Landau damping in trapped Bose condensed gases
Energy Technology Data Exchange (ETDEWEB)
Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)
2003-07-01
We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.
Condensate growth in trapped Bose gases
Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.
2000-01-01
We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.
Modified semiclassical approximation for trapped Bose gases
International Nuclear Information System (INIS)
Yukalov, V.I.
2005-01-01
A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed
Canonical statistics of trapped ideal and interacting Bose gases
International Nuclear Information System (INIS)
Xiong Hongwei; Liu Shujuan; Huang Guoxiang; Xu Zaixin
2002-01-01
The mean ground-state occupation number and condensate fluctuations of interacting and noninteracting Bose gases confined in a harmonic trap are considered by using a canonical ensemble approach. To obtain the mean ground-state occupation number and the condensate fluctuations, an analytical description for the probability distribution function of the condensate is provided directly starting from the analysis of the partition function of the system. For the ideal Bose gas, the probability distribution function is found to be a Gaussian one for the case of the harmonic trap. For the interacting Bose gas, using a unified approach the condensate fluctuations are calculated based on the lowest-order perturbation method and on Bogoliubov theory. It is found that the condensate fluctuations based on the lowest-order perturbation theory follow the law 2 N 0 >∼N, while the fluctuations based on Bogoliubov theory behave as N 4/3
Thermodynamic properties of rotating trapped ideal Bose gases
International Nuclear Information System (INIS)
Li, Yushan; Gu, Qiang
2014-01-01
Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.
Bose gases in one-dimensional harmonic trap
Indian Academy of Sciences (India)
dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in ...
Superfluid transition of homogeneous and trapped two-dimensional Bose gases.
Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck
2007-01-30
Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.
Bose gases in one-dimensional harmonic trap
Indian Academy of Sciences (India)
MS received 10 June 2015; revised 27 November 2015; accepted 22 December 2015; published online 21 September 2016 ... trap can be easily adjusted by Feshbach resonance tech- ... For convenience, the ground-state energy level is set.
Rotational states of Bose gases with attractive interactions in anharmonic traps
International Nuclear Information System (INIS)
Lundh, Emil; Collin, Anssi; Suominen, Kalle-Antti
2004-01-01
A rotated and harmonically trapped Bose gas with attractive interactions is expected to either remain stationary or escape from the trap. Here we report that, on the contrary, in an anharmonic trapping potential the Bose gas with attractive interactions responds to external rotation very differently, namely, through center-of-mass motion or by formation of vortices
Nonperturbative effects on Tc of interacting Bose gases in power-law traps
International Nuclear Information System (INIS)
Zobay, O.; Metikas, G.; Kleinert, H.
2005-01-01
The critical temperature T c of an interacting Bose gas trapped in a general power-law potential V(x)=Σ i U i vertical bar x i vertical bar p i is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T c fulfills the relation (T c -T c 0 )/T c 0 =D 1 (η)a+D ' (η)a 2η +O(a 2 ) with T c 0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T c , and η=1/2+Σ i p i -1 the potential-shape parameter. The terms D 1 (η)a and D ' (η)a 2η describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a 2η contribution is qualitatively explained in terms of the Ginzburg criterion
Classical region of a trapped Bose gas
Energy Technology Data Exchange (ETDEWEB)
Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)
2007-06-14
The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.
Bose condensation in (random traps
Directory of Open Access Journals (Sweden)
V.A. Zagrebnov
2009-01-01
Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.
Equation of state of the one- and three-dimensional Bose-Bose gases
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
Quantum Impurity in a One-dimensional Trapped Bose Gas
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.
2015-01-01
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate th...... the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases....
Temporal dynamics of Bose-condensed gases
Energy Technology Data Exchange (ETDEWEB)
Trujillo Martinez, Mauricio
2014-03-19
We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.
Vortices in trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Jackson, B.
2000-09-01
In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)
Bose-Einstein condensation of atomic gases
International Nuclear Information System (INIS)
Anglin, J. R.; Ketterle, W.
2003-01-01
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)
Investigating tunable KRb gases and Bose-Einstein condensates
DEFF Research Database (Denmark)
Jørgensen, Nils Byg
2015-01-01
We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...... for dual-species condensates with tunable interactions. Employing the dual-species condensates, the miscible to immiscible phase transition was investigated. By applying an empirical model, the transition was used to determine the background scattering length. Two species quantum gases with tunable...
Condensate growth in trapped Bose gates
Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.
2000-01-01
We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.
Relevance of Bose-Einstein condensation to the interference of two independent Bose gases
International Nuclear Information System (INIS)
Iazzi, Mauro; Yuasa, Kazuya
2011-01-01
Interference of two independently prepared ideal Bose gases is discussed, on the basis of the idea of measurement-induced interference. It is known that, even if the number of atoms in each gas is individually fixed finite and the symmetry of the system is not broken, an interference pattern is observed on each single snapshot. The key role is played by the Hanbury Brown and Twiss effect, which leads to an oscillating pattern of the cloud of identical atoms. Then, how essential is the Bose-Einstein condensation to the interference? In this work, we describe two ideal Bose gases trapped in two separate three-dimensional harmonic traps at a finite temperature T, using the canonical ensembles (with fixed numbers of atoms). We compute the full statistics of the snapshot profiles of the expanding and overlapping gases released from the traps. We obtain a simple formula valid for finite T, which shows that the average fringe spectrum (average fringe contrast) is given by the purity of each gas. The purity is known to be a good measure of condensation, and the formula clarifies the relevance of the condensation to the interference. The results for T=0, previously known in the literature, can be recovered from our analysis. The fluctuation of the interference spectrum is also studied, and it is shown that the fluctuation is vanishingly small only below the critical temperature T c , meaning that interference pattern is certainly observed on every snapshot below T c . The fact that the number of atoms is fixed in the canonical ensemble is crucial to this vanishing fluctuation.
Bose-Einstein condensates in atomic gases: simple theoretical results
International Nuclear Information System (INIS)
Castin, Y.
2001-01-01
The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)
Coherent tunneling of atoms from Bose-condensed gases at finite temperatures
International Nuclear Information System (INIS)
Luxat, David L.; Griffin, Allan
2002-01-01
Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u 2 and v 2 amplitudes
Thermodynamic Properties of a Trapped Interacting Bose Gas
Shi, Hualin; Zheng, Wei-Mou
1996-01-01
A Bose gas in an external potential is studied by means of the local density approximation. Analytical results are derived for the thermodynamic properties of an ideal Bose gas in a generic power-law trapping potential, and their dependence on the mutual interaction of atoms in the case of a non-ideal Bose gas.
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Energy Technology Data Exchange (ETDEWEB)
Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)
2002-12-14
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
International Nuclear Information System (INIS)
Albus, A P; Giorgini, S; Illuminati, F; Viverit, L
2002-01-01
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Bose-Einstein-condensed gases with arbitrary strong interactions
International Nuclear Information System (INIS)
Yukalov, V. I.; Yukalova, E. P.
2006-01-01
Bose-condensed gases are considered with an effective interaction strength varying in the whole range of the values between zero and infinity. The consideration is based on the usage of a representative statistical ensemble for Bose systems with broken global gauge symmetry. Practical calculations are illustrated for a uniform Bose gas at zero temperature, employing a self-consistent mean-field theory, which is both conserving and gapless
Interaction effects on dynamic correlations in noncondensed Bose gases
Bezett, A.; Van Driel, H. J.; Mink, M. P.; Stoof, H. T C; Duine, R. A.
2014-01-01
We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and we show how it depends on the
Bose-Einstein condensation of a relativistic Bose gas trapped in a general external potential
International Nuclear Information System (INIS)
Su Guozhen; Chen Jincan; Chen Lixuan
2006-01-01
Bose-Einstein condensation of an ideal relativistic Bose gas trapped in a generic power-law potential is investigated. The analytical expressions for some important parameters such as the critical temperature, ground-state fraction and heat capacity are derived. The general criteria on the occurrence of Bose-Einstein condensation and the discontinuity of heat capacity at the critical temperature are obtained. The results obtained here present a unified description for the Bose-Einstein condensation of a class of ideal Bose systems so that many important conclusions in the literature are included in this paper
Bose-Einstein condensation in atomic alkali gases
Dodd, Robert J.
1998-05-01
I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.
International Nuclear Information System (INIS)
Bahauddin, Shah Mohammad; Faruk, Mir Mehedi
2016-01-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas. (paper)
Linear spin waves in a trapped Bose gas
International Nuclear Information System (INIS)
Nikuni, T.; Williams, J.E.; Clark, C.W.
2002-01-01
An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.
Wang, Jianhui; He, Jizhou; Ma, Yongli
2011-05-01
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles
Directory of Open Access Journals (Sweden)
Minasyan V.
2011-10-01
Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.
On the number of Bose-selected modes in driven-dissipative ideal Bose gases
Schnell, Alexander; Ketzmerick, Roland; Eckardt, André
2018-03-01
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.
On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit
International Nuclear Information System (INIS)
Wreszinski, Walter F
2008-01-01
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)
Phase diagram for interacting Bose gases
International Nuclear Information System (INIS)
Morawetz, K.; Maennel, M.; Schreiber, M.
2007-01-01
We propose a modified form of the inversion method in terms of a self-energy expansion to access the phase diagram of the Bose-Einstein transition. The dependence of the critical temperature on the interaction parameter is calculated. This is discussed with the help of a condition for Bose-Einstein condensation in interacting systems which follows from the pole of the T matrix in the same way as from the divergence of the medium-dependent scattering length. A many-body approximation consisting of screened ladder diagrams is proposed, which describes the Monte Carlo data more appropriately. The specific results are that a non-self-consistent T matrix leads to a linear coefficient in leading order of 4.7, the screened ladder approximation to 2.3, and the self-consistent T matrix due to the effective mass to a coefficient of 1.3 close to the Monte Carlo data
The shear viscosity of a trapped Bose-condensed gas
International Nuclear Information System (INIS)
Shahzamanian, M.A.; Yavary, H.
2006-01-01
By obtaining Kubo formula type and using nonequilibrium Green's functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (T BEC ). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation
Comparison between microscopic methods for finite-temperature Bose gases
DEFF Research Database (Denmark)
Cockburn, S.P.; Negretti, Antonio; Proukakis, N.P.
2011-01-01
We analyze the equilibrium properties of a weakly interacting, trapped quasi-one-dimensional Bose gas at finite temperatures and compare different theoretical approaches. We focus in particular on two stochastic theories: a number-conserving Bogoliubov (NCB) approach and a stochastic Gross...... on different thermodynamic ensembles (NCB, canonical; SGPE, grand-canonical), they yield the correct condensate statistics in a large Bose-Einstein condensate (BEC) (strong enough particle interactions). For smaller systems, the SGPE results are prone to anomalously large number fluctuations, well known...
Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices
Kunimi, Masaya; Danshita, Ippei
2017-03-01
We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.
Yavari, H.; Mokhtari, M.
2014-03-01
The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).
Physical replicas and the Bose glass in cold atomic gases
International Nuclear Information System (INIS)
Morrison, S; Kantian, A; Daley, A J; Zoller, P; Katzgraber, H G; Lewenstein, M; Buechler, H P
2008-01-01
We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes
Physical replicas and the Bose glass in cold atomic gases
Energy Technology Data Exchange (ETDEWEB)
Morrison, S; Kantian, A; Daley, A J; Zoller, P [Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Katzgraber, H G [Theoretische Physik, ETH Zurich, CH-8093 Zuerich (Switzerland); Lewenstein, M [ICAO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels, Barcelona (Spain); Buechler, H P [Institute for Theoretical Physics III, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)], E-mail: sarah.morrison@uibk.ac.at
2008-07-15
We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes.
Spinor bose gases in cubic optical lattice
International Nuclear Information System (INIS)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-01
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Topological Coherent Modes in Trapped Bose Gas
International Nuclear Information System (INIS)
Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.
2005-01-01
The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production
Quench-Induced Breathing Mode of One-Dimensional Bose Gases
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-01
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Upper limit on the transition temperature for non-ideal Bose gases
International Nuclear Information System (INIS)
Dai Wusheng; Xie Mi
2007-01-01
In this paper, we show that for a non-ideal Bose gas there exists an upper limit on the transition temperature above which Bose-Einstein condensation cannot occur regardless of the pressure applied. Such upper limits for some realistic Bose gases are estimated
Ordered structures in rotating ultracold Bose gases
International Nuclear Information System (INIS)
Barberan, N.; Dagnino, D.; Lewenstein, M.; Osterloh, K.
2006-01-01
Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω
Double-well magnetic trap for Bose-Einstein condensates
International Nuclear Information System (INIS)
Thomas, N.R.; Wilson, A.C.; Foot, C.J.
2002-01-01
We present a magnetic trapping scheme for neutral atoms based on a hybrid of Ioffe-Pritchard and time-averaged orbiting potential traps. The resulting double-well magnetic potential has readily controllable barrier height and well separation. This offers a new tool for studying the behavior of Bose condensates in double-well potentials, and in particular for atom optics and interferometry. We formulate a description for the potential of this magnetic trap and discuss practical issues such as loading with atoms, evaporative cooling and manipulating the potential
Condensate statistics in interacting and ideal dilute bose gases
Kocharovsky; Kocharovsky; Scully
2000-03-13
We obtain analytical formulas for the statistics, in particular, for the characteristic function and all cumulants, of the Bose-Einstein condensate in dilute weakly interacting and ideal equilibrium gases in the canonical ensemble via the particle-number-conserving operator formalism of Girardeau and Arnowitt. We prove that the ground-state occupation statistics is not Gaussian even in the thermodynamic limit. We calculate the effect of Bogoliubov coupling on suppression of ground-state occupation fluctuations and show that they are governed by a pair-correlation, squeezing mechanism.
Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement
International Nuclear Information System (INIS)
Hao Ya-Jiang; Yin Xiang-Guo
2011-01-01
By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases. (general)
Composite fermion basis for two-component Bose gases
Meyer, Marius; Liabotro, Ola
The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.
On the Gross–Pitaevskii equation for trapped dipolar quantum gases
Carles, Ré mi; Markowich, Peter A; Sparber, Christof
2008-01-01
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.
On the Gross–Pitaevskii equation for trapped dipolar quantum gases
Carles, Rémi
2008-09-29
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.
Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore
2010-01-01
We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions
International Nuclear Information System (INIS)
Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L
2008-01-01
Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system
Pairing fluctuations in trapped Fermi gases
International Nuclear Information System (INIS)
Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario
2004-01-01
We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas
International Nuclear Information System (INIS)
Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M.P.; Vignolo, P.
2004-01-01
The achievement of Bose-Einstein condensation in ultra-cold vapours of alkali atoms has given enormous impulse to the study of dilute atomic gases in condensed quantum states inside magnetic traps and optical lattices. High-purity and easy optical access make them ideal candidates to investigate fundamental issues on interacting quantum systems. This review presents some theoretical issues which have been addressed in this area and the numerical techniques which have been developed and used to describe them, from mean-field models to classical and quantum simulations for equilibrium and dynamical properties. After an introductory overview on dilute quantum gases, both in the homogeneus state and under harmonic or periodic confinement, the article is organized in three main sections. The first concerns Bose-condensed gases at zero temperature, with main regard to the properties of the ground state in different confinements and to collective excitations and transport in the condensate. Bose-Einstein-condensed gases at finite temperature are addressed in the next section, the main emphasis being on equilibrium properties and phase transitions and on dynamical and transport properties associated with the presence of the thermal cloud. Finally, the last section is focused on theoretical and computational issues that have emerged from the efforts to drive gases of fermionic atoms and boson-fermion mixtures deep into the quantum degeneracy regime, with the aim of realizing novel superfluids from fermion pairing. The attention given in this article to methods beyond standard mean-field approaches should make it a useful reference point for future advances in these areas
Response of the Higgs amplitude mode of superfluid Bose gases in a three-dimensional optical lattice
Nagao, Kazuma; Takahashi, Yoshiro; Danshita, Ippei
2018-04-01
We study the Higgs mode of superfluid Bose gases in a three-dimensional optical lattice, which emerges near the quantum phase transition to the Mott insulator at commensurate fillings. Specifically, we consider responses of the Higgs mode to temporal modulations of the onsite interaction and the hopping energy. In order to calculate the response functions including the effects of quantum and thermal fluctuations, we map the Bose-Hubbard model onto an effective pseudospin-1 model and use a perturbative expansion based on the imaginary-time Green's function theory. We also include the effects of an inhomogeneous trapping potential by means of a local density approximation. We find that the response function for the hopping modulation is equal to that for the interaction modulation within our approximation. At the unit filling rate and in the absence of a trapping potential, we show that the Higgs mode can exist as a sharp resonance peak in the dynamical susceptibilities at typical temperatures. However, the resonance peak is significantly broadened due to the trapping potential when the modulations are applied globally to the entire system. We suggest that the Higgs mode can be detected as a sharp resonance peak by partial modulations around the trap center.
Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.
2016-02-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.
Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases
International Nuclear Information System (INIS)
Szirmai, Gergely; Szepfalusy, Peter; Kis-Szabo, Krisztian
2003-01-01
The finite temperature Green's function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23 Na and 87 Rb atoms
Trapped Bose gas. Mean-field approximation and beyond
International Nuclear Information System (INIS)
Pitaevskii, L.P.
1998-01-01
The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for observation of macroscopic quantum phenomena. There are two important features of the system - weak interaction and significant spatial inhomogeneity. Because of this inhomogeneity a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogoliubov theory. This theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ -function. The equation is classical in its essence but contains the ℎ constant explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. The study of deviations from the zeroth-order theory arising from zero-point and thermal fluctuations is also of great interest. Thermal fluctuations are described by elementary excitations which define the thermodynamic behaviour of the system and result in Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in the quantum collapse-revival of the collective oscillations. This phenomenon is considered in some details. Collapse time for the JILA experimental conditions turns out to be of the order of seconds. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Thermodynamics of two-parameter quantum group Bose and Fermi gases
International Nuclear Information System (INIS)
Algin, A.
2005-01-01
The high and low temperature thermodynamic properties of the two-parameter deformed quantum group Bose and Fermi gases with SU p/q (2) symmetry are studied. Starting with a SU p/q (2)-invariant bosonic as well as fermionic Hamiltonian, several thermodynamic functions of the system such as the average number of particles, internal energy and equation of state are derived. The effects of two real independent deformation parameters p and q on the properties of the systems are discussed. Particular emphasis is given to a discussion of the Bose-Einstein condensation phenomenon for the two-parameter deformed quantum group Bose gas. The results are also compared with earlier undeformed and one-parameter deformed versions of Bose and Fermi gas models. (author)
Non-equilibrium coherence dynamics in one-dimensional Bose gases.
Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J
2007-09-20
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.
Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases
2016-04-01
on Atomic Physics (ICAP), the biennial BEC Conference (“Frontiers in Quantum Gases ”) in Sant Feliu, DAMOP and the APS March Meeting. Our results can...turbulence have been studied in a wide variety of physical systems (from classical gases and water to superfluid helium) for many years. However, a system...112.040403 Featured in Physics Today [6] Observing properties of an interacting homogeneous Bose-Einstein condensate: Heisenberg-limited momentum
Merging and splitting of Bose-Einstein condensates into two translating traps
International Nuclear Information System (INIS)
Sun, B; Pindzola, M S
2009-01-01
We investigate the process of merging and splitting Bose-Einstein condensates into two slowly translating traps, analogous to a dual input atomic beam splitter. With the help of direct three-dimensional numerical simulations, we explore the dependence of population distributions on the initial relative phase and the trap moving speed. For non-interacting Bose-Einstein condensates, we find that our numerical results are in good agreement with a simple theoretical prediction. However, for interacting Bose-Einstein condensates, our results show striking differences with the non-interacting case: the Bose-Einstein condensates are always split towards 50:50 in the slow translation regime. This bosonic anti-bunching effect is interpreted as a consequence of complicated flow patterns due to atomic interactions.
Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps
International Nuclear Information System (INIS)
van Druten, N.J.; Ketterle, W.
1997-01-01
The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states. In the second step, at a significantly lower temperature, the ground state becomes macroscopically occupied. It should be possible to verify these predictions using present-day atom traps. The two-step behavior can occur in a rather general class of anisotropic traps, including the box potential. copyright 1997 The American Physical Society
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-01-01
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coh...
Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates
Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.
2002-01-01
We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.
Real-Time Dynamics of an Impurity in an Ideal Bose Gas in a Trap
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2015-01-01
We investigate the behavior of a harmonically trapped system consisting of an impurity in a dilute ideal Bose gas after the boson-impurity interaction is suddenly switched on. As theoretical framework, we use a field theory approach in the space-time domain within the T-matrix approximation. We...
Interference patterns of Bose-condensed gases in a two-dimensional optical lattice
International Nuclear Information System (INIS)
Liu Shujuan; Xiong Hongwei; Xu Zhijun; Huang Guoxiang
2003-01-01
For a Bose-condensed gas confined in a magnetic trap and in a two-dimensional (2D) optical lattice, the non-uniform distribution of atoms in different lattice sites is considered based on the Gross-Pitaevskii equation. A propagator method is used to investigate the time evolution of 2D interference patterns after (i) only the optical lattice is switched off, and (ii) both the optical lattice and the magnetic trap are switched off. An analytical description on the motion of side peaks in the interference patterns is presented by using the density distribution in a momentum space
Three-vortex configurations in trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.
2010-01-01
We report on the creation of three-vortex clusters in a 87 Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.
Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.
Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh
2016-12-01
We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.
Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.
Grossmann, S; Holthaus, M
1997-11-10
After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.
