effective trap binding energy may be inferred. We analyze a tungsten coated divertor plate design representative of those proposed for ITER and ARIES and consider the implications for tritium permeation and retention if the same trapping we observed was present in that tungsten. Inventory increases of several orders of magnitude may result.

  20. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    International Nuclear Information System (INIS)

    Ngai, K.L.; Hsia, Y.

    1982-01-01

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features

  1. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  2. Sorbent selection and design considerations for uranium trapping

    International Nuclear Information System (INIS)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF 6 from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications

  3. Depth-resolved detection and process dependence of traps at ultrathin plasma-oxidized and deposited SiO2/Si interfaces

    International Nuclear Information System (INIS)

    Brillson, L. J.; Young, A. P.; White, B. D.; Schaefer, J.; Niimi, H.; Lee, Y. M.; Lucovsky, G.

    2000-01-01

    Low-energy electron-excited nanoluminescence spectroscopy reveals depth-resolved optical emission associated with traps near the interface between ultrathin SiO 2 deposited by plasma-enhanced chemical vapor deposition on plasma-oxidized crystalline Si. These near-interface states exhibit a strong dependence on local chemical bonding changes introduced by thermal/gas processing, layer-specific nitridation, or depth-dependent radiation exposure. The depth-dependent results provide a means to test chemical and structural bond models used to develop advanced dielectric-semiconductor junctions. (c) 2000 American Vacuum Society

  4. Mutiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1979-01-01

    Theoretical Radiobiology and Risk Estimates includes reports on: Multiple Simultaneous Event Model for Radiation Carcinogenesis; Cancer Risk Estimates and Neutron RBE Based on Human Exposures; A Rationale for Nonlinear Dose Response Functions of Power Greater or Less Than One; and Rationale for One Double Event in Model for Radiation Carcinogenesis

  5. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  6. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  7. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  8. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  9. Self-Trapping Self-Repelling Random Walks

    Science.gov (United States)

    Grassberger, Peter

    2017-10-01

    Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.

  10. Malaria and protective behaviours: is there a malaria trap?

    Science.gov (United States)

    Berthélemy, Jean-Claude; Thuilliez, Josselin; Doumbo, Ogobara; Gaudart, Jean

    2013-06-13

    In spite of massive efforts to generalize efficient prevention, such as insecticide-treated mosquito nets (ITN) or long-lasting insecticidal nets (LLINs), malaria remains prevalent in many countries and ITN/LLINs are still only used to a limited extent. This study proposes a new model for malaria economic analysis by combining economic epidemiology tools with the literature on poverty traps. A theoretical model of rational protective behaviour in response to malaria is designed, which includes endogenous externalities and disease characteristics. Survey data available for Uganda provide empirical support to the theory of prevalence-elastic protection behaviours, once endogeneity issues related to epidemiology and poverty are solved. Two important conclusions emerge from the model. First, agents increase their protective behaviour when malaria is more prevalent in a society. This is consistent with the literature on "prevalence-elastic behaviour". Second, a 'malaria trap' defined as the result of malaria reinforcing poverty while poverty reduces the ability to deal with malaria can theoretically exist and the conditions of existence of the malaria trap are identified. These results suggest the possible existence of malaria traps, which provides policy implications. Notably, providing ITN/LLINs at subsidized prices is not sufficient. To be efficient an ITN/LLINs dissemination campaigns should include incentive of the very poor for using ITN/LLINs.

  11. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    Science.gov (United States)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  12. Quenching star formation with quasar outflows launched by trapped IR radiation

    Science.gov (United States)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  13. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  14. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  15. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  16. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  17. Normal-metal quasiparticle traps for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Amin [Peter Grunberg Institute (PGI-2), Forschungszentrum Julich, D-52425 Julich (Germany); JARA-Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen (Germany)

    2016-07-01

    Superconducting qubits are promising candidates to implement quantum computation, and have been a subject of intensive research in the past decade. Excitations of a superconductor, known as quasiparticles, can reduce the qubit performance by causing relaxation; the relaxation rate is proportional to the density of quasiparticles tunneling through Josephson junction. Here, we consider engineering quasiparticle traps by covering parts of a superconducting device with normal-metal islands. We utilize a phenomenological quasiparticle diffusion model to study both the decay rate of excess quasiparticles and the steady-state profile of the quasiparticle density in the device. We apply the model to various realistic configurations to explore the role of geometry and location of the traps.

  18. Charge trapping/de-trapping in nitrided SiO2 dielectrics and its influence on device reliability

    Science.gov (United States)

    Kambour, Kenneth; Hjalmarson, Harold; Nguyen, Duc; Kouhestani, Camron; Devine, Roderick

    2012-02-01

    Field effect devices with insulator gate dielectrics are excellent test vehicles to probe the physics of defects and charge trapping in the insulator/ semiconductor structure. p-channel field effect device reliability under negative bias stressing has been identified to originate from at least two terms: a) charged defect generation at the Si substrate/SiOxNy interface and b) charge trapping at neutral defect pre-cursors in the ``bulk'' of the SiOxNy beyond the interface. Measurements of transistor characteristics enable extraction of the two terms. We report the results of such measurements and demonstrate that short time effects are associated primarily with electric field assisted tunneling of holes from the inversion layer to neutral traps. This is confirmed by bias stressing measurements at different frequencies in the range 1 Hz to 2 MHz. First principles modeling of the tunneling/trapping phenomena is presented. K.Kambour worked under contract FA9453-08-C-0245 with the Air Force Research Laboratory/RVSE. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  20. Portable Pbars, traps that travel

    International Nuclear Information System (INIS)

    Howe, S.D.; Hynes, M.V.; Picklesimer, A.

    1987-10-01

    The advent of antiproton research utilizing relatively small scale storage devices for very large numbers of these particles opens the possibility of transporting these devices to a research site removed from the accelerator center that produced the antiprotons. Such a portable source of antiprotons could open many new areas of research and make antiprotons available to a new research community. At present antiprotons are available at energies down to 1 MeV. From a portable source these particles can be made available at energies ranging from several tens of kilovolts down to a few millielectron volts. These low energies are in the domain of interest to the atomic and condensed matter physicist. In addition such a source can be used as an injector for an accelerator which could increase the energy domain even further. Moreover, the availability of such a source at a university will open research with antiprotons to a broader range of students than possible at a centralized research facility. This report focuses on the use of ion traps, in particular cylindrical traps, for the antiproton storage device. These devices store the charged antiprotons in a combination of electric and magnet fields. At high enough density and low enough temperature the charged cloud will be susceptible to plasma instabilities. Present day ion trap work is just starting to explore this domain. Our assessment of feasibility is based on what could be done with present day technology and what future technology could achieve. We conclude our report with a radiation safety study that shows that about 10 11 antiprotons can be transported safely, however the federal guidelines for this transport must be reviewed in detail. More antiprotons than this will require special transportation arrangements. 28 refs., 8 figs

  1. MOS Capacitance—Voltage Characteristics III. Trapping Capacitance from 2-Charge-State Impurities

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency capacitance—voltage curves of Metal—Oxide—Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier, or one-energy-level impurity species. Models described include a donor electron trap and an acceptor hole trap, both donors, both acceptors, both shallow energy levels, both deep, one shallow and one deep, and the identical donor and acceptor. Device and material parameters are selected to simulate chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications. (invited papers)

  2. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  3. Anisotropy of magnetoresistance on trapping magnetic fields in granular HTSC

    CERN Document Server

    Sukhanov, A A

    2003-01-01

    The features of magnetoresistance in Bi (Pb)-HTSC ceramics with the magnetic fields trapped are investigated. It is found that on trapping magnetic flux the magnetoresistance in granular HTSC becomes anisotropic. Moreover, for magnetic fields H parallel and currents perpendicular to field H sub i which induces the trapping the magnetoresistance field dependence DELTA R(H) is nonmonotonic and the magnetoresistance is negative for small fields H < Hinv. The effect of trapped field and transport current and their orientations on the dependence DELTA R(H) is investigated. In particular, it is found that the field of magnetoresistance sign inversion Hinv almost linearly grows with increase of the effective trapped magnetic fields. Hinv decreases down to zero as the angle between fields H and H sub i increases up to pi/2 and slightly decreases with increasing transport current. The results are treated in terms of the model of magnetic flux trapping in superconducting grains or 'loops' embedded in a matrix of wea...

  4. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    Science.gov (United States)

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  5. Deep electron traps in HfO_2-based metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Salomone, L. Sambuco; Lipovetzky, J.; Carbonetto, S.H.; García Inza, M.A.; Redin, E.G.; Campabadal, F.

    2016-01-01

    Hafnium oxide (HfO_2) is currently considered to be a good candidate to take part as a component in charge-trapping nonvolatile memories. In this work, the electric field and time dependences of the electron trapping/detrapping processes are studied through a constant capacitance voltage transient technique on metal-oxide-semiconductor capacitors with atomic layer deposited HfO_2 as insulating layer. A tunneling-based model is proposed to reproduce the experimental results, obtaining fair agreement between experiments and simulations. From the fitting procedure, a band of defects is identified, located in the first 1.7 nm from the Si/HfO_2 interface at an energy level E_t = 1.59 eV below the HfO_2 conduction band edge with density N_t = 1.36 × 10"1"9 cm"−"3. A simplified analytical version of the model is proposed in order to ease the fitting procedure for the low applied voltage case considered in this work. - Highlights: • We characterized deep electron trapping/detrapping in HfO_2 structures. • We modeled the experimental results through a tunneling-based model. • We obtained an electron trap energy level of 1.59 eV below conduction band edge. • We obtained a spatial trap distribution extending 1.7 nm within the insulator. • A simplified tunneling front model is able to reproduce the experimental results.

  6. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    Science.gov (United States)

    Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo

    2015-06-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  7. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Lorenzo, Tommaso De; Smerlak, Matteo

    2015-01-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole “exterior entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that (i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, (ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the “purifying” phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  8. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  9. Results from a Test Fixture for button BPM Trapped Mode Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cameron,P.; Bacha, B.; Blednykh, A.; Pinayev, I.; Singh, O.

    2009-05-04

    A variety of measures have been suggested to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. A brief history of the trapped mode button heating problem and a set of design rules for BPM button optimization are presented elsewhere in these proceedings. Here we present measurements on a test fixture that was assembled to confirm, if possible, a subset of those rules: (1) Minimize the trapped mode impedance and the resulting power deposited in this mode by the beam. (2) Maximize the power re-radiated back into the beampipe. (3) Maximize electrical conductivity of the outer circumference of the button and minimize conductivity of the inner circumference of the shell, to shift power deposition from the button to the shell. The problem is then how to extract useful and relevant information from S-parameter measurements of the test fixture.

  10. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  11. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  12. Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors

    International Nuclear Information System (INIS)

    Bum Park, Chang

    2014-01-01

    Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔV T ) is presented by providing a ΔV T model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ∼1.8 and ∼2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time. (paper)

  13. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  14. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Science.gov (United States)

    Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan

    2018-04-01

    The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  15. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Directory of Open Access Journals (Sweden)

    Dingshun Lv

    2018-04-01

    Full Text Available The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  16. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-05-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  17. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-01-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  18. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  19. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  20. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    Science.gov (United States)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  1. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  2. [Trapping techniques for Solenopsis invicta].

    Science.gov (United States)

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  3. Determination of depths of traps for interstitials from thermodynamic data: a new view on carbon trapping and diffusion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Kozeschnik, E.; Fischer, F. D.

    2013-01-01

    Roč. 21, č. 6 (2013), Art. No. 065012 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : carbon trapping * diffusion * thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 1.492, year: 2013

  4. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  5. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  6. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  7. Radiation effects in x-irradiated hydroxy compounds

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Box, H.C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 0 K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap

  8. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  9. Positrons in gas filled traps and their transport in molecular gases

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Z Lj; Bankovic, A; Marjanovic, S; Suvakov, M; Dujko, S; Malovic, G [Institute of Physics, University of Belgrade, Pregrevica 118, POB 68, Zemun (Serbia); White, R D [ARC Centre for Antimatter-Matter Studies, James Cook University, Townsville 4810, QLD (Australia); Buckman, S J, E-mail: zoran@ipb.ac.rs [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT, 0200 (Australia)

    2011-01-01

    In this paper we give a review of two recent developments in positron transport, calculation of transport coefficients for a relatively complete set of collision cross sections for water vapour and for application of they Monte Carlo technique to model gas filled subexcitation positron traps such as Penning Malmberg Surko (Surko) trap. Calculated transport coefficients, very much like those for argon and other molecular gases show several new kinetic phenomena. The most important is the negative differential conductivity (NDC) for the bulk drift velocity when the flux drift velocity shows no sign of NDC. These results in water vapour are similar to the results in argon or hydrogen. The same technique that has been used for positron (and previously electron) transport may be applied to model development of particles in a Surko trap. We have provided calculation of the ensemble of positrons in the trap from an initial beam like distribution to the fully thermalised distribution. This model, however, does not include plasma effects (interaction between charged particles) and may be applied for lower positron densities.

  10. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  11. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  12. Trapping a Knot into Tight Conformations by Intra-Chain Repulsions

    Directory of Open Access Journals (Sweden)

    Liang Dai

    2017-02-01

    Full Text Available Knots can occur in biopolymers such as DNA and peptides. In our previous study, we systematically investigated the effects of intra-chain interactions on knots and found that long-range repulsions can surprisingly tighten knots. Here, we use this knowledge to trap a knot into tight conformations in Langevin dynamics simulations. By trapping, we mean that the free energy landscape with respect to the knot size exhibits a potential well around a small knot size in the presence of long-range repulsions, and this potential can well lead to long-lived tight knots when its depth is comparable to or larger than thermal energy. We tune the strength of intra-chain repulsion such that a knot is weakly trapped. Driven by thermal fluctuations, the knot can escape from the trap and is then re-trapped. We find that the knot switches between tight and loose conformations—referred to as “knot breathing”. We use a Yukawa potential to model screened electrostatic interactions to explore the relevance of knot trapping and breathing in charged biopolymers. We determine the minimal screened length and the minimal strength of repulsion for knot trapping. We find that Coulomb-induced knot trapping is possible to occur in single-stranded DNA and peptides for normal ionic strengths.

  13. Costs and benefits of trap-neuter-release and euthanasia for removal of urban cats in Oahu, Hawaii.

    Science.gov (United States)

    Lohr, Cheryl A; Cox, Linda J; Lepczyk, Christopher A

    2013-02-01

    Our goal was to determine whether it is more cost-effective to control feral cat abundance with trap-neuter-release programs or trap and euthanize programs. Using STELLA 7, systems modeling software, we modeled changes over 30 years in abundance of cats in a feral colony in response to each management method and the costs and benefits associated with each method . We included costs associated with providing food, veterinary care, and microchips to the colony cats and the cost of euthanasia, wages, and trapping equipment in the model. Due to a lack of data on predation rates and disease transmission by feral cats the only benefits incorporated into the analyses were reduced predation on Wedge-tailed Shearwaters (Puffinus pacificus). When no additional domestic cats were abandoned by owners and the trap and euthanize program removed 30,000 cats in the first year, the colony was extirpated in at least 75% of model simulations within the second year. It took 30 years for trap-neuter-release to extirpate the colony. When the cat population was supplemented with 10% of the initial population size per year, the colony returned to carrying capacity within 6 years and the trap and euthanize program had to be repeated, whereas trap-neuter-release never reduced the number of cats to near zero within the 30-year time frame of the model. The abandonment of domestic cats reduced the cost effectiveness of both trap-neuter-release and trap and euthanize. Trap-neuter-release was approximately twice as expensive to implement as a trap and euthanize program. Results of sensitivity analyses suggested trap-neuter-release programs that employ volunteers are still less cost-effective than trap and euthanize programs that employ paid professionals and that trap-neuter-release was only effective when the total number of colony cats in an area was below 1000. Reducing the rate of abandonment of domestic cats appears to be a more effective solution for reducing the abundance of feral cats.

  14. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    International Nuclear Information System (INIS)

    Chang Yiren; Hsu Long; Chi Sien

    2006-01-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system

  15. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  16. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  17. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  18. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  19. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  20. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  1. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  2. A variational study of the self-trapped magnetic polaron formation in double-exchange model

    International Nuclear Information System (INIS)

    Liu Tao; Feng Mang; Wang Kelin

    2005-01-01

    We study the formation of self-trapped magnetic polaron (STMP) in an antiferro/ferromagnetic double-exchange model semi-analytically by variational solutions. It is shown that the Jahn-Teller effect is not essential to the STMP formation and the STMP forms in the antiferromagnetic material within the region of the order of the lattice constant. We also confirm that no ground state STMP exists in the ferromagnetic background, but the ground state bound MP could appear due to the impurity potential

  3. Resilience offers escape from trapped thinking on poverty alleviation.

    Science.gov (United States)

    Lade, Steven J; Haider, L Jamila; Engström, Gustav; Schlüter, Maja

    2017-05-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to "push" the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges.

  4. Resilience offers escape from trapped thinking on poverty alleviation

    Science.gov (United States)

    Lade, Steven J.; Haider, L. Jamila; Engström, Gustav; Schlüter, Maja

    2017-01-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to “push” the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges. PMID:28508077

  5. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  6. The use of radiation trapping in the measurement of the electron excitation cross section for the production of the 1s4 (3P1) level of Ne

    International Nuclear Information System (INIS)

    Miers, R.E.; Gastineau, J.E.; Phillps, M.H.; Anderson, L.W.; Lin, C.C.

    1981-01-01

    The authors report the use of laser induced fluorescence for the first measurement of the electron excitation cross section for the production of the 1s 4 ( 3 P 1 ) level of Ne. Radiation trapping is used to lengthen the effective lifetime of the 1s 4 level allowing for the electron excitation cross section of the 1s 4 level to be measured in a manner similar to the measurement of electron excitation cross sections of the metastable 1s 3 and 1s 5 levels. (Auth.)

  7. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  8. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  9. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  10. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  11. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  12. Trapping for invasive crayfish: comparisons of efficacy and selectivity of baited traps versus novel artificial refuge traps

    Directory of Open Access Journals (Sweden)

    Green Nicky

    2018-01-01

    Full Text Available Non-native crayfish can dominate the invertebrate biomass of invaded freshwaters, with their high ecological impacts resulting in their populations being controlled by numerous methods, especially trapping. Although baited funnel traps (BTs are commonly used, they tend to be selective in mainly catching large-bodied males. Here, the efficacy and selectivity of BTs were tested against an alternative trapping method based on artificial refuges (ARTs that comprised of a metal base with several tubes (refuges attached. The target species was signal crayfish Pacifastacus leniusculus in an upland river in southwest England. Trapping was completed in April to October over two consecutive years. In total, 5897 crayfish were captured, with 87% captured in ARTs. Comparison of the catch per unit effort (CPUE between the trapping methods in the same 24 hour periods revealed significantly higher CPUE in ARTs than of BTs. ARTs fished for 6 consecutive days had higher catches than both methods over 24 hours. Whilst catches in BTs were significantly dominated by males (1.49M:1F, the sex ratio of catches in ARTs was 0.99M:1F. The mean carapace length of crayfish was also significantly larger in BTs (43.2 ± 0.6 mm than in ARTs (33.6 ± 0.2 mm. Thus, ARTs had higher CPUE over 24 hour and 6 day periods versus BTs and also captured a greater proportion of smaller and female individuals. These results indicate that when trapping methods are deployed for managing invasions, the use of ARTs removes substantial numbers of crayfish of both sexes and of varying body sizes.

  13. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  14. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  15. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  16. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  17. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    Science.gov (United States)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  18. Quasiparticle trapping and the quasiparticle multiplier

    International Nuclear Information System (INIS)

    Booth, N.E.

    1987-01-01

    Superconductors and in particular superconducting tunnel junctions can be used to detect phonons, electromagnetic radiation, x rays, and nuclear particles by the mechanism of Cooper-pair breaking to produce excess quasiparticles and phonons. We show that the sensitivity can be increased by a factor of 100 or more by trapping the quasiparticles in another superconductor of lower gap in the region of the tunnel junction. Moreover, if the ratio of the gap energies is >3 a multiplication process can occur due to the interaction of the relaxation phonons. This leads to the concept of the quasiparticle multiplier, a device which could have wider applications than the Gray effect transistor or the quiteron

  19. Modelling of space-charge accumulation process in dielectrics of MDS structures under irradiation

    International Nuclear Information System (INIS)

    Gurtov, V.A.; Nazarov, A.I.; Travkov, I.V.

    1990-01-01

    Results of numerical modelling of radiation-induced space charge (RISC) accumulation in MOS structure silicon dioxide are given. Diffusion-drift model which takes account of trap heterogeneous distribution within dielectric volume and channeling of carriers captured at traps represents basis for calculations. Main physical processes affecting RISC accumulation are picked out and character of capture filling in dielectric volume under stress in MOS structure shutter during irradiation on the basis of comparison of experimental results for different thickness oxides with calculation data are predicted

  20. Identification of electron and hole traps in KH2PO4 crystals

    International Nuclear Information System (INIS)

    Garces, N. Y.; Stevens, K. T.; Halliburton, L. E.; Demos, S. G.; Radousky, H. B.; Zaitseva, N. P.

    2001-01-01

    Electron paramagnetic resonance (EPR) has been used to characterize a hole trap and several electron traps in single crystals of potassium dihydrogen phosphate (KH 2 PO 4 or KDP). The paramagnetic charge states of these centers are produced by ionizing radiation (e.g., x rays or a 266 nm beam from a pulsed Nd:YAG laser) and are stable for days and even weeks at room temperature. One center consists of a hole trapped on an oxygen ion adjacent to a silicon impurity located on a phosphorus site. This defect has a small, but easily observed, hyperfine interaction with the adjacent substitutional proton. The other centers are formed when an electron is trapped at an oxygen vacancy. These latter defects are best described as (PO 3 ) 2- molecular ions, where the primary phosphorus nucleus is responsible for a large hyperfine splitting (500--800 G in magnitude). Five EPR spectra representing variations of these oxygen vacancy centers are observed, with the differences being attributed to the relative position of a nearby cation vacancy, either a missing proton or potassium. An angular study of the EPR spectra, conducted at room temperature, provided principal values and principal directions for the g matrices and hyperfine matrices for the hole center and two of the electron centers

  1. Gravity Affects the Closure of the Traps in Dionaea muscipula

    Directory of Open Access Journals (Sweden)

    Camilla Pandolfi

    2014-01-01

    Full Text Available Venus flytrap (Dionaea muscipula Ellis is a carnivorous plant known for its ability to capture insects thanks to the fast snapping of its traps. This fast movement has been long studied and it is triggered by the mechanical stimulation of hairs, located in the middle of the leaves. Here we present detailed experiments on the effect of microgravity on trap closure recorded for the first time during a parabolic flight campaign. Our results suggest that gravity has an impact on trap responsiveness and on the kinetics of trap closure. The possible role of the alterations of membrane permeability induced by microgravity on trap movement is discussed. Finally we show how the Venus flytrap could be an easy and effective model plant to perform studies on ion channels and aquaporin activities, as well as on electrical activity in vivo on board of parabolic flights and large diameter centrifuges.

  2. The spatial relation between the event horizon and trapping horizon

    International Nuclear Information System (INIS)

    Nielsen, Alex B

    2010-01-01

    The relation between event horizons and trapping horizons is investigated in a number of different situations with emphasis on their role in thermodynamics. A notion of constant change is introduced that in certain situations allows the location of the event horizon to be found locally. When the black hole is accreting matter the difference in area between the two different horizons can be many orders of magnitude larger than the Planck area. When the black hole is evaporating, the difference is small on the Planck scale. A model is introduced that shows how trapping horizons can be expected to appear outside the event horizon before the black hole starts to evaporate. Finally, a modified definition is introduced to invariantly define the location of the trapping horizon under a conformal transformation. In this case the trapping horizon is not always a marginally outer trapped surface.

  3. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, Jens

    2010-06-14

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N {proportional_to} 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of {sup 241}Am could be measured directly for the first time. (orig.)

  4. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    International Nuclear Information System (INIS)

    Ketelaer, Jens

    2010-01-01

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N ∝ 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241 Am could be measured directly for the first time. (orig.)

  5. Trapping in stochastic mechanics and applications to covers of clouds and radiation belts

    International Nuclear Information System (INIS)

    Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1984-11-01

    It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas

  6. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  7. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  8. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  9. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  10. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  11. Management strategy evaluation of pheromone-baited trapping techniques to improve management of invasive sea lamprey

    Science.gov (United States)

    Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa

    2016-01-01

    We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.

  12. Trapping of positrons in a Penning Malmberg trap in the view of accumulating them with the use of a pulsed beam

    International Nuclear Information System (INIS)

    Dupre, P.

    2011-09-01

    The weak equivalence principle, a fundament of Einstein general relativity, states that gravitational mass and inertial mass are equal whatever the body. This equivalence principle has never been directly tested with antimatter. The GBAR (Gravitational Behaviour of Antimatter at Rest) experiment intends to test it by measuring the acceleration of ultra cold anti-hydrogens in free fall. The production of such anti-atoms requires a pulse of about 10 10 positrons in a few tens of nanoseconds. This thesis focuses on the development of a new accumulation technique of positrons in a Penning-Malmberg trap in order to create this pulse. This new method is an improvement of the accumulation technique of Oshima et al.. This technique requires a non-neutral electron plasma to cool down positrons in the trap in order to confine them. A continuous beam delivers positrons and the trapping efficiency is about 0.4%. The new method needs a positron pulsed beam and the method efficiency is estimated at 80%. A part of this thesis was performed at Riken (Tokyo) on the trap of Oshima et al. to study the behavior of non-neutral plasmas in this type of trap and the first accumulation method. A theoretical model was developed to simulate the positron trapping efficiency. The description and the systematic study of the new accumulation technique with a pulsed positron beam are presented. They includes notably the optimization through simulation of the electromagnetic configuration of the trap and of the parameters of the used non-neutral plasmas. (author)

  13. TAMU-TRAP facility - program for the study of fundamental weak interaction

    International Nuclear Information System (INIS)

    Shidling, P.D.; Mehlman, M.; Melconian, Dan; Fenker, Ben; Behling, R.S.

    2012-01-01

    Primary goal of the TAMU-TRAP facility is to test the Standard Model (SM) for a possible admixture of a scalar (S) or tensor (T) type of interaction in T = 2 superallowed β-delayed proton emitters. This information will be inferred from the shape of the proton energy spectrum. The main component of the facility are an RFQ cooler/buncher for cooling and bunching the ions, a Penning trap system with two cylindrical Penning traps. Additional goals for this system are mass measurements, lifetime measurements, and ft-values. A brief overview of the TAMU-TRAP set-up and T-REX upgrade facility will be presented. (author)

  14. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  15. PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching bei München (Germany)

    2017-01-01

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.

  16. Resonant trapping in the transport of a matter-wave soliton through a quantum well

    International Nuclear Information System (INIS)

    Ernst, Thomas; Brand, Joachim

    2010-01-01

    We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schroedinger equation are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is found to rely both on resonant interaction between the soliton and bound states in the potential well and on the radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are not accessible through scattering with single atoms.

  17. Development of a TSC-Setup for the Characterization of Electron and Hole Traps in Irradiated Silicon Sensors

    CERN Document Server

    Stricker, Miriam

    2015-01-01

    For the characterization of radiation damage in silicon detectors a low-noise TSC-Setup was built to analyze charge trapping in the temperature range between 15 K and 250 K. The setup offers the possibility to perform Thermally Stimulated Current (TSC) and IV measurements and also to anneal samples at temperatures up to 180 ◦C. A first annealing study on a proton irradiated silicon pad sensor was performed. This study focuses mainly on the variation of the trap concentration and the results are compared to literature.

  18. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  19. Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

    Energy Technology Data Exchange (ETDEWEB)

    Brynestad, J.; Williams, D.F.

    1999-05-01

    A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.

  20. Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

    International Nuclear Information System (INIS)

    Brynestad, J.; Williams, D.F.

    1999-01-01

    A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought