WorldWideScience

Sample records for trapped fermi gases

  1. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  2. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  3. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  4. Thermodynamics of ultracold Fermi gases

    International Nuclear Information System (INIS)

    Nascimbene, Sylvain

    2010-01-01

    Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)

  5. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  6. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

    Directory of Open Access Journals (Sweden)

    Antonello Sindona

    2015-03-01

    Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  7. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  8. Coexistence of pairing gaps in three-component Fermi gases

    International Nuclear Information System (INIS)

    Nummi, O H T; Kinnunen, J J; Toermae, P

    2011-01-01

    We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously non-zero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.

  9. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  10. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  11. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  12. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  13. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  14. From ultracold Fermi Gases to Neutron Stars

    Science.gov (United States)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  15. Dimensional BCS-BEC crossover in ultracold Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Igor

    2014-12-10

    We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.

  16. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  17. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    Science.gov (United States)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  18. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    International Nuclear Information System (INIS)

    Bahauddin, Shah Mohammad; Faruk, Mir Mehedi

    2016-01-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas. (paper)

  19. Thermal gravitational radiation of Fermi gases and Fermi liquids

    International Nuclear Information System (INIS)

    Schafer, G.; Dehnen, H.

    1983-01-01

    In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec

  20. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  1. Discrete nature of thermodynamics in confined ideal Fermi gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2014-01-01

    Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale

  2. Thermodynamics of partially confined Fermi gases at low temperature

    International Nuclear Information System (INIS)

    Toms, David J

    2004-01-01

    We examine the behaviour of non-interacting Fermi gases at low temperature. If there is a confining potential present the thermodynamic behaviour is altered from the familiar results for the unconfined gas. The role of de Haas-van Alphen type oscillations that are a consequence of the confining potential is considered. Attention is concentrated on the behaviour of the chemical potential and the specific heat. Results are compared and contrasted with those for an unconfined and a totally confined gas

  3. Sound waves and dynamics of superfluid Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2009-01-01

    The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

  4. Spin Drag and Spin-Charge Separation in Cold Fermi Gases

    International Nuclear Information System (INIS)

    Polini, Marco; Vignale, Giovanni

    2007-01-01

    Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet

  5. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each...... the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...... experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons....

  6. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    Science.gov (United States)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  7. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  8. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  9. Quantum Monte Carlo studies of superfluid Fermi gases

    International Nuclear Information System (INIS)

    Chang, S.Y.; Pandharipande, V.R.; Carlson, J.; Schmidt, K.E.

    2004-01-01

    We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak F . We report results for the ground-state energy, the pairing gap Δ, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak F FG . When a>0, the interaction is strong enough to form bound molecules with energy E mol . For 1/ak F > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with Δ and gas energy per particle approaching E mol /2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5 F <0.5, is discussed

  10. Extracting the Condensate Density from Projection Experiments with Fermi Gases

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Strinati, G.C.

    2005-01-01

    A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus 'projecting' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field

  11. Stability of spinor Fermi gases in tight waveguides

    International Nuclear Information System (INIS)

    Campo, A. del; Muga, J. G.; Girardeau, M. D.

    2007-01-01

    The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG

  12. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  13. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  14. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  15. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  16. Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2011-01-01

    We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/(k F a sc ) are given for the limited cases of BEC and unitarity. (physics of gases, plasmas, and electric discharges)

  17. Dressed molecules in resonantly interacting ultracold atomic Fermi gases

    NARCIS (Netherlands)

    Falco, G.M.; Stoof, H.T.C.

    2007-01-01

    We present a detailed analysis of the two-channel atom-molecule effective Hamiltonian for an ultracold two-component homogeneous Fermi gas interacting near a Feshbach resonance. We particularly focus on the two-body and many-body properties of the dressed molecules in such a gas. An exact result

  18. Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases

    Science.gov (United States)

    Ye, Chong; Fu, Li-Bin

    2017-08-01

    We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020

  19. Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    DEFF Research Database (Denmark)

    Massignan, Pietro; Bruun, Georg

    2011-01-01

    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From...... polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation...

  20. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  1. Drag Effect in Double-Layer Dipolar Fermi Gases

    International Nuclear Information System (INIS)

    Tanatar, B; Renklioglu, B; Oktel, M O

    2014-01-01

    We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system

  2. Phase diagram of a polarized Fermi gas across a Feshbach resonance in a potential trap

    International Nuclear Information System (INIS)

    Yi, W.; Duan, L.-M.

    2006-01-01

    We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms in any (anisotropic) harmonic traps are universally characterized by three dimensionless parameters: the normalized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical parameter regions

  3. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  4. Canonical statistics of trapped ideal and interacting Bose gases

    International Nuclear Information System (INIS)

    Xiong Hongwei; Liu Shujuan; Huang Guoxiang; Xu Zaixin

    2002-01-01

    The mean ground-state occupation number and condensate fluctuations of interacting and noninteracting Bose gases confined in a harmonic trap are considered by using a canonical ensemble approach. To obtain the mean ground-state occupation number and the condensate fluctuations, an analytical description for the probability distribution function of the condensate is provided directly starting from the analysis of the partition function of the system. For the ideal Bose gas, the probability distribution function is found to be a Gaussian one for the case of the harmonic trap. For the interacting Bose gas, using a unified approach the condensate fluctuations are calculated based on the lowest-order perturbation method and on Bogoliubov theory. It is found that the condensate fluctuations based on the lowest-order perturbation theory follow the law 2 N 0 >∼N, while the fluctuations based on Bogoliubov theory behave as N 4/3

  5. First and second sound in cylindrically trapped gases.

    Science.gov (United States)

    Bertaina, G; Pitaevskii, L; Stringari, S

    2010-10-08

    We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.

  6. Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)

    2002-12-14

    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)

  7. Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Albus, A P; Giorgini, S; Illuminati, F; Viverit, L

    2002-01-01

    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)

  8. The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    International Nuclear Information System (INIS)

    Qin Fang; Chen Jisheng

    2010-01-01

    We utilize the fractional exclusion statistics of the Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behaviour, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behaviour of the isochore heat capacity for a trapped unitary Fermi gas is also analysed.

  9. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings

  10. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  11. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    Science.gov (United States)

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  12. Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2011-10-01

    Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.

  13. Thermodynamics of two-parameter quantum group Bose and Fermi gases

    International Nuclear Information System (INIS)

    Algin, A.

    2005-01-01

    The high and low temperature thermodynamic properties of the two-parameter deformed quantum group Bose and Fermi gases with SU p/q (2) symmetry are studied. Starting with a SU p/q (2)-invariant bosonic as well as fermionic Hamiltonian, several thermodynamic functions of the system such as the average number of particles, internal energy and equation of state are derived. The effects of two real independent deformation parameters p and q on the properties of the systems are discussed. Particular emphasis is given to a discussion of the Bose-Einstein condensation phenomenon for the two-parameter deformed quantum group Bose gas. The results are also compared with earlier undeformed and one-parameter deformed versions of Bose and Fermi gas models. (author)

  14. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    Science.gov (United States)

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  15. Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice

    International Nuclear Information System (INIS)

    Tie Lu; Xue Jukui

    2010-01-01

    The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.

  16. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature

    Science.gov (United States)

    Grela, Jacek; Majumdar, Satya N.; Schehr, Grégory

    2017-09-01

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1 d harmonic trap of frequency ω at finite temperature T . Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N , using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N , we identify (i) a quantum regime, for T ˜ℏω , where quantum fluctuations dominate and (ii) a thermal regime, for T ˜N ℏω , governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  17. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    Science.gov (United States)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  18. Negative specific heat with trapped ultracold quantum gases

    Science.gov (United States)

    Strzys, M. P.; Anglin, J. R.

    2014-01-01

    The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.

  19. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    Science.gov (United States)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient

  20. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  1. Stability conditions and phase diagrams for two-component Fermi gases with population imbalance

    International Nuclear Information System (INIS)

    Chen Qijin; He Yan; Chien, C.-C.; Levin, K.

    2006-01-01

    Superfluidity in atomic Fermi gases with population imbalance has recently become an exciting research focus. There is considerable disagreement in the literature about the appropriate stability conditions for states in the phase diagram throughout the BCS to Bose-Einstein condensation crossover. Here we discuss these stability conditions for homogeneous polarized superfluid phases, and compare with recent alternative proposals. The requirement of a positive second-order partial derivative of the thermodynamic potential with respect to the fermionic excitation gap Δ (at fixed chemical potentials) is demonstrated to be equivalent to the positive definiteness of the particle number susceptibility matrix. In addition, we show the positivity of the effective pair mass constitutes another nontrivial stability condition. These conditions determine the (local) stability of the system towards phase separation (or other ordered phases). We also study systematically the effects of finite temperature and the related pseudogap on the phase diagrams defined by our stability conditions

  2. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  3. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  4. Quantum correlations of ideal Bose and Fermi gases in the canonical ensemble

    International Nuclear Information System (INIS)

    Tsutsui, Kazumasa; Kita, Takafumi

    2016-01-01

    We derive an expression for the reduced density matrices of ideal Bose and Fermi gases in the canonical ensemble, which corresponds to the Bloch-De Dominicis (or Wick's) theorem in the grand canonical ensemble for normal-ordered products of operators. Using this expression, we study one- and two-body correlations of homogeneous ideal gases with N particles. The pair distribution function g (2) (r) of fermions clearly exhibits antibunching with g (2) (0) = 0 due to the Pauli exclusion principle at all temperatures, whereas that of normal bosons shows bunching with g (2) (0) ≈ 2, corresponding to the Hanbury Brown-Twiss effect. For bosons below the Bose-Einstein condensation temperature T 0 , an off-diagonal long-range order develops in the one-particle density matrix to reach g (1) (r) = 1 at T = 0, and the pair correlation starts to decrease towards g (2) (r) ≈ 1 at T = 0. The results for N → ∞ are seen to converge to those of the grand canonical ensemble obtained by assuming the average <ψ(r)> of the field operator ψ(r) below T 0 . This fact justifies the introduction of the 'anomalous' average <ψ(r)> ≠ 0 below T 0 in the grand canonical ensemble as a mathematical means of removing unphysical particle-number fluctuations to reproduce the canonical results in the thermodynamic limit. (author)

  5. Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation

    International Nuclear Information System (INIS)

    Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio

    2003-01-01

    We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse

  6. Universal Properties of a Trapped Two-Component Fermi Gas at Unitarity

    International Nuclear Information System (INIS)

    Blume, D.; Stecher, J. von; Greene, Chris H.

    2007-01-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schroedinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2(ℎ/2π)ω, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach

  7. First and second sound of a unitary Fermi gas in highly oblate harmonic traps

    International Nuclear Information System (INIS)

    Hu, Hui; Dyke, Paul; Vale, Chris J; Liu, Xia-Ji

    2014-01-01

    We theoretically investigate first and second sound modes of a unitary Fermi gas trapped in a highly oblate harmonic trap at finite temperatures. Following the idea by Stringari and co-workers (2010 Phys. Rev. Lett. 105 150402), we argue that these modes can be described by the simplified two-dimensional two-fluid hydrodynamic equations. Two possible schemes—sound wave propagation and breathing mode excitation—are considered. We calculate the sound wave velocities and discretized sound mode frequencies, as a function of temperature. We find that in both schemes, the coupling between first and second sound modes is large enough to induce significant density fluctuations, suggesting that second sound can be directly observed by measuring in situ density profiles. The frequency of the second sound breathing mode is found to be highly sensitive to the superfluid density. (paper)

  8. Density profiles and collective excitations of a trapped two-component Fermi vapour

    International Nuclear Information System (INIS)

    Amoruso, M.; Meccoli, I.; Minguzzi, A.; Tosi, M.P.

    1999-08-01

    We discuss the ground state and the small-amplitude excitations of a degenerate vapour of fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-of-motion approach is set up to discuss the hydrodynamic dissipation processes from the interactions between the two components of the fluid beyond mean-field theory and to emphasize analogies with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The conditions for the establishment of a collisional regime via scattering against cold-atom impurities are analyzed. The equilibrium density profiles are then calculated for a two-component vapour of 40 K atoms: they are little modified by the interactions for presently relevant values of the system parameters, but spatial separation of the two components will spontaneously arise as the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both the total particle number density and the concentration density are evaluated analytically in the special case of a symmetric two-component vapour in the collisional regime. The dispersion relation of the surface modes for the total particle density reduces in this case to that of a one-component Fermi vapour, whereas the frequencies of all other modes are shifted by the interactions. (author)

  9. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    Science.gov (United States)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  10. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    MS received 10 June 2015; revised 27 November 2015; accepted 22 December 2015; published online 21 September 2016 ... trap can be easily adjusted by Feshbach resonance tech- ... For convenience, the ground-state energy level is set.

  11. Thermodynamic properties of rotating trapped ideal Bose gases

    International Nuclear Information System (INIS)

    Li, Yushan; Gu, Qiang

    2014-01-01

    Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.

  12. Quantum gases of Chromium: thermodynamics and magnetic properties of a Bose-Einstein condensate and production of a Fermi sea

    International Nuclear Information System (INIS)

    Naylor, B.

    2016-01-01

    This thesis presents experimental results performed with quantum gases of Chromium atoms. The specificity of Chromium resides in its large electronic spin s=3 and non negligible dipole-dipole interaction between atoms. We produced a new quantum gas, a Fermi sea of the "5"3Cr isotope. Optimization of the co-evaporation with the "5"2Cr bosonic isotope leads to 10"3 atoms at T/T_F = 0.66 ± 0.08. We obtained new results on thermodynamics of a spinor Bose gas. By 'shock cooling' a thermal multi-spin component gas, we find that the condensation dynamics is affected by spin changing collisions. We also demonstrate a new cooling mechanism based on the spin degrees of freedom when the Bose Einstein condensate (BEC) is in the lowest energy spin state. Dipolar interactions thermally populate spin excited states at low magnetic eld. The purification of the BEC is obtained by selectively removing these thermal atoms. Finally, we present spin dynamics experiments. In the first experiment, spin dynamics following the preparation of atoms in a double well trap in opposite stretch spin states allows the measurement of the last unknown scattering length of "5"2Cr: a_0 = (13.5+15-10) a_B (with a_B being the Bohr radius). We then present preliminary results performed in a 3D lattice and in the bulk, where spin excitation is performed by a spin rotation. We investigate for different experimental configurations which theory with or without quantum correlations fits best our data. (author)

  13. Cold Attractive Spin Polarized Fermi Lattice Gases and the Doped Positive U Hubbard Model

    International Nuclear Information System (INIS)

    Moreo, Adriana; Scalapino, D. J.

    2007-01-01

    Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices allow the study of an attractive Hubbard model for which the strength of the on-site interaction is tuned by means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In particular, we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also comment on the relationship of the d x 2 -y 2 superconducting phase of the doped 2D repulsive Hubbard model to a d-wave spin density wave state for the attractive case

  14. Universal Borromean Binding in Spin-Orbit-Coupled Ultracold Fermi Gases

    Directory of Open Access Journals (Sweden)

    Xiaoling Cui

    2014-08-01

    Full Text Available Borromean rings and Borromean binding, a class of intriguing phenomena as three objects are linked (bound together while any two of them are unlinked (unbound, widely exist in nature and have been found in systems of biology, chemistry, and physics. Previous studies have suggested that the occurrence of such a binding in physical systems typically relies on the microscopic details of pairwise interaction potentials at short range and is, therefore, nonuniversal. Here, we report a new type of Borromean binding in ultracold Fermi gases with Rashba spin-orbit coupling, which is universal against short-range interaction details, with its binding energy only dependent on the s-wave scattering length and the spin-orbit-coupling strength. We show that the occurrence of this universal Borromean binding is facilitated by the symmetry of the single-particle dispersion under spin-orbit coupling and is, therefore, symmetry selective rather than interaction selective. The state is robust over a wide range of mass ratios between composing fermions, which are accessible by Li-Li, K-K, and K-Li mixtures in cold-atom experiments. Our results reveal the importance of single- particle spectral symmetry in few-body physics and shed light on the emergence of new quantum phases in a many-body system with exotic few-body correlations.

  15. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  16. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  17. Extraction of trapped gases in ice cores for isotope analysis

    International Nuclear Information System (INIS)

    Leuenberger, M.; Bourg, C.; Francey, R.; Wahlen, M.

    2002-01-01

    The use of ice cores for paleoclimatic investigations is discussed in terms of their application for dating, temperature indication, spatial time marker synchronization, trace gas fluxes, solar variability indication and changes in the Dole effect. The different existing techniques for the extraction of gases from ice cores are discussed. These techniques, all to be carried out under vacuum, are melt-extraction, dry-extraction methods and the sublimation technique. Advantages and disadvantages of the individual methods are listed. An extensive list of references is provided for further detailed information. (author)

  18. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    Energy Technology Data Exchange (ETDEWEB)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.; DiSciacca, Jack M.; Lev, Benjamin L. [Departments of Applied Physics and Physics and Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-12-16

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracold gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.

  19. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Ré mi; Markowich, Peter A; Sparber, Christof

    2008-01-01

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  20. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Rémi

    2008-09-29

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  1. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    Science.gov (United States)

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  2. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  3. A new approach to treat the problems of trapped ideal gases

    International Nuclear Information System (INIS)

    Su Guozhen; Cai Yanhua; Chen Jincan

    2009-01-01

    By comparing the thermodynamic properties of ideal atomic gases in a power-law potential and in a rigid box, it is found that the power-law potential is equivalent to the rigid box as far as the macroscopic behaviors of the system are concerned. The dimensionality and volume of the equivalent box are dependent on the parameters charactering the power-law potential. This equivalent relation enables us to treat a trapped ideal gas as a free one, and consequently, several useful conclusions of the trapped-gas system can be easily derived from the corresponding results of the free-gas system

  4. Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures

    International Nuclear Information System (INIS)

    Ahufinger, V.; Sanchez-Palencia, L.; Kantian, A.; Sanpera, A.; Lewenstein, M.

    2005-01-01

    We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, 'dirty' superfluids, disordered metallic phases, and phases involving quantum percolation

  5. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    Science.gov (United States)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  6. XPS and XAES measurements on trapped rare gases in transition metals

    International Nuclear Information System (INIS)

    Baba, Y.; Yamamoto, H.; Sasaki, T.A.

    1992-01-01

    Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)

  7. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  8. Bright solitons in Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz

    2006-01-01

    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length

  9. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    Science.gov (United States)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  10. Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases

    International Nuclear Information System (INIS)

    Cui Xiaoling; Zhai Hui

    2010-01-01

    We construct a variational wave function to study whether a fully polarized Fermi sea of ultracold atoms is energetically stable against a single spin flip. Our variational wave function contains short-range correlations at least to the same level as Gutzwiller's projected wave function. For the Hubbard lattice model and the continuum model with pure repulsive interaction, we show that a fully polarized Fermi sea is generally unstable even for infinite repulsive strength. By contrast, for a resonance model, the ferromagnetic state is possible if the s-wave scattering length is positive and sufficiently large and the system is prepared to be orthogonal to the molecular bound state. However, we cannot rule out the possibility that more exotic correlations can destabilize the ferromagnetic state.

  11. External meeting - Geneva University: A lab in a trap: quantum gases in optical lattices

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Monday 16 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium A lab in a trap: quantum gases in optical lattices by Prof. Tilman Esslinger / Department of Physics, ETH Zurich The field of ultra cold quantum gases has seen an astonishing development during the last ten years. With the demonstration of Bose-Einstein condensation in weakly interacting atomic gases a theoretical concept of unique beauty could be witnessed experimentally. Very recent developments have now made it possible to engineer atomic many-body systems which are dominated by strong interactions. A major driving force for these advances are experiments in which ultracold atoms are trapped in optical lattices. These systems provide anew avenue for designing and studying quantum many-body systems. Exposed to the crystal structure of interfering laser wave...

  12. Dynamics of trapped two-component Fermi gas: Temperature dependence of the transition from collisionless to collisional regime

    International Nuclear Information System (INIS)

    Toschi, F.; Vignolo, P.; Tosi, M.P.; Succi, S.

    2003-01-01

    We develop a numerical method to study the dynamics of a two-component atomic Fermi gas trapped inside a harmonic potential at temperature T well below the Fermi temperature T F . We examine the transition from the collisionless to the collisional regime down to T=0.2 T F and find a good qualitative agreement with the experiments of B. DeMarco and D.S. Jin [Phys. Rev. Lett. 88, 040405 (2002)]. We demonstrate a twofold role of temperature on the collision rate and on the efficiency of collisions. In particular, we observe a hitherto unreported effect, namely, the transition to hydrodynamic behavior is shifted towards lower collision rates as temperature decreases

  13. Instability of Fulde-Ferrell-Larkin-Ovchinnikov states in atomic Fermi gases in three and two dimensions

    Science.gov (United States)

    Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin

    2018-04-01

    The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of the pairs. These results address the absence of convincing experimental observations of FFLO phases in both condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true ground state has a pair momentum distribution highly peaked on an entire constant energy surface.

  14. Positrons in gas filled traps and their transport in molecular gases

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Z Lj; Bankovic, A; Marjanovic, S; Suvakov, M; Dujko, S; Malovic, G [Institute of Physics, University of Belgrade, Pregrevica 118, POB 68, Zemun (Serbia); White, R D [ARC Centre for Antimatter-Matter Studies, James Cook University, Townsville 4810, QLD (Australia); Buckman, S J, E-mail: zoran@ipb.ac.rs [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT, 0200 (Australia)

    2011-01-01

    In this paper we give a review of two recent developments in positron transport, calculation of transport coefficients for a relatively complete set of collision cross sections for water vapour and for application of they Monte Carlo technique to model gas filled subexcitation positron traps such as Penning Malmberg Surko (Surko) trap. Calculated transport coefficients, very much like those for argon and other molecular gases show several new kinetic phenomena. The most important is the negative differential conductivity (NDC) for the bulk drift velocity when the flux drift velocity shows no sign of NDC. These results in water vapour are similar to the results in argon or hydrogen. The same technique that has been used for positron (and previously electron) transport may be applied to model development of particles in a Surko trap. We have provided calculation of the ensemble of positrons in the trap from an initial beam like distribution to the fully thermalised distribution. This model, however, does not include plasma effects (interaction between charged particles) and may be applied for lower positron densities.

  15. Phase transitions and pairing signature in strongly attractive Fermi atomic gases

    International Nuclear Information System (INIS)

    Guan, X. W.; Bortz, M.; Batchelor, M. T.; Lee, C.

    2007-01-01

    We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of fermions with opposite spin states form a singlet ground state when the external field H c1 . A completely ferromagnetic phase without pairing occurs when the external field H>H c2 . In the region H c1 c2 , we observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics

  16. Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Verhelst, Nick, E-mail: nick.verhelst@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Klimin, Serghei, E-mail: sergei.klimin@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Department of Theoretical Physics, State University of Moldova, Republic of Moldova (Moldova, Republic of); Tempere, Jacques [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University (United States)

    2017-02-15

    Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.

  17. Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Verhelst, Nick; Klimin, Serghei; Tempere, Jacques

    2017-01-01

    Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.

  18. Circular Cationic Compounds B3Rgn+ of Triangular Ion B3 Trapping Rare Gases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiwen; LI Anyong; LI Zhuozhe

    2017-01-01

    The circular cationic compounds B3Rgn+(n=1-3,Rg=He-Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically.The formed B-Rg bond has large bonding energy in the range of 60--209 kJ/mol,its length is close to the stun of covalent radii of B and Rg,for Ar-Rn.The analyses based on the natural bond orbitals and electron density topology show that the B-Rg bonds for Ar-Rn have strong covalent character.The geometric structures,binding energy,bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar-Rn may be experimentally available.Several different theoretical studies have demonstrated that these triangular cations are aromatic.

  19. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association.

    Science.gov (United States)

    Ozgurel, O; Pauzat, F; Pilmé, J; Ellinger, Y; Bacchus-Montabonel, M-C; Mousis, O

    2017-10-07

    The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H 3 + in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H 3 + , especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H 3 + only, considering that the protonated ions produced in the destruction of H 3 + by its main competitors present in the primitive nebula, i.e., H 2 O, CO, and N 2 , might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H 2 O, CO, and N 2 , expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10 -16 to 10 -19 cm 3 s -1 , which is reasonable for such reactions and has to be compared to the rates of 10 -16 to 10 -18 cm 3 s -1 , obtained with H 3 + . We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

  20. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems ...

  1. Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models

    International Nuclear Information System (INIS)

    Gisler, G.; Lemons, D.

    1990-01-01

    The authors consider the heating and acceleration of electrons trapped on magnetic field lines between approaching magnetic mirrors. Such a collapsing magnetic trap and consequent electron energization can occur whenever a curved (or straight) flux tube drifts into a relatively straight (or curved) perpendicular shock. The relativistic, three-dimensional, collisionless test particle simulations show that an initial thermal electron distribution is bulk heated while a few individual electrons are accelerated to many times their original energy before they escape the trap. Upstream field-aligned beams and downstream pancake distributions perpendicular to the field are predicted. In the appropriate limit the simulation results agree well with a nonrelativistic analytic model of the distribution of escaping electrons which is based on the first adiabatic invariant and energy conservation between collisions with the mirrors. Space science and astrophysical applications are discussed

  2. Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap

    Science.gov (United States)

    Dehkharghani, A. S.; Bellotti, F. F.; Zinner, N. T.

    2017-07-01

    In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.

  3. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    Science.gov (United States)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  4. Rotational states of Bose gases with attractive interactions in anharmonic traps

    International Nuclear Information System (INIS)

    Lundh, Emil; Collin, Anssi; Suominen, Kalle-Antti

    2004-01-01

    A rotated and harmonically trapped Bose gas with attractive interactions is expected to either remain stationary or escape from the trap. Here we report that, on the contrary, in an anharmonic trapping potential the Bose gas with attractive interactions responds to external rotation very differently, namely, through center-of-mass motion or by formation of vortices

  5. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    Science.gov (United States)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  6. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    Science.gov (United States)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  7. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof; Markowich, Peter; Huang, Zhongyi

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  8. Energy Fluctuation of Ideal Fermi Gas Trapped under Generic Power Law Potential U=\\sum_{i=1}^{d} c_i\\vert x_{i}/a_{i}\\vert^{n_{i} } in d Dimensions

    Science.gov (United States)

    Mir, Mehedi Faruk; Muktadir Rahman, Md.; Dwaipayan, Debnath; Sakhawat Hossain Himel, Md.

    2016-04-01

    Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.

  9. Degenerate Fermi gas in a combined harmonic-lattice potential

    International Nuclear Information System (INIS)

    Blakie, P. B.; Bezett, A.; Buonsante, P.

    2007-01-01

    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices

  10. Out-of-equilibrium dynamics of repulsive Fermi gases in quasiperiodic potentials: A density functional theory study

    Science.gov (United States)

    Ancilotto, Francesco; Rossini, Davide; Pilati, Sebastiano

    2018-04-01

    The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasiperiodic optical lattice (OL) is investigated by means of a density functional theory approach. Inspired by the protocol implemented in recent cold-atom experiments—designed to identify the many-body localization transition—we analyze the relaxation of an initially prepared imbalance between the occupation number of odd and of even sites. For quasidisorder strength beyond the Anderson localization transition, the imbalance survives for long times, indicating the inability of the system to reach local equilibrium. The late-time value of the imbalance diminishes for increasing interaction strength. Close to the critical quasidisorder strength corresponding to the noninteracting (Anderson) transition, the interacting system displays an extremely slow relaxation dynamics, consistent with subdiffusive behavior. The amplitude of the imbalance fluctuations around its running average is found to decrease with time, and such damping is more effective with increasing interaction strengths. While our study addresses the setup with two equally intense OLs, very similar effects due to interactions have been observed also in recent cold-atom experiments performed in the tight-binding regime, i.e., where one of the two OLs is very deep and the other is much weaker.

  11. Nonperturbative effects on Tc of interacting Bose gases in power-law traps

    International Nuclear Information System (INIS)

    Zobay, O.; Metikas, G.; Kleinert, H.

    2005-01-01

    The critical temperature T c of an interacting Bose gas trapped in a general power-law potential V(x)=Σ i U i vertical bar x i vertical bar p i is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T c fulfills the relation (T c -T c 0 )/T c 0 =D 1 (η)a+D ' (η)a 2η +O(a 2 ) with T c 0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T c , and η=1/2+Σ i p i -1 the potential-shape parameter. The terms D 1 (η)a and D ' (η)a 2η describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a 2η contribution is qualitatively explained in terms of the Ginzburg criterion

  12. Comparative study of BCS-BEC crossover theories above Tc: The nature of the pseudogap in ultracold atomic Fermi gases

    International Nuclear Information System (INIS)

    Chien, C.-C.; Guo Hao; He Yan; Levin, K.

    2010-01-01

    This article presents a comparison of two finite-temperature BCS-Bose-Einstein condensation (BEC) crossover theories above the transition temperature: Nozieres-Schmitt-Rink (NSR) theory and finite-T extended BCS-Leggett theory. The comparison is cast in the form of numerical studies of the behavior of the fermionic spectral function both theoretically and as constrained by (primarily) radio frequency (rf) experiments. Both theories include pair fluctuations and exhibit pseudogap effects, although the nature of this pseudogap is very different. The pseudogap in finite-T extended BCS-Leggett theory is found to follow a BCS-like dispersion which, in turn, is associated with a broadened BCS-like self-energy, rather more similar to what is observed in high-temperature superconductors (albeit, for a d-wave case). The fermionic quasiparticle dispersion is different in NSR theory and the damping is considerably larger. We argue that the two theories are appropriate in different temperature regimes with the BCS-Leggett approach being more suitable nearer to condensation. There should, in effect, be little difference at higher T as the pseudogap becomes weaker and where the simplifying approximations used in the BCS-Leggett approach break down. On the basis of momentum-integrated rf studies of unpolarized gases, it would be difficult to distinguish which theory is the better one. A full comparison for polarized gases is not possible since it is claimed that there are inconsistencies in the NSR approach (not found in the BCS-Leggett scheme). Future experiments along the lines of momentum-resolved experiments look to be very promising in distinguishing the two theories.

  13. Dissolution off-gases at the marcoule pilot facility: Iodine trapping and off-gas characterization unit

    International Nuclear Information System (INIS)

    Pouyat, D.; Vignau, B.; Roux, J.P.

    1993-01-01

    The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I

  14. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  15. Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Evtodiev, I. [Moldova State University, 60 A. Mateevici Str., Chisinau, MD 2009, Republic of Moldova (Moldova, Republic of); Caraman, I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Leontie, L., E-mail: lleontie@uaic.ro [Alexandru Ioan Cuza University of Iasi, Bd. Carol I, Nr. 11, RO 700506 Iasi (Romania); Rusu, D.-I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Dafinei, A. [Faculty of Physics, University of Bucharest, Platforma Magurele, Str. Fizicienilor nr. 1, CP Mg - 11, Bucharest-Magurele, RO 76900 (Romania); Nedeff, V.; Lazar, G. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

  16. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    OpenAIRE

    Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...

  17. Frequency drift of 3-kHz interplanetary radio emissions: evidence of Fermi accelerated trapped radiation in a small heliosphere?

    International Nuclear Information System (INIS)

    Czechowski, A.; Grzedzielski, S.

    1990-01-01

    Neither the termination shock wave formed where the solar wind ceases to be supersonic, nor the slightly more distant heliopause, where the wind runs into the interstellar medium, have been directly observed, but estimates based on observed cosmic-ray modulations and on pressure balance between the two media suggest that they are 50-200 AU from the Sun. We argue here that the well-known interplanetary radio emission of 2-3 kHz in frequency is trapped in the electromagnetic cavity formed by the heliopause, and furthermore that the fluctuating solar wind will cause the frequency of this trapped radiation to increase at a rate dependent on the geometry of the cavity. Applying this interpretation to the previously unexplained frequency drift, amounting to ∼ 1 kHz yr -1 , of the 3-kHz burst, we estimate an average heliopause distance of 60-100 AU. This agrees with recent data from Pioneer 10 and Voyager 2, suggesting that the termination shock is located at a distance of ∼50 AU, and implies that Voyager 1 may reach the shock in about 1993 and the heliopause as early as 1996. (author)

  18. Non-Equilbrium Fermi Gases

    Science.gov (United States)

    2016-02-02

    understanding is the experimental verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in...and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self -explanatory... verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in shape and magnitude with all of our

  19. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).

    Science.gov (United States)

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O

    2009-05-07

    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  20. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  1. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  2. Analysis of volatile headspace gases sampled by cryogenic traps from Westinghouse Hanford Company Tank 242-C-112 March 1992

    International Nuclear Information System (INIS)

    Lucke, R.B.; Clauss, S.A.

    1993-10-01

    Results are given from gas chromatography/mass spectrometry (GC/MS) analyses of the headspace samples obtained by using cryogenic traps from Westinghouse Hanford Company (WHC) Tank 112-C during the month of March, 1992. Samples were analyzed as received with no sample preparation. Analyses included direct GC/MS for volatile/semivolatile components, and direct GC/MS for ammonia. Purge and trap GC/MS analysis was not done. In addition, aliquots were sent to Karl Pool, Pacific Northwest Laboratory, for hydrogen cyanide analysis by ion chromatography, the results are reported here. All concentrations are reported for the methanol extract solutions. To calculate concentrations in the headspace, the cryo-sampling air volume and the methanol rinse volume must be obtained from cryo-sampling personnel at WHC. Triplicate analyses were done on all samples, and average concentrations and standard deviations are reported. One significant result was that no ammonia was detected

  3. The influence of positron trapping at vacancies on a pattern of the Fermi surface of #betta#-brass studied by positron annihilation

    International Nuclear Information System (INIS)

    Rozenfeld, B.; Chabik, S.; Pajak, J.

    1982-01-01

    Angular correlations of positron annihilation quanta (ACPAQ) have been measured for differently oriented monocrystalline samples of the ordered #betta#-brass under conditions permitting the neglecting of the trapping of positrons at vacancies as well as in the case when almost all the positrons annihilate being trapped at vacancies. It has been shown that trapping of positrons at vacancies can make the observation of the directional anisotropy in electron momentum distribution impossible. (Auth.)

  4. E Fermi

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. E Fermi. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 82-96 Classics. Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF ...

  5. Trapping, chemistry, and export of trace gases in the South Asian summer monsoon observed during CARIBIC flights in 2008

    Directory of Open Access Journals (Sweden)

    A. Rauthe-Schöch

    2016-03-01

    Full Text Available The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region (which so far has mostly been observed from satellites using the broad suite of trace gases and aerosol particles measured by CARIBIC. Elevated levels of a variety of atmospheric pollutants (e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles, and several volatile organic compounds were recorded. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with distinct latitudinal patterns of trace gases during the entire monsoon period. Using the CARIBIC trace gas and aerosol particle measurements in combination with the Lagrangian particle dispersion model FLEXPART, we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. The trajectory calculations indicate that these air masses originated mainly from South Asia and mainland Southeast Asia. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 90–95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were systematically younger (less than 7 days and the air masses were mostly in an ozone-forming chemical mode. In its northern part the air masses were older (up to 13 days and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories, several receptor regions were identified. In addition to predominantly westward

  6. Microscopic search for the carrier phase Q of the trapped planetary noble gases in Allende, Leoville, and Vigarano

    Science.gov (United States)

    Vis, R. D.; Mrowiec, A.; Kooyman, P. J.; Matsubara, K.; Heymann, D.

    2002-10-01

    High-resolution transmission electron microscopy micrographs of acid-resistant residues of the Allende, Leoville, and Vigarano meteorites show a great variety of carbon structures: curved and frequently twisted and intertwined graphene sheets, abundant carbon black-like particles, and hollow "sacs". It is suggested that perhaps all of these are carriers for the planetary Q-noble gases in these meteorites. Most of these materials are pyrocarbons that probably formed by the pyrolysis of hydrocarbons either in a gas phase, or on hot surfaces of minerals. An attempt was made to analyze for argon with particle-induced x-ray emission in 143 spots of grains of floating and suspended matter from freeze-dry cycles of an Allende bulk sample in water, and floating "black balls" from sonication in water of samples from the Allende meteorite. The chemical compositions of these particles were obtained, but x-ray signals at the wavelength of argon were obtained on only a few spots.

  7. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  8. Scattering resonances in a degenerate Fermi gas

    DEFF Research Database (Denmark)

    Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus

    2009-01-01

    We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...

  9. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Zheng, H. [Cyclotron Institute, Texas A& M University, College Station, TX-77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Boisjoli, M. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Laboratoire de Physique Nucléaire, Université Laval, Québec, G1V 0A6 (Canada); Verde, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); INFN – Sezione di Catania, via Santa Sofia, 64, 95123 Catania (Italy); Chbihi, A. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Napolitani, P.; Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Augey, L. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); Bhattacharya, C. [Variable Energy Cyclotron Center, Kolkata (India); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Bougault, R. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); and others

    2016-05-10

    We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.

  10. Strongly Interacting Fermi Gases in Two Dimensions

    Science.gov (United States)

    2012-07-17

    strategy to determine the ther- modynamic properties of a given substance is to measure an equation of state (EoS), such as the pressure P(m,T ) as a...magnetically ordered phases. From the chemical potential m/EF andT=TF ¼ 4p ð3p2Þ2=3 1 ðnl3Þ2=3, we finally obtain the density EoS n(m,T ) ≡ 1 l3 fnðbmÞ...platinum market (14). The combi- nation of chemical, economic, and political chal- lenges inspires the exploration of inexpensive and Earth-abundant

  11. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  12. Fermi Large Area Telescope

    Science.gov (United States)

    are available to the public, along with standard analysis software, from NASA's Fermi Science Support Center. For general questions about Fermi, Fermi science, or Fermi classroom materials, please contact Fermi has its own music: a prelude and a symphony. Gamma Ray Bursts trasformed into visual music

  13. Dipolar quantum gases of erbium

    International Nuclear Information System (INIS)

    Frisch, A.

    2014-01-01

    Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures

  14. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  15. Harmonically trapped cold atom systems: Few-body dynamics and application to many-body thermodynamics

    Science.gov (United States)

    Daily, Kevin Michael

    Underlying the many-body effects of ultracold atomic gases are the few-body dynamics and interparticle interactions. Moreover, the study of few-body systems on their own has accelerated due to confining few atoms in each well of a deep optical lattice or in a single microtrap. This thesis studies the microscopic properties of few-body systems under external spherically symmetric harmonic confinement and how the few-body properties translate to the many-body system. Bosonic and fermionic few-body systems are considered and the dependence of the energetics and other quantities are investigated as functions of the s-wave scattering length, the mass ratio and the temperature. It is found that the condensate fraction of a weakly-interacting trapped Bose gas depletes quadratically with the s-wave scattering length. The next order term in the depletion depends not only, as might be expected naively, on the s-wave scattering length and the effective range but additionally on a two-body parameter that is not needed to reproduce the energy of weakly-interacting trapped Bose gases. This finding has important implications for effective field theory treatments of the system. Weakly-interacting atomic and molecular two-component Fermi gases with equal masses are described using perturbative approaches. The energy shifts are tabulated and interpreted, and a measure of the molecular condensate fraction is developed. We develop a measure of the molecular condensate fraction using the two-body density matrix and we develop a model of the spherical component of the momentum distribution that agrees well with stochastic variational calculations. We establish the existence of intersystem degeneracies for equal mass two-component Fermi gases with zero-range interactions, where the eigen energies of the spin-imbalanced system are degenerate with a subset of the eigen energies of the more spin-balanced system and the same total number of fermions. For unequal mass two-component Fermi

  16. The Luttinger liquid in superlattice structures: atomic gases, quantum dots and the classical Ising chain

    International Nuclear Information System (INIS)

    Bhattacherjee, Aranya B; Jha, Pradip; Kumar, Tarun; Mohan, Man

    2011-01-01

    We study the physical properties of a Luttinger liquid in a superlattice that is characterized by alternating two tunneling parameters. Using the bosonization approach, we describe the corresponding Hubbard model by the equivalent Tomonaga-Luttinger model. We analyze the spin-charge separation and transport properties of the superlattice system. We suggest that cold Fermi gases trapped in a bichromatic optical lattice and coupled quantum dots offer the opportunity to measure these effects in a convenient manner. We also study the classical Ising chain with two tunneling parameters. We find that the classical two-point correlator decreases as the difference between the two tunneling parameters increases.

  17. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  18. Fermi-Dirac statistics and the number theory

    OpenAIRE

    Kubasiak, A.; Korbicz, J.; Zakrzewski, J.; Lewenstein, M.

    2005-01-01

    We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.

  19. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  20. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  1. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  2. A two-dimensional Fermi gas in the BEC-BCS crossover

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Martin Gerhard

    2016-01-21

    This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and the observation of the BKT transition into a quasi long-range ordered superfluid phase. The pair momentum distribution of the gas is probed by means of a matter-wave focusing technique which relies on time-of-flight evolution in a weak harmonic potential. This distribution holds the coherence properties of the gas. The quasi long-range ordered phase manifests itself as a sharp low-momentum peak. The temperature where it forms is identified as the transition temperature. By tuning the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in the BEC-BCS crossover is mapped out. The phase coherence is investigated in a self-interference experiment. Furthermore, algebraic decay of correlations is observed in the trap average of the first order correlation function, which is obtained from the Fourier transform of the pair momentum distribution. This is in qualitative agreement with predictions of homogeneous theory for the superfluid phase in a 2D gas. The presented results provide a foundation for future experimental and theoretical studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex systems such as the electron gas in high-T{sub c} superconductors.

  3. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  4. Bose-Einstein condensation in atomic alkali gases

    Science.gov (United States)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  5. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  6. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  7. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  8. Ground state of charged Base and Fermi fluids in strong coupling

    International Nuclear Information System (INIS)

    Mazighi, R.

    1982-03-01

    The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions) [fr

  9. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  10. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  11. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  12. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  13. Low-density, one-dimensional quantum gases in the presence of a localized attractive potential

    International Nuclear Information System (INIS)

    Goold, J; O'Donoghue, D; Busch, Th

    2008-01-01

    We investigate low-density, quantum-degenerate gases in the presence of a localized attractive potential in the centre of a one-dimensional harmonic trap. The attractive potential is modelled using a parameterized δ-function, allowing us to determine all single-particle eigenfunctions analytically. From these we calculate the ground-state many-body properties for a system of spin-polarized fermions and, using the Bose-Fermi mapping theorem, extend the results to strongly interacting bosonic systems. We discuss the single-particle densities, the pair-correlation functions, the reduced single-particle density matrices and the momentum distributions as a function of the particle number and strength of the attractive point potential. As an important experimental observable, we place special emphasis on spatial coherence properties of such samples.

  14. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  15. Observing the drop of resistance in the flow of a superfluid Fermi gas.

    Science.gov (United States)

    Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman

    2012-11-29

    The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices.

  16. Fermi comes to CERN

    CERN Multimedia

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  17. Fermi and nuclear security

    International Nuclear Information System (INIS)

    Alcober Bosch, V.

    2003-01-01

    Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs

  18. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  19. Berry Fermi liquid theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)

    2017-02-15

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.

  20. A tribute to Enrico Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Kubbinga, H. [Groningen Univ. (Netherlands)

    2009-07-01

    This article is a short biography of Enrico Fermi 'The Pope of physics'. His main contributions in theoretical physics have paved the way to quantum electrodynamics and the quantization of the fields. Fermi got also great achievements on beta decay process and on nuclear reactions brought about by slow neutrons. Fermi was awarded the Nobel prize of physics in 1938

  1. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  2. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  3. Two-fluid hydrodynamic modes in a trapped superfluid gas

    International Nuclear Information System (INIS)

    Taylor, E.; Griffin, A.

    2005-01-01

    In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0

  4. Quantum phases of spinful Fermi gases in optical cavities

    Science.gov (United States)

    Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.

    2018-04-01

    We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g analysis.

  5. Strongly-Interacting Fermi Gases in Reduced Dimensions

    Science.gov (United States)

    2015-11-16

    12 2012): 0. doi: 10.1103/PhysRevA.86.063625 Allan Adams , Lincoln D Carr, Thomas Schäfer, Peter Steinberg, John E Thomas. Strongly correlated quantum...Physics (NCSU, 2013) Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Willie Ong 1.00 Chingyun Cheng 0.50...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: NAME Total Number: NAME Total Number: Willie Ong 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total

  6. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    Science.gov (United States)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  7. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  8. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  9. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  10. Relativistic density matrix in the diagonal momentum representation. Fermi-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistically invariant theory of ideal Fermi-gas is built in the framework of the quantum field theory. The average occupation numbers and correlation functions of statistical systems are found on the equal-time surfaces of arbitrary inertial frames. The effects of anisotropy in their behaviour are pointed out. The partition function method is developed to calculate the thermodynamic quantities of Fermi-gases moving as a whole

  11. Vortex formation in a rotating two-component Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Warringa, Harmen J.; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany)

    2011-08-15

    A two-component Fermi gas with attractive s-wave interactions forms a superfluid at low temperatures. When this gas is confined in a rotating trap, fermions can unpair at the edges of the gas and vortices can arise beyond certain critical rotation frequencies. We compute these critical rotation frequencies and construct the phase diagram in the plane of scattering length and rotation frequency for different total numbers of particles. We work at zero temperature and consider a cylindrically symmetric harmonic trapping potential. The calculations are performed in the Hartree-Fock-Bogoliubov approximation which implies that our results are quantitatively reliable for weak interactions.

  12. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    Science.gov (United States)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  13. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  14. Enrico Fermi and uranium fission

    International Nuclear Information System (INIS)

    Hahn, O.

    1962-01-01

    The author describes the part of his scientific work connected to the research made by Enrico Fermi in the field of nuclear reactions. He said that 'Our gratitude to Fermi today is therefore due less perhaps for his reactor than for his experiments using uncharged neutrons in order to bring about artificial nuclear processes'

  15. Momentum density and Fermi surface of Nd2-xCexCuO4-δ

    International Nuclear Information System (INIS)

    Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A.A.; Sadowski, W.; Walker, E.; Peter, M.

    1996-01-01

    High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa 2 Cu 3 O 7-δ . Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd 2-x Ce x CuO 4-δ . Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments. copyright 1996 The American Physical Society

  16. Enrico Fermi Symposium at CERN : opening celebration

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  17. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  18. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  19. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  20. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  1. The Statistical Fermi Paradox

    Science.gov (United States)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  2. Enrico Fermi the obedient genius

    CERN Document Server

    Bruzzaniti, Giuseppe

    2016-01-01

    This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...

  3. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    International Nuclear Information System (INIS)

    1995-11-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  4. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.

    2016-01-01

    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  5. Properties of quantum self-gravitating gases

    International Nuclear Information System (INIS)

    Rumyantseva, E.N.

    1981-01-01

    Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model

  6. Instabilities of a Fermi gas with nested Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, Pedro [Department of Physics, Florida State University, Tallahassee, FL (United States)

    2018-01-15

    The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Neel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non-Fermi liquid behavior, non-s-wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. 7th International Fermi Symposium

    Science.gov (United States)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  8. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  9. Competing order parameters in Fermi systems with engineered band dispersion

    Science.gov (United States)

    Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.

    We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur

  10. Thermodynamics of an Attractive 2D Fermi Gas

    Science.gov (United States)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  11. Ripple Trap

    Science.gov (United States)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image. Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  12. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  13. The Fermiac or Fermi's Trolley

    Science.gov (United States)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  14. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  15. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices

    International Nuclear Information System (INIS)

    Cramer, M.; Eisert, J.; Illuminati, F.

    2004-01-01

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices

  16. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    Science.gov (United States)

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-05

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.

  17. On the Dynamics of the Fermi-Bose model

    DEFF Research Database (Denmark)

    Ögren, Magnus

    In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial....... In particular the results can be used for studies of threedimensional physical systems of arbitrary geometry. We illustrate the generality of our approach by giving numerical results for the dynamics of Glauber type atomic pair correlation functions for a non-isotropic three-dimensional harmonically trapped...

  18. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  19. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  20. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    IAS Admin

    The balance wheel will now shed some ... work best when used by someone with the ... [1] Laura Fermi, Atoms in the Family: My Life with Enrico Fermi, The. University of Chicago ... Geneva, European Organization for Nuclear Research, 1969.

  1. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  2. Spin interaction with an ideal fermi gas

    International Nuclear Information System (INIS)

    Aizenstadt, V.V.; Malyshev, V.A.

    1987-01-01

    The authors consider the equilibrium dynamics of a system consisting of a spin interacting with an ideal Fermi gas on the lattice Z/sup v, v ≥ 3. They present two examples; when this system is unitarily equivalent to an ideal Fermi gas or to a spin in an ideal Fermi gas without interactions between them

  3. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  4. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  5. Global thermodynamics of confined inhomogeneous dilute gases: A semi-classical approach

    Science.gov (United States)

    Poveda-Cuevas, F. J.; Reyes-Ayala, I.; Seman, J. A.; Romero-Rochín, V.

    2018-04-01

    In this work we present our contribution to the Latin American School of Physics "Marcos Moshinsky" 2017 on Quantum Correlations which was held in Mexico City during the summer of 2017. We review the efforts that have been done to construct a global thermodynamic description of ultracold dilute gases confined in inhomogeneous potentials. This is difficult because the presence of this non-uniform trap makes the pressure of the gas to be a spatially dependent variable and its volume an ambiguously defined quantity. In this paper we introduce new global thermodynamic variables, equivalent to pressure and volume, and propose a realistic model of the equation of state of the system. This model is based on a mean-field approach which asymptotically reaches the Thomas-Fermi limit for a weakly interacting Bose gas. We put special emphasis to the transition between the normal and superfluid phases by studying the behavior of the isothermal compressibility across the transition. We reveal how the potential modifies the critical properties of the transition by determining the critical exponents associated to the divergences not of the susceptibilities but of their derivatives.

  6. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  7. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  8. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  9. Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas

    International Nuclear Information System (INIS)

    Girardeau, M. D.

    2011-01-01

    A harmonically trapped, ultracold, one-dimensional (1D) spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a three-dimensional (3D) Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire-cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super-Tonks-Girardeau (STG) state, which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction, there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG state which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.

  10. Experimental investigation of the dynamics in a strongly interacting Fermi gas : collective modes and rotational properties

    International Nuclear Information System (INIS)

    Riedl, S.

    2009-01-01

    This thesis explores the dynamics in an ultracold strongly interacting Fermi gas. Therefore we perform measurements on collective excitation modes and rotational properties of the gas. The strongly interacting gas is realized using an optically trapped Fermi gas of 6 Li atoms, where the interactions can be tuned using a broad Feshbach resonance. Our measurements allow to test the equation of state of the gas, study the transition from hydrodynamic to collisionless behavior, reveal almost ideal hydrodynamic behavior in the nonsuperfluid phase, investigate the lifetime of angular momentum, and show superfluidity through the quenching of the moment of inertia. (author)

  11. Model for paramagnetic Fermi systems

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.

    1983-01-01

    We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields

  12. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  13. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  14. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  15. Composition of lunar noble gases traped 2.5 AE and 3.5 AE ago

    International Nuclear Information System (INIS)

    Eugster, O.

    1986-01-01

    The times when the soils 74001 and 73261 were exposed on the lunar surface were determined by the U-235 - Xe-136 dating method. The isotopic composition of the trapped noble gases in these two soils is compared with that of the surface correlated noble gases in the young soils 12001 and in the present day solar wind. The surface correlated trapped gases are a mixture of implanted solar wind particles and retrapped lunar atmospheric gases. The observed changes are interpreted as a result of decreasing outgassing of radiogenic Ar-40 and perhaps He-4 and of fissiogenic Xe from the lunar crust. The old soils probably also contain surface correlated Kr-80 and Kr-82 produced by secondary cosmic ray neutron capture of adsorbed or retrapped bromine. To some extent the isotopic composition of the trapped gases in old lunar soil may also have been altered due to diffusion loss from material of low retentivity

  16. Globalisation Trapped

    Directory of Open Access Journals (Sweden)

    João Caraça

    2017-05-01

    Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?

  17. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in ...

  18. Spin-charge separation in ultra-cold quantum gases

    OpenAIRE

    Recati, A.; Fedichev, P. O.; Zwerger, W.; Zoller, P.

    2002-01-01

    We investigate the physical properties of quasi-1D quantum gases of fermion atoms confined in harmonic traps. Using the fact that for a homogeneous gas, the low energy properties are exactly described by a Luttinger model, we analyze the nature and manifestations of the spin-charge separation. Finally we discuss the necessary physical conditions and experimental limitations confronting possible experimental implementations.

  19. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  20. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  1. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  2. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  3. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  4. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  5. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  6. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Gibbs Method and Statistical Physics of Electron Gases

    CERN Document Server

    Askerov, Bahram M

    2010-01-01

    This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.

  7. Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    International Nuclear Information System (INIS)

    Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.

    2011-01-01

    Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .

  8. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  9. Evidence for solar flare rare gases in the Khor Temiki aubrite.

    Science.gov (United States)

    Rajan, R. S.; Price, P. B.

    1973-01-01

    It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.

  10. Compositeness and the Fermi scale

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1984-01-01

    The positive attitude adopted up to now, due to the non-observation of effects of substructure, is that the compositeness scale Λ must be large: Λ > or approx. 1 TeV. Such a large value of Λ gives rise to two theoretical problems which I examine here, namely: 1) What dynamics yields light composite quarks and leptons (msub(f) < < Λ) and 2) What relation does the compositeness scale Λ have with the Fermi scale Λsub(F) = (√2 Gsub(F))sup(-1/2) approx.= 250 GeV. (orig./HSI)

  11. Fermi problem in disordered systems

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; de Mello, H. R.; Zarro, C. A. D.

    2017-10-01

    We revisit the Fermi two-atom problem in the framework of disordered systems. In our model, we consider a two-qubit system linearly coupled with a quantum massless scalar field. We analyze the energy transfer between the qubits under different experimental perspectives. In addition, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that the classical notion of causality emerges only in the wave zone in the presence of random fluctuations of the light cone. Possible repercussions are discussed.

  12. Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas

    International Nuclear Information System (INIS)

    Palestini, F.; Perali, A.; Pieri, P.; Strinati, G. C.

    2010-01-01

    Physical properties of an ultracold Fermi gas in the temperature-coupling phase diagram can be characterized by the contact intensity C, which enters the pair-correlation function at short distances and describes how the two-body problem merges into its surrounding. We show that the local order established by pairing fluctuations about the critical temperature T c of the superfluid transition considerably enhances the contact C in a temperature range where pseudogap phenomena are maximal. Our ab initio results for C in a trap compare well with recently available experimental data over a wide coupling range. An analysis is also provided for the effects of trap averaging on C.

  13. Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance

    International Nuclear Information System (INIS)

    Conduit, G. J.; Simons, B. D.

    2009-01-01

    We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi gas with repulsive interactions and population imbalance. In a spatially uniform system, we show that at zero temperature the transition to the itinerant magnetic phase transforms from first to second order with increasing population imbalance. Drawing on these results, we elucidate the phases present in a trapped geometry, finding three characteristic types of behavior with changing population imbalance. Finally, we outline the potential experimental implications of the findings.

  14. Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures

    DEFF Research Database (Denmark)

    Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter

    2013-01-01

    The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...... length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited....

  15. Nonextensive Thomas-Fermi model

    Science.gov (United States)

    Shivamoggi, Bhimsen; Martinenko, Evgeny

    2007-11-01

    Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.

  16. SU(N ) fermions in a one-dimensional harmonic trap

    Science.gov (United States)

    Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.

    2017-09-01

    We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.

  17. Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance

    International Nuclear Information System (INIS)

    Ohashi, Y.

    2004-01-01

    We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theory developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance

  18. Modeling the instability behavior of thin film devices: Fermi Level Pinning

    Science.gov (United States)

    Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.

    2018-05-01

    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.

  19. Universal structure of a strongly interacting Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnle, Eva; Dyke, Paul; Hoinka, Sascha; Mark, Michael; Hu Hui; Liu Xiaji; Drummond, Peter; Hannaford, Peter; Vale, Chris, E-mail: cvale@swin.edu.au [ARC Centre of Excellence for Quantum Atom Optics, Swinburne University of Technology, Hawthorn 3122 (Australia)

    2011-01-10

    This paper presents studies of the universal properties of strongly interacting Fermi gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact C introduced by Tan, and their dependence on both the momentum and temperature. We show that short-range pair correlations obey a universal law, first derived by Tan through measurements of the static structure factor, which displays a universal scaling with the ratio of the contact to the momentum C/q. Bragg spectroscopy of ultracold {sup 6}Li atoms is employed to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We show that calibrating our Bragg spectra using the f-sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement. We also measure the temperature dependence of the contact in a unitary gas and compare our results to calculations based on a virial expansion.

  20. Enrico Fermi significato di una scoperta

    CERN Document Server

    2001-01-01

    Questo volume è la riedizione, rinnovata ed ampliata, del volume "Enrico Fermi. Significato di una scoperta" edito dal FIEN (Forum Italiano dell'Energia Nucleare) nel 1982 e nel 1992 in occasione, rispettivamente, del 40mo e del 50mo anniversario della pila di Fermi.

  1. Vacuum alignment and radiatively induced Fermi scale

    Directory of Open Access Journals (Sweden)

    Alanne Tommi

    2017-01-01

    Full Text Available We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.

  2. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    Science.gov (United States)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  3. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  4. Component separation in harmonically trapped boson-fermion mixtures

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Mølmer, Klaus

    1999-01-01

    We present a numerical study of mixed boson-fermion systems at zero temperature in isotropic and anise tropic harmonic traps. We investigate the phenomenon of component separation as a function of the strength ut the interparticle interaction. While solving a Gross-Pitaevskii mean-field equation ...... for the boson distribution in the trap, we utilize two different methods to extract the density profile of the fermion component; a semiclassical Thomas-Fermi approximation and a quantum-mechanical Slater determinant Schrodinger equation....

  5. Curiosities of arithmetic gases

    International Nuclear Information System (INIS)

    Bakas, I.; Bowick, M.J.

    1991-01-01

    Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail

  6. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  7. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  8. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  9. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  10. Fermi liquids from D-branes

    OpenAIRE

    Moshe RozaliDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Darren Smyth(Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada)

    2014-01-01

    We discuss finite density configurations on probe D-branes, in the presence of worldvolume fermions. To this end we consider a phenomenological model whose bosonic sector is governed by the DBI action, and whose charged sector is purely fermionic. In this model, we demonstrate the existence of a compact worldvolume embedding, stabilized by a Fermi surface on the D- brane. The finite density state in the boundary QFT is a Fermi-like liquid. We comment on the possibility of realizing non-Fermi ...

  11. Quantum mechanical models for the Fermi shuttle

    Science.gov (United States)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  12. Analytical thermodynamics of a strongly attractive three-component Fermi gas in one dimension

    International Nuclear Information System (INIS)

    He Peng; Yin Xiangguo; Wang Yupeng; Guan Xiwen; Batchelor, Murray T.

    2010-01-01

    Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic Bethe ansatz method in unequal Zeeman splitting fields H 1 and H 2 . We find explicitly that for low temperature the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.

  13. Localized and Extended States in a Disordered Trap

    International Nuclear Information System (INIS)

    Pezze, Luca; Sanchez-Palencia, Laurent

    2011-01-01

    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.

  14. Investigating tunable KRb gases and Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2015-01-01

    We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...... for dual-species condensates with tunable interactions. Employing the dual-species condensates, the miscible to immiscible phase transition was investigated. By applying an empirical model, the transition was used to determine the background scattering length. Two species quantum gases with tunable...

  15. Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains

    Science.gov (United States)

    Westley, Alexandra; Sen, Surajit

    Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.

  16. Fermi: a physicist in the upheaval

    International Nuclear Information System (INIS)

    Maria, M. de

    2002-01-01

    This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)

  17. Fermi's Conundrum: Proliferation and Closed Societies

    Science.gov (United States)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  18. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.

  19. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  20. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  1. Fuel gases in Algeria

    International Nuclear Information System (INIS)

    Arachiche, B.; Elandaloussi, H.

    1996-01-01

    For a country like Algeria, fuel gases represent an important economical challenge. To answer the increasing energy demand in the transportation sector, the use of fuel gases allows to preserve the petroleum reserves and to create specific industrial structures devoted to LPG-f (liquefied petroleum gas-fuel) and NGV (natural gas for vehicles). This paper presents the energy policy of Algeria, its reserves, production, and exportations of hydrocarbons and the internal rational use of energy sources according to its economic and environmental policy and to its internal needs. The energy consumption of Algeria in the transportation sector represents 2/3 of the petroleum products consumed in the internal market and follows a rapid increase necessary to the socio-economic development of the country. The Algerian experience in fuel gases is analysed according to the results of two successive experimentation periods for the development of NGV before and after 1994, and the resulting transportation and distribution network is described. The development of LPG-f has followed also an experimental phase for the preparation of regulation texts and a first statement of the vehicles conversion to LPG-f is drawn with its perspectives of development according to future market and prices evolutions. (J.S.)

  2. Conoscere Fermi nel centenario della nascita : 29 settembre 1901 - 2001

    CERN Document Server

    Bonolis, Luisa

    2001-01-01

    Il lavoro scientifico di Fermi riguarda molti campi disparati, ciascuno dei quali ha avuto uno sviluppo peculiare in tempi successivi alla morte. In questo volume un certo numero di specialisti contemporanei di ciascun settore espone in forma semplice l'idea originaria e la sua successiva evoluzione. INDICE. Carlo Bernardini, "Introduzione"; Giorgio Salvini, "Enrico Fermi. La sua vita, ed un commento alla sua opera"; Edoardo Amaldi, "Commemorazione del Socio Enrico Fermi"; Enrico Persico, "Commemorazione di Enrico Fermi"; Franco Rasetti, "Enrico Fermi e la Fisica Italiana"; Franco Bassani, "Enrico Fermi e la Fisica dello Stato Solido"; Giorgio Parisi, "La statistica di Fermi"; Giovanni Gallavotti, "La meccanica classica e la rivoluzione quantistica nei lavori giovanili di Fermi"; Tullio Levi-Civita, "Sugli invarianti adiabatici"; Bruno Bertotti, "Le coordinate di Fermi e il Principio di Equivalenza"; Marcello Cini, "Fermi e l'elettrodinamica quantistica"; Nicola Cabibbo. "Le interazioni deboli"; Ugo Amaldi, "...

  3. Energy–pressure relation for low-dimensional gases

    Directory of Open Access Journals (Sweden)

    Francesco Mancarella

    2014-10-01

    Full Text Available A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates, including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce

  4. Energy–pressure relation for low-dimensional gases

    International Nuclear Information System (INIS)

    Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea

    2014-01-01

    A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale

  5. Rare gases in Samoan xenoliths

    Science.gov (United States)

    Poreda, R. J.; Farley, K. A.

    1992-09-01

    The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.

  6. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  7. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  8. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  9. Radiolytic and thermal generation of gases from Hanford grout samples

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  10. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  11. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    Science.gov (United States)

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  12. Consistent calculation of the stopping power for slow ions in two-dimensional electron gases

    International Nuclear Information System (INIS)

    Wang, You-Nian; Ma, Teng-Gai

    1997-01-01

    Within the framework of quantum scattering theory, we present a consistent calculation of the stopping power for slow protons and antiprotons moving in two-dimensional electron gases. The Friedel sum rule is used to determine the screening constant in the scattering potential. For the stopping power our results are compared with that of the random-phase approximation dielectric theory and that predicted by the linear Thomas-Fermi potential. copyright 1997 The American Physical Society

  13. D-dimensional ideal quantum gases in Arn + Br-n potential

    International Nuclear Information System (INIS)

    Jellal, Ahmed

    2000-10-01

    The paper is concerned with thermostatistics of both D-dimensional Bose and Fermi ideal gases in a confining potential of type Ar n + Br -n . The investigation is performed in the framework of the semiclassical approximation. Some physical quantities for such systems are derived, like density of states, density profiles and number of particles. Bose-Einstein condensation (BEC) is discussed in the high and low temperature regimes. (author)

  14. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  15. Topology of Fermi surfaces and anomaly inflows

    Energy Technology Data Exchange (ETDEWEB)

    Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)

    2016-11-14

    We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

  16. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  17. Vortex lattices in a rotating Fermi superfluid in the BCS–BEC crossover with many Landau levels

    International Nuclear Information System (INIS)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-01-01

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover. - Highlights: ► We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. ► Decomposing the vortex from the condensate, we can explain the vortex lattice. ► The calculation is consistent with numerical and experimental data. ► It can characterize experimentally properties in different regimes of the BCS–BEC crossover.

  18. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    Science.gov (United States)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  19. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  20. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  1. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  2. The Fermi surface of CeSb

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Aoki, H.; Joss, W.; Hulliger, F.

    1987-01-01

    This paper uses accurate Fermi surface measurements as a test of hybridization models in CeSb. Detailed measurements of the Fermi surface geometry and effective masses are presented which show a number of unusual properties associated with the magnetic structure and anisotropy. Measurements are compared with predictions of a band structure in which the f-electron is assumed to be local, interacting with the conduction electrons only through anisotropic Coulomb and exchange interactions. This model reproduces all the unusual features observed in the measurements and suggests that hybridization is not essential to describing the electronic properties of CeSb

  3. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  4. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  5. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  6. Multiple-scale approach for the expansion scaling of superfluid quantum gases

    International Nuclear Information System (INIS)

    Egusquiza, I. L.; Valle Basagoiti, M. A.; Modugno, M.

    2011-01-01

    We present a general method, based on a multiple-scale approach, for deriving the perturbative solutions of the scaling equations governing the expansion of superfluid ultracold quantum gases released from elongated harmonic traps. We discuss how to treat the secular terms appearing in the usual naive expansion in the trap asymmetry parameter ε and calculate the next-to-leading correction for the asymptotic aspect ratio, with significant improvement over the previous proposals.

  7. Selective noble gases monitoring

    International Nuclear Information System (INIS)

    Janecka, S.; Jancik, O.; Kapisovsky, V.; Kubik, I.; Sevecka, S.

    1995-01-01

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: 88 Kr(67; 22) Bq/m 3 ; 85m Kr(17; 7) Bq/m 3 ; 135m Xe(7.1; 0.5) Bq/m 3 ; 138 Xe(5.9; 0.9) Bq/m 3 . (J.K.)

  8. Selective noble gases monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Janecka, S; Jancik, O; Kapisovsky, V; Kubik, I; Sevecka, S [Nuclear Power Plants Research Institute, a.s., Trnava (Slovakia)

    1996-12-31

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: {sup 88}Kr(67; 22) Bq/m{sup 3}; {sup 85m}Kr(17; 7) Bq/m{sup 3}; {sup 135m}Xe(7.1; 0.5) Bq/m{sup 3}; {sup 138}Xe(5.9; 0.9) Bq/m{sup 3}. (J.K.).

  9. Diffusive retention of atmospheric gases in chert

    Science.gov (United States)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal

  10. Competition Between Pairing and Ferromagnetic Instabilities in Ultracold Fermi Gases Near Feshbach Resonances

    Science.gov (United States)

    2010-05-13

    see the inset of Fig. 1). Thus, the two-body pairing process becomes for- bidden when the binding energy ∼ 1/ ma2 exceeds the maxi- mum energy that can...matrix in vacuum. For each value of the scattering length, the T-matrix has a line of poles on the BEC side located at ωq = Ωq+i∆q = −1/ ma2 + mq2/4

  11. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  12. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    Science.gov (United States)

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  13. Ground-state pressure of an ideal Fermi gas

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    A simple relationship between the pressure, internal energy and Fermi energy of an ideal ultra-degenerate Fermi gas is derived in two ways. The conditions for its validity and its use in simplifying calculations are discussed

  14. Large optical conductivity of Dirac semimetal Fermi arc surface states

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  15. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  16. Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas

    Science.gov (United States)

    Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud

    2016-06-01

    The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.

  17. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  18. Isotopic studies of rare gases in terrestrial samples and in natural nucleosynthesis

    International Nuclear Information System (INIS)

    Reynolds, J.H.

    1988-08-01

    This project is concerned with research in rare gas mass spectrometry. The broad objective is to read the natural record that isotopes of the rare gases comprise as trace constituents of natural gases, rocks, and meteorites. In past years, these interests have led to the study of such diverse problems as the dating of rocks, the early chronology and isotopic structure of the solar system as revealed by extinct radioactivities, and the elemental and isotopic composition of trapped primordial rare gases in meteorites. In recent years, the project has focused progressively more on terrestrial problems

  19. Isotopic studies of rare gases in terrestrial samples and in natural nucleosynthesis

    International Nuclear Information System (INIS)

    1987-07-01

    This project is concerned with research in rare gas mass spectrometry. The broad objective is to read the natural record that isotopes of the rare gases comprise as trace constituents of natural gases, rocks, and meteorites. In past years, these interests have led to the study of such diverse problems as the dating of rocks, the early chronology and isotopic structure of the solar system as revealed by extinct radioactivities, and the elemental and isotopic composition of trapped primordial rare gases in meteorites. In recent years, the project has focused progressively more on terrestrial problems

  20. The Fermi GBM catalog (Paciesas+, 2012) [Dataset

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11 on a mission to study the universe at high energies. The onboard Gamma-ray Burst Monitor (GBM) trigger system for detecting GRBs was first enabled on 2008 July 12. In this paper, we provide a catalog of GRBs that triggered the GBM

  1. Modelling of Graphene Nanoribbon Fermi Energy

    International Nuclear Information System (INIS)

    Johari, Z.; Ahmadi, M.T.; Chek, D.C.Y.; Amin, N.A.; Ismail, R.

    2010-01-01

    Graphene nano ribbon (GNR) is a promising alternative to carbon nano tube (CNT) to overcome the chirality challenge as a nano scale device channel. Due to the one-dimensional behavior of plane GNR, the carrier statistic study is attractive. Research works have been done on carrier statistic study of GNR especially in the parabolic part of the band structure using Boltzmann approximation (nondegenerate regime). Based on the quantum confinement effect, we have improved the fundamental study in degenerate regime for both the parabolic and non parabolic parts of GNR band energy. Our results demonstrate that the band energy of GNR near to the minimum band energy is parabolic. In this part of the band structure, the Fermi-Dirac integrals are sufficient for the carrier concentration study. The Fermi energy showed the temperature-dependent behavior similar to any other one-dimensional device in nondegenerate regime. However in the degenerate regime, the normalized Fermi energy with respect to the band edge is a function of carrier concentration. The numerical solution of Fermi-Dirac integrals for non parabolic region, which is away from the minimum energy band structure of GNR, is also presented.

  2. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...

  3. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  4. Vacuum alignment and radiatively induced Fermi scale

    DEFF Research Database (Denmark)

    Alanne, Tommi

    2017-01-01

    We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges ...

  5. Fermi: a physicist in the upheaval; Fermi: un physicien dans la tourmente

    Energy Technology Data Exchange (ETDEWEB)

    Maria, M. de

    2002-07-01

    This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)

  6. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    Science.gov (United States)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  7. Radio core dominance of Fermi blazars

    Science.gov (United States)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.

  8. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  9. Trap-size scaling in confined-particle systems at quantum transitions

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  10. Expansions of Fermi and symmetrized Fermi integrals and applications in nuclear physics

    International Nuclear Information System (INIS)

    Grypeos, M.; Koutroulos, C.; Luk'yanov, V.; Shebeko, A.

    1998-01-01

    A detailed study is undertaken, using various techniques, in deriving expansions of integrals containing the Fermi or the symmetrized Fermi distributions. The results are presented in a mathematically compact form and consist of generalizations and extensions of previously known expansions. The relevance of the results to quantities of interest in nuclear physics is recalled and particular attention is paid to the so-called exponentially small terms which may play an essential role in certain cases

  11. FermiGrid—experience and future plans

    Science.gov (United States)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  12. FermiGrid - experience and future plans

    International Nuclear Information System (INIS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.

    2007-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems

  13. FermiGrid-experience and future plans

    International Nuclear Information System (INIS)

    Chadwick, K; Berman, E; Canal, P; Hesselroth, T; Garzoglio, G; Levshina, T; Sergeev, V; Sfiligoi, I; Sharma, N; Timm, S; Yocum, D R

    2008-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems

  14. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    Science.gov (United States)

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  15. Trapping and Probing Antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan [UC Berkeley and LBNL

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  16. EBIT trapping program

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beck, B.; Beiersdorfer, P.; Church, D.; DeWitt, D.; Knapp, D.K.; Marrs, R.E.; Schneider, D.; Schweikhard, L.

    1993-01-01

    The LLNL electron beam ion trap provides the world's only source of stationary highly charged ions up to bare U. This unique capability makes many new atomic and nuclear physics experiments possible. (orig.)

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  19. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.T.; Swanson, B.I.

    1985-03-15

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C/sub 6/H/sub 5/NHCOCH/sub 3/) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering from acetanilide and its N-D and /sup 13/C-O substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the N-D and /sup 13/C-O substituted species the unusual temperature dependence in the 1650 cm/sup -1/ region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane N-H deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species. 20 references, 3 figures.

  20. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    Science.gov (United States)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  1. Economic Hazardous Gases Management for SOX Removal from Flue Gases

    International Nuclear Information System (INIS)

    Isaack, S.L.; Mohi, M.A.; Mohamed, S.T.

    1995-01-01

    Hazardous gases emerging from industries accumulate as pollutants in air and falls as acid rains resulting also in water and soil pollution. To minimize environmental pollution, the present process is suggested in order to desulfurize flue gases resulting from burning fuel oil in a 100/MWh steam power plant. The process makes use of the cheap Ca C O 3 powder as the alkaline material to sequistre the sulphur oxide gases. The resulting sulphur compounds, namely calcium sulphate and gypsum have a great market demand as reducing and sulphiting agents in paper industry and as an important building material. About 44000 ton of gypsum could be produced yearly when treating flue gases resulting from a 100 MWh unit burning fuel oil. Feasibility study shows that a great return on investment could be achieved when applying the process. 1 fig

  2. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  3. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  4. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    Science.gov (United States)

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  5. Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas

    Science.gov (United States)

    Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin

    2018-03-01

    We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.

  6. Magnetar Observations with Fermi/GBM

    Science.gov (United States)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  7. Excited Dark Matter versus PAMELA/Fermi

    CERN Document Server

    Cline, James M

    2010-01-01

    Excitation of multicomponent dark matter in the galactic center has been proposed as the source of low-energy positrons that produce the excess 511 keV gamma rays that have been observed by INTEGRAL. Such models have also been promoted to explain excess high-energy electrons/positrons observed by the PAMELA, Fermi/LAT and H.E.S.S. experiments. We investigate whether one model can simultaneously fit all three anomalies, in addition to further constraints from inverse Compton scattering by the high-energy leptons. We find models that fit both the 511 keV and PAMELA excesses at dark matter masses M < 400 GeV, but not the Fermi lepton excess. The conflict arises because a more cuspy DM halo profile is needed to match the observed 511 keV signal than is compatible with inverse Compton constraints at larger DM masses.

  8. Statistical mechanics of magnetized pair Fermi gas

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs

  9. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  10. Super-allowed Fermi beta-decay

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    2005-01-01

    A final analysis of J π =0 + ->0 + super-allowed Fermi transitions yields vertical bar V ud vertical bar 2 =0.9500±0.0007; vertical bar V ud vertical bar 2 + vertical bar V us vertical bar 2 + vertical bar V ub vertical bar 2 =0.9999±0.0011 with the operational vector coupling constant G V */(-bar c) 3 =(1.15052±0.00021)x10 -5 GeV -2

  11. Fermi acceleration in non-autonomous billiards

    International Nuclear Information System (INIS)

    Gelfreich, V; Turaev, D

    2008-01-01

    Fermi acceleration can be modelled by a classical particle moving inside a time-dependent domain and elastically reflecting from its boundary. In this paper, we describe how the results from the dynamical system theory can be used to explain the existence of trajectories with unbounded energy. In particular, we show for slowly oscillating boundaries that the energy of the particle may increase exponentially fast in time. (fast track communication)

  12. Quantum Impurity in a One-dimensional Trapped Bose Gas

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.

    2015-01-01

    We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate th...... the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases....

  13. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  14. Fermi/GBM Results of Magnetars

    Science.gov (United States)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  15. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  16. Physics with Trapped Antihydrogen

    Science.gov (United States)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  17. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  18. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  19. Ion trap device

    Science.gov (United States)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  20. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  1. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  2. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  3. Residual and Solubility trapping during Geological CO2 storage : Numerical and Experimental studies

    OpenAIRE

    Rasmusson, Maria

    2018-01-01

    Geological storage of carbon dioxide (CO2) in deep saline aquifers mitigates atmospheric release of greenhouse gases. To estimate storage capacity and evaluate storage safety, knowledge of the trapping mechanisms that retain CO2 within geological formations, and the factors affecting these is fundamental. The objective of this thesis is to study residual and solubility trapping mechanisms (the latter enhanced by density-driven convective mixing), specifically in regard to their dependency on ...

  4. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    Science.gov (United States)

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  5. SO2 sorption on fresh and aged SOx traps

    International Nuclear Information System (INIS)

    Limousy, L.; Mahzoul, H.; Brilhac, J.F.; Gilot, P.; Garin, F.; Maire, G.

    2003-01-01

    This study has an important impact on gasoline engine-pollution control working under lean conditions. While NO x trap systems can remove NO x under an oxidative atmosphere, they are poisoned by SO x present in the exhaust gases. In order to protect NO x traps, an upstream SO x trap has to be used. SO 2 adsorption was studied in the presence of water and oxygen. Model and commercial catalysts were tested between 300 and 700C. In order to assign the TPD peaks, the decomposition of commercial sulphates was studied versus the temperature. Adsorption capacity is not sensitive to oxygen and SO 2 concentrations but is strongly related to barium content. Cerium content is not a key parameter for SO 2 adsorption capacity in the presence of oxygen. XPS analysis allowed us to differentiate between all the species formed during the adsorption process. When the catalysts are aged, specific surface area decreases as well as adsorption capacity

  6. Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Bellotti, Filipe Furlan; Zinner, Nikolaj Thomas

    2017-01-01

    are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using...... a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different...

  7. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    Science.gov (United States)

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  8. Induced interactions in a superfluid Bose-Fermi mixture

    DEFF Research Database (Denmark)

    Kinnunen, Jami; Bruun, Georg

    2015-01-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...

  9. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  10. WATER-TRAPPED WORLDS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2013-01-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO 2 as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe

  11. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  12. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  13. Trapped Fermions with Density Imbalance in the Bose-Einstein Condensate Limit

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2006-01-01

    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms

  14. Dynamics of optical matter creation and annihilation in colloidal liquids controlled by laser trapping power.

    Science.gov (United States)

    Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A

    2008-11-15

    We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

  15. Correlated fermionic densities for many harmonically trapped particles interacting with repulsive forces

    International Nuclear Information System (INIS)

    Glasser, M.L.; March, N.H.; Nieto, L.M.

    2010-01-01

    This study is motivated by the very recent work on correlation energy as approximated by the Thomas-Fermi (TF) semiclassical limit [B.R. Landry, et al., Phys. Rev. Lett. 103 (2009) 066401]. In contrast, and motivated by the Hohenberg-Kohn theorem, our work is focussed primarily on the correlated TF ground-state density. We invoke directly the Holas et al. result that for two-fermion systems with harmonic trapping, the fermion-fermion interaction u simply adds to the trapping potential. We conclude this report with some results on correlation kinetic energy for two-fermion systems.

  16. em>d-wave superfluid with gapless edges in a cold-atom trap

    DEFF Research Database (Denmark)

    Larsen, Anne-Louise Gadsbølle; Francis Song, H.; Le Hur, Karyn

    2012-01-01

    and competing phases. In particular, at low temperatures, this allows the realization of a d-wave superfluid region surrounded by purely (gapless) normal edges. Solving the Bogoliubov–de Gennes equations and comparing them with the local density approximation, we show that the proximity to the Mott insulator...... is revealed by a downturn of the Fermi liquid order parameter at the center of the trap where the d-wave gap has a maximum. The density profile evolves linearly with distance....

  17. Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas

    OpenAIRE

    Akbari-Moghanjoughi, M.

    2012-01-01

    In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...

  18. Four-fermi anomalous dimension with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Ruano, Carlos Pena

    2014-01-01

    The four-fermi interaction can play an important role in models of strong dynamical EW sym- metry breaking if the anomalous dimensions of the four-fermi operators become large in the IR. We discuss a number of issues that are relevant for the nonperturbative computation of the four- fermi anomalous dimensions for the SU(2) gauge theory with two flavors of Dirac fermions in the adjoint representation, using a Schrödinger functional formalism.

  19. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  20. Thermodesorption of gases from various vacuum materials

    International Nuclear Information System (INIS)

    Beavis, L.C.

    1979-06-01

    A number of materials are commonly used as vacuum system walls. The desorption of gases from these materials may contribute significantly to the internal pressure of an unpumped device or to the gas load which a pump must handle in a dynamic system. This report describes the thermodesorption measurements made on a number of metals (molybdenum, nickel, Kovar alloy, copper, copper-2% beryllium alloy) and two insulators (molybdenum sealing glass ceramic and high alumina ceramic). All of the materials after typical cleaning and air exposure contain considerable gas. With a long 400 0 to 500 0 vacuum bake, however, all can be cleaned sufficiently so that they will not contribute appreciable gas to their surrounding when vacuum stored at room temperature for many years. Most materials display desorption kinetics which are first order (a single bond or trap energy must be overcome for desorption). It appears that the desorption of CO from Kovar is rate limited by carbon diffusion (D 0 approx. = .4 cm 2 /s and E/sub d/ approx. = 27,000 cal/mol). The desorption of hydrogen from glass ceramic also appears to be diffusion rate limited (D 0 approx. = 1 x 10 -3 cm 2 /s and E/sub d/ approx. = 11,000 cal/mol). Carbon monoxide is the major gas desorbed from metals, except copper for which hydrogen is the major desorbing species. The insulators desorb hydrogen primarily

  1. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  2. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  3. Fermi states of Bose systems in three space dimensions

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1985-01-01

    Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified

  4. Fermi GBM: Highlights from the First Year

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2009-01-01

    The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.

  5. Fermi GBM Observations of Terrestrial Gamma Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  6. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  7. [Trapping techniques for Solenopsis invicta].

    Science.gov (United States)

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  8. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  9. Degenerate quantum gases with spin-orbit coupling: a review.

    Science.gov (United States)

    Zhai, Hui

    2015-02-01

    This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

  10. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  11. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  12. Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation

    International Nuclear Information System (INIS)

    Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.

    2004-01-01

    We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices

  13. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  14. Searching for perfect fluids: quantum viscosity in a universal Fermi gas

    International Nuclear Information System (INIS)

    Cao, C; Elliott, E; Wu, H; Thomas, J E

    2011-01-01

    We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.

  15. FERMI/LAT OBSERVATIONS OF LS 5039

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.

    2009-01-01

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 ± 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 ± 0.5(stat) ± 1.8(syst) x10 -7 photon cm -2 s -1 , with a cutoff at 2.1 ± 0.3(stat) ± 1.1(syst) GeV and photon index Γ = 1.9 ± 0.1(stat) ± 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  16. THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: francesco.depalma@ba.infn.it, E-mail: t.j.brandt@nasa.gov, E-mail: john.w.hewitt@unf.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  17. Fermi's Paradox - The Last Challenge For Copernicanism?

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2009-06-01

    Full Text Available We review Fermi's paradox (or the "Great Silence" problem, not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI, but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle -- and a quarter of century since the last major review paper in the field by G. David Brin -- has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literatureon the subject. Finally, we consider the ramifications of variousclasses of hypotheses for the practical SETI projects. Somewhatparadoxically, it seems that the class of (neocatastrophichypotheses gives, on the balance, the strongest justification tooptimism regarding our current and near-future SETI efforts.

  18. Bosonic Analogue of Dirac Composite Fermi Liquid

    Science.gov (United States)

    Mross, David; Alicea, Jason; Motrunich, Olexei

    The status of particle-hole symmetry has long posed a challenge to the theory of the quantum Hall effect. It is expected to be present in the half-filled Landau level, but is absent in the conventional field theory, i.e., the composite Fermi liquid. Recently, Son proposed an alternative, explicitly particle-hole symmetric theory which features composite fermions that exhibit a Dirac dispersion. In my talk, I will introduce an analogous particle-hole-symmetric metallic state of bosons at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 Ï Berry flux, protected by particle-hole and discrete rotation symmetries. As in the Dirac composite Fermi liquid introduced by Son, breaking particle-hole symmetry recovers the familiar Chern-Simons theory. I will discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as its signatures in experiments and simulations.

  19. Orientifolding of the ABJ Fermi gas

    International Nuclear Information System (INIS)

    Okuyama, Kazumi

    2016-01-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of N=5O(n)×USp(n"′) theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few “half-instanton” corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k=2,4,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k=2,4 we prove the functional relations among the grand partition functions conjectured in http://arxiv.org/abs/1410.7658.

  20. Orientifolding of the ABJ Fermi gas

    Science.gov (United States)

    Okuyama, Kazumi

    2016-03-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.

  1. THE SPECTRAL INDEX PROPERTIES OF FERMI BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J. H.; Yang, J. H.; Yuan, Y. H.; Wang, J.; Gao, Y., E-mail: jhfan_cn@yahoo.com.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)

    2012-12-20

    In this paper, a sample of 451 blazars (193 flat spectrum radio quasars (FSRQs), 258 BL Lacertae objects) with corresponding X-ray and Fermi {gamma}-ray data is compiled to investigate the correlation both between the X-ray spectral index and the {gamma}-ray spectral index and between the spectral index and the luminosity, and to compare the spectral indexes {alpha}{sub X}, {alpha}{sub {gamma}}, {alpha}{sub X{gamma}}, and {alpha}{sub {gamma}X{gamma}} for different subclasses. We also investigated the correlation between the X-ray and the {gamma}-ray luminosity. The following results have been obtained. Our analysis indicates that an anti-correlation exists between the X-ray and the {gamma}-ray spectral indexes for the whole sample. However, when we considered the subclasses of blazars (FSRQs, the low-peaked BL Lacertae objects (LBLs) and the high-peaked BL Lacertae objects (HBLs)) separately, there is not a clear relationship for each subclass. Based on the Fermi-detected sources, we can say that the HBLs are different from FSRQs, while the LBLs are similar to FSRQs.

  2. Massive Fermi gas in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, Andreas, E-mail: atrautner@uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany)

    2017-03-01

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.

  3. Fermi's paradox: The last challenge for copernicanism?

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    2009-01-01

    Full Text Available We review Fermi's paradox (or the 'Great Silence' problem, not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI, but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle and a quarter of century since the last major review paper in the field by G. David Brin has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literature on the subject. Finally, we consider the ramifications of various classes of hypotheses for the practical SETI projects. Somewhat paradoxically, it seems that the class of (neocatastrophic hypotheses gives, on the balance, the strongest justification to optimism regarding our current and near-future SETI efforts.

  4. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  5. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  6. Transport processes in ionized gases

    International Nuclear Information System (INIS)

    Kremer, G.M.

    1997-01-01

    Based on kinetic theory of gases and on the combined of Chapman-Enskog and Grad, the laws of Ohm, Fourier and Navier-Stokes are derived for a non-relativistic fully ionized gas. Moreover, the combined method is applied to the BGK model of the relativistic Boltzmann equation and the Ohm's law is derived for a relativistic fully ionized gas. (author)

  7. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  8. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  9. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  10. Tan's distributions and Fermi-Huang pseudopotential in momentum space

    DEFF Research Database (Denmark)

    Valiente, Manuel

    2012-01-01

    form of the Fourier-transformed pseudopotential remains very simple. Operator forms for the so-called Tan's selectors, which, together with Fermi-Huang pseudopotential, largely simplify the derivation of Tan's universal relations for the Fermi gas, are here derived and are also very simple. A momentum...

  11. "Where is Everybody?" An Account of Fermi's Question

    Science.gov (United States)

    Jones, E. M.

    1985-03-01

    Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  12. Time domain astronomy with Swift and Fermi | Gehrels | Rwanda ...

    African Journals Online (AJOL)

    Swift and Fermi are unveiling an unexpectedly rich tapestry of behavior in the transient γ−ray sky. Sources which were already known to be transient − such as pulsars, gamma-ray bursts, and blazars − have been studied in ever-increasing detail. For example, Fermi/LAT has detected 117 pulsars of which 56 are new.

  13. On the quantization of spin systems and Fermi systems

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Sirugue, M.

    1978-03-01

    It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure

  14. Fermi liquid description of relativistic high density matter

    Science.gov (United States)

    Pal, K.; Dutt-Mazumder, A. K.

    2011-06-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT).

  15. Many-body pairing in a two-dimensional Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Neidig, Mathias

    2017-05-24

    This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be used to simulate key aspects of more complicated systems like for example cuprates which show high-T{sub c} superconductivity. The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice geometry was measured to obtain the coherence properties. For shallow lattices, sharp peaks in the momentum distribution, indicating coherence, were observed at zero momentum as well as at positive and negative lattice momenta along each axis. For deeper lattices, heating impeded the ability to prepare a Mott-insulator. A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi gas in the normal phase throughout the BEC-BCS crossover. The interaction induced energy shifts were measured in the strongly interacting region where they can be on the order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset of pairing in the strongly interacting region was measured as a function of temperature and it was shown that the fraction of free atoms decreases faster than expected from thermal non-interacting theory. At last, the pairing gap was measured using an imbalanced sample. On the BEC side it was found to be in very good agreement with two-body physics as expected. In the strongly interacting regime, however, a deviation from two-body physics indicates that here many-body effects play a role and thus further studies are required.

  16. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  17. Efficiency of utilization of heat of moisture from exhaust gases of heat HRSG of CCGT

    OpenAIRE

    Galashov Nikolay; Tsibulskiy Svyatoslav; Mel’nikov Denis; Kiselev Alexandr; Gabdullina Al’bina

    2017-01-01

    The paper discusses the technology of utilizing the heat of exhaust gas moisture from heat recovery steam gases (HRSG) of combined-cycle gas turbine (CCGT). Particular attention focused on the influence of the excess air factor on the trapping of the moisture of the exhaust gases, as in the HRSG of the CCGT its value varies over a wider range than in the steam boilers of the TPP. For the research, has been developed a mathematical model that allows to determine the volumes of combustion produ...

  18. Electron capture detection of sulphur gases in carbon dioxide at the parts-per-billion level

    International Nuclear Information System (INIS)

    Pick, M.E.

    1979-01-01

    A gas chromatograph with an electron capture detector has been used to determine sulphur gases in CO 2 at the parts-per-billion level, with particular application to the analysis of coolant from CO 2 cooled nuclear reactors. For COS, CS 2 , CH 3 SH, H 2 S and (CH 3 ) 2 S 2 the detector has a sensitivity comparable with the more commonly used flame photometric detector, but it is much less sensitive towards (CH 3 ) 2 S and thiophene. In addition, the paper describes a simple method for trapping sulphur gases which might enable detection of sub parts-per-billion levels of sulphur compounds. (Auth.)

  19. Permanent magnetic lattices for ultracold atoms and quantum degenerate gases

    International Nuclear Information System (INIS)

    Ghanbari, Saeed; Kieu, Tien D; Sidorov, Andrei; Hannaford, Peter

    2006-01-01

    We propose the use of periodic arrays of permanent magnetic films for producing magnetic lattices of microtraps for confining, manipulating and controlling small clouds of ultracold atoms and quantum degenerate gases. Using analytical expressions and numerical calculations we show that periodic arrays of magnetic films can produce one-dimensional (1D) and two-dimensional (2D) magnetic lattices with non-zero potential minima, allowing ultracold atoms to be trapped without losses due to spin flips. In particular, we show that two crossed layers of periodic arrays of parallel rectangular magnets plus bias fields, or a single layer of periodic arrays of square-shaped magnets with three different thicknesses plus bias fields, can produce 2D magnetic lattices of microtraps having non-zero potential minima and controllable trap depth. For arrays with micron-scale periodicity, the magnetic microtraps can have very large trap depths (∼0.5 mK for the realistic parameters chosen for the 2D lattice) and very tight confinement

  20. Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    CERN Document Server

    Iizuka, Norihiro; Narayan, Prithvi; Trivedi, Sandip P

    2012-01-01

    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.

  1. Fermi liquid and non-Fermi liquid in M-channel N fold degenerate anderson lattice

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Ono, Yoshiaki; Matsuura, Tamifusa; Kuroda, Yoshihiro; Kobayashi, Akito; Deguchi, Ken

    1999-01-01

    We investigate Fermi liquid in the single-channel U-infinite N fold degenerate Anderson lattice with use of the expansion from the large limit of the spin-orbital degeneracy N. By collecting all diagrams up to O(N -2 ) of the imaginary part of the self-energy of the conduction electrons, the sum of those is shown to be given by a form proportional to ω 2 + π 2 T 2 up to O(N -2 ) in the single-channel model. On the other hand, the imaginary part of the self-energy of O(N -1 ) in the multichannel model has more singular frequency-/temperature-dependence, so the system is regarded as non-Fermi liquid. (author)

  2. Fermi Observation of GRB 080916C

    International Nuclear Information System (INIS)

    Piron, F.

    2009-01-01

    We present the observations of the long-duration Gamma-Ray Burst GRB 080916C by the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT). This event was observed from 8 keV to a photon with an energy of 13.2 GeV. It develops over a 1400 s interval during which the highest number of photons with energy above 100 MeV are detected from a burst. The onset of the high-energy (>100 MeV) emission is delayed by ∼4.5 s with respect to the low-energy (<1 MeV) emission, which is not detected past 200 s. The broad-band spectrum of the burst is consistent with a single spectral form.

  3. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  4. FermiLib v0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-27

    FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ, as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.

  5. Fermi-LAT observation of nonblazar AGNs

    Science.gov (United States)

    Sahakyan, N.; Baghmanyan, V.; Zargaryan, D.

    2018-06-01

    Context. Fermi Large Area Telescope (Fermi-LAT) has recently detected γ-ray emission from active galactic nuclei (AGN) that do not show clear evidence for optical blazar characteristics or have jets pointing away from the observer (nonblazar AGNs). These are interesting γ-ray emitters providing an alternative approach to studying high energy emission processes. Aims: This paper investigates the spectral and temporal properties of γ-ray emission from nonblazar AGNs using the recent Fermi-LAT observational data. Methods: The data collected by Fermi-LAT during 2008-2015, from the observations of 26 nonblazar AGNs, including 11 Fanaroff-Riley Type I (FRI) and ten FRII radio galaxies and steep spectrum radio quasars (SSRQs) and five narrow line seyfert 1s (NLSy1s) are analysed using the new PASS 8 event selection and instrument response function. Possible spectral changes above GeV energies are investigated with a detailed spectral analysis. Light curves generated with normal and adaptive time bins are used to study the γ-ray flux variability. Results: Non-blazar AGNs have a γ-ray photon index in the range of 1.84-2.86 and a flux varying from a few times 10-9 photon cm-2 s-1 to 10-7 photon cm-2 s-1. Over long time periods, the power law provides an adequate description of the γ-ray spectra of almost all sources. Significant curvature is observed in the γ-ray spectra of NGC 1275, NGC 6251, SBS 0846 + 513, and PMN J0948 + 0022 and their spectra are better described by log parabola or by the power law with exponential cut-off models. The γ-ray spectra of PKS 0625-25 and 3C 380 show a possible deviation from a simple power-law shape, indicating a spectral cut-off around the observed photon energy of Ecut = 131.2 ± 88.04 GeV and Ecut = 55.57 ± 50.74 GeV, respectively. Our analysis confirms the previous finding of an unusual spectral turnover in the γ-ray spectrum of Cen A: the photon index changes from Γ = 2.75 ± 0.02 to 2.31 ± 0.1 at 2.35 ± 0.08 GeV. In the

  6. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  7. Theory of Fermi Liquid with Flat Bands

    Science.gov (United States)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  8. Electroweak interactions in a relativistic Fermi gas

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2006-01-01

    We present a relativistic model for computing the neutrino mean free path in neutron matter. In this model, neutron matter is described as a noninteracting Fermi gas in β equilibrium. We present results for the neutrino mean free path for temperatures of 0 to 50 MeV and a broad range of neutrino energies. We show that relativistic effects cause a considerable enhancement of neutrino-scattering cross sections in neutron matter. The influence of the Q 2 dependence in the electroweak form factors and the inclusion of a weak-magnetic term in the hadron current is discussed. The weak-magnetic term in the hadron current is at the origin of some selective spin dependence for the nucleons that are subject to neutrino interactions

  9. Entanglement rules for holographic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Dibakar, E-mail: dibakarphys@gmail.com

    2016-08-15

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  10. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  12. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  13. Adaptationism fails to resolve Fermi's paradox

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely. .

  14. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  15. Generalization of the Fermi-Segre formula

    International Nuclear Information System (INIS)

    Froeman, N.; Froeman, P.O.

    1981-01-01

    A generalization of the non-relativistic Fermi-Segre formula into a formula which is valid also for angular momentum quantum numbers l different from zero, is derived by means of a phase-integral method. The formula thus obtained, which gives an expression for the limit of u(r)/rsup(l+1) as r→0, where u(r) is a normalized bound-state radial wavefunction, in terms of the derivative of the energy level Esub(n'), with respect to the radial quantum number n', is an improvement and generalization of a formula which has been obtained by M.A. Bouchiat and C. Bouchiat. It reduces to their formula for a particular class of potentials and highly excited states with not too large values of l, and it reduces to the Fermi-Segre formula when l=0. The accuracy of our formula, as well as that of the Bouchiat-Bouchiat formula, is investigated by application to an exactly soluble model. The formula obtained can also be written in another form by replacing dEsub(n')/dn' by an expression involving a closed-loop integral in the complex r-plane (around the generalized classical turning points), the integrand being a phase-integral quantity expressed in terms of the potential in which the particle moves. It is also shown that the exact value of the limit of u(r)/rsup(l+1) as r→0 can be expressed as an expectation value of a certain function depending on the physical potential V(r) and r a swell as on l and Esub(n')

  16. Search for Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Berenji, Bijan [Stanford Univ., CA (United States)

    2012-09-19

    Large extra dimensions (LED) have been proposed to account for the apparent weakness of gravitation. These theories also indicate that the postulated massive Kaluza-Klein (KK) gravitons may be produced by nucleon-nucleon bremsstrahlung in the course of core collapse of supernovae. Hannestad and Raffelt have predicted energy spectra of gamma ray emission from the decay of KK gravitons trapped by the gravity of the remnant neutron stars (NS). These and other authors have used EGRET data on NS to obtain stringent limits on LED. Fermi-LAT is observing radio pulsar positions obtained from radio and x-ray catalogs. NS with certain characteristics are unlikely emitter of gamma rays, and emit in radio and perhaps x-rays. This talk will focus on the blind analysis we plan to perform, which has been developed using the 1st 2 months of all sky data and Monte Carlo simulations, to obtain limits on LED based on about 1 year of Fermi-LAT data. Preliminary limits from this analysis using these first 2 months of data will be also be discussed.

  17. Soliton Gases and Generalized Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien

    2018-01-01

    We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.

  18. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  19. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  20. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  1. Centrifugal separation of mixture gases

    International Nuclear Information System (INIS)

    Zhou, M.S.; Chen, W.N.; Yin, Y.T.

    2008-01-01

    An attempt for single centrifugal separation of mixtures with different molecular formula was presented in this paper. The mixtures of SF 6 and CCl 3 F, and SF 6 and CCl 4 were chosen as the processing gases, which were prepared in three mass ratios, 0.5, 0.8 and 0.2, respectively. The separating characteristics such as the overall separation factors and the variation of cuts were studied. (author)

  2. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  3. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  4. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  5. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  6. Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions

    NARCIS (Netherlands)

    Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M.P.; Vignolo, P.

    2004-01-01

    The achievement of Bose–Einstein condensation in ultra-cold vapours of alkali atoms has given enormous impulse to the study of dilute atomic gases in condensed quantum states inside magnetic traps and optical lattices. High-purity and easy optical access make them ideal candidates to investigate

  7. A novel solution for reducing the transfer of particles and gases among adjacent apartments

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza

    2016-01-01

    of the sealing membrane reduced the transfer of UFP up to 86% and reduced the transfer of N2O up to 87.5% in comparison with the transfers without the membrane. A similar procedure of measuring the transfer of UFP and gases was adapted in situ measurements. In situ the sealing membrane was able to reduce...... the transfer of UFP up to 53%. A survey regarding occupant’s perception of the performance of the sealing membrane was also conducted after 4 months post occupancy. Before the renovation, the occupants were continuously irritated by the cigarette smells from their neighbours. However, after renovation......A unique type of fabric membrane has been developed by a Swedish company. That membrane is design to trap the emission from surfaces. To test the performance of the said membrane for trapping particles and gases, a study was conducted by the Danish Building Research Institute (SBi). The study...

  8. On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit

    International Nuclear Information System (INIS)

    Wreszinski, Walter F

    2008-01-01

    The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)

  9. ATRAP - Progress Towards Trapped Antihydrogen

    International Nuclear Information System (INIS)

    Grzonka, D.; Goldenbaum, F.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; Hessels, E.A.; Storry, C.H.; Gabrielse, G.; Larochelle, P.; Lesage, D.; Levitt, B.; Speck, A.; Haensch, T.W.; Pittner, H.; Walz, J.

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s-2s transition in the hydrogen and the antihydrogen atom.Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen.For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP

  10. ATRAP Progress Towards Trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP.

  11. Recent Developments in Non-Fermi Liquid Theory

    Science.gov (United States)

    Lee, Sung-Sik

    2018-03-01

    Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

  12. Calibration of optically trapped nanotools

    Energy Technology Data Exchange (ETDEWEB)

    Carberry, D M; Simpson, S H; Grieve, J A; Hanna, S; Miles, M J [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Wang, Y; Schaefer, H; Steinhart, M [Institute for Chemistry, University of Osnabrueck, Osnabrueck (Germany); Bowman, R; Gibson, G M; Padgett, M J, E-mail: m.j.miles@bristol.ac.uk [SUPA, Department of Physics and Astronomy, University of Glasgow, Science Road, Glasgow G12 8QQ (United Kingdom)

    2010-04-30

    Holographically trapped nanotools can be used in a novel form of force microscopy. By measuring the displacement of the tool in the optical traps, the contact force experienced by the probe can be inferred. In the following paper we experimentally demonstrate the calibration of such a device and show that its behaviour is independent of small changes in the relative position of the optical traps. Furthermore, we explore more general aspects of the thermal motion of the tool.

  13. Towards a complete Fermi surface in underdoped high Tc superconductors

    Science.gov (United States)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  14. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    International Nuclear Information System (INIS)

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern

  15. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  16. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  17. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  18. X.509 Authentication/Authorization in FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunwoo [Fermilab; Timm, Steven [Fermilab

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  19. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  20. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  1. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  2. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  3. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    mammals. G.C. Hickman. An effective live-trap was designed for Cryptomys hottentotus .... that there is an animal in the burrow system, and to lessen the likelihood of the .... the further testing and modification of existing trap types. Not only is it ...

  4. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  5. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  6. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    International Nuclear Information System (INIS)

    Luxat, David L.; Griffin, Allan

    2002-01-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u 2 and v 2 amplitudes

  7. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  8. Detection of trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hydomako, Richard [Calgary Univ., AB (Canada). Dept. of Physics and Astronomy

    2013-02-01

    A landmark thesis describing the first ever trapping of antihydrogen atoms in CERN's ALPHA apparatus. Opens the way to crucial tests of fundamental theories. Nominated as an outstanding contribution by the University of Calgary. In 2010, the ALPHA collaboration achieved a first for mankind: the stable, long-term storage of atomic antimatter, a project carried out a the Antiproton Decelerator facility at CERN. A crucial element of this observation was a dedicated silicon vertexing detector used to identify and analyze antihydrogen annihilations. This thesis reports the methods used to reconstruct the annihilation location. Specifically, the methods used to identify and extrapolate charged particle tracks and estimate the originating annihilation location are outlined. Finally, the experimental results demonstrating the first-ever magnetic confinement of antihydrogen atoms are presented. These results rely heavily on the silicon detector, and as such, the role of the annihilation vertex reconstruction is emphasized.

  9. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Teaney, Derek

    2009-01-01

    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of ℎ/k B is bounded by a constant. Here, ℎ is Planck's constant and k B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that η/s ≥ ℎ/(4πk B ). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of η/s that are smaller than ℎ/k B . These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.

  10. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  11. Mechanics of liquids and gases

    CERN Document Server

    Loitsyanskii, L G; Jones, W P

    1966-01-01

    Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.

  12. Efficiency of utilization of heat of moisture from exhaust gases of heat HRSG of CCGT

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available The paper discusses the technology of utilizing the heat of exhaust gas moisture from heat recovery steam gases (HRSG of combined-cycle gas turbine (CCGT. Particular attention focused on the influence of the excess air factor on the trapping of the moisture of the exhaust gases, as in the HRSG of the CCGT its value varies over a wider range than in the steam boilers of the TPP. For the research, has been developed a mathematical model that allows to determine the volumes of combustion products and the amount of water vapor produced according to a given composition of the burned gas and determine the amount of moisture that will be obtained as a result of condensation at a given temperature of the flue gases at the outlet of the condensation heat exchanger (CHE. To calculate the efficiency of the HRSG taking into account the heat of condensation of moisture in the CHE an equation is derived.

  13. Distribution of inert gases in fines from the Cayley-Descartes region

    Science.gov (United States)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  14. Continuum approximation of the Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Martina, L.

    1979-01-01

    A continuum approximation method is applied in order to discuss the connection between some properties of the infinite Fermi-Pasta-Ulam lattice and the ones displayed by the Korteweg-de Vries equation

  15. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  16. Renormalization group and the superconducting susceptibility of a Fermi liquid

    International Nuclear Information System (INIS)

    Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.

    2010-01-01

    A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.

  17. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  18. Non-Fermi glasses: fractionalizing electrons at finite energy density

    Science.gov (United States)

    Parameswaran, Siddharth; Gopalakrishnan, Sarang

    Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.

  19. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  20. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  1. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  2. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  3. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others

    2014-01-21

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  4. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  5. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  6. Trapped surfaces in spherical stars

    International Nuclear Information System (INIS)

    Bizon, P.; Malec, E.; O'Murchadha, N.

    1988-01-01

    We give necessary and sufficient conditions for the existence of trapped surfaces in spherically symmetric spacetimes. These conditions show that the formation of trapped surfaces depends on both the degree of concentration and the average flow of the matter. The result can be considered as a partial validation of the cosmic-censorship hypothesis

  7. Angular correlations near the Fermi energy

    International Nuclear Information System (INIS)

    Fox, D.; Cebra, D.A.; Karn, J.

    1988-01-01

    Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra

  8. Three years of Transients with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument, sensitive between 8 keV and 40 MeV, with a primary objective of supporting the Large Area Telescope (LAT) in observations of Gamma-Ray Bursts (GRBs). Both instruments are part of the Fermi Gamma-ray Space Telescope. Together, the GBM and LAT instruments have provided ground-breaking measurements of GRBs that have, after 10 years of focus on GRB afterglows, inspired renewed interest in the prompt emission phase of GRBs and the physical mechanisms that fuel them. In addition to GRB science, GBM has made significant contributions to the astrophysics of galactic transient sources including long-term variations in the Crab nebula, spin state transitions in accretion powered pulsars, state transitions in black hole X-ray binaries, and unprecedented time-resolved spectral studies of soft gamma-ray repeater bursts. Closer to home, GBM also contributes to solar flare and terrestrial gamma flash science.

  9. The nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from 82 Sn to 170 Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z 2 /A exceeds about 100

  10. Dynamical Friedel oscillations of a Fermi sea

    Science.gov (United States)

    Zhang, J. M.; Liu, Y.

    2018-02-01

    We study the scenario of quenching an interaction-free Fermi sea on a one-dimensional lattice ring by suddenly changing the potential of a site. From the point-of-view of the conventional Friedel oscillation, which is a static or equilibrium problem, it is of interest what temporal and spatial oscillations the local sudden quench will induce. Numerically, the primary observation is that for a generic site, the local particle density switches between two plateaus periodically in time. Making use of the proximity of the realistic model to an exactly solvable model and employing the Abel regularization to assign a definite value to a divergent series, we obtain an analytical formula for the heights of the plateaus, which turns out to be very accurate for sites not too close to the quench site. The unexpect relevance and the incredible accuracy of the Abel regularization are yet to be understood. Eventually, when the contribution of the defect mode is also taken into account, the plateaus for those sites close to or on the quench site can also be accurately predicted. We have also studied the infinite lattice case. In this case, ensuing the quench, the out-going wave fronts leave behind a stable density oscillation pattern. Because of some interesting single-particle property, this dynamically generated Friedel oscillation differs from its conventional static counterpart only by the defect mode.

  11. Fermi surface study of CeSb

    International Nuclear Information System (INIS)

    Aoki, H.; Crabtree, G.W.; Joss, W.; Hulliger, F.

    1984-09-01

    A Fermi surface study of the ferromagnetic phase of CeSb is presented. The γ frequency branches arising from the electron surfaces at the X points, three separate frequency branches from the hole surfaces at the GAMMA point and the low frequency branch α have been observed. The effective mass ratios are low and range from approx. 0.2 for the α branch to approx. 1.0 for the high frequency branch of γ. The low effective mass ratios suggest that the admixture of the conduction states with the f state is small. We have observed a drastic change in the appearance of the dHvA signal at the phase transition between the ferromagnetic and lower field antiferromagnetic phases: The low frequency α oscillation suddenly disappears as the crystal enters the antiferromagnetic phase. By utilizing the change in the signal appearance, the transition field strength has been measured as a function of the field direction. The present experimental results, particularly the origin of the α oscillation, are discussed in the light of the p-f mixing theory and recent band structure calculations based on localized f orbitals

  12. Fermi surface study of CeSb

    International Nuclear Information System (INIS)

    Aoki, H.; Crabtree, G.; Joss, W.; Hulliger, F.

    1985-01-01

    A Fermi surface study of the ferromagnetic phase of CeSb is presented. The γ frequency branches arising from the electron surfaces at the X points, three separate frequency branches from the hole surfaces at the GAMMA point, and the low-frequency branch α have been observed. The effective mass ratios are low and range from approx.0.2 for the α branch to approx.1.0 for the high-frequency branch of γ. The low effective mass ratios suggest that the admixture of the conduction states with the f state is small. We have observed a drastic change in the appearance of the de Haas--van Alpen signal at the phase transition between the ferromagnetic and lower field antiferromagnetic phases: the low-frequency α oscillation suddenly disappears as the crystal enters the antiferromagnetic phase. By utilizing the change in the signal appearance, the transition field strength has been measured as a function of the field direction. The present experimental results particularly the origin of the α oscillation, are discussed in the light of the p-f mixing theory and recent band-structure calculations based on localized f orbitals

  13. Fermi surface mapping: Techniques and visualization

    International Nuclear Information System (INIS)

    Rotenberg, E.; Denlinger, J.D.; Kevan, S.D.

    1997-01-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS's. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS's, both bulk and surface

  14. Dark matter at the Fermi scale

    International Nuclear Information System (INIS)

    Feng, Jonathan L

    2006-01-01

    Recent breakthroughs in cosmology reveal that a quarter of the Universe is composed of dark matter, but the microscopic identity of dark matter remains a deep mystery. I review recent progress in resolving this puzzle, focusing on two well-motivated classes of dark matter candidates: weakly interacting massive particles (WIMPs) and superWIMPs. These possibilities have similar motivations: they exist in the same well-motivated particle physics models, the observed dark matter relic density emerges naturally and dark matter particles have mass around 100 GeV, the energy scale identified as interesting over 70 years ago by Fermi. At the same time, they have widely varying implications for direct and indirect dark matter searches, particle colliders, Big Bang nucleosynthesis, the cosmic microwave background, and halo profiles and structure formation. If WIMPs or superWIMPs are a significant component of dark matter, we will soon be entering a golden era in which dark matter will be studied through diverse probes at the interface of particle physics, astroparticle physics and cosmology. I outline a programme of dark matter studies for each of these scenarios and discuss the prospects for identifying dark matter in the coming years. (topical review)

  15. The Nuclear Thomas-Fermi Model

    Science.gov (United States)

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  16. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  17. Theory of two-dimensional fermi liquids: Pt. 3

    International Nuclear Information System (INIS)

    Cui Shimin; Cai Jianhua

    1990-01-01

    The transport properties and sound propagation of 2-D Fermi liquids are discussed. Microscopic expressions for the coefficients of diffusion, viscosity and thermal conductivity are derived using Resibois method. Velocities of the zeroth and first sounds are calculated. Based on an analysis of collision integral, it is shown that a series of relaxtion time parameters is necessary to define precisely the sound propagation properties in 2-D Fermi liquids in contrast to the 3-D case

  18. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  19. Fermi liquid description of relativistic high density matter

    International Nuclear Information System (INIS)

    Pal, K.; Dutt-Mazumder, A.K.

    2011-01-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT). (author)

  20. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  1. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  2. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    Science.gov (United States)

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  3. Fermi Large Area Telescope Operations: Progress Over 4 Years

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.; /SLAC

    2012-06-28

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  4. Fermi arc mediated entropy transport in topological semimetals

    Science.gov (United States)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  5. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  6. Mitigation of greenhouse gases in the energy sector: an overview

    International Nuclear Information System (INIS)

    Romani, M.N.

    1998-01-01

    It is fairly well recognised that greenhouse gases (GHG) have an impact on the global climate as they trap heat in the atmosphere. With the result earth is warmed in manner similar to the glass panels of a greenhouse increase. Hence the name 'green house effect' during the last two centuries in CO/sub 2/ in the atmosphere has been reckoned at 25%, with corresponding values for CH/sub 4/ and N/sub 2/O as 100% and 10% during 1950-80. CFC concentration increased by 10%. It is estimated that the earth has warmed by 0.5 deg. C and sea level has increased by 15 cm over the last 100 years or so. The major cause has been attributed to the process of industrialization. (author)

  7. Fermi level splitting and thermionic current improvement in low-dimensional multi-quantum-well (MQW) p-i-n structures

    International Nuclear Information System (INIS)

    Varonides, Argyrios C.

    2006-01-01

    Photo-excitation and subsequent thermionic currents are essential components of photo-excited carrier transport in multi-quantum-well photovoltaic (hetero-PV) structures. p-i-n multi-quantum structures are useful probes for a better understanding of PV device properties. Illumination of the intrinsic region of p-i-n multi-structures causes carrier trapping in any of the quantum wells, and subsequent carrier recombination or thermal escape is possible. At the vicinity of a quantum well, we find that the (quasi) Fermi levels undergo an upward split by a small, but non-negligible, energy amount ΔE F in the order of 12 meV. We conclude this fact by comparing the photo-excited carriers trapped in a quantum well, under illumination, to the carrier concentrations under dark. Based on such a prediction, we subsequently relate thermionic current density dependence on Fermi level splitting, concluding that excess thermal currents may increase by a factor of the order of 2. We conclude that illumination causes (a) Fermi level separation and (b) an apparent increase in thermionic currents

  8. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  9. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  10. Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps

    International Nuclear Information System (INIS)

    Lesanovsky, Igor; Klitzing, Wolf von

    2007-01-01

    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers

  11. Peltier heat measurements at a junction between materials exhibiting Fermi gas and Fermi liquid behaviour

    International Nuclear Information System (INIS)

    Kuznetsov, V L; Kuznetsova, L A; Rowe, D M

    2003-01-01

    The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl 3 , manganite La 0.7 Ca 0.3 MnO 3 and high-T c superconductor YBa 2 Cu 3 O 7δ . n- and p-Bi 2 Te 3 -based solid solutions as well as n-Bi 0.85 Sb 0.15 solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed

  12. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  13. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  14. No indications of axionlike particles from Fermi

    International Nuclear Information System (INIS)

    Belikov, Alexander V.; Goodenough, Lisa; Hooper, Dan

    2011-01-01

    As very high energy (> or approx. 100 GeV) gamma rays travel over cosmological distances, their flux is attenuated through interactions with the extragalactic background light. Observations of distant gamma ray sources at energies between ∼200 GeV and a few TeV by ground-based gamma-ray telescopes such as HESS, however, have motivated the possibility that the universe is more transparent to very high energy photons than had been anticipated. One proposed explanation for this is the existence of axionlike particles (ALPs) which gamma rays can efficiently oscillate into, enabling them to travel cosmological distances without attenuation. In this article, we use a state-of-the-art model for the extragalactic background light (which is somewhat lower at ∼μm wavelengths than in previous models) and data from the Fermi Gamma Ray Space Telescope to calculate the spectra at 1-100 GeV of two gamma-ray sources, 1ES1101-232 at redshift z=0.186 and H2356-309 at z=0.165, in conjunction with the measurements of ground-based telescopes, to test the ALP hypothesis. We find that these observations can be well fit by an intrinsic power-law source spectrum with indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that no ALPs or other exotic physics is necessary to explain the observed degree of attenuation. While this does not exclude the possibility that ALPs are involved in the cosmological propagation of gamma rays, it does reduce the motivation for such new physics.

  15. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  16. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  17. Quantum degenerate atomic gases in controlled optical lattice potentials

    Science.gov (United States)

    Gemelke, Nathan D.

    2007-12-01

    Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.

  18. Noble gases in nuclear medicine

    International Nuclear Information System (INIS)

    Calderon, M.; Burdine, J.A.

    1973-01-01

    Radioactive noble gases have made a significant contribution to diagnostic nuclear medicine. In the area of regional assessment of pulmonary function, 133 Xe has had its greatest clinical impact. Following a breath of 133 Xe gas, pulmonary ventilation can be measured using a scintillation camera or other appropriate radiation detector. If 133 Xe dissolved in saline is injected intravenously, both pulmonary capillary perfusion and ventilation can be measured since 90 percent of the highly insoluble xenon escapes into the alveoli during the first passage through the lungs. Radionuclide pulmonary function tests provide the first qualitative means of assessing lung ventilation and blood flow on a regional basis, and have recently been extended to include quantification of various parameters of lung function by means of a small computer interfaced to the scintillation camera. 133 Xe is also used in the measurement of organ blood flow following injection into a vessel leading into an organ such as the brain, heart kidneys, or muscles

  19. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  20. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.