Schemes for loading a Bose-Einstein condensate into a two-dimensional dipole trap
International Nuclear Information System (INIS)
Colombe, Yves; Kadio, Demascoth; Olshanii, Maxim; Mercier, Brigitte; Lorent, Vincent; Perrin, Helene
2003-01-01
We propose two loading mechanisms of a degenerate Bose gas into a surface trap. This trap relies on the dipole potential produced by two evanescent optical waves far detuned from the atomic resonance, yielding a strongly anisotropic trap with typical frequencies 40 Hz x 65 Hz x 30 kHz. We present numerical simulations based on the time-dependent Gross-Pitaevskii equation of the transfer process from a conventional magnetic trap into the surface trap. We show that, despite a large discrepancy between the oscillation frequencies along one direction in the initial and final traps, a loading time of a few tens of milliseconds would lead to an adiabatic transfer. Preliminary experimental results are presented
Collective excitations of harmonically trapped ideal gases
Van Schaeybroeck, B.; Lazarides, A.
2009-01-01
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show
Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Franzosi, Roberto; Penna, Vittorio
2002-01-01
We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario based on the standard boson coherent states. We compare such a picture with that of K. Nemoto et al. [Phys. Rev. A 63, 013604 (2001)] and show how our approach entails a simple formulation of the dimeric regime therein studied. This allows us to recognize the parameters that govern the bifurcation mechanism causing self-trapping, and paves the way to the construction of analytic solutions
Macroscopic angular-momentum stages of Bose-Einstein condensates in toroidal traps
International Nuclear Information System (INIS)
Benakli, M.; Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We study the stability of a rotating repulsive-atom Bose-Einstein condensate in a toroidal trap. The resulting macroscopic angular-momentum states with integer vorticity l spread radially, lowering rotational energies. These states are robust against vorticity-lowering decays, with estimated metastability barriers capable of sustaining large angular momenta (1 < or ∼ 10) for typical parameters. We identify the centrifugally squashed l-dependent density profile as a possible signature of condensate rotation and superfluidity. (author)
International Nuclear Information System (INIS)
Javanainen, Juha
2010-01-01
We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate to behave essentially classically.
Trapped Fermions with Density Imbalance in the Bose-Einstein Condensate Limit
International Nuclear Information System (INIS)
Pieri, P.; Strinati, G.C.
2006-01-01
We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms
Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice
International Nuclear Information System (INIS)
Kevrekidis, P. G.; Carretero-Gonzalez, R.; Theocharis, G.; Frantzeskakis, D. J.; Malomed, B. A.
2003-01-01
We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schroedinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasiperiodic oscillations of the DS about the minimum of the parabolic trap
Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases
International Nuclear Information System (INIS)
Brandino, G. P.; Caux, J.-S.; Konik, R. M.
2015-01-01
Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.
Quantum correlations of ideal Bose and Fermi gases in the canonical ensemble
International Nuclear Information System (INIS)
Tsutsui, Kazumasa; Kita, Takafumi
2016-01-01
We derive an expression for the reduced density matrices of ideal Bose and Fermi gases in the canonical ensemble, which corresponds to the Bloch-De Dominicis (or Wick's) theorem in the grand canonical ensemble for normal-ordered products of operators. Using this expression, we study one- and two-body correlations of homogeneous ideal gases with N particles. The pair distribution function g (2) (r) of fermions clearly exhibits antibunching with g (2) (0) = 0 due to the Pauli exclusion principle at all temperatures, whereas that of normal bosons shows bunching with g (2) (0) ≈ 2, corresponding to the Hanbury Brown-Twiss effect. For bosons below the Bose-Einstein condensation temperature T 0 , an off-diagonal long-range order develops in the one-particle density matrix to reach g (1) (r) = 1 at T = 0, and the pair correlation starts to decrease towards g (2) (r) ≈ 1 at T = 0. The results for N → ∞ are seen to converge to those of the grand canonical ensemble obtained by assuming the average <ψ(r)> of the field operator ψ(r) below T 0 . This fact justifies the introduction of the 'anomalous' average <ψ(r)> ≠ 0 below T 0 in the grand canonical ensemble as a mathematical means of removing unphysical particle-number fluctuations to reproduce the canonical results in the thermodynamic limit. (author)
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-08-22
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.
International Nuclear Information System (INIS)
Naylor, B.
2016-01-01
This thesis presents experimental results performed with quantum gases of Chromium atoms. The specificity of Chromium resides in its large electronic spin s=3 and non negligible dipole-dipole interaction between atoms. We produced a new quantum gas, a Fermi sea of the "5"3Cr isotope. Optimization of the co-evaporation with the "5"2Cr bosonic isotope leads to 10"3 atoms at T/T_F = 0.66 ± 0.08. We obtained new results on thermodynamics of a spinor Bose gas. By 'shock cooling' a thermal multi-spin component gas, we find that the condensation dynamics is affected by spin changing collisions. We also demonstrate a new cooling mechanism based on the spin degrees of freedom when the Bose Einstein condensate (BEC) is in the lowest energy spin state. Dipolar interactions thermally populate spin excited states at low magnetic eld. The purification of the BEC is obtained by selectively removing these thermal atoms. Finally, we present spin dynamics experiments. In the first experiment, spin dynamics following the preparation of atoms in a double well trap in opposite stretch spin states allows the measurement of the last unknown scattering length of "5"2Cr: a_0 = (13.5+15-10) a_B (with a_B being the Bohr radius). We then present preliminary results performed in a 3D lattice and in the bulk, where spin excitation is performed by a spin rotation. We investigate for different experimental configurations which theory with or without quantum correlations fits best our data. (author)
International Nuclear Information System (INIS)
Wang Jianhui; Ma Yongli
2009-01-01
We generalize the scheme to characterize phase transitions of finite systems in a complex temperature plane and approach the classifications of phase transitions in ideal and weakly interacting Bose gases of a finite number of particles, confined in a cubic box of volume L 3 with different boundary conditions. For this finite ideal Bose system, by extending the classification parameters to all regions, we predict that the phase transition for periodic boundary conditions is of second order, while the transition in Dirichlet boundary conditions is of first order. For a weakly interacting Bose gas with periodic boundary conditions, we discuss the effects of finite particle numbers and inter-particle interactions on the nature of the phase transitions. We show that this homogenous weakly interacting Bose gas undergoes a second-order phase transition, which is in accordance with universality arguments for infinite systems. We also discuss the dependence of transition temperature on interaction strengths and particle numbers.
External meeting - Geneva University: A lab in a trap: quantum gases in optical lattices
2007-01-01
GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Monday 16 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium A lab in a trap: quantum gases in optical lattices by Prof. Tilman Esslinger / Department of Physics, ETH Zurich The field of ultra cold quantum gases has seen an astonishing development during the last ten years. With the demonstration of Bose-Einstein condensation in weakly interacting atomic gases a theoretical concept of unique beauty could be witnessed experimentally. Very recent developments have now made it possible to engineer atomic many-body systems which are dominated by strong interactions. A major driving force for these advances are experiments in which ultracold atoms are trapped in optical lattices. These systems provide anew avenue for designing and studying quantum many-body systems. Exposed to the crystal structure of interfering laser wave...
Fluctuation-induced forces in confined ideal and imperfect Bose gases
Diehl, H. W.; Rutkevich, Sergei B.
2017-06-01
Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d -dimensional films of size ∞d -1×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions ΥdBC(xλ=D /λth ,xξ=D /ξ ) of the residual reduced grand potential per area φres,dBC(T ,μ ,D ) =D-(d -1 )ΥdBC(xλ,xξ) are determined for the ideal gas case with these BCs, where λth and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions ΘdBC(xξ) ≡ΥdBC(∞ ,xξ) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O (2 ) theory for BC=P,A,DD,DN,NN . For d =3 , they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions ΥdBC(xλ,xξ,c1D ,c2D ) and ΘdR(xξ,c1D ,c2D ) under the RBCs (∂z-c1) ϕ |z=0=(∂z+c2) ϕ | z =D=0 with c1≥0 and c2≥0 are also determined. The corresponding scaling functions Υ∞,d P(xλ,xξ) and Θ∞,d P(xξ) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n →∞ . Hence, for d =3 , Θ∞,d P(xξ) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n →∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ∞,3 DD(xξ) therefore follow from those of the O (2 n ) ϕ4 model for n →∞ .
Fluctuation-induced forces in confined ideal and imperfect Bose gases.
Diehl, H W; Rutkevich, Sergei B
2017-06-01
Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d-dimensional films of size ∞^{d-1}×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions Υ_{d}^{BC}(x_{λ}=D/λ_{th},x_{ξ}=D/ξ) of the residual reduced grand potential per area φ_{res,d}^{BC}(T,μ,D)=D^{-(d-1)}Υ_{d}^{BC}(x_{λ},x_{ξ}) are determined for the ideal gas case with these BCs, where λ_{th} and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions Θ_{d}^{BC}(x_{ξ})≡Υ_{d}^{BC}(∞,x_{ξ}) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O(2) theory for BC=P,A,DD,DN,NN. For d=3, they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions Υ_{d}^{BC}(x_{λ},x_{ξ},c_{1}D,c_{2}D) and Θ_{d}^{R}(x_{ξ},c_{1}D,c_{2}D) under the RBCs (∂_{z}-c_{1})ϕ|_{z=0}=(∂_{z}+c_{2})ϕ|_{z=D}=0 with c_{1}≥0 and c_{2}≥0 are also determined. The corresponding scaling functions Υ_{∞,d}^{P}(x_{λ},x_{ξ}) and Θ_{∞,d}^{P}(x_{ξ}) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n→∞. Hence, for d=3, Θ_{∞,d}^{P}(x_{ξ}) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n→∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ_{∞,3}^{DD}(x_{ξ}) therefore follow from those of the O(2n)ϕ^{4} model for n→∞.
Conserving gapless mean-field theory for weakly interacting Bose gases
International Nuclear Information System (INIS)
Kita, Takafumi
2006-01-01
This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function Ψ and the Nambu Green's function G for the quasiparticle field. Imposing its stationarity respect to Ψ and G yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: 'conserving' and 'gapless'. The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near T c inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature T c shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case T c increases from the ideal gas value T 0 as T c /T 0 =1+2.33an 1/3 , whereas it decreases in the latter as T c /T 0 =1-3.84a(mp/2πℎ 2 ) 1/5 . Temperature dependences of basic thermodynamic quantities are clarified explicitly. (author)
Effect of Spatial Dimension and External Potential on Joule-Thomson Coefficients of Ideal Bose Gases
International Nuclear Information System (INIS)
Yuan Duqi; Wang Canjun
2010-01-01
Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (JTC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → T C (T C is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant Δ = [1 - Π[ n i=1 (kT/varpi i ) 1/t i Γ(1/t i + 1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, varpi i is the external field's energy), is obtained. The potential makes the JTC increase when Δ > 0, on the contrary, it makes the JTC decrease when Δ i < 1. (general)
Non-equilibrium coherence dynamics in one-dimensional Bose gases
DEFF Research Database (Denmark)
Hofferberth, S.; Lesanovsky, Igor; Fischer, B.
2007-01-01
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....
Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries
International Nuclear Information System (INIS)
Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.
2005-01-01
We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids
Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
International Nuclear Information System (INIS)
Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio
2003-01-01
We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse
International Nuclear Information System (INIS)
Julia-Diaz, B.; Dagnino, D.; Martorell, J.; Polls, A.; Lewenstein, M.
2010-01-01
We consider a Bose-Einstein condensate in a double-well potential undergoing a dynamical transition from the regime of Josephson oscillations to the regime of self-trapping. We analyze the statistical properties of the ground state (or the highest excited state) of the Hamiltonian in these two regimes for attractive (repulsive) interactions. We demonstrate that it is impossible to describe the transition within the mean-field theory. In contrast, the transition proceeds through a strongly correlated delocalized state, with large quantum fluctuations, and spontaneous breaking of the symmetry.
Symmetry breaking in small rotating clouds of trapped ultracold Bose atoms
International Nuclear Information System (INIS)
Dagnino, D.; Barberan, N.; Riera, A.; Osterloh, K.; Lewenstein, M.
2007-01-01
We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds
Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas
International Nuclear Information System (INIS)
Girardeau, M. D.
2011-01-01
A harmonically trapped, ultracold, one-dimensional (1D) spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a three-dimensional (3D) Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire-cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super-Tonks-Girardeau (STG) state, which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction, there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG state which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
Shrinking of a condensed fermionic cloud in a trap approaching the Bose-Einstein condensation limit
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Strinati, G. C.
2003-01-01
We determine the zero-temperature density profile of a cloud of fermionic atoms in a trap subject to a mutual attractive interaction, as the strength of the interaction is progressively increased. We find a significant decrease of the size of the atomic cloud as it evolves from the weak-coupling regime of overlapping Cooper pairs to the strong-coupling (Bose-Einstein) regime of nonoverlapping bound-fermion pairs. Most significantly, we find a pronounced increase of the value of the density at the center of the trap (even by an order of magnitude) when evolving between the two regimes. Our results are based on a generalized Thomas-Fermi approximation for the superfluid state, which covers continuously all coupling regimes
Macroscopic angular momentum states of Bose-Einstein condensates in toroidal traps
International Nuclear Information System (INIS)
Benakli, M.; Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.
1997-11-01
We consider a Bose-Einstein condensate (BEC) of N atoms of repulsive interaction ∼ U 0 , in an elliptical trap, axially pierced by a Gaussian-intensity laser beam, forming an effective (quasi-2D) toroidal trap with minimum at radial distance ρ = ρ p . The macroscopic angular momentum states Ψ l (ρ,θ) ∼ √NΦ l (ρ)e ilθ for integer l spread up to ρ max ∼ (NU 0 ) 1/4 >> ρ p . The spreading lowers rotational energies, so estimated low metastability barriers can support large l max ∼ (NU 0 ) 1/4 , l (ρ) 2 -Φ 0 (ρ) 2 is a signature of BEC rotation. Results are insensitive to off-axis laser displacements ρ 0 , for ρ 0 ρ max << 1. (author)
Validity of the lowest-Landau-level approximation for rotating Bose gases
International Nuclear Information System (INIS)
Morris, Alexis G.; Feder, David L.
2006-01-01
The energy spectrum for an ultracold rotating Bose gas in a harmonic trap is calculated exactly for small systems, allowing the atoms to occupy several Landau levels. Two vortexlike states and two strongly correlated states (the Pfaffian and Laughlin) are considered in detail. In particular, their critical rotation frequencies and energy gaps are determined as a function of particle number, interaction strength, and the number of Landau levels occupied (up to three). For the vortexlike states, the lowest-Landau-level (LLL) approximation is justified only if the interaction strength decreases with the number of particles; nevertheless, the constant of proportionality increases rapidly with the angular momentum per particle. For the strongly correlated states, however, the interaction strength can increase with particle number without violating the LLL condition. The results suggest that, in large systems, the Pfaffian and Laughlin states might be stabilized at rotation frequencies below the centrifugal limit for sufficiently large interaction strengths, with energy gaps a significant fraction of the trap energy
Bright solitons in Bose-Fermi mixtures
International Nuclear Information System (INIS)
Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz
2006-01-01
We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length
Mülken, O.; Borrmann, P.; Harting, J.D.R.; Stamerjohanns, H.
2001-01-01
We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose systems in power-law traps within a semi-analytic
Csordás, András; Graham, Robert; Szépfalusy, Péter
1997-01-01
The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...
Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato
2017-11-01
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.
Double light-cone dynamics establish thermal states in integrable 1D Bose gases
Langen, T.; Schweigler, T.; Demler, E.; Schmiedmayer, J.
2018-02-01
We theoretically investigate the non-equilibrium dynamics in a quenched pair of one-dimensional Bose gases with density imbalance. We describe the system using its low-energy effective theory, the Luttinger liquid model. In this framework the system shows strictly integrable relaxation dynamics via dephasing of its approximate many-body eigenstates. In the balanced case, this leads to the well-known light-cone-like establishment of a prethermalized state, which can be described by a generalized Gibbs ensemble. In the imbalanced case the integrable dephasing leads to a state that, counter-intuitively, closely resembles a thermal equilibrium state. The approach to this state is characterized by two separate light-cone dynamics with distinct characteristic velocities. This behavior is a result of the fact that in the imbalanced case observables are not aligned with the conserved quantities of the integrable system. We discuss a concrete experimental realization to study this effect using matterwave interferometry and many-body revivals on an atom chip.
Bose-Einstein atoms in atomic traps with predominantly attractive two-body interactions
International Nuclear Information System (INIS)
Hussein, M.S.; Vorov, O.K.
2002-01-01
Using the Perron-Frobenius theorem, we prove that the results by Wilkin, Gunn, and Smith [Phys. Rev. Lett. 80, 2265 (1998)] for the ground states at angular momentum L of N harmonically trapped Bose atoms, interacting via weak attractive δ 2 (r) forces, are valid for a broad class of predominantly attractive interactions V(r), not necessarily attractive for any r. This class is described by sufficient conditions on the two-body matrix elements of the potential V(r). It includes, in particular, the Gaussian attraction of arbitrary radius, -1/r-Coulomb and log(r)-Coulomb forces, as well as all the short-range interactions satisfying inequality ∫d 2 r-vectorV(r)<0. In the precollapse regime, the angular momentum L is concentrated in the collective 'center-of-mass' mode, and there is no condensation at high L
Dynamics of a Bose-Einstein condensate in a symmetric triple-well trap
Energy Technology Data Exchange (ETDEWEB)
Viscondi, Thiago F; Furuya, K, E-mail: viscondi@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas (UNICAMP), 13083-859 Campinas, SP (Brazil)
2011-04-29
We present a complete analysis of the dynamics of a Bose-Einstein condensate trapped in a symmetric triple-well potential. Our classical analogue treatment, based on a time-dependent variational method using SU(3) coherent states, includes the parameter dependence analysis of the equilibrium points and their local stability, which is closely related to the condensate collective behaviour. We also consider the effects of off-site interactions, and how these 'cross-collisions' may become relevant for a large number of trapped bosons. Even in the presence of cross-collisional terms, the model still features an integrable sub-regime, known as the twin-condensate dynamics, which corresponds to invariant surfaces in the classical phase space. However, the quantum dynamics preserves the twin-condensate defining characteristics only partially, thus breaking the invariance of the associated quantum subspace. Moreover, the periodic geometry of the trapping potential allowed us to investigate the dynamics of finite angular momentum collective excitations, which can be suppressed by the emergence of chaos. Finally, using the generalized purity associated with the su(3) algebra, we were able to quantify the dynamical classicality of a quantum evolved system, as compared to the corresponding classical trajectory.
Resummation of Infrared Divergencies in the Theory of Atomic Bose Gases
Stoof, H.T.C.; van Heugten, J. J. R. M.
2014-01-01
We present a general strong-coupling approach for the description of an atomic Bose gas beyond the Bogoliubov approximation, when infrared divergences start to occur that need to be resummed exactly. We consider the determination of several important physical properties of the Bose gas, namely the
Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.
Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore
2018-05-01
We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.
Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions
International Nuclear Information System (INIS)
Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg
2010-01-01
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.
International Nuclear Information System (INIS)
Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P; Haine, S A; Hanna, T M; Anderson, R P
2011-01-01
We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10 6 Bose-condensed 87 Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m F =0)→|F=2, m F =0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10 6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.
Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases
Directory of Open Access Journals (Sweden)
N. Boichenko
2015-12-01
Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Clement, D; Lugan, P; Bouyer, P; Aspect, A
2008-01-01
We theoretically investigate the localization of an expanding Bose-Einstein condensate (BEC) with repulsive atom-atom interactions in a disordered potential. We focus on the regime where the initial inter-atomic interactions dominate over the kinetic energy and the disorder. At equilibrium in a trapping potential and for the considered small disorder, the condensate shows a Thomas-Fermi shape modified by the disorder. When the condensate is released from the trap, a strong suppression of the expansion is obtained in contrast to the situation in a periodic potential with similar characteristics. This effect crucially depends on both the momentum distribution of the expanding BEC and the strength of the disorder. For strong disorder as in the experiments reported by Clement et al 2005 Phys. Rev. Lett. 95 170409 and Fort et al 2005 Phys. Rev. Lett. 95 170410, the suppression of the expansion results from the fragmentation of the core of the condensate and from classical reflections from large modulations of the disordered potential in the tails of the condensate. We identify the corresponding disorder-induced trapping scenario for which large atom-atom interactions and strong reflections from single modulations of the disordered potential play central roles. For weak disorder, the suppression of the expansion signals the onset of Anderson localization, which is due to multiple scattering from the modulations of the disordered potential. We compute analytically the localized density profile of the condensate and show that the localization crucially depends on the correlation function of the disorder. In particular, for speckle potentials the long-range correlations induce an effective mobility edge in 1D finite systems. Numerical calculations performed in the mean-field approximation support our analysis for both strong and weak disorder
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.; Balaz, Antun
2016-03-01
We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in connection with the dynamically changing combined external+laser potential trap. The resulting dynamics are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is achieved by increasing the characteristic scale of the external trap with respect to the condensate size.
International Nuclear Information System (INIS)
Montgomery, T. W. A.; Scott, R. G.; Lesanovsky, I.; Fromhold, T. M.
2010-01-01
We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number, and chiral symmetry breaking due to counter-rotation of the two clouds.
He, Zhang-Ming; Zhang, Xiao-Fei; Kato, Masaya; Han, Wei; Saito, Hiroki
2018-06-01
We consider a pseudospin-1/2 Bose-Einstein condensate with Rashba spin-orbit coupling in a two-dimensional toroidal trap. By solving the damped Gross-Pitaevskii equations for this system, we show that the system exhibits a rich variety of stationary states, such as vehicle wheel and flower-petal stripe patterns. These stationary states are stable against perturbation with thermal energy and can survive for a long time. In the presence of rotation, our results show that the rotating systems have exotic vortex configurations. These phenomenon originates from the interplay among spin-orbit coupling, trap geometry, and rotation.
Bose-Einstein condensation in magnetic traps. Introduction to the theory
International Nuclear Information System (INIS)
Pitaevskii, Lev P
1998-01-01
The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for the observation of macroscopic quantum phenomena. There are two important features of these systems - weak interaction and significant spatial inhomogeneity. Because of this a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogolubov theory. The zeroth-order theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ-function. The equation is classical in its essence but contains the constant ℎ explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. Elementary excitations define the thermodynamic behavior of the system and result in a Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in quantum collapse-revival of the collective oscillations. (special issue)
International Nuclear Information System (INIS)
Fujimoto, Kazuya; Tsubota, Makoto
2011-01-01
We consider a trapped atomic Bose-Einstein condensate penetrated by a repulsive Gaussian potential and theoretically investigate the dynamics induced by oscillating the Gaussian potential. Our study is based on the numerical calculation of the two-dimensional Gross-Pitaevskii equation. Our calculation reveals the dependence of the characteristic behavior of the condensate on the amplitude and frequency of the oscillating potential. These dynamics are deeply related to the nucleation and dynamics of quantized vortices and solitons. When the potential oscillates with a large amplitude, it nucleates many vortex pairs that move away from the potential. When the amplitude of the oscillation is small, it nucleates solitons through an annihilation of vortex pairs. We discuss three issues concerning the nucleation of vortices. The first is the phase diagram for the nucleation of vortices and solitons near the oscillating potential. The second is the mechanism and critical velocity of the nucleation. The critical velocity of the nucleation is an important issue in quantum fluids, and we propose an expression for the velocity containing both the coherence length and the size of the potential. The third is the divergence of the nucleation time, which is the time it takes for the potential to nucleate vortices, near the critical parameters for vortex nucleation.
Two-step condensation of the ideal Bose gas in highly anisotropic traps
van Druten, N.J.; Ketterle, W.
1997-01-01
The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum
Kinetic theory of collective exitations and damping in Bose-Einstein condensed gases
Al Khawaja, U.; Stoof, H.T.C.
2000-01-01
We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms. In this manner we take into account both collisions between
Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases
Al Khawaja, U.; Stoof, H.T.C.
2000-01-01
We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate
Anisotropic and long-range vortex interactions in two-dimensional dipolar bose gases
Mulkerin, B.C.; Bijnen, van R.M.W.; O'Dell, D.H.J.; Martin, A.M.; Parker, N.G.
2013-01-01
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant antidipole, changing the density profile and generating an
International Nuclear Information System (INIS)
Jaksch, D
2003-01-01
The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is
Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M.P.; Vignolo, P.
2004-01-01
The achievement of Bose–Einstein condensation in ultra-cold vapours of alkali atoms has given enormous impulse to the study of dilute atomic gases in condensed quantum states inside magnetic traps and optical lattices. High-purity and easy optical access make them ideal candidates to investigate
Negative specific heat with trapped ultracold quantum gases
Strzys, M. P.; Anglin, J. R.
2014-01-01
The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.
2017-01-01
Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.
International Nuclear Information System (INIS)
Briscese, F.
2012-01-01
We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
The truncated Wigner method for Bose-condensed gases: limits of validity and applications
International Nuclear Information System (INIS)
Sinatra, Alice; Lobo, Carlos; Castin, Yvan
2002-01-01
We study the truncated Wigner method applied to a weakly interacting spinless Bose-condensed gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The principle of the method is to generate an ensemble of classical fields ψ(r) which samples the Wigner quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we improve the sampling technique over our previous work (Sinatra et al 2000 J. Mod. Opt. 47 2629-44) and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part of the paper we investigate the conditions of validity of the truncated Wigner method. For short evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov prediction leads to the constraint that the number of field modes in the Wigner simulation must be smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics of the noncondensed modes of the field plays an important role. To demonstrate this we analyse the case of a three-dimensional spatially homogeneous Bose-condensed gas and we test the ability of the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation of the condensate. We have identified the mechanism which limits the validity of the truncated Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii equation, thermalizes to a classical field distribution at a temperature T class which is larger than the initial temperature T of the quantum gas. When T class significantly exceeds T a spurious damping is observed in the Wigner simulation. This leads to the second validity condition for the truncated Wigner method, T class - T
Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures
International Nuclear Information System (INIS)
Ahufinger, V.; Sanchez-Palencia, L.; Kantian, A.; Sanpera, A.; Lewenstein, M.
2005-01-01
We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, 'dirty' superfluids, disordered metallic phases, and phases involving quantum percolation
Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases
Colussi, V. E.; Corson, J. P.; D'Incao, J. P.
2018-03-01
We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.
Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap
Dehkharghani, A. S.; Bellotti, F. F.; Zinner, N. T.
2017-07-01
In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.
Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder
International Nuclear Information System (INIS)
Lugan, P.; Sanchez-Palencia, L.
2011-01-01
We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential μ subjected to a disordered potential V. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schroedinger-like equation with an effective potential. For disordered potentials, the Schroedinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/μ, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.
Disk-shaped Bose-Einstein condensates in the presence of an harmonic trap and an optical lattice
International Nuclear Information System (INIS)
Kapitula, Todd; Kevrekidis, Panayotis G.; Frantzeskakis, D. J.
2008-01-01
We study the existence and stability of solutions of the two-dimensional nonlinear Schroedinger equation in the combined presence of a parabolic and a periodic potential. The motivating physical example consists of Bose-Einstein condensates confined in an harmonic (e.g., magnetic) trap and an optical lattice. By connecting the nonlinear problem with the underlying linear spectrum, we examine the bifurcation of nonlinear modes out of the linear ones for both focusing and defocusing nonlinearities. In particular, we find real-valued solutions (such as multipoles) and complex-valued ones (such as vortices). A primary motivation of the present work is to develop ''rules of thumb'' about what waveforms to expect emerging in the nonlinear problem and about the stability of those modes. As a case example of the latter, we find that among the real-valued solutions, the one with larger norm for a fixed value of the chemical potential is expected to be unstable
Manipulation of ultracold Bose gases in a time-averaged orbiting potential
Cleary, P.W.
2012-01-01
De gemiddelde beweging van deeltjes in een oscillerende magnetische val, de zogeheten TOP-trap, kan worden gewijzigd door een verandering in de potentiële fase. De amplitude en energie van deze beweging kan worden gewijzigd door een geschikte fasesprong in het oscillerend (heen en weer slingeren van
International Nuclear Information System (INIS)
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)
Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus
2017-07-01
We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.
Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.
2018-01-01
We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.
Bose condensates make quantum leaps and bounds
International Nuclear Information System (INIS)
Castin, Y.; Dum, R.; Sinatra, A.
1999-01-01
Since the first observation in 1995 of Bose-Einstein condensation in dilute atomic gases, atomic physicists have made extraordinary progress in understanding this unusual quantum state of matter. BOSE-EINSTEIN condensation is a macroscopic quantum phenomenon that was first predicted by Albert Einstein in the 1920s, at a time when quantum theory was still developing and was being applied to microscopic systems, such as individual particles and atoms. Einstein applied the new concept of Bose statistics to an ideal gas of identical atoms that were at thermal equilibrium and trapped in a box. He predicted that at sufficiently low temperatures the particles would accumulate in the lowest quantum state in the box, giving rise to a new state of matter with many unusual properties. The crucial point of Einstein's model is the absence of interactions between the particles in the box. However, this makes his prediction difficult to test in practice. In most real systems the complicating effect of particle interactions causes the gas to solidify well before the temperature for Bose-Einstein condensation is reached. But techniques developed in the past four years have allowed physicists to form Bose-Einstein condensates for a wide range of elements. In this article the authors describe the latest advances in Bose-Einstein condensation. (UK)
Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Yong Wenmei; Xue Jukui
2008-01-01
The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained
Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential
International Nuclear Information System (INIS)
Chong Guishu; Hai Wenhua; Xie Qiongtao
2004-01-01
The spatially chaotic attractor in an elongated cloud of Bose-Einstein condensed atoms perturbed by a weak optical lattice potential is studied. The analytical insolvability and numerical incomputability of the atomic number density are revealed by a perturbed solution that illustrates the unpredictability of the deterministic chaos. Although this could lead the nonphysical explosion and unboundedness to the numerical solution, the theoretical analysis offers a criterion to avoid them. Moreover, the velocity field is investigated that exhibits the superfluid property of the chaotic system
International Nuclear Information System (INIS)
Tarasov, S V; Kocharovsky, Vl V; Kocharovsky, V V
2014-01-01
We analytically find the universal fine structure of the noted discontinuity in the value and/or derivative of the specific heat of an ideal Bose gas in an arbitrary trap in the whole critical region around the λ-point of the Bose–Einstein condensation. The result reveals a remarkable dependence of the λ-point structure on the trap's form and boundary conditions, even for a macroscopically large system. We suggest measuring this strong effect in the experiments with a controllable trap potential. (paper)
Dynamics of Bose-Einstein condensates in a time-dependent trap
International Nuclear Information System (INIS)
Kumar, V. Ramesh; Radha, R.; Panigrahi, Prasanta K.
2008-01-01
In this paper, we generate the Lax pair for the one-dimensional Gross-Pitaevskii equation with time-dependent scattering length in the presence of a confining or expulsive harmonic time-dependent trap. We then exploit the Lax pair profitably to construct multisoliton solutions using gauge transformation from a trivial input solution. In particular, we have investigated the effect of both expulsive and confining traps on soliton interaction. Even though we find that the amplitude of the bright soliton relies upon the time-dependent scattering length and the external time-dependent trap with the velocity being dictated by the external trap alone, the observation of interdependence of the scattering length on the trap shows that the bright solitons not only can be compressed into a desirable width and amplitude but also can be remote controlled and driven anywhere in the plane by suitably maneuvering the external time-dependent trap alone
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...
International Nuclear Information System (INIS)
Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.
1997-07-01
We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs
Energy Technology Data Exchange (ETDEWEB)
Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P [Department of Quantum Science, ARC Centre of Excellence for Quantum Atom Optics, the Australian National University, ACT 0200 (Australia); Haine, S A [School of Mathematics and Physics, ARC Centre of Excellence for Quantum-Atom Optics, The University of Queensland, Queensland 4072 (Australia); Hanna, T M [Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423 (United States); Anderson, R P, E-mail: paul.altin@anu.edu.au [School of Physics, Monash University, VIC 3800 (Australia)
2011-06-15
We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10{sup 6} Bose-condensed {sup 87}Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m{sub F}=0){yields}|F=2, m{sub F}=0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10{sup 6} condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.
Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev
2016-06-27
, the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB)-2, well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature.
Extraction of trapped gases in ice cores for isotope analysis
International Nuclear Information System (INIS)
Leuenberger, M.; Bourg, C.; Francey, R.; Wahlen, M.
2002-01-01
The use of ice cores for paleoclimatic investigations is discussed in terms of their application for dating, temperature indication, spatial time marker synchronization, trace gas fluxes, solar variability indication and changes in the Dole effect. The different existing techniques for the extraction of gases from ice cores are discussed. These techniques, all to be carried out under vacuum, are melt-extraction, dry-extraction methods and the sublimation technique. Advantages and disadvantages of the individual methods are listed. An extensive list of references is provided for further detailed information. (author)
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2012-08-01
The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.
Vortex nucleation in Bose-Einstein condensates in time-dependent traps
International Nuclear Information System (INIS)
Lundh, Emil; Martikainen, J.-P.; Suominen, Kalle-Antti
2003-01-01
Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center
Trapping ultracold gases near cryogenic materials with rapid reconfigurability
Energy Technology Data Exchange (ETDEWEB)
Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.; DiSciacca, Jack M.; Lev, Benjamin L. [Departments of Applied Physics and Physics and Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)
2013-12-16
We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracold gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.
First and second sound in cylindrically trapped gases.
Bertaina, G; Pitaevskii, L; Stringari, S
2010-10-08
We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.
Hybrid Optical-Magnetic Traps for Studies of 2D Quantum Turbulence in Bose-Einstein Condensates
Myers, Jessica Ann
Turbulence appears in most natural and man-made flows. However, the analysis of turbulence is particularly difficult. Links between microscopic fluid dynamics and statistical signatures of turbulence appear unobtainable from the postulates of fluid dynamics making turbulence one of the most important unsolved theoretical problems in physics. Two-dimensional quantum turbulence (2DQT), an emerging field of study, involves turbulence in two-dimensional (2D) flows in superfluids, such as Bose-Einstein condensates (BECs). In 2D superfluids, a turbulent state can be characterized by a disordered distribution of numerous vortex cores. The question of how to effectively and efficiently generate turbulent states in superfluids is a fundamental question in the field of quantum turbulence. Therefore, experimental studies of vortex nucleation and the onset of turbulence in a superfluid are important for achieving a deeper understanding of the overall problem of turbulence. My PhD dissertation involves the study of vortex nucleation and the onset of turbulence in quasi-2D BECs. First, I discuss experimental apparatus advancements that now enable BECs to be created in a hybrid optical-magnetic trap, an atom trapping configuration conducive to 2DQT experiments. Next, I discuss the design and construction of a quantum vortex microscope and initial vortex detection tests. Finally, I present the first experiments aimed at studying 2DQT carried out in the updated apparatus. Thermal counterflow in superfluid helium, in which the normal and superfluid components flow in opposite directions, is known to create turbulence in the superfluid. However, this phenomenon has not been simulated or studied in dilute-gas BECs as a possible vortex nucleation method. In this dissertation, I present preliminary data from the first experiments aimed at understanding thermal counterflow turbulence in dilute-gas BECs.
Energy Technology Data Exchange (ETDEWEB)
Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)
2016-07-01
We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.
A new approach to treat the problems of trapped ideal gases
International Nuclear Information System (INIS)
Su Guozhen; Cai Yanhua; Chen Jincan
2009-01-01
By comparing the thermodynamic properties of ideal atomic gases in a power-law potential and in a rigid box, it is found that the power-law potential is equivalent to the rigid box as far as the macroscopic behaviors of the system are concerned. The dimensionality and volume of the equivalent box are dependent on the parameters charactering the power-law potential. This equivalent relation enables us to treat a trapped ideal gas as a free one, and consequently, several useful conclusions of the trapped-gas system can be easily derived from the corresponding results of the free-gas system
Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap
Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi
2018-05-01
We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.
Ansatz from nonlinear optics applied to trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Keceli, Murat; Ilday, F. Oe.; Oktel, M. Oe.
2007-01-01
A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime
XPS and XAES measurements on trapped rare gases in transition metals
International Nuclear Information System (INIS)
Baba, Y.; Yamamoto, H.; Sasaki, T.A.
1992-01-01
Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)
Kim, Yeong E.; Zubarev, Alexander L.
2006-02-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.
Energy Technology Data Exchange (ETDEWEB)
Yeong, E. Kim; Zubarev, Alexander L. [Purdue Nuclear and Many-Body Theory Group (PNMBTG) Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)
2006-07-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + {sup 6}Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
International Nuclear Information System (INIS)
Yeong, E. Kim; Zubarev, Alexander L.
2006-01-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + 6 Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
Sakhel, Asaad R.; Sakhel, Roger R.
2018-02-01
We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.
Positrons in gas filled traps and their transport in molecular gases
Energy Technology Data Exchange (ETDEWEB)
Petrovic, Z Lj; Bankovic, A; Marjanovic, S; Suvakov, M; Dujko, S; Malovic, G [Institute of Physics, University of Belgrade, Pregrevica 118, POB 68, Zemun (Serbia); White, R D [ARC Centre for Antimatter-Matter Studies, James Cook University, Townsville 4810, QLD (Australia); Buckman, S J, E-mail: zoran@ipb.ac.rs [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT, 0200 (Australia)
2011-01-01
In this paper we give a review of two recent developments in positron transport, calculation of transport coefficients for a relatively complete set of collision cross sections for water vapour and for application of they Monte Carlo technique to model gas filled subexcitation positron traps such as Penning Malmberg Surko (Surko) trap. Calculated transport coefficients, very much like those for argon and other molecular gases show several new kinetic phenomena. The most important is the negative differential conductivity (NDC) for the bulk drift velocity when the flux drift velocity shows no sign of NDC. These results in water vapour are similar to the results in argon or hydrogen. The same technique that has been used for positron (and previously electron) transport may be applied to model development of particles in a Surko trap. We have provided calculation of the ensemble of positrons in the trap from an initial beam like distribution to the fully thermalised distribution. This model, however, does not include plasma effects (interaction between charged particles) and may be applied for lower positron densities.
Trap-size scaling in confined-particle systems at quantum transitions
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore
2010-01-01
We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.
Circular Cationic Compounds B3Rgn+ of Triangular Ion B3 Trapping Rare Gases
Institute of Scientific and Technical Information of China (English)
ZHANG Ruiwen; LI Anyong; LI Zhuozhe
2017-01-01
The circular cationic compounds B3Rgn+(n=1-3,Rg=He-Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically.The formed B-Rg bond has large bonding energy in the range of 60--209 kJ/mol,its length is close to the stun of covalent radii of B and Rg,for Ar-Rn.The analyses based on the natural bond orbitals and electron density topology show that the B-Rg bonds for Ar-Rn have strong covalent character.The geometric structures,binding energy,bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar-Rn may be experimentally available.Several different theoretical studies have demonstrated that these triangular cations are aromatic.
Ozgurel, O; Pauzat, F; Pilmé, J; Ellinger, Y; Bacchus-Montabonel, M-C; Mousis, O
2017-10-07
The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H 3 + in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H 3 + , especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H 3 + only, considering that the protonated ions produced in the destruction of H 3 + by its main competitors present in the primitive nebula, i.e., H 2 O, CO, and N 2 , might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H 2 O, CO, and N 2 , expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10 -16 to 10 -19 cm 3 s -1 , which is reasonable for such reactions and has to be compared to the rates of 10 -16 to 10 -18 cm 3 s -1 , obtained with H 3 + . We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.
Density Fluctuations in Uniform Quantum Gases
International Nuclear Information System (INIS)
Bosse, J.; Pathak, K. N.; Singh, G. S.
2011-01-01
Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. Anindita Bose. Articles written in Resonance – Journal of Science Education. Volume 6 Issue 11 November 2001 pp 18-26 General Article. Necklaces, Periodic Points and Permutation Representations - Fermat's Little Theorem · Somnath Basu Anindita Bose ...
Thermalization and Prethermalization in an ultracold Bose Gas
International Nuclear Information System (INIS)
Kuhnert, M.
2013-01-01
Atom chips consist of microscopic current carrying structures that generate magnetic trapping potentials for ultracold neutral atoms. These atom chips provide a high design flexibility of possible trap geometries, making the creation of highly anisotropic trapping potentials feasible. The resulting magnetic traps are characterized by a high isolation from the environment and are used to create degenerate, one-dimensional (1d) Bose gases. On typical experimental time scales, these 1d Bose gases can be described as practically closed quantum many-body systems. By applying a rapid quantum quench, the many-body system is brought out of thermal equilibrium and the resulting dynamics are studied via the statistical properties of matter-wave interference measurements. These measured quantum statistical distributions reveal that thermalization of this effectively integrable 1d Bose gas happens in a two-step process. First, the system rapidly dephases to a prethermalized state, characterized by thermal-like correlation properties, which are still distinctly different from the true thermal equilibrium state. Second, on a much longer time scale, the measured distribution functions indicate a further decay to the true thermal equilibrium state. Furthermore, by studying a highly non-equilibrium system via matter-wave interferometry, the underlying multimode dynamics, characterizing one-dimensional quantum systems, are revealed. This thesis shows that these dynamics are essential in establishing the prethermalized state and that its properties are defined by the quantum shot noise of the splitting process. In conclusion, this work aims at improving the understanding of quantum thermalization processes in integrable and nearly-integrable systems in the 1d and 1d/3d crossover regimes. Apparently, the general paths to thermal equilibrium in nearly-integrable systems are indirect and complex. This work provides an in depth experimental study of the relaxation dynamics of a highly
Thermalization of a quenched Bose-Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)
2015-07-01
The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
International Nuclear Information System (INIS)
Franzosi, Roberto; Penna, Vittorio
2003-01-01
The dynamics of the three coupled bosonic wells (trimer) containing N bosons is investigated within a standard (mean-field) semiclassical picture based on the coherent-state method. Various periodic solutions (configured as π-like, dimerlike, and vortex states) representing collective modes are obtained analytically when the fixed points of trimer dynamics are identified on the N=const submanifold in the phase space. Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic orbits (associated with fixed points) is studied via numeric integration of trimer motion equations, thus revealing a diffused chaotic behavior (not excluding the presence of regular orbits), macroscopic effects of population inversion, and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of chaos
Haddad, L. H.; Carr, Lincoln D.
2015-11-01
We analyze the vortex solution space of the (2+1)-dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solutions characterized by different functional forms for the internal spin and overall phase of the order parameter. We present a detailed derivation of these solutions which include skyrmions, half-quantum vortices, Mermin-Ho and Anderson-Toulouse vortices for vortex winding {\\ell }=1. For {\\ell }≥slant 2 we obtain topological as well as non-topological solutions defined by the asymptotic radial dependence. For arbitrary values of ℓ the non-topological solutions include bright ring-vortices which explicitly demonstrate the confining effects of the Dirac operator. We arrive at solutions through an asymptotic Bessel series, algebraic closed-forms, and using standard numerical shooting methods. By including a harmonic potential to simulate a finite trap we compute the discrete spectra associated with radially quantized modes. We demonstrate the continuous spectral mapping between the vortex and free particle limits for all of our solutions.
Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics
Sparber, Christof; Markowich, Peter; Huang, Zhongyi
2010-01-01
We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.
Bose-Einstein condensation of photons in a 'white-wall' photon box
International Nuclear Information System (INIS)
Klaers, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2011-01-01
Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a 'white-wall' photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.
Bose-Einstein condensation of photons in a 'white-wall' photon box
Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2011-01-01
Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.
Universal Themes of Bose-Einstein Condensation
Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.
2017-04-01
Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose
International Nuclear Information System (INIS)
Pouyat, D.; Vignau, B.; Roux, J.P.
1993-01-01
The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I
Energy Technology Data Exchange (ETDEWEB)
Evtodiev, I. [Moldova State University, 60 A. Mateevici Str., Chisinau, MD 2009, Republic of Moldova (Moldova, Republic of); Caraman, I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Leontie, L., E-mail: lleontie@uaic.ro [Alexandru Ioan Cuza University of Iasi, Bd. Carol I, Nr. 11, RO 700506 Iasi (Romania); Rusu, D.-I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Dafinei, A. [Faculty of Physics, University of Bucharest, Platforma Magurele, Str. Fizicienilor nr. 1, CP Mg - 11, Bucharest-Magurele, RO 76900 (Romania); Nedeff, V.; Lazar, G. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)
2012-03-15
Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.
All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser
Lundblad, Nathan Eric
Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin
Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M
2015-09-11
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.
Quantum degenerate atomic gases in controlled optical lattice potentials
Gemelke, Nathan D.
2007-12-01
Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.
Bose-Einstein Condensation in Complex Networks
International Nuclear Information System (INIS)
Bianconi, Ginestra; Barabasi, Albert-Laszlo
2001-01-01
The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the 'first-mover-advantage,' 'fit-get-rich,' and 'winner-takes-all' phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks
Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O
2009-05-07
Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.
International Nuclear Information System (INIS)
Graefe, E. M.; Korsch, H. J.; Witthaut, D.
2006-01-01
We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning
Geodesics in thermodynamic state spaces of quantum gases
International Nuclear Information System (INIS)
Oshima, H.; Obata, T.; Hara, H.
2002-01-01
The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence
Bose-Einstein condensation of photons in an optical microcavity
Klaers, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2010-01-01
Bose-Einstein condensation, the macroscopic ground state accumulation of particles with integer spin (bosons) at low temperature and high density, has been observed in several physical systems, including cold atomic gases and solid state physics quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition, because the chemical potential of photons vanishes and, when the temperature is r...
Energy Technology Data Exchange (ETDEWEB)
Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)
2016-08-15
Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 2000 Section: Physics. Bose, Prof. Indrani Ph.D. (Calcutta), FNASc. Date of birth: 15 August 1951. Specialization: Theoretical Condensed Matter Physics, Statistical Physics, Biological Physics and Systems Biology Address: Emeritus Scientist, Department of Physics, Bose Institute, ...
Magnetized pair Bose gas: relativistic superconductor
International Nuclear Information System (INIS)
Daicic, J.; Frankel, N.E.; Kowalenko, V.
1993-01-01
The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs
International Nuclear Information System (INIS)
Li Weidong; Liu Jie
2006-01-01
In the present paper we investigate the influence of measurements on the quantum dynamics of degenerate Bose atoms gases in a symmetric double well. We show that continuous measurements enhance asymmetry on the density distribution of the atoms and broaden the parameter regime for self-trapping. We term this phenomenon as nonlinear quantum Zeno effect in analog to the celebrated Zeno effect in a linear quantum system. Under discontinuous measurements, the self-trapping due to the atomic interaction in the degenerate bosons is shown to be destroyed completely. Underlying physics is revealed and possible experimental realization is discussed
International Nuclear Information System (INIS)
Mrowczynski, St.
1984-01-01
The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed
International Nuclear Information System (INIS)
Lucke, R.B.; Clauss, S.A.
1993-10-01
Results are given from gas chromatography/mass spectrometry (GC/MS) analyses of the headspace samples obtained by using cryogenic traps from Westinghouse Hanford Company (WHC) Tank 112-C during the month of March, 1992. Samples were analyzed as received with no sample preparation. Analyses included direct GC/MS for volatile/semivolatile components, and direct GC/MS for ammonia. Purge and trap GC/MS analysis was not done. In addition, aliquots were sent to Karl Pool, Pacific Northwest Laboratory, for hydrogen cyanide analysis by ion chromatography, the results are reported here. All concentrations are reported for the methanol extract solutions. To calculate concentrations in the headspace, the cryo-sampling air volume and the methanol rinse volume must be obtained from cryo-sampling personnel at WHC. Triplicate analyses were done on all samples, and average concentrations and standard deviations are reported. One significant result was that no ammonia was detected
Electron scattering by trapped fermionic atoms
International Nuclear Information System (INIS)
Wang Haijun; Jhe, Wonho
2002-01-01
Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
Relativistic quantum thermodynamics of ideal gases in two dimensions.
Blas, H; Pimentel, B M; Tomazelli, J L
1999-11-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions
Blas, H.; Pimentel, B. M.; Tomazelli, J. L.
1999-01-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong
2017-05-01
We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.
Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps
International Nuclear Information System (INIS)
Lesanovsky, Igor; Klitzing, Wolf von
2007-01-01
We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
Energy Technology Data Exchange (ETDEWEB)
Marini, P., E-mail: marini@cenbg.in2p3.fr [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Zheng, H. [Cyclotron Institute, Texas A& M University, College Station, TX-77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Boisjoli, M. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Laboratoire de Physique Nucléaire, Université Laval, Québec, G1V 0A6 (Canada); Verde, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); INFN – Sezione di Catania, via Santa Sofia, 64, 95123 Catania (Italy); Chbihi, A. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Napolitani, P.; Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Augey, L. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); Bhattacharya, C. [Variable Energy Cyclotron Center, Kolkata (India); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Bougault, R. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); and others
2016-05-10
We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.
Directory of Open Access Journals (Sweden)
Antonello Sindona
2015-03-01
Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
More accurate theory for Bose-Einstein condensation fraction
International Nuclear Information System (INIS)
Biswas, Shyamal
2008-01-01
Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Directory of Open Access Journals (Sweden)
A. Rauthe-Schöch
2016-03-01
Full Text Available The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region (which so far has mostly been observed from satellites using the broad suite of trace gases and aerosol particles measured by CARIBIC. Elevated levels of a variety of atmospheric pollutants (e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles, and several volatile organic compounds were recorded. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with distinct latitudinal patterns of trace gases during the entire monsoon period. Using the CARIBIC trace gas and aerosol particle measurements in combination with the Lagrangian particle dispersion model FLEXPART, we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. The trajectory calculations indicate that these air masses originated mainly from South Asia and mainland Southeast Asia. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 90–95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were systematically younger (less than 7 days and the air masses were mostly in an ozone-forming chemical mode. In its northern part the air masses were older (up to 13 days and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories, several receptor regions were identified. In addition to predominantly westward
A single electron in a Bose-Einstein condensate
International Nuclear Information System (INIS)
Balewski, Jonathan Benedikt
2014-01-01
This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.
Hydrodynamic excitations in a Bose-Einstein condensate
Meppelink, R
2009-01-01
The field of Bose-Einstein condensation (BEC) in dilute atomic gases provides a fruitful playground to test well-developed theories of quantum fluids. Research using BECs can address open questions relating to the many-body aspects of two-component quantum liquids, namely the interaction between the
Faraday waves in Bose-Einstein condensates
International Nuclear Information System (INIS)
Nicolin, Alexandru I.; Carretero-Gonzalez, R.; Kevrekidis, P. G.
2007-01-01
Motivated by recent experiments on Faraday waves in Bose-Einstein condensates we investigate both analytically and numerically the dynamics of cigar-shaped Bose-condensed gases subject to periodic modulation of the strength of the transverse confinement. We offer a fully analytical explanation of the observed parametric resonance, based on a Mathieu-type analysis of the non-polynomial Schroedinger equation. The theoretical prediction for the pattern periodicity versus the driving frequency is directly compared to the experimental data, yielding good qualitative and quantitative agreement between the two. These results are corroborated by direct numerical simulations of both the one-dimensional non-polynomial Schroedinger equation and of the fully three-dimensional Gross-Pitaevskii equation
Vis, R. D.; Mrowiec, A.; Kooyman, P. J.; Matsubara, K.; Heymann, D.
2002-10-01
High-resolution transmission electron microscopy micrographs of acid-resistant residues of the Allende, Leoville, and Vigarano meteorites show a great variety of carbon structures: curved and frequently twisted and intertwined graphene sheets, abundant carbon black-like particles, and hollow "sacs". It is suggested that perhaps all of these are carriers for the planetary Q-noble gases in these meteorites. Most of these materials are pyrocarbons that probably formed by the pyrolysis of hydrocarbons either in a gas phase, or on hot surfaces of minerals. An attempt was made to analyze for argon with particle-induced x-ray emission in 143 spots of grains of floating and suspended matter from freeze-dry cycles of an Allende bulk sample in water, and floating "black balls" from sonication in water of samples from the Allende meteorite. The chemical compositions of these particles were obtained, but x-ray signals at the wavelength of argon were obtained on only a few spots.
Dipolar quantum gases of erbium
International Nuclear Information System (INIS)
Frisch, A.
2014-01-01
Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures
Specific heats of degenerate ideal gases
Caruso, Francisco; Oguri, Vitor; Silveira, Felipe
2017-01-01
From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.
Bose-Einstein condensation and applications
International Nuclear Information System (INIS)
Jaksch, D.H.
1999-10-01
After a short introduction on recent developments in the field of Bose-Einstein condensation (BEC) with weakly interacting neutral atoms in the first part of my thesis I investigate the properties of a BEC in its stationary state with the help of quantum kinetic theory in the second part. Especially, I consider the particle number and phase fluctuations of a BEC emerging from the interaction of the condensed particles with the thermal cloud of atoms. In the third part of my thesis I show how one might realize the Bose-Hubbard model in optical lattices by making use of BEC. In the last part of my work I show how one can realize quantum logic with neutral atoms trapped in either optical lattices or in magnetic microtraps. (author)
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 2006 Section: Mathematical Sciences. Bose, Prof. Arup Ph.D. (ISI, Calcutta), FNA, FNASc. Date of birth: 1 April 1959. Specialization: Probability and Statistics, Economics Address: Professor, Statistics & Mathematics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700 108, ...
International Nuclear Information System (INIS)
Zalewski, Kacper
2000-01-01
The effect of Bose-Einstein correlations on multiplicity distributions of identical pions is discussed. It is found that these correlations affect significantly the observed multiplicity distributions, but Einstein's condensation is unlikely to be achieved, unless 'cold spots', i.e. regions, where groups of pions with very small relative momenta are produced, occur in high energy heavy-ion collisions
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 1973 Honorary. Bose, Prof. Satyendra Nath. Date of birth: 1 January 1894. Date of death: 4 February 1974. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...
Indian Academy of Sciences (India)
absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...
Two-fluid hydrodynamic modes in a trapped superfluid gas
International Nuclear Information System (INIS)
Taylor, E.; Griffin, A.
2005-01-01
In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0
Directory of Open Access Journals (Sweden)
H. J. Harsan Ma
2015-06-01
Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Bose condensation in 4He and neutron scattering
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995
International Nuclear Information System (INIS)
Venkataraman, G.
1992-01-01
Treating radiation gas as a classical gas, Einstein derived Planck's law of radiation by considering the dynamic equilibrium between atoms and radiation. Dissatisfied with this treatment, S.N. Bose derived Plank's law by another original way. He treated the problem in generality: he counted how many cells were available for the photon gas in phase space and distributed the photons into these cells. In this manner of distribution, there were three radically new ideas: The indistinguishability of particles, the spin of the photon (with only two possible orientations) and the nonconservation of photon number. This gave rise to a new discipline of quantum statistical mechanics. Physics underlying Bose's discovery, its significance and its role in development of the concept of ideal gas, spin-statistics theorem and spin particles are described. The book has been written in a simple and direct language in an informal style aiming to stimulate the curiosity of a reader. (M.G.B.)
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
Cleary, P.W.; Hijmans, T.W.; Walraven, J.T.M.
2010-01-01
We report on the manipulation of the center-of-mass motion ("sloshing") of a Bose-Einstein condensate in a time-averaged orbiting potential (TOP) trap. We start with a condensate at rest in the center of a static trapping potential. When suddenly replacing the static trap with a TOP trap centered
Thermo-optically induced interactions in photon Bose-Einstein Condensates
Alaeian, Hadiseh; Bartels, Clara; Weitz, Martin
Bose-Einstein condensation (BEC), a new state of matter, emerges when the de Broglie wavelength of bosons becomes larger than the particle separation, leading to a macroscopic occupation of the system ground state. Followed by the first experimental demonstrations of BEC in cold atomic gases, this phase transition has been observed in other bosonic gases, as polaritons and phonons. The most recent one, photon BEC, is a promising candidate for a new generation of coherent photon sources. Due to their infancy, however, many of their properties are still unknown or only partly explored. In this talk I will present my latest results on the implications of photon interactions in photon BECs. In particular, I will investigate the effect of a thermo-optic non-linearity, leading to spatially non-local and delayed interactions. Starting from the steady state behavior, I will explore the spectrum of elementary excitations as a small perturbation. Moreover, I will discuss the resulting effective photon dispersion, manifesting various properties including possible superfluidity, as well as roton and maxon modes. The implications of physical parameters as absorption, number of photons in the condensate, and cavity trap on the dispersion will be discussed. The results of this study shed new light on the implication of interactions in photonic many-body systems. Hadiseh Alaeian acknowledges the generous support from Alexander von Humboldt Foundation.
Spin-Orbit Coupled Bose-Einstein Condensates
2016-11-03
21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new
Excitations of Bose-Einstein condensates at finite temperatures
International Nuclear Information System (INIS)
Rusch, M.
2000-01-01
Recent experimental observations of collective excitations of Bose condensed atomic vapours have stimulated interest in the microscopic description of the dynamics of a Bose-Einstein condensate confined in an external potential. We present a finite temperature field theory for collective excitations of trapped Bose-Einstein condensates and use a finite-temperature linear response formalism, which goes beyond the simple mean-field approximation of the Gross-Pitaevskii equation. The effect of the non-condensed thermal atoms we include using perturbation theory in a quasiparticle basis. This presents a simple scheme to understand the interaction between condensate and non-condensed atoms and enables us to include the effect the condensate has on collision dynamics. At first we limit our treatment to the case of a spatially homogeneous Bose gas. We include the effect of pair and triplet anomalous averages and thus obtain a gapless theory for the excitations of a weakly interacting system, which we can link to well known results for Landau and Beliaev damping rates. A gapless theory for trapped systems with a static thermal component follows straightforwardly. We then investigate finite temperature excitations of a condensate in a spherically symmetric harmonic trap. We avoid approximations to the density of states and thus emphasise finite size aspects of the problem. We show that excitations couple strongly to a restricted number of modes, giving rise to resonance structure in their frequency spectra. Where possible we derive energy shifts and lifetimes of excitations. For one particular mode, the breathing mode, the effects of the discreteness of the system are sufficiently pronounced that the simple picture of an energy shift and width fails. Experiments in spherical traps have recently become feasible and should be able to test our detailed quantitative predictions. (author)
Daily, Kevin Michael
Underlying the many-body effects of ultracold atomic gases are the few-body dynamics and interparticle interactions. Moreover, the study of few-body systems on their own has accelerated due to confining few atoms in each well of a deep optical lattice or in a single microtrap. This thesis studies the microscopic properties of few-body systems under external spherically symmetric harmonic confinement and how the few-body properties translate to the many-body system. Bosonic and fermionic few-body systems are considered and the dependence of the energetics and other quantities are investigated as functions of the s-wave scattering length, the mass ratio and the temperature. It is found that the condensate fraction of a weakly-interacting trapped Bose gas depletes quadratically with the s-wave scattering length. The next order term in the depletion depends not only, as might be expected naively, on the s-wave scattering length and the effective range but additionally on a two-body parameter that is not needed to reproduce the energy of weakly-interacting trapped Bose gases. This finding has important implications for effective field theory treatments of the system. Weakly-interacting atomic and molecular two-component Fermi gases with equal masses are described using perturbative approaches. The energy shifts are tabulated and interpreted, and a measure of the molecular condensate fraction is developed. We develop a measure of the molecular condensate fraction using the two-body density matrix and we develop a model of the spherical component of the momentum distribution that agrees well with stochastic variational calculations. We establish the existence of intersystem degeneracies for equal mass two-component Fermi gases with zero-range interactions, where the eigen energies of the spin-imbalanced system are degenerate with a subset of the eigen energies of the more spin-balanced system and the same total number of fermions. For unequal mass two-component Fermi
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
One-dimensional extended Bose-Hubbard model with a confining potential: a DMRG analysis
Energy Technology Data Exchange (ETDEWEB)
Urba, Laura; Lundh, Emil; Rosengren, Anders [Condensed Matter Theory, Department of Theoretical Physics, KTH, AlbaNova University Center, SE-106 91 Stockholm (Sweden)
2006-12-28
The extended Bose-Hubbard model in a quadratic trap potential is studied using a finite-size density-matrix renormalization group method (DMRG). We compute the boson density profiles, the local compressibility and the hopping correlation functions. We observe the phase separation induced by the trap in all the quantities studied and conclude that the local density approximation is valid in the extended Bose-Hubbard model. From the plateaus obtained in the local compressibility it was possible to obtain the phase diagram of the homogeneous system which is in agreement with previous results.
Propagation of Sound in a Bose-Einstein Condensate
International Nuclear Information System (INIS)
Andrews, M.R.; Kurn, D.M.; Miesner, H.; Durfee, D.S.; Townsend, C.G.; Inouye, S.; Ketterle, W.
1997-01-01
Sound propagation has been studied in a magnetically trapped dilute Bose-Einstein condensate. Localized excitations were induced by suddenly modifying the trapping potential using the optical dipole force of a focused laser beam. The resulting propagation of sound was observed using a novel technique, rapid sequencing of nondestructive phase-contrast images. The speed of sound was determined as a function of density and found to be consistent with Bogoliubov theory. This method may generally be used to observe high-lying modes and perhaps second sound. copyright 1997 The American Physical Society
Bose-Einstein condensation in the relativistic ideal Bose gas.
Grether, M; de Llano, M; Baker, George A
2007-11-16
The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.
Bose-Einstein Condensation in the Relativistic Ideal Bose Gas
International Nuclear Information System (INIS)
Grether, M.; Llano, M. de; Baker, George A. Jr.
2007-01-01
The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state
International Nuclear Information System (INIS)
Svensson, E.C.
1984-01-01
The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described
Bose enhancement and the ridge
Energy Technology Data Exchange (ETDEWEB)
Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Armesto, Néstor, E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel)
2015-12-17
We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.
Bose enhancement and the ridge
Directory of Open Access Journals (Sweden)
Tolga Altinoluk
2015-12-01
Full Text Available We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.
International Nuclear Information System (INIS)
Hundal, R.
1976-01-01
A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly
Low-density, one-dimensional quantum gases in the presence of a localized attractive potential
International Nuclear Information System (INIS)
Goold, J; O'Donoghue, D; Busch, Th
2008-01-01
We investigate low-density, quantum-degenerate gases in the presence of a localized attractive potential in the centre of a one-dimensional harmonic trap. The attractive potential is modelled using a parameterized δ-function, allowing us to determine all single-particle eigenfunctions analytically. From these we calculate the ground-state many-body properties for a system of spin-polarized fermions and, using the Bose-Fermi mapping theorem, extend the results to strongly interacting bosonic systems. We discuss the single-particle densities, the pair-correlation functions, the reduced single-particle density matrices and the momentum distributions as a function of the particle number and strength of the attractive point potential. As an important experimental observable, we place special emphasis on spatial coherence properties of such samples.
Time-of-flight expansion of binary Bose-Einstein condensates at finite temperature
DEFF Research Database (Denmark)
Lee, K. L.; Jorgensen, N. B.; Wacker, L. J.
2018-01-01
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of Rb-87-K-39 Bose-Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-c...
Relativistic density matrix in the diagonal momentum representation. Bose-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed
Quantum versus classical statistical dynamics of an ultracold Bose gas
International Nuclear Information System (INIS)
Berges, Juergen; Gasenzer, Thomas
2007-01-01
We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpretation of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statistical) field-theory approximations of the quantum many-body problem. We employ functional-integral techniques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied within the nonperturbative 2PI 1/N expansion to next-to-leading order. At this accuracy level memory integrals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive properties of quantum versus classical statistical dynamics
Magnon edge states in the hardcore- Bose-Hubbard model.
Owerre, S A
2016-11-02
Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.
Collision of bright vector solitons in two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Ramesh Kumar, V.; Radha, R.; Wadati, Miki
2010-01-01
We investigate the coupled Gross-Pitaevskii equation describing the dynamics of two hyperfine states of Bose-Einstein condensates and deduce the integrability condition for the propagation of bright vector solitons. We show how the transient trap and scattering length can be suitably tailored to bring about fascinating collisional dynamics of vector solitons.
Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas
Barfknecht, R. E.; Foerster, A.; Zinner, N. T.
2018-05-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.
Indian Academy of Sciences (India)
Science. His current research involves trapping of atoms to carry out high precision tests of ... experimental techniques involved in achieving it, and high- light some of the ... is n-1!3, and from kinetic theory, the mean de Broglie wavelength.
Bose-Einstein condensation and superfluidity
Pitaevskii, Lev
2016-01-01
This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.
Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices
International Nuclear Information System (INIS)
Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.
2010-01-01
We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.
Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field
International Nuclear Information System (INIS)
Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely
2005-01-01
The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory
Effective interactions in a quantum Bose-Bose mixture
Utesov, O. I.; Baglay, M. I.; Andreev, S. V.
2018-05-01
We generalize the Beliaev diagrammatic theory of an interacting spinless Bose-Einstein condensate to the case of a binary mixture. We derive a set of coupled Dyson equations and find analytically the Green's functions of the system. The elementary excitation spectrum consists of two branches, one of which takes the characteristic parabolic form ω ∝p2 in the limit of a spin-independent interaction. We observe renormalization of the magnon mass and the spin-wave velocity due to the Andreev-Bashkin entrainment effect. For a three-dimensional weakly interacting gas the spectrum can be obtained by applying the Bogoliubov transformation to a second-quantized Hamiltonian in which the microscopic two-body potentials in each channel are replaced by the corresponding off-shell scattering amplitudes. The superfluid drag density can be calculated by considering a mixture of phonons and magnons interacting via the effective potentials. We show that this problem is identical to the second-order perturbative treatment of a Bose polaron. In two dimensions the drag contributes to the magnon dispersion already in the first approximation. Our consideration provides a basis for systematic study of emergent phases in quantum degenerate Bose-Bose mixtures.
Indian Academy of Sciences (India)
for this wonderful gift to Indian science. I would like to end this review with another quote for C. N. R. Rao's inspiring foreword. 'The book brings out the spirit of J. C. Bose and the flavour of the great man. I do hope it will be read by a large number of people, particularly young people of India.' M S Swaminathan, UNESCO ...
Approaching Bose-Einstein Condensation
Ferrari, Loris
2011-01-01
Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
International Nuclear Information System (INIS)
Cramer, M.; Eisert, J.; Illuminati, F.
2004-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
On the Dynamics of the Fermi-Bose model
DEFF Research Database (Denmark)
Ögren, Magnus
In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial....... In particular the results can be used for studies of threedimensional physical systems of arbitrary geometry. We illustrate the generality of our approach by giving numerical results for the dynamics of Glauber type atomic pair correlation functions for a non-isotropic three-dimensional harmonically trapped...
Generation and interaction of solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Burger, S.; Sengstock, K.; Carr, L.D.; Oehberg, P.; Sanpera, A.
2002-01-01
Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot be observed with present experiments. Finally, motivated by the recent experimental results of Cornish et al. [Phys. Rev Lett. 85, 1795 (2000)], we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well with the existing experimental ones and provide guidance for future experiments
Energy Technology Data Exchange (ETDEWEB)
Sakmann, Kaspar
2010-07-21
In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)
Phase diagram of the disordered Bose-Hubbard model
International Nuclear Information System (INIS)
Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.
2009-01-01
We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.
... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...
Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss
International Nuclear Information System (INIS)
Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto
2011-01-01
We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10 7 atoms starting from 6.6x10 9 thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10 8 sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.
Bose-Einstein condensation and indirect excitons: a review.
Combescot, Monique; Combescot, Roland; Dubin, François
2017-06-01
We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Continuous atom laser with Bose-Einstein condensates involving three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)
2010-05-28
We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.
Effects of quantum statistics in cold-atom gases
International Nuclear Information System (INIS)
Villain, Pierre
2000-01-01
The first part of this research thesis recalls the main properties of Bose-Einstein condensates as they have been experimentally produced since 1995 in diluted alkaline gases and as they have been magnetically trapped. The author discusses the standard theoretical approach of Bogoliubov which relies on an hypothesis of symmetry breakage. Then, the author addresses the dynamic consequences of this hypothesis, in particularly on the existence of a condensate phase jamming which results in a loss of coherence properties for the system. The third part addresses the dynamic study of a condensate within a pattern-type potential. A numerical integration of the Gross-Pitaevskii equation is performed. Through variations of the non-linear parameter (which expresses interactions between atoms), the influence of non-linearities on the system behaviour is analysed. Notably, the author shows how, by increasing this parameter, the macroscopic wave function passes from a regular dynamics to a stochastic dynamics. In the fourth part, the author reports the modelling of an experiment of mixing with five waves within the context of matter waves. He shows how to adapt this experiment for fermions/bosons mixing where an incident fermion wave is sent towards a network of condensed bosons [fr
Discrete Bose-Einstein spectra
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2001-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)
Fast production of Bose-Einstein condensates of metastable helium
Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.
2015-06-01
We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.
International Nuclear Information System (INIS)
Christophorou, L.G.
1981-01-01
Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined
D-dimensional ideal quantum gases in Arn + Br-n potential
International Nuclear Information System (INIS)
Jellal, Ahmed
2000-10-01
The paper is concerned with thermostatistics of both D-dimensional Bose and Fermi ideal gases in a confining potential of type Ar n + Br -n . The investigation is performed in the framework of the semiclassical approximation. Some physical quantities for such systems are derived, like density of states, density profiles and number of particles. Bose-Einstein condensation (BEC) is discussed in the high and low temperature regimes. (author)
... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...
Collision of Bose Condensate Dark Matter structures
International Nuclear Information System (INIS)
Guzman, F. S.
2008-01-01
The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.
Soliton resonance in bose-einstein condensate
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Local condensate depletion at trap center under strong interactions
Yukalov, V. I.; Yukalova, E. P.
2018-04-01
Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.
Levitation of Bose-Einstein condensates induced by macroscopic non-adiabatic quantum tunneling
Nakamura, Katsuhiro; Kohi, Akihisa; Yamasaki, Hisatsugu; Perez-Garcia, Victor M.
2006-01-01
We study the dynamics of two-component Bose-Einstein condensates trapped in different vertical positions in the presence of an oscillating magnetic field. It is shown here how tuning appropriately the oscillation frequency of the magnetic field leads to the levitation of the system against gravity. This phenomenon is a manifestation of a macroscopic non-adiabatic tunneling in a system with internal degrees of freedom.
Dipole oscillations of a Bose-Einstein condensate in the presence of defects and disorder.
Albert, M; Paul, T; Pavloff, N; Leboeuf, P
2008-06-27
We consider dipole oscillations of a trapped dilute Bose-Einstein condensate in the presence of a scattering potential consisting either in a localized defect or in an extended disordered potential. In both cases the breaking of superfluidity and the damping of the oscillations are shown to be related to the appearance of a nonlinear dissipative flow. At supersonic velocities the flow becomes asymptotically dissipationless.
Three-dimensional parallel vortex rings in Bose-Einstein condensates
International Nuclear Information System (INIS)
Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis
2004-01-01
We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability
Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures
DEFF Research Database (Denmark)
Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter
2013-01-01
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...... length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited....
Creation of ^{39}K Bose-Einstein condensates with tunable interaction
DEFF Research Database (Denmark)
Winter, Nils
2013-01-01
The capability of producing ultracold atomic gases has had considerable impact on the field of quantum physics. Due to their purity and tolerance against external perturbation these ensembles are an ideal instrument for precision experiments in atomic and molecular physics. The ability to create...... the investigation of ultracold chemistry or ideal cases such as non-interacting Bose-gases as well as unitary gases. Within the framework of this thesis two research direction were explored. First the creation of wave-packets in an optical lattice was demonstrated, which allows for pump probe-spectroscopy using...... they provide regular lattices that are used as a quantum simulator of solid state systems. In particular the Mott-insulator phase and Cooper paring of fermions could be observed in these ultracold systems. Furthermore the scattering properties of some atomic gases can be tuned to a great extend. This allows...
Quantum tunneling of Bose-Einstein condensates in optical lattices
Fan Wen Bin
2003-01-01
In quantum tunneling a particle with energy E can pass through a high potential barrier V(>E) due to the wave character of the particle. Bose-Einstein condensates can display very strong tunneling depending on the structure of the trap, which may be a double-well or optical lattices. The employed for the first time to our knowledge the periodic instanton method to investigate tunneling of Bose-Einstein condensates in optical lattices. The results show that there are two kinds of tunneling in this system, Landau-Zener tunneling between extended states of the system and Wannier-Stark tunneling between localized states of the system, and that the latter is 1000 times faster than the former. The also obtain the total decay rate for a wide range of temperature, including classical thermal activation, thermally assisted tunneling and quantum tunneling. The results agree with experimental data in references. Finally, the propose an experimental protocol to observe this new phenomenon in future experiments
Localization of weakly interacting Bose gas in quasiperiodic potential
International Nuclear Information System (INIS)
Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis
2016-01-01
We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry–André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave. (paper)
Dynamics of Bose-Einstein condensates in novel optical potentials
Energy Technology Data Exchange (ETDEWEB)
Kueber, Johannes
2014-07-21
Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three
Dispersion Engineering of Bose-Einstein Condensates
Khamehchi, Mohammad Amin
The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel
Vortex sorter for Bose-Einstein condensates
International Nuclear Information System (INIS)
Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik
2004-01-01
We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing
Bose-Einstein condensation and crystallization
International Nuclear Information System (INIS)
Suetoe, A.
2008-01-01
The paper describes history and state of art theory of Bose-Einstein condensation and crystallization as cases of breaking continuous symmetries. Emphasizes that these problems have not been solved exactly. (TRA)
Recent developments in Bose-Einstein condensation
International Nuclear Information System (INIS)
Kalman, G.
1997-01-01
This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations
Recent developments in Bose-Einstein condensation
Energy Technology Data Exchange (ETDEWEB)
Kalman, G.
1997-09-22
This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.
Bose-Einstein condensation of paraxial light
Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.
2011-01-01
Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have obs...
Observation of Spin Superfluidity in a Bose Gas Mixture
Fava, Eleonora; Bienaimé, Tom; Mordini, Carmelo; Colzi, Giacomo; Qu, Chunlei; Stringari, Sandro; Lamporesi, Giacomo; Ferrari, Gabriele
2018-04-01
The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean-field effect. We also measure the static polarizability of the condensed and thermal parts and we find a large increase of the condensate polarizability with respect to the T =0 value, in agreement with the predictions of theory.
Quantum decoherence of phonons in Bose-Einstein condensates
Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette
2018-01-01
We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.
Bose form of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Baluni, V [Institute for Advanced Study, Princeton, NJ (USA); Stanford Linear Accelerator Center, CA (USA))
1980-03-01
By means of a special choice of gauge QCD/sub 2/(SU(N)) with one flavor of quarks is recast into the Bose form. Weak (g < m) and strong (g > m) coupling regimes are studied. The former is shown to be the SU(N)-symmetric confining phase in which bound states possess stringlike configurations with strings being represented by electric vortex lines; the ordinary mesons and baryons appear as longitudinal modes of electric strings. The strong coupling regime describes the Higgs phase with the residual symmetry (U(1))/sup N-1/ S/sub N/ where the left and right factors are the maximal abelian subgroup of SU(N) and the permutation group of N quarks, respectively; the particle spectrum consists of S/sub N/ multiplets adn the (U(1))/sup N-1/ charges are trapped.
Entropy density of an adiabatic relativistic Bose-Einstein condensate star
Energy Technology Data Exchange (ETDEWEB)
Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza [Theoretical Physics Lab., Department of Physics, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-04-24
Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.
Meulenbelt, J
Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was
New state of matter: Bose-Einstein condensation
International Nuclear Information System (INIS)
Anon.
1995-01-01
70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several
Quantum Many-Body Dynamics with Driven Bose Condensates: Kibble-Zurek Mechanism and Bose Fireworks
Clark, Logan William
In recent years there has been an explosion of interest in the field of quantum many-body physics. Understanding the complex and often unintuitive behavior of systems containing interacting quantum constituents is not only fascinating but also crucial for developing the next generation of quantum technology, including better materials, sensors, and computers. Yet understanding such systems remains a challenge, particularly when considering the dynamics which occur when they are excited far from equilibrium. Ultracold atomic gases provide an ideal system with which to study dynamics by enabling clean, well-controlled experiments at length- and time-scales which allow us to observe the dynamics directly. This thesis describes experiments on the many-body dynamics of ultracold, bosonic cesium atoms. Our apparatus epitomizes the versatility of ultracold atoms by providing extensive control over the quantum gas. In particular, we will discuss our use of a digital micromirror device to project arbitrary, dynamic external potentials onto the gas; our development of a powerful new scheme for optically controlling Feshbach resonances to enable spatiotemporal control of the interactions between atoms; and our use of near-resonant shaking lattices to modify the kinetic energy of atoms. Taking advantage of this flexible apparatus, we have been able to test a longstanding conjecture based on the Kibble-Zurek mechanism, which says that the dynamics of a system crossing a quantum phase transition should obey a universal scaling symmetry of space and time. After accounting for this scaling symmetry, critical dynamics would be essentially independent of the rate at which a system crossed a phase transition. We tested the universal scaling of critical dynamics by using near-resonant shaking to drive Bose-Einstein condensates across an effectively ferromagnetic quantum phase transition. After crossing the phase transition, condensates divide themselves spatially into domains with
Existence of solitary waves in dipolar quantum gases
Antonelli, Paolo; Sparber, Christof
2011-01-01
We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.
Existence of solitary waves in dipolar quantum gases
Antonelli, Paolo
2011-02-01
We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.
Quantum ratchets for periodically kicked cold atoms and Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Casati, Giulio [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy); Poletti, Dario [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy)
2007-05-15
We study cold atoms and Bose-Einstein condensates exposed to time-dependent standing waves of light. We first discuss a quantum chaotic dissipative ratchet using the method of quantum trajectories. This system is characterized by directed transport emerging from a quantum strange attractor. We then present a very simple model of directed transport with cold atoms in a pair of periodically flashed optical lattices. Finally we study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair of periodically flashed optical lattices. We show that the many-body atom-atom interactions, treated within the mean-field approximation, can generate directed transport.
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.
Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A
2017-01-06
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.
Decay of superfluid currents in the interacting one-dimensional Bose gas
International Nuclear Information System (INIS)
Cherny, Alexander Yu.; Caux, Jean-Sebastien; Brand, Joachim
2009-01-01
We examine the superfluid properties of a one-dimensional (1D) Bose gas in a ring trap based on the model of Lieb and Liniger. While the 1D Bose gas has nonclassical rotational inertia and exhibits quantization of velocities, the metastability of currents depends sensitively on the strength of interactions in the gas: the stronger the interactions, the faster the current decays. It is shown that the Landau critical velocity is zero in the thermodynamic limit due to the first supercurrent state, which has zero energy and finite probability of excitation. We calculate the energy dissipation rate of ring currents in the presence of weak defects, which should be observable on experimental time scales.
Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.
Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M
2014-10-10
We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.
International Nuclear Information System (INIS)
Hunter, D.; Jackson, D.; Coeyman, M.
1993-01-01
Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements
International Nuclear Information System (INIS)
Haendel, S.; Marchant, A. L.; Wiles, T. P.; Hopkins, S. A.; Cornish, S. L.
2012-01-01
We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85 Rb and 87 Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87 Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.
Satyendranath Bose: Co-Founder of Quantum Statistics
Blanpied, William A.
1972-01-01
Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)
Podosek, F. A.
2003-12-01
The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the
Disordered spinor Bose-Hubbard model
International Nuclear Information System (INIS)
LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub
2011-01-01
We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.
Properties of quantum self-gravitating gases
International Nuclear Information System (INIS)
Rumyantseva, E.N.
1981-01-01
Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model
On the relativistic partition function of ideal gases
International Nuclear Information System (INIS)
Sinyukov, Yu.M.
1983-01-01
The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)
Bose polaron as an instance of quantum Brownian motion
Directory of Open Access Journals (Sweden)
Aniello Lampo
2017-09-01
Full Text Available We study the dynamics of a quantum impurity immersed in a Bose-Einstein condensate as an open quantum system in the framework of the quantum Brownian motion model. We derive a generalized Langevin equation for the position of the impurity. The Langevin equation is an integrodifferential equation that contains a memory kernel and is driven by a colored noise. These result from considering the environment as given by the degrees of freedom of the quantum gas, and thus depend on its parameters, e.g. interaction strength between the bosons, temperature, etc. We study the role of the memory on the dynamics of the impurity. When the impurity is untrapped, we find that it exhibits a super-diffusive behavior at long times. We find that back-flow in energy between the environment and the impurity occurs during evolution. When the particle is trapped, we calculate the variance of the position and momentum to determine how they compare with the Heisenberg limit. One important result of this paper is that we find position squeezing for the trapped impurity at long times. We determine the regime of validity of our model and the parameters in which these effects can be observed in realistic experiments.
Fluctuations and correlations in rotating Bose-Einstein condensates
International Nuclear Information System (INIS)
Baharian, Soheil; Baym, Gordon
2010-01-01
We investigate the effects of correlations on the properties of the ground state of the rotating harmonically trapped Bose gas by adding Bogoliubov fluctuations to the mean-field ground state of an N-particle single-vortex system. We demonstrate that the fluctuation-induced correlations lower the energy compared to that of the mean-field ground state, that the vortex core is pushed slightly away from the center of the trap, and that an unstable mode with negative energy (for rotations slower than a critical frequency) emerges in the energy spectrum, thus pointing to a better state for slow rotation. We construct mean-field ground states of zero-, one-, and two-vortex states as a function of rotation rate and determine the critical frequencies for transitions between these states, as well as the critical frequency for appearance of a metastable state with an off-center vortex and its image vortex in the evanescent tail of the cloud.
Vortices in spin-orbit-coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.
2011-01-01
Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.
Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations
International Nuclear Information System (INIS)
Smith, Robert P.; Tammuz, Naaman; Campbell, Robert L. D.; Hadzibabic, Zoran; Holzmann, Markus
2011-01-01
We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f 0 is induced by critical correlations which increase the transition temperature T c above T c MF . Unlike the T c shift in a trapped gas, f 0 is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ 0 , where a is the s-wave scattering length and λ 0 the thermal wavelength, we expect a universal scaling f 0 ∝(a/λ 0 ) 4 . We experimentally verify this scaling using a Feshbach resonance to tune a/λ 0 . Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.
Resonances for coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Haroutyunyan, H.L.; Nienhuis, G.
2004-01-01
The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice
Using ion production to monitor the birth and death of a metastable helium Bose-Einstein condensate
International Nuclear Information System (INIS)
Seidelin, S; Sirjean, O; Gomes, J Viana; Boiron, D; Westbrook, C I; Aspect, A
2003-01-01
We discuss observations of the ion flux from a cloud of trapped 2 3 S 1 metastable helium atoms. Both Bose-Einstein condensates (BEC) and thermal clouds were investigated. The ion flux is compared with time-of-flight observations of the expanded cloud. We show data concerning BEC formation and decay, as well as measurements of two-and three-body ionization rate constants. We also discuss possible improvements and extensions of our results
International Nuclear Information System (INIS)
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke
2009-01-01
The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.
Global thermodynamics of confined inhomogeneous dilute gases: A semi-classical approach
Poveda-Cuevas, F. J.; Reyes-Ayala, I.; Seman, J. A.; Romero-Rochín, V.
2018-04-01
In this work we present our contribution to the Latin American School of Physics "Marcos Moshinsky" 2017 on Quantum Correlations which was held in Mexico City during the summer of 2017. We review the efforts that have been done to construct a global thermodynamic description of ultracold dilute gases confined in inhomogeneous potentials. This is difficult because the presence of this non-uniform trap makes the pressure of the gas to be a spatially dependent variable and its volume an ambiguously defined quantity. In this paper we introduce new global thermodynamic variables, equivalent to pressure and volume, and propose a realistic model of the equation of state of the system. This model is based on a mean-field approach which asymptotically reaches the Thomas-Fermi limit for a weakly interacting Bose gas. We put special emphasis to the transition between the normal and superfluid phases by studying the behavior of the isothermal compressibility across the transition. We reveal how the potential modifies the critical properties of the transition by determining the critical exponents associated to the divergences not of the susceptibilities but of their derivatives.
Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices
International Nuclear Information System (INIS)
Giampaolo, S.M.; Illuminati, F.; Mazzarella, G.; De Siena, S.
2004-01-01
We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems
International Nuclear Information System (INIS)
Burt, E.A.; Ghrist, R.W.; Myatt, C.J.; Holland, M.J.; Cornell, E.A.; Wieman, C.E.
1997-01-01
We have used three-body recombination rates as a sensitive probe of the statistical correlations between atoms in Bose-Einstein condensates (BEC) and in ultracold noncondensed dilute atomic gases. We infer that density fluctuations are suppressed in the BEC samples. We measured the three-body recombination rate constants for condensates and cold noncondensates from number loss in the F=1,m f =-1 hyperfine state of 87 Rb . The ratio of these is 7.4(2.6) which agrees with the theoretical factor of 3 exclamation point and demonstrates that condensate atoms are less bunched than noncondensate atoms. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Leonhardt, U.; Kiss, T.; Oehberg, P.
2003-01-01
Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies. We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition of the noncondensed component. Furthermore, we develop approximative techniques to determine the spectrum and the mode functions. Finally, we apply our theory to sonic horizons - sonic black and white holes. For sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes may be stable
PT -symmetric gain and loss in a rotating Bose-Einstein condensate
Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter
2018-03-01
PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.
International Nuclear Information System (INIS)
Anon.
1996-01-01
This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)
Convolution identities for quasiprobabilities for Bose functions
International Nuclear Information System (INIS)
Haake, F.; Lewenstein, M.
1982-01-01
We present identities relating the equations of motion of various quasiprobabilities for quantum oscillators. These identities turn out useful for checking the consistency of approximations made in constructing the equations of motion with the basic Bose commutator. Moreover, our identities allow to identify the quasiprobability distributions which have the easiest-to-solve equations of motion. (orig.)
Skyrmion physics in Bose-Einstein ferromagnets
Al Khawaja, U.; Stoof, H.T.C.
2001-01-01
We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and
Bose-Einstein condensation of paraxial light
Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.
2011-10-01
Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.
Coherent decay of positronium bose condensate
International Nuclear Information System (INIS)
Vanyashin, V.S.
1992-07-01
The rate of self-stimulated emission of photon pairs by pseudoscalar particles from Bose condensate is calculated. Growing with density this rate exceeds the density independent rate of spontaneous two photon decay at plausible density values of positronium gas, thus opening in principle, the way to the annihilation gamma ray laser realization. (author). 2 refs
Bose-Einstein correlations between kaons
International Nuclear Information System (INIS)
Akesson, T.; Batley, R.; Breuker, H.; Dam, P.; Eidelman, S.; Fabian, C.W.; Frandsen, P.; Goerlach, U.; Heck, B.; Hilke, H.J.; Jeffreys, P.; Kalinovsky, A.; Kesseler, G.; Lans, J. van der; Lindsay, J.; Markou, A.; Mjoernmark, U.; Nielsen, B.S.; Olsen, L.H.; Rosselet, L.; Rosso, E.; Rudge, A.; Schindler, R.; Willis, W.J.; Witzeling, W.; Albrow, M.G.; Cockerill, D.; Evans, W.M.; Gibson, M.; Hiddleston, J.; MacCubbin, N.A.; Williamson, J.; Benary, O.; Dagan, S.; Lissauer, D.; Oren, Y.; Boeggild, H.; Botner, O.; Dahl-Jensen, E.; Dahl-Jensen, I.; Damgaard, G.; Hansen, K.H.; Hooper, J.; Moeller, R.; Brody, H.; Frankel, S.; Frati, W.; Molzon, W.; Vella, E.; Zajc, W.A.; Burkert, V.; Carter, J.R.; Cecil, P.; Chung, S.U.; Gordon, H.; Ludlam, T.; Winik, M.; Woody, C.; Cleland, W.E.; Kroeger, R.; Sullivan, M.; Thompson, J.A.
1985-01-01
Bose-Einstein correlations between identical charged kaons are observed in αα, pp, and panti p collisions at the CERN Intersecting Storage Rings. The average radial extension of the K-emitting region is found to be (2.4+-0.9) fm. (orig.)
An analytical description of the low temperature behaviour of a weakly interacting Bose gas
International Nuclear Information System (INIS)
Su Guozhen; Chen Lixuan; Chen Jincan
2004-01-01
An analytical description of the low temperature behaviour of a trapped interacting Bose gas is presented by using a simple approach that is based on the principle of the constancy of chemical potentials in equilibrium and the local-density approximation. Several thermodynamic quantities, which include the ground-state fraction, chemical potential, total energy, entropy and heat capacity, are derived analytically. It is shown that the results obtained here are in excellent agreement with the experimental data and the theoretical predictions based on the numerical calculation. Meanwhile, by selecting a suitable variable, the divergent problem existing in some papers is solved
Collapse and revival oscillations as a probe for the tunneling amplitude in an ultracold Bose gas
International Nuclear Information System (INIS)
Wolf, F. Alexander; Hen, Itay; Rigol, Marcos
2010-01-01
We present a theoretical study of the quantum corrections to the revival time due to finite tunneling in the collapse and revival of matter-wave interference after a quantum quench. We study hard-core bosons in a superlattice potential and the Bose-Hubbard model by means of exact numerical approaches and mean-field theory. We consider systems without and with a trapping potential present. We show that the quantum corrections to the revival time can be used to accurately determine the value of the hopping parameter in experiments with ultracold bosons in optical lattices.
Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region
International Nuclear Information System (INIS)
Nilsen, J.K.; Mur-Petit, J.; Guilleumas, M.; Polls, A.; Hjorth-Jensen, M.
2005-01-01
In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states
Onsager Vortex Formation in Two-component Bose-Einstein Condensates
Han, Junsik; Tsubota, Makoto
2018-06-01
We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.
Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate
Sabari, S.; Murali, R.
2018-05-01
We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.
Simple and efficient generation of gap solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Matuszewski, Michal; Krolikowski, Wieslaw; Trippenbach, Marek; Kivshar, Yuri S.
2006-01-01
We suggest an efficient method for generating matter-wave gap solitons in a repulsive Bose-Einstein condensate, when the gap soliton is formed from a condensate cloud in a harmonic trap after turning on a one-dimensional optical lattice. We demonstrate numerically that this approach does not require preparing the initial atomic wave packet in a specific state corresponding to the edge of the Brillouin zone of the spectrum, and losses that occur during the soliton generation process can be suppressed by an appropriate adiabatic switching of the optical lattice
Momentum-Resolved Observation of Thermal and Quantum Depletion in a Bose Gas
Chang, R.; Bouton, Q.; Cayla, H.; Qu, C.; Aspect, A.; Westbrook, C. I.; Clément, D.
2016-12-01
We report on the single-atom-resolved measurement of the distribution of momenta ℏk in a weakly interacting Bose gas after a 330 ms time of flight. We investigate it for various temperatures and clearly separate two contributions to the depletion of the condensate by their k dependence. The first one is the thermal depletion. The second contribution falls off as k-4, and its magnitude increases with the in-trap condensate density as predicted by the Bogoliubov theory at zero temperature. These observations suggest associating it with the quantum depletion. How this contribution can survive the expansion of the released interacting condensate is an intriguing open question.
Analog quantum simulation of gravitational waves in a Bose-Einstein condensate
International Nuclear Information System (INIS)
Bravo, Tupac; Sabin, Carlos; Fuentes, Ivette
2015-01-01
We show how to vary the physical properties of a Bose-Einstein condensate (BEC) in order to mimic an effective gravitational-wave spacetime. In particular, we focus in the simulation of the recently discovered creation of particles by a real spacetime distortion in box-type traps. We show that, by modulating the speed of sound in the BEC, the phonons experience the effects of a simulated spacetime ripple with experimentally amenable parameters. These results will inform the experimental programme of gravitational wave astronomy with cold atoms. (orig.)
Analog quantum simulation of gravitational waves in a Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Bravo, Tupac; Sabin, Carlos; Fuentes, Ivette [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)
2015-01-04
We show how to vary the physical properties of a Bose-Einstein condensate (BEC) in order to mimic an effective gravitational-wave spacetime. In particular, we focus in the simulation of the recently discovered creation of particles by a real spacetime distortion in box-type traps. We show that, by modulating the speed of sound in the BEC, the phonons experience the effects of a simulated spacetime ripple with experimentally amenable parameters. These results will inform the experimental programme of gravitational wave astronomy with cold atoms. (orig.)
Spontaneous soliton formation and modulational instability in Bose-Einstein condensates
International Nuclear Information System (INIS)
Carr, L.D.; Brand, J.
2004-01-01
The dynamics of an elongated attractive Bose-Einstein condensate in an axisymmetric harmonic trap is studied. It is shown that density fringes caused by self-interference of the condensate order parameter seed modulational instability. The latter has novel features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [K. E. Strecker et al., Nature (London) 417, 150 (2002).] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton-soliton interactions, produces bursts of hot atoms at different time scales
Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates
Wang, Wei; Li, Jinbin
2018-03-01
Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.
Bose-Einstein condensation in a decorated lattice: an application to the problem of supersolid He
International Nuclear Information System (INIS)
Fil, D.V.; Shevchenko, S.I.
2008-01-01
The Bose-Einstein condensation of vacancies in a three-dimensional decorated lattice is considered. The model describes possible scenario of superfluidity of solid helium, caused by the presence of zero-point vacancies in a dislocation network. It is shown that the temperature of Bose-Einstein condensation decreases under increase of the length of the network segments, and the law of decrease depends essentially on the properties of the vertices of the network. If the vertices correspond to barriers with a small transparency, the critical temperature varies inversely as the square of the length of the segment. On the contrary, if the vertices correspond to traps for the vacancies (it is energetically preferable for the vacancies to be localized at the vertices), an exponential lowering of the temperature of transition takes place. The highest temperature of Bose-Einstein condensation is reached in the intermediate case of vertices with large transparency, but in the absence of tendency of localization at them. In the latter case the critical temperature is inversely as the length of the segment
International Nuclear Information System (INIS)
Yuan Qingxin; Ding Guohui
2005-01-01
We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an optical lattice well, respectively. By using standing-wave expansion method, we present symmetric and asymmetric ground state solutions of nonlinear Schroedinger equation (NLSE) with a symmetric double square well potential for attractive nonlinearity. In particular, we study the ground state wave function's properties by changing the depth of potential and atomic interactions (here we restrict ourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal a phase transition of BECs trapped in one-dimensional optical lattice potential.
International Nuclear Information System (INIS)
Yuan Qingxin; Ding Guohui
2005-01-01
We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs). For BECs trapped in a double square well potential, we present symmetric and asymmetric ground states by using standing-wave expansion method. For BECs trapped in an optical lattice well potential (created by a standing laser wave, and not just an extension of the double square well potential), we reveal a phase transition by using plane-wave expansion method. At the same time we also study the ground state properties with changing the depth of potential and atomic interactions (restrict ourselves to the attractive regime)
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
International Nuclear Information System (INIS)
Omran, Ahmed
2016-01-01
This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2004-01-01
Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate
Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates
2015-06-23
AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14
Engineering frequency-dependent superfluidity in Bose-Fermi mixtures
Arzamasovs, Maksims; Liu, Bo
2018-04-01
Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.
Spectroscopy of dark soliton states in Bose-Einstein condensates
International Nuclear Information System (INIS)
Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W
2003-01-01
Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates
Fermi states of Bose systems in three space dimensions
International Nuclear Information System (INIS)
Garbaczewski, P.
1985-01-01
Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Globally linked vortex clusters in trapped wave fields
International Nuclear Information System (INIS)
Crasovan, Lucian-Cornel; Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis; Perez-Garcia, Victor M.; Mihalache, Dumitru
2002-01-01
We put forward the existence of a rich variety of fully stationary vortex structures, termed H clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as the Bose-Einstein condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
Quantum information entropies of ultracold atomic gases in a ...
Indian Academy of Sciences (India)
The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We ﬁnd that sum of the position and momentum space information entropies of these quantum systems ...
Bose-Einstein correlation in Landau's model
International Nuclear Information System (INIS)
Hama, Y.; Padula, S.S.
1986-01-01
Bose-Einstein correlation is studied by taking an expanding fluid given by Landau's model as the source, where each space-time point is considered as an independent and chaotic emitting center with Planck's spectral distribution. As expected, the correlation depends on the relative angular positions as well as on the overall localization of the measuring system and it turns out that the average dimension of the source increases with the multiplicity N/sub ch/
International Nuclear Information System (INIS)
Cockburn, S. P.; Gallucci, D.; Proukakis, N. P.
2011-01-01
The stochastic Gross-Pitaevskii equation is shown to be an excellent model for quasi-one-dimensional Bose gas experiments, accurately reproducing the in situ density profiles recently obtained in the experiments of Trebbia et al.[Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et al.[Phys. Rev. Lett. 100, 090402 (2008)] and the density fluctuation data reported by Armijo et al.[Phys. Rev. Lett. 105, 230402 (2010)]. To facilitate such agreement, we propose and implement a quasi-one-dimensional extension to the one-dimensional stochastic Gross-Pitaevskii equation for the low-energy, axial modes, while atoms in excited transverse modes are treated as independent ideal Bose gases.
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Anderson, R. P. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); School of Physics, Monash University, Victoria 3800 (Australia)
2011-08-15
We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.
Energy–pressure relation for low-dimensional gases
Directory of Open Access Journals (Sweden)
Francesco Mancarella
2014-10-01
Full Text Available A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates, including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce
Energy–pressure relation for low-dimensional gases
International Nuclear Information System (INIS)
Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea
2014-01-01
A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale
Atom loss resonances in a Bose-Einstein condensate.
Langmack, Christian; Smith, D Hudson; Braaten, Eric
2013-07-12
Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.
Vortex dynamics in coherently coupled Bose-Einstein condensates
Calderaro, Luca; Fetter, Alexander L.; Massignan, Pietro; Wittek, Peter
2017-02-01
In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component, two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent for a vortex in one component because of the nonuniform vortex phase. Instead the coherent Rabi coupling induces a periodic vorticity transfer between the two components.
Askerov, Bahram M
2010-01-01
This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.
From ultracold Fermi Gases to Neutron Stars
Salomon, Christophe
2012-02-01
Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)
Energy Technology Data Exchange (ETDEWEB)
Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others
2012-12-15
Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.
Spontaneous formation of quantized vortices in Bose-Einstein condensates
Weiler, Chad Nathan
Phase transitions abound in the physical world, from the subatomic length scales of quark condensation to the decoupling forces in the early universe. In the Bose-Einstein condensation phase transition, a gas of trapped bosonic atoms is cooled to a critical temperature. Below this temperature, a macroscopic number of atoms suddenly starts to occupy a single quantum state; these atoms comprise the Bose-Einstein condensate (BEC). The dynamics of the BEC phase transition are the focus of this dissertation and the experiments described here have provided new information on the details of BEC formation. New theoretical developments are proving to be valuable tools for describing BEC phase transition dynamics and interpreting new experimental results. With their amenability to optical manipulation and probing along with the advent of new microscopic theories, BECs provide an important new avenue for gaining insight into the universal dynamics of phase transitions in general. Spontaneous symmetry breaking in the system's order parameter may be one result of cooling through a phase transition. A potential consequence of this is the spontaneous formation of topological defects, which in a BEC appear as vortices. We experimentally observed and characterized the spontaneous formation of vortices during BEC growth. We attribute vortex creation to coherence length limitations during the initial stages of the phase transition. Parallel to these experimental observations, theory collaborators have used the Stochastic Gross-Pitaevski Equation formalism to simulate the growth of a condensate from a thermal cloud. The experimental and theoretical statistical results of the spontaneous formation of vortex cores during the growth of the condensate are in good quantitative agreement with one another, supporting our understanding of the dynamics of the phase transition. We believe that our results are also qualitatively consistent with the Kibble-Zurek mechanism, a universal model for
Optical absorption in a degenerate Bose-Einstein gas
International Nuclear Information System (INIS)
Yip, S.K.
2002-01-01
We develop a theory on optical absorption in a dilute Bose-Einstein gas at low temperatures. This theory is motivated by the Bogoliubov theory of elementary excitations for this system, and takes into account explicitly the modification of the nature and dispersion of elementary excitations due to Bose-Einstein condensation. Our results show important differences from existing theories
Calculation of thermodynamic properties of finite Bose-Einstein systems
Borrmann, P.; Harting, J.D.R.; Mülken, O.; Hilf, E.
1999-01-01
We derive an exact recursion formula for the calculation of thermodynamic functions of finite systems obeying Bose-Einstein statistics. The formula is applicable for canonical systems where the particles can be treated as noninteracting in some approximation, e.g., like Bose-Einstein condensates in
On an uncorrelated jet model with Bose-Einstein statistics
International Nuclear Information System (INIS)
Bilic, N.; Dadic, I.; Martinis, M.
1978-01-01
Starting from the density of states of an ideal Bose-Einstein gas, an uncorrelated jet model with Bose-Einstein statistics has been formulated. The transition to continuum is based on the Touschek invariant measure. It has been shown that in this model average multiplicity increases logarithmically with total energy, while the inclusive distribution shows ln s violation of scaling. (author)
International Nuclear Information System (INIS)
1995-11-01
This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan
Lattice solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Efremidis, Nikolaos K.; Christodoulides, Demetrios N.
2003-01-01
We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs
Bose-Einstein condensation in real space
International Nuclear Information System (INIS)
Valencia, J.J.; Llano, M. de; Solis, M.A.
2004-01-01
We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)
Polaron in the dilute critical Bose condensate
Pastukhov, Volodymyr
2018-05-01
The properties of an impurity immersed in a dilute D-dimensional Bose gas at temperatures close to its second-order phase transition point are considered. Particularly by means of the 1/N-expansion, we calculate the leading-order polaron energy and the damping rate in the limit of vanishing boson–boson interaction. It is shown that the perturbative effective mass and the quasiparticle residue diverge logarithmically in the long-length limit, signalling the non-analytic behavior of the impurity spectrum and pole-free structure of the polaron Green’s function in the infrared region, respectively.
Stability of trapped Bose—Einstein condensates in one-dimensional tilted optical lattice potential
International Nuclear Information System (INIS)
Fang Jian-Shu; Liao Xiang-Ping
2011-01-01
Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose—Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose—Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable. (general)
Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.
Yurovsky, Vladimir A
2017-05-19
Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.
Quantifying, characterizing, and controlling information flow in ultracold atomic gases
International Nuclear Information System (INIS)
Haikka, P.; McEndoo, S.; Maniscalco, S.; De Chiara, G.; Palma, G. M.
2011-01-01
We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).
Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates
International Nuclear Information System (INIS)
Baym, Gordon; Pethick, C.J.
2004-01-01
We develop an approach for calculating stationary states of rotating Bose-Einstein condensates in harmonic traps which is applicable for arbitrary ratios of the rotation frequency to the transverse frequency of the trap ω perpendicular . Assuming the number of vortices to be large, we write the condensate wave function as the product of a function that describes the structure of individual vortices times an envelope function varying slowly on the scale of the vortex spacing. By minimizing the energy, we derive Gross-Pitaevskii equations that determine the properties of individual vortices and the global structure of the cloud. For low rotation rates, the structure of a vortex is that of an isolated vortex in a uniform medium, while for rotation rates approaching the frequency of the trap (the mean-field lowest-Landau-level regime), the structure is that of the lowest p-wave state of a particle in a harmonic trap with frequency ω perpendicular . The global structure of the cloud is determined by minimizing the energy with respect to variations of the envelope function; for conditions appropriate to most experimental investigations to date, we predict that the transverse density profile of the cloud will be of the Thomas-Fermi form, rather than the Gaussian structure predicted on the assumption that the wave function consists only of components in the lowest Landau level for a regular array of vortices
Optical trapping and Feshbach spectroscopy of an ultracold Rb-Cs mixture
International Nuclear Information System (INIS)
Pilch, K.
2009-01-01
We investigate quantum-mechanical interactions between ultracold rubidium and cesium in an optical trap at temperatures of a few micro kelvin. Our results provide, on the one hand, an experimental key to understand the collisional properties and, on the other hand, a tool to control the interspecies interactions. By performing loss measurements we locate several Feshbach resonances, which provide insight into the energy structure of weakly bound RbCs molecules near the dissociation threshold and allow for the production of such heteronuclear Feshbach molecules. In the future we will transfer these loosely-bound molecules into the absolute internal ground state. The availability of ultracold heteronuclear ground state molecules will open the door to investigate phenomena associated with ultracold polar quantum gases. In our new experimental set-up we are able to trap and cool rubidium and cesium atoms in their lowest internal states. First we load both species into a two-color magneto-optical trap, having full control over the single-species atom number. We extend the technique of degenerate Raman-sideband cooling to a two-color version, which is able to simultaneously cool and polarize both rubidium and cesium. Thereafter we load the atoms into a levitated crossed optical dipole trap. Because of the presence of the gradient magnetic field the trap is highly state selective and consequently provides perfect spin-polarization of the sample. Furthermore, a coincidence of the magnetic-moment-to-mass ratios of the two species allows for simultaneous levitation of both, which assures an almost perfect spatial overlap between the species. We perform Feshbach spectroscopy in two dierent spin channels of the mixture within a magnetic field ranging from 20 to 300 Gauss. In the lowest spin combination of the species we locate 23 interspecies Feshbach resonances, while in a higher spin mixture we find 2 resonances. The high number of resonances found within this range of
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
International Nuclear Information System (INIS)
Zhang Rui; Garner, Sean R.; Hau, Lene Vestergaard
2009-01-01
A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than 1 s are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.
Dissipation-Managed Bright Soliton in a 1D Bose-Einstein Condensate in an Optical-Lattice Potential
International Nuclear Information System (INIS)
Zhou Zheng; Yu Huiyou; Ao Shengmei; Yan Jiaren
2010-01-01
We study the formation of a dynamically-stabilized dissipation-managed bright soliton in a quasi-one-dimensional Bose-Einstein condensate by including an imaginary three-body recombination loss term and an imaginary linear feeding one in the Gross-Pitaevskii equation, trapped in a shallow optical-lattice potential. Based on the direct approach of perturbation theory for the nonlinear Schroedinger equation, we demonstrate that the height (as well as width) of bright soliton may have little change through selecting experimental parameters. (general)
Superfluidity, Bose condensation and neutron scattering in liquid 4He
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The relation between superfluidity and Bose condensation in 4 He provides lessons that may be valuable in understanding the strongly correlated electron system of high T c superconductivity. Direct observation of a Bose condensate in the superfluid by deep inelastic neutron scattering measurements has been attempted over many years. But the impulse approximation, which relates momentum distributions to neutron scattering structure functions, is broadened by final state effects. Nevertheless, the excellent quantitative agreement between ab initio quantum many body theory and high precision neutron experiments provides confidence in the connection between superfluidity and Bose condensation
2006-01-01
3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image. Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter
Finite-temperature models of Bose-Einstein condensation
Energy Technology Data Exchange (ETDEWEB)
Proukakis, Nick P; Jackson, Brian [School of Mathematics and Statistics, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)], E-mail: Nikolaos.Proukakis@ncl.ac.uk
2008-10-28
The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models. (phd tutorial)
Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun
2018-03-01
We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.
Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y
2012-01-01
Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...
Collapse and revival of the Fermi sea in a Bose-Fermi mixture
Iyer, Deepak; Will, Sebastian; Rigol, Marcos
2014-05-01
The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.
International Nuclear Information System (INIS)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-01
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
Higher first Chern numbers in one-dimensional Bose-Fermi mixtures
Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.
2018-02-01
We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.
The internal energy and thermodynamic behaviour of a boson gas below the Bose-Einstein temperature
International Nuclear Information System (INIS)
Deeney, F.A.; O'Leary, J.P.
2011-01-01
We have examined the issue of the kinetic energy of particles in the ground state of an ideal boson gas. By assuming that the particles, on dropping into the ground state, retain the kinetic energy they possess at the Bose-Einstein temperature T B , we obtain new expressions for the pressure and internal energy of the gas below T B , that are free of the difficulties associated with the corresponding expressions in current theory. Furthermore, these new equations yield a value for the maximum density temperature in liquid 4 He that is very close to the measured value. - Highlights: → A new equation of state for an ideal boson gas that is anomaly-free. → A prediction of the existence of a density maximum in all ideal boson gases. → Calculation of the temperature at which a density maximum will occur in liquid 4 He.
[Gases in vitreoretinal surgery].
Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M
2012-02-01
To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.
Theory of a Nearly Two-Dimensional Dipolar Bose Gas
2016-05-11
order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16
Higher order Bose-Einstein correlations in identical particle production
International Nuclear Information System (INIS)
Biyajima, M.
1990-01-01
A diagram technique to calculate the higher order Bose-Einstein correlations is formulated. This technique is applied to derive explicit expressions for the n-pion correlation functions for n = 2, 3, 4, and 5, and numerical predictions are given. In a comparison with the AFS and NA23 data on two-pion and three-pion Bose-Einstein correlations good agreement is obtained. 21 refs., 5 figs. (Authors)
Solution of the statistical bootstrap with Bose statistics
International Nuclear Information System (INIS)
Engels, J.; Fabricius, K.; Schilling, K.
1977-01-01
A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as obtained from its grand microcanonical level density
Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
Mawson, Thomas; Ruben, Gary; Simula, Tapio
2015-06-01
We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.
Behaviour of the energy gap in a model of Josephson coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Tonel, A P; Links, J; Foerster, A
2005-01-01
In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The energy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points
The nonlinear evolution of ring dark solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Xue Jukui
2004-01-01
The dynamics of the ring dark soliton in a Bose-Einstein condensate (BEC) with thin disc-shaped potential is investigated analytically and numerically. Analytical investigation shows that the ring dark soliton in the radial non-symmetric cylindrical BEC is governed by a cylindrical Kadomtsev-Petviashvili equation, while the ring dark soliton in the radial symmetric cylindrical BEC is governed by a cylindrical Korteweg-de Vries equation. The reduction to the cylindrical KP or KdV equation may be useful to understand the dynamics of a ring dark soliton. The numerical results show that the evolution properties and the snaking of a ring dark soliton are modified significantly by the trapping
Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates
International Nuclear Information System (INIS)
Xue Jukui
2005-01-01
The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity
International Nuclear Information System (INIS)
Wilson, S. D.; James, M. R.; Carvalho, A. R. R.; Hope, J. J.
2007-01-01
We apply quantum filtering and control to a particle in a harmonic trap under continuous position measurement, and show that a simple static feedback law can be used to cool the system. The final steady state is Gaussian and dependent on the feedback strength and coupling between the system and probe. In the limit of weak coupling, this final state becomes the ground state. An earlier model by Haine et al. [Phys. Rev. A 69, 13605 (2004)] without measurement backaction showed dark states: states that did not display error signals, thus remaining unaffected by the control. This paper shows that for a realistic measurement process this is not true, which indicates that a Bose-Einstein condensate may be driven toward the ground state from any arbitrary initial state
Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices
International Nuclear Information System (INIS)
Tsukada, N.
2002-01-01
We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions
Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate
International Nuclear Information System (INIS)
Kushibe, Daisuke; Mutou, Masaki; Morishita, Toru; Watanabe, Shinichi; Matsuzawa, Michio
2004-01-01
Excitation of an atomic-gas Bose-Einstein condensate (BEC) in the zeroth-order ground-state channel is studied with the hyperspherical adiabatic method of Bohn et al. [Bohn et al., Phys. Rev. A 58, 584 (1998)] suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system's size as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem. The oscillation frequencies associated with the monopole (breathing) and quadrupole modes thus emerge naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves the way for applying the adiabatic picture to other BEC phenomena
The coherence and spectra of a Bose condensate generated by an atomic laser
International Nuclear Information System (INIS)
Kozlovskii, A.V.
2003-01-01
The first-order coherence dynamics of a Bose condensate generated by a cw atomic laser with evaporative cooling is analyzed. For the atomic-laser multimode model, the coherence functions and atomic field spectra are calculated by the master equation technique. Elastic collisions in the trapped atomic gas lead to significant broadening of the atomic laser line, a shift of its center, and a multi peak structure of the spectra. The oscillatory time dynamics of the atomic-field coherence function is studied. For the atomic laser, the free phase diffusion of the field typical of optical lasers, and characterized by monotonically decreasing mean field with a constant mean phase, is absent due to elastic collisions
Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate
International Nuclear Information System (INIS)
Guilleumas, M.; Pitaevskii, L.P.
2003-01-01
We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed
Anomalous Hydrodynamics and Normal Fluids in Rapidly Rotating Bose-Einstein Condensates
International Nuclear Information System (INIS)
Bourne, A.; Wilkin, N.K.; Gunn, J.M.F.
2006-01-01
In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a 'normal fluid', allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches--perhaps related to those observed at JILA
Anomalous Hydrodynamics and Normal Fluids in Rapidly Rotating Bose-Einstein Condensates
Bourne, A.; Wilkin, N. K.; Gunn, J. M. F.
2006-06-01
In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a “normal fluid,” allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches—perhaps related to those observed at JILA.
Dissipative flow and vortex shedding in the Painleve boundary layer of a Bose-Einstein condensate
International Nuclear Information System (INIS)
Aftalion, Amandine; Du Qiang; Pomeau, Yves
2003-01-01
This paper addresses the drag force and formation of vortices in the boundary layer of a Bose-Einstein condensate stirred by a laser beam following the experiments of C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999)10.1103/PhysRevLett.83.2502. We make our analysis in the frame moving at constant speed where the beam is fixed. We find that there is always a drag around the laser beam. We also analyze the mechanism of vortex nucleation. At low velocity, there are no vortices and the drag has its origin in a wakelike phenomenon: This is a particularity of trapped systems since the density gets small in an extended region. The shedding of vortices starts only at a threshold velocity and is responsible for a large increase in drag. This critical velocity for vortex nucleation is lower than the critical velocity computed for the corresponding 2D problem at the center of the cloud
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures
Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.
2018-05-01
Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.
Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field
Qu, Chunlei; Stringari, Sandro
2018-05-01
By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Opanchuk, B.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn VIC 3122 (Australia)
2013-04-15
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.
Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H
2016-09-26
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Ionizing collisions: a new diagnostic for Bose-Einstein condensates of metastable helium
International Nuclear Information System (INIS)
Sirjean, O.
2003-06-01
At this writing, metastable helium (23S1) is the only example of Bose-Einstein condensation of an atom in an excited electronic state. The corresponding internal energy permits efficient and fast electronic detection of the atoms using a micro-channel plate detector (MCP). Moreover, this energy is responsible for ionizing collisions inside the magnetically trapped cloud (Penning ionization). These ions are also easily detected by the MCP. This thesis begins by describing the characteristics of the MCP detector. Next, the experimental procedure to achieve Bose-Einstein condensation is presented. These preliminaries are followed by a description of the experiments performed in order to determine the origin of the ions produced and by a presentation of some of the new experimental possibilities provided by the ion signal. For clouds with a low enough density, ions are mainly produced by collisions with the residual gas, and the signal is proportional to the number of trapped atoms. For clouds with a sufficiently high density, for example close to the condensation threshold, ions are mainly produced by 2- and 3-body collisions. In this case, the ion signal is also related to the density of the cloud. Depending on the density, the signal gives a real-time and 'non-destructive' measurement of these different characteristics. In particular, we have shown it is a valuable indicator of the onset of condensation, because it signals the sudden increase of density which then occurs. By studying the ion rate versus the density and the number of atoms for pure condensates and for thermal clouds at critical temperature, we have measured the collision rate constants for these ionizing processes. Our results are in agreement with theoretical predictions. (author)
Bose-Einstein condensation and study of inelastic collisions due to dipolar interactions
International Nuclear Information System (INIS)
Beaufils, Q.
2009-01-01
Its large magnetic moment in the ground state makes chromium a good candidate for the study of dipolar interactions in a degenerate gas. We have built an experimental setup for trapping and cooling atoms of "5"2Cr down to Bose-Einstein condensation (BEC). Evaporative cooling takes place in a purely optical trap, which is loaded from the magneto-optical trap using a novel process of continuous accumulation of metastable states. We produce a condensate of typically 15000 atoms in a time of 15 s. We have studied the possibility to bring all the Zeeman substates of a chromium BEC to degeneracy in a non-zero static magnetic field, using a radiofrequency (rf) magnetic field, and demonstrated a new process of rf-assisted dipolar relaxation. We have also studied a narrow Feshbach resonance induced by dipolar interaction, which implies a d-wave collisional channel. We analyzed this resonance in the presence of a rf magnetic field and we reinterpreted rf association of molecules as a mere Feshbach resonance between rf dressed states. Finally, we have set up an optical lattice in the perspective of studying the effects of dipole-dipole interactions in reduced dimension. (author)
Extraction with supercritical gases
Energy Technology Data Exchange (ETDEWEB)
Schneider, G M; Wilke, G; Stahl, E
1980-01-01
The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.
Schoen, Helmut
2015-01-01
Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.
Tomkins, RPT
1991-01-01
This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.
Coexistence of pairing gaps in three-component Fermi gases
International Nuclear Information System (INIS)
Nummi, O H T; Kinnunen, J J; Toermae, P
2011-01-01
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously non-zero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.
International Nuclear Information System (INIS)
Chen Yan; Chen Yong; Zhang Kezhi
2009-01-01
We study the dynamic behaviour of Bose-Einstein condensates with two- and three-atom interactions in optical lattices with analytical and numerical methods. It is found that the steady-state relative population displays tuning-fork bifurcation when the system parameters are changed to certain critical values. In particular, the existence of the three-body interaction not only transforms the bifurcation point of the system but also greatly affects the macroscopic quantum self-trapping behaviours associated with the critically stable steady-state solution. In addition, we investigated the influence of the initial conditions, three-body interaction, and the energy bias on the macroscopic quantum self-trapping. Finally, by applying the periodic modulation on the energy bias, we observed that the relative population oscillation exhibits a process from order to chaos, via a series of period-doubling bifurcations.
International Nuclear Information System (INIS)
Theodorakis, Stavros
2003-01-01
We emulate the cubic term Ψ 3 in the nonlinear Schroedinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a δ function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Ψ 3 one. In particular, it can be used for the nonlinear Schroedinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions
Thermostatistical properties of q-deformed bosons trapped in a D-dimensional power-law potential
International Nuclear Information System (INIS)
Su Guozhen; Chen Jincan; Chen Lixuan
2003-01-01
The thermostatistical properties of an ideal gas of q-deformed bosons trapped in a D-dimensional power-law potential are studied, based on the q-deformed Bose-Einstein distribution. The effects of q-deformation on the properties of the system are discussed. It is shown that q-deformed bosons (q ≠ 1) possess many different characteristics from those of ordinary bosons, which include the condition that Bose-Einstein condensation (BEC) occurs, the critical temperature and the continuity of heat capacity
Elastic scattering of a Bose-Einstein condensate at a potential landscape
International Nuclear Information System (INIS)
Březinová, Iva; Burgdörfer, Joachim; Lode, Axel U J; Streltsov, Alexej I; Cederbaum, Lorenz S; Alon, Ofir E; Collins, Lee A; Schneider, Barry I
2014-01-01
We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory
Analytical methods for toxic gases from thermal degradation of polymers
Hsu, M.-T. S.
1977-01-01
Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.
Composition of lunar noble gases traped 2.5 AE and 3.5 AE ago
International Nuclear Information System (INIS)
Eugster, O.
1986-01-01
The times when the soils 74001 and 73261 were exposed on the lunar surface were determined by the U-235 - Xe-136 dating method. The isotopic composition of the trapped noble gases in these two soils is compared with that of the surface correlated noble gases in the young soils 12001 and in the present day solar wind. The surface correlated trapped gases are a mixture of implanted solar wind particles and retrapped lunar atmospheric gases. The observed changes are interpreted as a result of decreasing outgassing of radiogenic Ar-40 and perhaps He-4 and of fissiogenic Xe from the lunar crust. The old soils probably also contain surface correlated Kr-80 and Kr-82 produced by secondary cosmic ray neutron capture of adsorbed or retrapped bromine. To some extent the isotopic composition of the trapped gases in old lunar soil may also have been altered due to diffusion loss from material of low retentivity
Lenr:. Superfluids, Self-Trapping and Non-Self States
Chubb, Talbot A.
2005-12-01
LENR ion band state models involve deuteron many-body systems resembling superfluids. The physics of atom Bose-Einstein condensates in optical lattices teaches that superfluid behavior occurs when the potential barriers between adjacent potential wells permit high tunneling rates and the well potentials are shallow. These superfluids have fractional occupation of individual wells. Well periodic symmetry is not affected by the presence of the atoms. This behavior suggests that deuterons in a lattice should be in non-self-trapping sites, which may indicate that D+Bloch occupies the Pd tetrahedral sites.
Directory of Open Access Journals (Sweden)
João Caraça
2017-05-01
Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?
Tunnelling Dynamics of Bose—Einstein Condensates in a Five-Well Trap
International Nuclear Information System (INIS)
Ai-Xia, Zhang; Shi-Ling, Tian; Rong-An, Tang; Ju-Kui, Xue
2008-01-01
We develop a five-well model for describing the tunnelling dynamics of Bose-Einstein condensates (BECs) trapped in 2D optical lattices. The tunnelling dynamics of BECs in this five-well model are investigated both analytically and numerically. We focus on the self-trapped states and the difference of the tunnelling dynamics among two-well, three-well and five-well systems. The criterions for the self-trapped states and the phase diagrams of the five trapped BECs in zero-phase mode and π-phase mode are obtained. We find that the criterions and the phase diagrams are largely modified by the dimension of the system and the phase difference between wells. The five-well model is a good model and can give us an insight into the tunnelling dynamics of BECs trapped in 2D optical lattices
Spin-charge separation in ultra-cold quantum gases
Recati, A.; Fedichev, P. O.; Zwerger, W.; Zoller, P.
2002-01-01
We investigate the physical properties of quasi-1D quantum gases of fermion atoms confined in harmonic traps. Using the fact that for a homogeneous gas, the low energy properties are exactly described by a Luttinger model, we analyze the nature and manifestations of the spin-charge separation. Finally we discuss the necessary physical conditions and experimental limitations confronting possible experimental implementations.
Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.
Zheng, Wei; Zhai, Hui
2014-12-31
In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.
Bose-Einstein correlations in W-pair decays
Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
Bose-Einstein correlations are studied in semileptonicWW --> qqbarlnu and fully hadronic WW --> qqbarqqbar W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einsteincorrelations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW --> qqbarlnu events. The same Monte Carlo reproduces the correlations in the WW --> qqbarqqbarchannel assuming independent fragmentation of the two W's. A variant thismodel with Bose-Einstein correlations between decay products of different W's is disfavoured.
Thermodynamics of a Bose-Einstein condensate with weak disorder
International Nuclear Information System (INIS)
Falco, G. M.; Pelster, A.; Graham, R.
2007-01-01
We consider the thermodynamics of a homogeneous superfluid dilute Bose gas in the presence of weak quenched disorder. Following the zero-temperature approach of Huang and Meng, we diagonalize the Hamiltonian of a dilute Bose gas in an external random δ-correlated potential by means of a Bogoliubov transformation. We extend this approach to finite temperature by combining the Popov and the many-body T-matrix approximations. This approach permits us to include the quasiparticle interactions within this temperature range. We derive the disorder-induced shifts of the Bose-Einstein critical temperature and of the temperature for the onset of superfluidity by approaching the transition points from below, i.e., from the superfluid phase. Our results lead to a phase diagram consistent with that of the finite-temperature theory of Lopatin and Vinokur which was based on the replica method, and in which the transition points were approached from above
International Nuclear Information System (INIS)
Niedermayr, M.
2015-01-01
Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de
Kauzmann, Walter
2012-01-01
Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.
electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.
Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems
Energy Technology Data Exchange (ETDEWEB)
Boguslavski, Kirill
2016-07-27
Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.
Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems
International Nuclear Information System (INIS)
Boguslavski, Kirill
2016-01-01
Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.
Reale Gase, tiefe Temperaturen
Heintze, Joachim
Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.
International Nuclear Information System (INIS)
Wright, R.J.; Pacer, J.C.
1981-01-01
Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)
Images of a Bose-Einstein condensates: diagonal dynamical Bogoliubov vacuum
International Nuclear Information System (INIS)
Dziarmaga, J.; Sacha, K.; Karkuszewski, Z.
2005-01-01
Evolution of a Bose-Einstein condensate subject to a time-dependent external perturbation can be described by a time-dependent Bogoliubov theory: a condensate initially in its ground state evolves into a time-dependent excited state which can be formally written as a time-dependent Bogoliubov vacuum annihilated by time-dependent quasiparticle annihilation operators. We prove that any Bogoliubov vacuum can be brought to a diagonal form in a time-dependent orthonormal basis. This diagonal form is taylored for simulations of quantum measurements on excited condensates. As an example we work out a model of atomic interferometer where a trap potential is split in two parts by a potential barrier, and then atoms are released by opening the double-well trap potential. In the Gross-Pitaevskii approximation the released atoms give a high contrast interference pattern with repeatable position of interference fringes. In the two-mode tight-binding approximation the effect of phase diffusion makes the position of fringes fluctuate from experiment to experiment but every single realisation of experiment gives a high quality interference pattern. The time-dependent Bogoliubov theory is a more realistic description of the experiment which goes beyond both approximations. Using the diagonal time-dependent Bogoliubov vacuum we show that in addition to position fluctuations the interference pattern is also loosing its high quality contrast. (author)
Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction
International Nuclear Information System (INIS)
Mihalache, Dumitru; Mazilu, Dumitru; Malomed, Boris A.; Lederer, Falk
2006-01-01
We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('pancake-shaped') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0 max (S=1) , where N is the number of atoms, and N max (S=1) is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)N max (S=1) max (S=1) , the unstable vortex periodically splits in two fragments and recombines. At N>0.43N max (S=1) , the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio √(10), the stability interval of the S=1 vortices occupies ≅40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S≥2 are unstable
Lundblad, Nathan; Jarvis, Thomas; Paseltiner, Daniel; Lannert, Courtney
2016-05-01
We have proposed using NASA's Cold Atom Laboratory (CAL, launching to the International Space Station in 2017) to generate bubble-geometry Bose-Einstein condensates through radiofrequency dressing of an atom-chip magnetic trap. This geometry has not been truly realized terrestrially due to the perturbing influence of gravity, making it an ideal candidate for microgravity investigation aboard CAL. We report progress in the construction of a functional prototype of the orbital BEC apparatus: a compact atom-chip machine loaded by a 2D+MOT source, conventional 3D MOT, quadrupole trap, and transfer coil. We also present preliminary modeling of the dressed trap uniformity, which will crucially inform the geometric closure of the BEC shell surface as atom number, bubble radius, and bubble aspect ratio are varied. Finally, we discuss plans for experimental sequences to be run aboard CAL guided by intuition from ground-based prototype operation. JPL 1502172.
Solitons, Bose-Einstein condensation and superfluidity in He II
International Nuclear Information System (INIS)
Chela-Flores, J.; Ghassib, H.B.
1985-09-01
The analytic form of a wave propagating with a constant velocity and a permanent profile is inferred for a weakly interacting Bose gas, using an exact (rather than asymptotic) solution of the field equation of the self-consistent Hartree model. The significance of this approach is indicated, especially when realistic interatomic potentials are used. In addition, the general relation between solitons and Bose-Einstein condensation is underlined by invoking the profound insight recently acquired in studies of the quantum liquids involved in the living state. It is concluded that solitons may occur in He II, and may play a significant role in the phenomena of superfluidity. (author)
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
International Nuclear Information System (INIS)
Gati, Rudolf; Hemmerling, Boerge; Foelling, Jonas; Albiez, Michael; Oberthaler, Markus K.
2006-01-01
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics
Noise thermometry with two weakly coupled Bose-Einstein condensates.
Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K
2006-04-07
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.
The canonical ensemble redefined - 3. Ideal Bose gas
International Nuclear Information System (INIS)
Venkataraman, R.
1984-12-01
The ideal Bose gas solved in the redefined ensemble formalism exhibits a discontinuity in the specific heat suggesting that Bose-Einstein condensation is a second order phase transition. The deviations from the classical ideal gas behaviour are larger than those predicted by Gibbs ensemble. Below Tsub(c) the pressure is not independent of the volume. For a certain range of values of VT 3 , the peak in black body radiation shows a shift in the frequency scale and this could be detected, at least in principle, experimentally. (author)
Scenario of strongly nonequilibrated Bose-Einstein condensation
International Nuclear Information System (INIS)
Berloff, Natalia G.; Svistunov, Boris V.
2002-01-01
Large scale numerical simulations of the Gross-Pitaevskii equation are used to elucidate the self-evolution of a Bose gas from a strongly nonequilibrium initial state. The stages of the process confirm and refine the theoretical scenario of Bose-Einstein condensation developed by Svistunov and co-workers [J. Mosc. Phys. Soc. 1, 373 (1991); Sov. Phys. JETP 75, 387 (1992); 78, 187 (1994)]: the system evolves from the regime of weak turbulence to superfluid turbulence via states of strong turbulence in the long-wavelength region of energy space
Asymptotics for the Kummer function of Bose plasmas
International Nuclear Information System (INIS)
Kowalenko, V.; Frankel, N.E.
1993-01-01
The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs
Evidence for solar flare rare gases in the Khor Temiki aubrite.
Rajan, R. S.; Price, P. B.
1973-01-01
It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.
The ideal Bose-Einstein gas, revisited
International Nuclear Information System (INIS)
Ziff, R.M.; Uhlenbeck, G.E.; Kac, M.
1977-01-01
Some questions concerning the ideal Bose-Einstein gas are reviewed and examined further. The bulk behavior including the condensation phenomenon is characterized by the thermodynamical properties, occupations of the states and their fluctuations, and the properties of the density matrices, including the diagonal and off-diagonal long range orders. Particular attention is focused on the difference between the canonical and grand canonical ensembles and a case is made that the latter does not represent any physical system in the condensed region. The properties in a finite region are also examined to study the approach to the bulk limit and secondly to derive the surface properties such as the surface tension (due to the boundary). This is mainly done for the special case of a rectangular parallelopiped (box) for various boundary conditions. The question of the asymptotic behavior of the fluctuations in the occupation of the ground state in the condensed region in the canonical ensemble is examined for these systems. Finally, the local properties near the wall of a half infinite system are calculated and discussed. The surface properties also follow this way and agree with the strictly thermodynamic result. Although it is not intended to be a complete review, it is largely self-contained, with the first section containing the basic formulas and a discussion of some general concepts which will be needed. Especially discussed in detail are the extra considerations that are needed in thermodynamics and statistical mechanics to include the surface properties, and the quantum hierarchy of the density matrices and local conservation laws. In the concluding remarks several problems are mentioned which need further analysis and clarification. (Auth.)
Study related to the generation of the conditional intensities of ideal Bose-gas
International Nuclear Information System (INIS)
Al-Oklah, H.
2007-01-01
In this paper, we will answer on the following question: Are there any conditions on the chemical potential and temperature of an ideal BOSE gas when generating the conditional intensities of ideal Bose-gas, and will the position distribution of the ideal Bose-gas be a Gibbs-process. The study shows that there should be no conditions on the chemical potential and thermodynamical temperature of an ideal BOSE gas when we generate the conditional intensities of ideal Bose-gas except that the fundamental conditions, the chemical potential is negative and the inverse temperature is positive. Thus the position distribution of the ideal Bose-gas may only be a Gibbs-process, in the special case when the thermodynamical temperature of the ideal BOSE gas tends to the absolute zero. (author)
Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles
International Nuclear Information System (INIS)
Chen Jincan; Lin Bihong
2003-01-01
Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > T c to that of T c , where T c is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature T c of Bose-Einstein condensation of an ideal Bose gas
Bosse, J; Pathak, K N; Singh, G S
2011-10-01
The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T
BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Pisani, L.; Strinati, G.C.
2004-01-01
We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings
Resonant trapping in the transport of a matter-wave soliton through a quantum well
International Nuclear Information System (INIS)
Ernst, Thomas; Brand, Joachim
2010-01-01
We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schroedinger equation are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is found to rely both on resonant interaction between the soliton and bound states in the potential well and on the radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are not accessible through scattering with single atoms.
Deng, Jian; Schlichting, Soeren; Venugopalan, Raju; Wang, Qun
2018-05-01
We map the infrared dynamics of a relativistic single-component (N =1 ) interacting scalar field theory to that of nonrelativistic complex scalar fields. The Gross-Pitaevskii (GP) equation, describing the real-time dynamics of single-component ultracold Bose gases, is obtained at first nontrivial order in an expansion proportional to the powers of λ ϕ2/m2 where λ , ϕ , and m are the coupling constant, the scalar field, and the particle mass respectively. Our analytical studies are corroborated by numerical simulations of the spatial and momentum structure of overoccupied scalar fields in (2+1)-dimensions. Universal scaling of infrared modes, vortex-antivortex superfluid dynamics, and the off-equilibrium formation of a Bose-Einstein condensate are observed. Our results for the universal scaling exponents are in agreement with those extracted in the numerical simulations of the GP equation. As in these simulations, we observe coarsening phase kinetics in the Bose superfluid with strongly anomalous scaling exponents relative to that of vertex resummed kinetic theory. Our relativistic field theory framework further allows one to study more closely the coupling between superfluid and normal fluid modes, specifically the turbulent momentum and spatial structure of the coupling between a quasiparticle cascade to the infrared and an energy cascade to the ultraviolet. We outline possible applications of the formalism to the dynamics of vortex-antivortex formation and to the off-equilibrium dynamics of the strongly interacting matter formed in heavy-ion collisions.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition
International Nuclear Information System (INIS)
R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.
1994-01-01
The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter
Correlation Functions of the One-Dimensional Attractive Bose Gas
International Nuclear Information System (INIS)
Calabrese, Pasquale; Caux, Jean-Sebastien
2007-01-01
The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect
Bose-Einstein condensation in helium white dwarf stars. I
Energy Technology Data Exchange (ETDEWEB)
Mosquera, M.E. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.a [Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Benvenuto, O.G.; De Vito, M.A. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Instituto de Astrofisica La Plata, CCT (Argentina)
2010-01-18
The formation of a Bose-Einstein condensate in the interior of helium white dwarfs stars is discussed. Following the proposal made by Gabadadze and Rosen, we have explored the consequences of such a mechanism by calculating the cooling time of the stars. We have found that it is shorter than the value predicted by the standard model.
Mean-field theory of anyons near Bose statistics
International Nuclear Information System (INIS)
McCabe, J.; MacKenzie, R.
1992-01-01
The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs
Sensing electric and magnetic fields with Bose-Einstein condensates
DEFF Research Database (Denmark)
Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor
2006-01-01
We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two...
Multiple condensed phases in attractively interacting Bose systems
Czech Academy of Sciences Publication Activity Database
Männel, M.; Morawetz, K.; Lipavský, Pavel
2010-01-01
Roč. 12, č. 3 (2010), 033013/1-033013/9 ISSN 1367-2630 Institutional research plan: CEZ:AV0Z10100521 Keywords : Bose gas * T-matrix * Evan-Rashid transition Subject RIV: BE - Theoretical Physics Impact factor: 3.849, year: 2010
Scattering of atoms on a Bose-Einstein condensate
International Nuclear Information System (INIS)
Poulsen, Uffe V.; Moelmer, Klaus
2003-01-01
We study the scattering properties of a Bose-Einstein condensate held in a finite depth well when the incoming particles are identical to the ones in the condensate. We calculate phase shifts and corresponding transmission and reflection coefficients, and we show that the transmission times can be negative, i.e., the atomic wave packet seemingly leaves the condensate before it arrives
Modelling Bose-Einstein correlations at LEP-2
International Nuclear Information System (INIS)
Loennblad, L.
1998-01-01
Some pros and cons of different strategies for modelling Bose-Einstein correlations in event generators for fully hadronic WW events at LEP-2 are discussed. A few new algorithms based on shifting final-state momenta of identical bosons in WW events generated by PYTHIA are also presented and the resulting predictions for the effects on the W mass measurement are discussed. (author)
Enhanced factoring with a bose-einstein condensate.
Sadgrove, Mark; Kumar, Sanjay; Nakagawa, Ken'ichi
2008-10-31
We present a novel method to realize analog sum computation with a Bose-Einstein condensate in an optical lattice potential subject to controlled phase jumps. We use the method to implement the Gauss sum algorithm for factoring numbers. By exploiting higher order quantum momentum states, we are able to improve the algorithm's accuracy beyond the limits of the usual classical implementation.
Interference of an array of independent Bose-Einstein condensates
International Nuclear Information System (INIS)
Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean
2004-01-01
We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates
Generalized N-coupled maps with invariant measure in Bose ...
Indian Academy of Sciences (India)
Algebraic properties of the Bose-Mesner algebra with an associated scheme with definite spectrum has been used in order to study the stability of the coupled map lattice. Associated schemes play a key role and may lead to analytical methods in studying the stability of the dynamical systems. The relation between the ...
Bose-Einstein correlations in e+e- events
Dalen, Jorn Antoine van
2002-01-01
Elementary particle physics tries to reveal the building blocks of all matter surrounding us and to study, describe and explain the properties of these building blocks. In this thesis so-called Bose-Einstein correlations (BEC) between particles originating from electron-positron collisions are
Spontaneous symmetry breaking in spinor Bose-Einstein condensates
DEFF Research Database (Denmark)
Scherer, Manuel; Lücke, Bernd; Peise, Jan
2013-01-01
We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...
Bose-Einstein condensation of excitons in Cu2O
International Nuclear Information System (INIS)
Snoke, D.W.
1990-01-01
Free excitons provide the only experimental system other than helium in which the behavior of particles with mass is known to follow Bose-Einstein statistics. Experimental observations are presented of the kinetic energy distribution of excitons in the direct-gap semiconductor Cu 2 O, both the triplet orthoexciton state and the singlet paraexciton state. The density and temperature of the exciton gas closely follow the phase boundary for Bose-Einstein condensation. At the highest densities, the lower-lying paraexcitons take on an anomalous energy distribution with a sharp, high-energy edge. This odd distribution of particle energies may be associated with Bose-Einstein condensation into a state with nonzero momentum. Indeed, the excitons leave the region of their creation at supersonic velocities. In addition to the experimental observations, theoretical models are presented for several aspects of this nonequilibrium system. The equilibration of a nearly-ideal boson gas is modeled, finding that a significant time is required for the approach to condensation. The temperature and density of the excitons in steady state are modeled based on known classical kinetic effects in semiconductors, and the effects of Bose-Einstein statistics on these processes estimated
Extracting the Condensate Density from Projection Experiments with Fermi Gases
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Strinati, G.C.
2005-01-01
A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus 'projecting' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field
DEFF Research Database (Denmark)
Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo
2008-01-01
We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....
Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.
2016-02-01
The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.
Levitated atoms in a CO2 laser trap: towards BEC with cesium
International Nuclear Information System (INIS)
Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.
2001-01-01
Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)
Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Bellotti, Filipe Furlan; Zinner, Nikolaj Thomas
2017-01-01
are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using...... a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different...
Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential
International Nuclear Information System (INIS)
Berrada, T.
2014-01-01
Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential Particle-wave duality has enabled the construction of interferometers for massive particles such as electrons, neutrons, atoms or molecules. Implementing atom interferometry has required the development of analogues to the optical beam-splitters, phase shifters or recombiners to enable the coherent, i.e. phase-preserving manipulation of quantum superpositions. While initially demonstrating the wave nature of particles, atom interferometers have evolved into some of the most advanced devices for precision measurement, both for technological applications and tests of the fundamental laws of nature. Bose- Einstein condensates (BEC) of ultracold atoms are particular matter waves: they exhibit a collective many-body wave function and macroscopic coherence properties. As such, they have often been considered as an analogue to optical laser elds and it is natural to wonder whether BECs can provide to atom interferometry a similar boost as the laser brought to optical interferometry. One fundamental dierence between atomic BECs and lasers elds is the presence of atomic interactions, yielding an intrinsic non-linearity. On one hand, interactions can lead to eects destroying the phase coherence and limiting the interrogation time of trapped BEC interferometers. On the other hand, they can be used to generate nonclassical (e.g. squeezed) states to improve the sensitivity of interferometric measurements beyond the standard quantum limit (SQL). In this thesis, we present the realization of a full Mach-Zehnder interferometric sequence with trapped, interacting BECs con ned on an atom chip. Our interferometer relies on the coherent manipulation of a BEC in a magnetic double-well potential. For this purpose, we developed a novel type of matter-wave recombiner, an element which so far was missing in BEC atom optics. We have been able to exploit interactions to generate a squeezed
Curiosities of arithmetic gases
International Nuclear Information System (INIS)
Bakas, I.; Bowick, M.J.
1991-01-01
Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
International Nuclear Information System (INIS)
Leonhardt, J.W.
1985-01-01
Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)
International Nuclear Information System (INIS)
2006-06-01
This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Sirjean, O
2003-06-01
At this writing, metastable helium (23S1) is the only example of Bose-Einstein condensation of an atom in an excited electronic state. The corresponding internal energy permits efficient and fast electronic detection of the atoms using a micro-channel plate detector (MCP). Moreover, this energy is responsible for ionizing collisions inside the magnetically trapped cloud (Penning ionization). These ions are also easily detected by the MCP. This thesis begins by describing the characteristics of the MCP detector. Next, the experimental procedure to achieve Bose-Einstein condensation is presented. These preliminaries are followed by a description of the experiments performed in order to determine the origin of the ions produced and by a presentation of some of the new experimental possibilities provided by the ion signal. For clouds with a low enough density, ions are mainly produced by collisions with the residual gas, and the signal is proportional to the number of trapped atoms. For clouds with a sufficiently high density, for example close to the condensation threshold, ions are mainly produced by 2- and 3-body collisions. In this case, the ion signal is also related to the density of the cloud. Depending on the density, the signal gives a real-time and 'non-destructive' measurement of these different characteristics. In particular, we have shown it is a valuable indicator of the onset of condensation, because it signals the sudden increase of density which then occurs. By studying the ion rate versus the density and the number of atoms for pure condensates and for thermal clouds at critical temperature, we have measured the collision rate constants for these ionizing processes. Our results are in agreement with theoretical predictions. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...
International Nuclear Information System (INIS)
Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.
2011-01-01
Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .
International Nuclear Information System (INIS)
Zhang Chunyi; Gao Yitian; Meng Xianghua; Li Juan; Xu Tao; Wei Guangmei; Zhu Hongwu
2006-01-01
The phenomena of the trapped Bose-Einstein condensates related to matter waves and nonlinear atom optics can be governed by a variable-coefficient Korteweg-de Vries (vc-KdV) model with additional terms contributed from the inhomogeneity in the axial direction and the strong transverse confinement of the condensate, and such a model can also be used to describe the water waves propagating in a channel with an uneven bottom and/or deformed walls. In this paper, with the help of symbolic computation, the bilinear form for the vc-KdV model is obtained and some exact solitonic solutions including the N-solitonic solution in explicit form are derived through the extended Hirota method. We also derive the auto-Baecklund transformation, nonlinear superposition formula, Lax pairs and conservation laws of this model. Finally, the integrability of the variable-coefficient model and the characteristic of the nonlinear superposition formula are discussed
International Nuclear Information System (INIS)
Yeong, E. Kim; Passell, Thomas O.
2006-01-01
Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ∼ 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)
Kim, Yeong E.; Passell, Thomas O.
2006-02-01
Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ~50, implying that (D + Li) reactions may be occuring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested.
Energy Technology Data Exchange (ETDEWEB)
Yeong, E. Kim [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Passell, Thomas O. [TOP Consulting, PO Box 336, Palo Alto, CA 94302-0336 (United States)
2006-07-01
Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of {approx} 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)
International Nuclear Information System (INIS)
Brand, Joachim; Reinhardt, William P.
2002-01-01
The connection between quantized vortices and dark solitons in a waveguidelike trap geometry is explored in the framework of the nonlinear Schroedinger equation. Variation of the transverse confinement leads from the quasi-one-dimensional (1D) regime, where solitons are stable, to 2D (or 3D) confinement, where soliton stripes are subject to a transverse modulational instability known as the 'snake instability'. We present numerical evidence of a regime of intermediate confinement where solitons decay into single, deformed vortices with solitonic properties rather than vortex pairs as associated with the 'snake' metaphor. Further relaxing the transverse confinement leads to the production of two and then three vortices, which correlates perfectly with a Bogoliubov stability analysis. The decay of a stationary dark soliton (or, planar node) into a single solitonic vortex is predicted to be experimentally observable in a 3D harmonically confined dilute-gas Bose-Einstein condensate
International Nuclear Information System (INIS)
Adhikari, Sadhan K
2003-01-01
We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Mueller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38)
Angular trap for macroparticles
International Nuclear Information System (INIS)
Aksyonov, D.S.
2013-01-01
Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.
Mean-field model for the interference of matter-waves from a three-dimensional optical trap
International Nuclear Information System (INIS)
Adhikari, Sadhan K.; Muruganandam, Paulsamy
2003-01-01
Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by Greiner et al. [Nature (London) 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally
Localized and Extended States in a Disordered Trap
International Nuclear Information System (INIS)
Pezze, Luca; Sanchez-Palencia, Laurent
2011-01-01
We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.
Directory of Open Access Journals (Sweden)
Uwe C. Täuber
2014-04-01
Full Text Available The universal critical behavior of the driven-dissipative nonequilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven open systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex-valued Landau-Ginzburg functional, which captures the near critical nonequilibrium dynamics, and generalizes model A for classical relaxational dynamics with nonconserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest nontrivial order in the dimensional ε expansion about the upper critical dimension d_{c}=4 and establish the emergence of a novel universal scaling exponent associated with the nonequilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (subdiffusive model B with complex coefficients.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
Bose-Einstein condensation and chiral phase transition in linear sigma model
International Nuclear Information System (INIS)
Shu Song; Li Jiarong
2005-01-01
With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation
Process of radioactive waste gases
International Nuclear Information System (INIS)
Queiser, H.; Schwarz, H.; Schroter, H.J.
1975-01-01
A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)
On the validity of collective variable description of Bose systems
International Nuclear Information System (INIS)
Takahashi, Minoru
1975-01-01
The validity of Sunakawa, Yamasaki and Kebukawa's Hamiltonian and that of Bogoliubov and Zubarev's Hamiltonian are examined. Perturbational expansion of the ground state energy by these Hamiltonians disagrees with the exact solution of Lieb and Liniger for one-dimensional Bose system with repulsive delta-function interaction. This fact suggests that these Hamiltonians are not microscopic descriptions of the many-Boson system. Mathematical inconsistency in Bogoliubov and Zubarev's theory is also pointed out. Moreover analytic expression of high density expansion for the ground state energy density e 0 is found out to be e 0 n -3 =γ-(4/3π)γsup(3/2)+(1/6-1/π 2 )γ 2 +O(γsup(5/2)), γ=c/n, for one-dimensional Bose system with delta function interaction (density n, strength 2c, h=2m=1) by the use of the correlated basis function method. (auth.)
Induced interactions in a superfluid Bose-Fermi mixture
DEFF Research Database (Denmark)
Kinnunen, Jami; Bruun, Georg
2015-01-01
We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...
Vortex Lattices in the Bose-Fermi Superfluid Mixture.
Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui
2017-02-24
In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.
Breakdown of Bose-Einstein distribution in photonic crystals.
Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min
2015-03-30
In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.
International Nuclear Information System (INIS)
Arachiche, B.; Elandaloussi, H.
1996-01-01
For a country like Algeria, fuel gases represent an important economical challenge. To answer the increasing energy demand in the transportation sector, the use of fuel gases allows to preserve the petroleum reserves and to create specific industrial structures devoted to LPG-f (liquefied petroleum gas-fuel) and NGV (natural gas for vehicles). This paper presents the energy policy of Algeria, its reserves, production, and exportations of hydrocarbons and the internal rational use of energy sources according to its economic and environmental policy and to its internal needs. The energy consumption of Algeria in the transportation sector represents 2/3 of the petroleum products consumed in the internal market and follows a rapid increase necessary to the socio-economic development of the country. The Algerian experience in fuel gases is analysed according to the results of two successive experimentation periods for the development of NGV before and after 1994, and the resulting transportation and distribution network is described. The development of LPG-f has followed also an experimental phase for the preparation of regulation texts and a first statement of the vehicles conversion to LPG-f is drawn with its perspectives of development according to future market and prices evolutions. (J.S.)
Particles with small violations of Fermi or Bose statistics
International Nuclear Information System (INIS)
Greenberg, O.W.
1991-01-01
I discuss the statistics of ''quons'' (pronounced to rhyme with muons), particles whose annihilation and creation operators obey the q-deformed commutation relation (the quon algebra or q-mutator) which interpolates between fermions and bosons. Topics discussed include representations of the quon algebra, proof of the TCP theorem, violation of the usual locality properties, and experimental constraints on violations of the Pauli exclusion principle (i.e., Fermi statistics) and of Bose statistics
Controlling chaos in the Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Cong Fuzhong, E-mail: wzx2007111@126.com; Wang Zhixia; Hua Hongtu; Pang Shichun; Tong Shouyu [Aviation University of Air Force (China)
2012-03-15
The spatial structure of the Bose-Einstein condensate (BEC) is investigated and spatially chaotic distributions of the condensates are revealed. By means of changing the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the Lyapunov exponent of the system is negative.
Modulated amplitude waves in Bose-Einstein condensates
International Nuclear Information System (INIS)
Porter, Mason A.; Cvitanovic, Predrag
2004-01-01
We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations