WorldWideScience

Sample records for transverse shear deformation

  1. A single variable shear deformable nonlocal theory for transversely ...

    Indian Academy of Sciences (India)

    Rameshchandra P Shimpi

    2018-05-11

    May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.

  2. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  3. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  4. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibation frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  5. An analytical study of the effects of transverse shear deformation and anisotropy on buckling loads of laminated cylinders. M.S. Thesis - George Washington Univ.

    Science.gov (United States)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.

  6. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  7. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  8. Transverse vibrations of shear-deformable beams using a general higher order theory

    Science.gov (United States)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  9. A Leonard-Sanders-Budiansky-Koiter-Type Nonlinear Shell Theory with a Hierarchy of Transverse-Shearing Deformations

    Science.gov (United States)

    Nemeth, Michael P.

    2013-01-01

    A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.

  10. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  11. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  12. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  13. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.

    Science.gov (United States)

    Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A

    2015-10-01

    Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  15. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....

  16. Estimation of shear viscosity based on transverse momentum correlations

    International Nuclear Information System (INIS)

    Sharma, Monika

    2009-01-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  17. Estimation of shear viscosity based on transverse momentum correlations

    Science.gov (United States)

    STAR Collaboration; Sharma, Monika; STAR Collaboration

    2009-11-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  18. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  19. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  20. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  1. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  2. MHD shear flows with non-constant transverse magnetic field

    International Nuclear Information System (INIS)

    Núñez, Manuel

    2012-01-01

    Viscous conducting flows parallel to a fixed plate are studied. In contrast with the Hartmann setting, the problem is not linearized near a fixed transverse magnetic field, although the field tends to be transversal far from the wall. While general solutions may be formally obtained for all cases, their behavior is far more clear when the magnetic Prandtl number equals one. We consider two different instances: a fixed magnetic field at the wall, or an insulating sheet. The evolution of the flow and the magnetic field both near the plate and far from it are detailed, analyzing the possibility of reverse flow and instability of the solutions. -- Highlights: ► A conducting shear flow does not leave a transverse magnetic field invariant. ► Solutions are found for all cases, but these are more useful when kinetic and magnetic diffusivities coincide. ► Dirichlet and Neumann conditions on the magnetic field are studied. ► Reverse flow, and eventual instability, are possible.

  3. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  4. Shear Piezoelectricity in Poly(vinylidenefluoride-co-trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy-Harvesting Nanostructures.

    Science.gov (United States)

    Persano, Luana; Catellani, Alessandra; Dagdeviren, Canan; Ma, Yinji; Guo, Xiaogang; Huang, Yonggang; Calzolari, Arrigo; Pisignano, Dario

    2016-09-01

    The intrinsic flexible character of polymeric materials causes remarkable strain deformations along directions perpendicular to the applied stress. The biaxial response in the shear piezoelectricity of polyvinylidenefluoride copolymers is analyzed and their full piezoelectric tensors are provided. The microscopic shear is exploited in single suspended nanowires bent by localized loading to couple flexural deformation and transverse piezoelectric response. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...

  6. Experimental Validation of the Transverse Shear Behavior of a Nomex Core for Sandwich Panels

    Science.gov (United States)

    Farooqi, M. I.; Nasir, M. A.; Ali, H. M.; Ali, Y.

    2017-05-01

    This work deals with determination of the transverse shear moduli of a Nomex® honeycomb core of sandwich panels. Their out-of-plane shear characteristics depend on the transverse shear moduli of the honeycomb core. These moduli were determined experimentally, numerically, and analytically. Numerical simulations were performed by using a unit cell model and three analytical approaches. Analytical calculations showed that two of the approaches provided reasonable predictions for the transverse shear modulus as compared with experimental results. However, the approach based upon the classical lamination theory showed large deviations from experimental data. Numerical simulations also showed a trend similar to that resulting from the analytical models.

  7. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    Science.gov (United States)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  8. Understanding the fluid mechanics behind transverse wall shear stress.

    Science.gov (United States)

    Mohamied, Yumnah; Sherwin, Spencer J; Weinberg, Peter D

    2017-01-04

    The patchy distribution of atherosclerosis within arteries is widely attributed to local variation in haemodynamic wall shear stress (WSS). A recently-introduced metric, the transverse wall shear stress (transWSS), which is the average over the cardiac cycle of WSS components perpendicular to the temporal mean WSS vector, correlates particularly well with the pattern of lesions around aortic branch ostia. Here we use numerical methods to investigate the nature of the arterial flows captured by transWSS and the sensitivity of transWSS to inflow waveform and aortic geometry. TransWSS developed chiefly in the acceleration, peak systolic and deceleration phases of the cardiac cycle; the reverse flow phase was too short, and WSS in diastole was too low, for these periods to have a significant influence. Most of the spatial variation in transWSS arose from variation in the angle by which instantaneous WSS vectors deviated from the mean WSS vector rather than from variation in the magnitude of the vectors. The pattern of transWSS was insensitive to inflow waveform; only unphysiologically high Womersley numbers produced substantial changes. However, transWSS was sensitive to changes in geometry. The curvature of the arch and proximal descending aorta were responsible for the principal features, the non-planar nature of the aorta produced asymmetries in the location and position of streaks of high transWSS, and taper determined the persistence of the streaks down the aorta. These results reflect the importance of the fluctuating strength of Dean vortices in generating transWSS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation

    National Research Council Canada - National Science Library

    Omar, Mohamed

    2000-01-01

    .... The effect of the shear deformation is accounted for without the need for introducing Timoshenko's shear coefficient By using the absolute coordinates, the nonlinear strain-displacement relationships...

  10. Nonlinear analysis of shear deformable beam-columns partially ...

    African Journals Online (AJOL)

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...

  11. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  12. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  13. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  14. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Sadeghi, M. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R., E-mail: naghdabd@sharif.ed [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-04-04

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: A transverse-isotropic elastic model of SWCNTs is presented. A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. Behavior of these nanocomposites under shear deformation is studied. A symmetric shear stress distribution occurs only in SWCNTs with 45{sup o} orientation. The total shear load sustained is greatest in the case of 45{sup o} orientation.

  15. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    International Nuclear Information System (INIS)

    Montazeri, A.; Sadeghi, M.; Naghdabadi, R.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: → A transverse-isotropic elastic model of SWCNTs is presented. → A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. → Behavior of these nanocomposites under shear deformation is studied. → A symmetric shear stress distribution occurs only in SWCNTs with 45 o orientation. → The total shear load sustained is greatest in the case of 45 o orientation.

  16. A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Tahar Hassaine Daouadji

    2012-01-01

    Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.

  17. Contact stresses by rounded punch subject to axial and transverse shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-05-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue.

  18. Contact stresses by rounded punch subject to axial and transverse shear

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu

    1999-01-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue

  19. A micromechanical study of porous composites under longitudinal shear and transverse normal loading

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    2015-01-01

    The mechanical response of porous unidirectional composites under transverse normal and longitudinal shear loading is studied using the finite element analysis. The 3D model includes discrete and random distribution of fibers and voids. The micromechanical failure mechanisms are taken into account....... Finally, the computational prediction of the porous composite in the transverse normal-longitudinal shear stress space is obtained and compared with Puck's model. The results show that both interfaces with low fracture toughness and microvoids with even small void volume fraction can significantly reduce...

  20. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    OpenAIRE

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...

  1. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  2. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    Science.gov (United States)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  3. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  4. Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2015-01-01

    A probabilistic fatigue life model for end-grain balsa cored sandwich composites subjectedto transverse shear is proposed. The model is calibrated to measured three-pointbending constant-amplitude fatigue test data using the maximum likelihood method. Some possible applications of the probabilistic...

  5. Cylindrical shell under impact load including transverse shear and normal stress

    International Nuclear Information System (INIS)

    Shakeri, M.; Eslami, M.R.; Ghassaa, M.; Ohadi, A.R.

    1993-01-01

    The general governing equations of shell of revolution under shock loads are reduced to equations describing the elastic behavior of cylindrical shell under axisymmetric impact load. The effect of lateral normal stress, transverse shear, and rotary inertia are included, and the equations are solved by Galerkin finite element method. The results are compared with the previous works of authors. (author)

  6. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  7. Consideration of shear deformation in the analysis of unsymmetrical bending of moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Das, M.L.

    1975-01-01

    A shear deformation theory is derived using a variational technique similar to Reissner-Naghdi linear theory neglecting the transverse normal stress. This theory is used to analyze shells of revolution subjected to arbitrary load distribution. The shell material is assumed to have two-dimensional elastic isotropy in directions tangent to its surface. Young's modulus may vary through the thickness and in the meridional direction. Poisson's ratio is assumed to be constant. Arbitrary temperature can be applied to the shell. Change of Young's modulus in the circumferential direction due to high temperature variation is neglected in the theory. All pertinent variables are expanded in Fourier series in the circumferential direction to get 5 ordinary differential equations, decoupled in individual Fourier components of independent displacements. Finite difference numerical technique is used to solve these differential equations. For handling these numerical quantities in orderly fashion, matrix algebra is utilized. Budiansky and Radkowski have applied a similar technique to solve the equations based on the classical shell theory of Sanders. Two independent computer programs are developed, one based on the shear deformation theory derived here and the other on the work of Budiansky and Radkowski. Two different circular cylindrical shells are utilized to explore the subject of this paper. They have the same geometric dimensions but different boundary conditions and one is fixed at both ends while the other has one end free

  8. Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

    Directory of Open Access Journals (Sweden)

    Ibtehal Abbas Sadiq

    2017-02-01

    Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.

  9. Shear deformation-induced anisotropic thermal conductivity of graphene.

    Science.gov (United States)

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  10. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  11. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  12. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  13. Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj Marotrao Ghugal

    Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.

  14. Homogeneous shear turbulence – bypass concept via interplay of linear transient growth and nonlinear transverse cascade

    International Nuclear Information System (INIS)

    Mamatsashvili, George; Dong, Siwei; Jiménez, Javier; Khujadze, George; Chagelishvili, George; Foysi, Holger

    2016-01-01

    We performed direct numerical simulations of homogeneous shear turbulence to study the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows. For this purpose, we analyzed the turbulence dynamics in Fourier/wavenumber/spectral space based on the simulation data for the domain aspect ratio 1 : 1 : 1. Specifically, we examined the interplay of linear transient growth of Fourier harmonics and nonlinear processes. The transient growth of harmonics is strongly anisotropic in spectral space. This, in turn, leads to anisotropy of nonlinear processes in spectral space and, as a result, the main nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by the interplay of the linear transient, or nonmodal growth and the transverse cascade. This course of events reliably exemplifies the wellknown bypass scenario of subcritical turbulence in spectrally stable shear flows. These processes mainly operate at large length scales, comparable to the box size. Consequently, the central, small wavenumber area of Fourier space (the size of which is determined below) is crucial in the self-sustenance and is labeled the vital area. Outside the vital area, the transient growth and the transverse cascade are of secondary importance - Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. The number of harmonics actively participating in the self-sustaining process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) is quite large - it is equal to 36 for the considered box aspect ratio - and obviously cannot be described by low-order models. (paper)

  15. Ab initio study of Ni2MnGa under shear deformation

    Directory of Open Access Journals (Sweden)

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  16. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    International Nuclear Information System (INIS)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-01-01

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty

  17. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  18. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  19. Transverse electric field–induced deformation of armchair single-walled carbon nanotube

    Directory of Open Access Journals (Sweden)

    Yuan Ningyi

    2010-01-01

    Full Text Available Abstract The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-010-9617-y contains supplementary material, which is available to authorized users. Click here for file

  20. Deformation localization at the tips of shear fractures: An analytical approach

    Science.gov (United States)

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  1. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.

    Science.gov (United States)

    Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J

    2017-11-01

    The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  3. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    Science.gov (United States)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  4. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  5. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  6. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  7. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    International Nuclear Information System (INIS)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-01-01

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp"3-hybridized region but internal core keeps the tubular structure.

  8. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  9. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  10. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  11. Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia. Spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K.K.; Kim, Kyung Su; Lee, Jang Hyun [Inha Univ., Incheon (Korea). Dept. of Naval Architecture and Ocean Engineering

    2009-12-15

    Asymmetric free vibrations of annular cross-ply circular plates are studied using spline function approximation. The governing equations are formulated including the effects of shear deformation and rotary inertia. Assumptions are made to study the cross-ply layered plates. A system of coupled differential equations are obtained in terms of displacement functions and rotational functions. These functions are approximated using Bickley- type spline functions of suitable order. Then the system is converted into the eigenvalue problem by applying the point collocation technique and suitable boundary conditions. Parametric studies have been made to investigate the effect of transverse shear deformation and rotary inertia on frequency parameter with respect to the circumferential node number, radii ratio and thickness to radius ratio for both symmetric and anti-symmetric cross-ply plates using various types of material properties. (orig.)

  12. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  13. MHD modeling of ATLAS experiments to study transverse shear interface interactions

    CERN Document Server

    Faehl, R J; Keinigs, R K; Lindemuth, I R

    2001-01-01

    Summary form only given. The transverse shear established at the interface of two solids moving at differential velocities on the order of the sound speed is being studied in experiments on the ATLAS capacitor bank at Los Alamos, beginning in August 2001. The ATLAS bank has finished certification tests and has demonstrated peak currents of 27.5 MA with a 5 microsecond risetime into an inductive load. One- and two-dimensional MHD calculations have been performed in support of these "friction-like" ATLAS experiments. Current flowing along the outer surface of a thick aluminum liner, roughly 8 mm thick, accelerates the solid liner to velocities ~1 km/s. This cylindrically imploding liner then impacts a target assembly, composed of alternating regions of high and low density materials. The different shock speeds in the two materials leads to a differential velocity along the interface. Shock heating, elastic- plastic flow, and stress transport are included in the calculations. Material strength properties are tre...

  14. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  15. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    Science.gov (United States)

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  17. Influence of macroscopic shear deformation on polygonization and recrystallization of molybdenum crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.

    1984-01-01

    The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure

  18. Parametric study of the deformation of transversely isotropic discs under diametral compression

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-07-01

    Full Text Available The displacement field in a circular disc made of a transversely isotropic material is explored in a parametric manner. The disc is assumed to be loaded by a parabolic distribution of compressive radial stresses along two finite arcs of its periphery in the absence of any tangential (frictional stresses. Advantage is here taken of a recently introduced closed-form analytic solution for the displacement field developed in an orthotropic disc under diametral compression which was achieved adopting the complex potentials technique for rectilinear anisotropic materials as it was formulated in the pioneering work of S.G. Lekhnitskii. The analytic nature of this solution permits thorough, indepth exploration of the influence of some crucial parameters on the qualitative and quantitative characteristics of the deformation of transversely isotropic circular discs compressed between the jaws of the devise suggested by the International Society for Rock Mechanics for the standardized implementation of the Brazilian-disc test. The parameters considered include the anisotropy ratio (i.e., the ratio of the two elastic moduli characterizing the disc material, the angle between the loading axis and the planes of transverse isotropy and the length of the loaded arcs. Strongly non-linear relationships between these parameters and the components of the displacement field are revealed.

  19. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  20. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  1. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  2. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.; Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due

  3. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  4. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia.

    Science.gov (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs

    2013-04-01

    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  5. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  6. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  7. NASA/University JOint VEnture (JOVE) Program: Transverse Shear Moduli Using the Torsional Responses of Rectangular Laminates

    Science.gov (United States)

    Bogan, Sam

    2001-01-01

    The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non

  8. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept

    Science.gov (United States)

    Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  9. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept.

    Science.gov (United States)

    Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  10. The effect of transverse shear on the face sheets failure modes of sandwich beams loaded in three points bending

    OpenAIRE

    BOUROUIS FAIROUZ; MILI FAYCAL

    2012-01-01

    Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...

  11. Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory

    International Nuclear Information System (INIS)

    Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M

    2011-01-01

    Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.

  12. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca state no longer appears, since capsules exhibit large deviation from the spherical shape.

  13. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  14. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  15. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios

    2016-01-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\cite{KT}.

  16. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  17. The modal density of composite beams incorporating the effects of shear deformation and rotary inertia

    Science.gov (United States)

    Bachoo, Richard; Bridge, Jacqueline

    2018-06-01

    Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.

  18. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  19. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    International Nuclear Information System (INIS)

    Jha, D.K.; Kant, Tarun; Srinivas, K.; Singh, R.K.

    2013-01-01

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature

  20. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    KAUST Repository

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  1. The Effect of Fracture Filler Composition on the Parameters of Shear Deformation Regime

    Science.gov (United States)

    Pavlov, D.; Ostapchuk, A.; Batuhtin, I.

    2015-12-01

    Geomechanical models of different slip mode nucleation and transformation can be developed basing on laboratory experiments, in which regularities of shear deformation of gouge-filled faults are studied. It's known that the spectrum of possible slip modes is defined by both macroscopic deformation characteristics of the fault and mesoscale structure of fault filler. Small variations of structural parameters of the filler may lead to a radical change of slip mode [1, 2]. This study presents results of laboratory experiments investigating regularities of shear deformation of discontinuities filled with multicomponent granular material. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical "slider model" statement. A granite block slides under shear load on a granite substrate. The contact gap between rough surfaces was filled with a discrete material, which simulated the principal slip zone of a fault. The filler components were quartz sand, salt, glass beads, granite crumb, corundum, clay and pyrophyllite. An entire spectrum of possible slip modes was obtained - from stable slip to slow-slip events and to regular stick-slip with various coseismic displacements realized per one act of instability. Mixing several components in different proportions, it became possible to trace the gradual transition from stable slip to regular stick-slip, from slow-slip events to fast-slip events. Depending on specific filler component content, increasing the portion of one of the components may lead to both a linear and a non-linear change of slip event moment (a laboratory equivalent of the seismic moment). For different filler compositions durations of equal-moment events may differ by more than two orders of magnitude. The findings can be very useful for developing geomechnical models of nucleation and transformation of different slip modes observed at natural faults. The work was supported by

  2. Vibration Analysis of a Magnetoelectroelastic Rectangular Plate Based on a Higher-Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Alireza Shooshtari

    Full Text Available Abstract Free vibration of a magnetoelectroelastic rectangular plate is investigated based on the Reddy's third-order shear deformation theory. The plate rests on an elastic foundation and it is considered to have different boundary conditions. Gauss's laws for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single partial differential equation and then by using the Galerkin method, the ordinary differential equation of motion as well as an analytical relation for the natural frequency of the plate is obtained. Some numerical examples are presented to validate the proposed model and to investigate the effects of several parameters on the vibration frequency of the considered smart plate.

  3. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  4. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  5. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.D.; Wang, Z.G.; Jiang, C.B.; Li, G.Y.; Alexandrov, I.V.; Valiev, R.Z

    2003-06-15

    Cyclic deformation was performed on ultrafine grained copper processed by ECAP. Shear bands (SBs) and adjacent microstructures were investigated using electron channeling contrast in scanning electron microscope. The possible formation mechanism of SB was discussed based on the characteristic distribution of defects introduced by ECAP.

  6. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  7. Atomic simulation of bcc niobium Σ5〈001〉{310} grain boundary under shear deformation

    International Nuclear Information System (INIS)

    Huang, Bo-Wen; Shang, Jia-Xiang; Liu, Zeng-Hui; Chen, Yue

    2014-01-01

    The shear behaviors of grain boundaries are investigated using molecular dynamics simulations. The Σ5〈001〉{310} symmetric tilt grain boundary (GB) of body-centered cubic (bcc) Nb is investigated and the simulations are conducted under a series of shear directions at a wide range of temperatures. The results show that the GB shearing along [13 ¯ 0], which is perpendicular to the tilt axis, has a coupled motion behavior. The coupling factor is predicted using Cahn’s model. The critical stress of the coupling motion is found to decrease exponentially with increasing temperature. The GB under shear deformation along the [001 ¯ ] direction, which is parallel to the tilt axis, has a pure sliding behavior at most of the temperatures investigated. The critical stress of sliding is found to be much larger than that of the coupled motion at the same temperature. At very low temperatures, pure sliding is not observed, and dislocation nucleating and extending is found on GBs. We observed mixed behaviors when the shear direction is between [13 ¯ 0] and [001 ¯ ]. The transition region between GB coupled motion and pure sliding is determined. If the shear angles between the shear direction and the tilt axis are larger than a certain value, the GB has a coupled motion behavior similar to the [13 ¯ 0] direction. A GB with a shear angle smaller than the critical angle exhibits mixed mechanisms at low temperatures, such as dislocation, atomic shuffle and GB distortion, whereas for the [001 ¯ ]-like GB pure sliding is the dominating mechanism at high temperatures. The stresses to activate the coupling and gliding motions are analyzed for shear deformations along different directions at various temperatures

  8. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  9. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    Science.gov (United States)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  10. Analysis of local microstructure after shear creep deformation of a fine-grained duplex {gamma}-TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D., E-mail: dennis.peter@rub.de [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany); Viswanathan, G.B. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)] [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Dlouhy, A. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 61662 Brno, Zizkova 22 (Czech Republic); Eggeler, G. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)

    2010-11-15

    The present work characterizes the microstructure of a hot-extruded Ti-45Al-5Nb-0.2B-0.2C (at.%) alloy with a fine-grained duplex microstructure after shear creep deformation (temperature 1023 K; shear stress 175 MPa; shear deformation 20%). Diffraction contrast transmission electron microscopy (TEM) was performed to identify ordinary dislocations, superdislocations and twins. The microstructure observed in TEM is interpreted taking into account the contribution of the applied stress and coherency stresses to the overall local stress state. Two specific locations in the lamellar part of the microstructure were analyzed, where either twins or superdislocations provided c-component deformation in the L1{sub 0} lattice of the {gamma} phase. Lamellar {gamma} grains can be in soft and hard orientations with respect to the resolved shear stress provided by the external load. The presence of twins can be rationalized by the superposition of the applied stress and local coherency stresses. The presence of superdislocations in hard {gamma} grains represents indirect evidence for additional contributions to the local stress state associated with stress redistribution during creep.

  11. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  12. C sub 6 sub 0 fullerene and its molecular complexes under axial and shear deformation

    CERN Document Server

    Spitsina, N G; Bashkin, I V; Meletov, K P

    2002-01-01

    We have studied the pristine C sub 6 sub 0 and its molecular complexes with the organic donors bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) and tetramethyltetraselenafulvalene (TMTSF) by means of ESR and Raman spectroscopy at high pressure. The important changes in the ESR signal of C sub 6 sub 0 were observed under axial pressure combined with shear deformation. It is shown that the treatment at a anisotropic pressure of 4 GPa results in a reduction in the symmetry of the C sub 6 sub 0 molecule and the formation of radicals. Treatment of the molecular complex of (ET) sub 2 centre dot C sub 6 sub 0 at a pressure of approx 4.5 GPa and a temperature of 150 deg. C leads to the formation of C sub 6 sub 0 dimers. The Raman spectra of the molecular complex C sub 6 sub 0 centre dot TMTSF centre dot 2(CS sub 2) were measured in situ at ambient temperature and pressures up to 9.5 GPa. The pressure behaviour of the Raman peaks reveals singularity at 5.0 +- 0.5 GPa related to the softening and splitting of so...

  13. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    Science.gov (United States)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  14. A higher order shear deformation theory for laminated anisotropic plates and its application in defence industry

    International Nuclear Information System (INIS)

    Pervez, T.

    1992-01-01

    Composite materials have been used for centuries, brick reinforced with straw, laminated iron-steel swords, gun-barrels and concrete, to name but a few. Today industrial innovations improved energy planning, uncertain availability have created a greater interest in search of new materials. Now that increasingly performance requirements are forcing many conventional materials to the limit, the engineer's approach of fitting the design to the properties is changing into one of finding materials with the right properties to meet the demand of design, service of economics. The use of composite materials have progressed through several stages in past two and half decade. First, demonstration pieces were built with the idea of let's see if we can build one. For second stage, replacement pieces, part of the objective was to test a part designed to replace a metal part in an existing application. The last stage is actual production pieces designed from the beginning to be fabricated wholly from composite. This last goal is being approached in deliberate, conservation and multistage fashion. A substantial composite technology has been developed and awaits further challenge. In this paper new higher order shear deformable theory for anisotropic laminated composite is presented. The finite element method is used to get static and dynamic solution for the plate with and without damping effects. Finally, example and discussion are presented to demonstrate the accuracy of the theory presented herein. (author)

  15. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  16. X-ray diffraction measurements to determine longitudinal and transverse lattice deformation in shocked LiF

    International Nuclear Information System (INIS)

    Rigg, P.A.; Gupta, Y.M.

    2000-01-01

    Experimental methods using both single and multiple x-ray diffraction were developed to determine real time, lattice deformation in directions parallel and perpendicular to shock wave propagation in single crystals subjected to plate impact loading. Initial experiments used single diffraction to monitor the interplanar spacing change, parallel to the shock propagation direction, in LiF crystals shocked along the [111] and [100] directions. These measurements, in combination with the macroscopic volume compression, were used to determine the state of compression of the unit cell. Subsequent development of a multiple diffraction technique permitted simultaneous determination of both the longitudinal and transverse lattice deformations. The present results showed that shock compression, below 4 GPa, along the [111] orientation--which results in macroscopic elastic deformation - produced one-dimensional unit cell compression. In contrast, shock compression along the [100] orientation - which results in macroscopic elastic-plastic deformation--produced isotropic unit cell compression. The implications of the present results and the ability to make quantitative x-ray diffraction measurements under shock loading are discussed

  17. Congenital terminal transverse deformity of upper limb: clinical and radiological findings in a sporadic care.

    Science.gov (United States)

    Malik, Sajid; Afzal, Muhammad

    2013-03-01

    Congenital transverse limb anomalies are rare, which affect upper and/or lower limbs and may accompany several syndromic malformations. We present a sporadic male subject with congenital, unilateral transverse arrest of the left hand. The affected arm was observed to be short with reduced zeugopod and truncated palm. Fingers were represented by five bead-like nubbins. Roentgenographic examination revealed short radius and ulna with hypoplastic distal heads, absent carpals/metacarpals, and a hypoplastic bony island in each nubbin. Consanguinity was denied, and the subject had no symptoms in the orofacial, neurological and skeletal systems. Detailed clinical data with literature survey is presented.

  18. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  19. A state-of-the-art anisotropic rock deformation model incorporating the development of mobilised shear strength

    Science.gov (United States)

    Noor, M. J. Md; Jobli, A. F.

    2018-04-01

    Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.

  20. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    Science.gov (United States)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  1. A pratical case of a pipeline deformation by transverse and longitudinal thermal gradient

    International Nuclear Information System (INIS)

    Franca Filho, J.L. de; Souza, H.S.; Ribeiro, S.V.G.

    1982-01-01

    A pratical case of pipeline deformation due to a thermal gradient that exist in the cross section and along its length is presented. From an approximation of the temperature profile obtained by measurements made in the field and taking into account the boundary conditions of the structure, its displacements are calculated for comparison with the actual values observed. The analytical calculation of the displacements fields and stress fields are executed, using the concept of thermal momentum in the section. (EG) [pt

  2. The Santa Rita Shear Zone: Major Mesozoic deformation along the western flank of the White-Inyo Range, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brudos, T.C.; Paterson, S.R. (Univ. of Southern California, Los Angeles, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Santa Rita Shear Zone (SRSZ), briefly described by Ross (1967), deforms the western part of the 164 Ma Santa Rita Flat pluton (SRFP), located SSE of Big Pine, CA. The SRSZ comprises a subvertical zone of solid-state deformation (strike N15E) over an area at least 13 km long by 2--3 km wide. Exposure of the shear zone is limited to the north and west by overlying Quaternary volcanics and basin fill within the Late Cenozoic Owens Valley graben. The SRSZ is larger than its present outcrop extent: strain magnitudes are highest within the westernmost exposures. The SRSZ along this western margin is a continuous zone of deformation comprising a mm-scale solid-state foliation containing igneous feldspars flattened into ovals with > 10:1 aspect ratios. The authors have identified three dike phases within the SRFP: (1) minor NE-striking Phase 1 dikes, comprising cm-scale aplites; (2) widespread m-scale Phase 2 dikes, which strike N10E; and (3) m-scale NW-striking Phase 3 mafic dikes. The Phase 1 and Phase 3 dikes are pre- and post-tectonic respectively; observations described below indicate the Phase 2 dikes are syn- to post-deformation. Deformation becomes localized along the Phase 2 dikes -- which are parallel to the orientation of the main body of the shear zone. Solid-state fabrics imposed on the Phase 2 dikes formed at higher temperatures than those within the SRFP, and in the east the SRFP is deformed only within a few cm of the dikes. They surmise syntectonic emplacement of the dikes into dislocational surfaces within the SRSZ, followed by solid-state deformation of the cooling dikes. Several workers have suggested the dikes within the SRFP are part of the 148 Ma independence dike swarm (referring to the Phase 2 or 3 dikes). If correct, this correlation indicates a Jurassic age for the SRSZ. Radiometric analyses of the dikes are in progress.

  3. Shear deformation and relaxed lattice constant of (Ga,Mn)As layers on GaAs(113)A

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2008-07-01

    The shear deformation and the relaxed lattice constant of compressively strained (Ga,Mn)As layers with Mn concentrations of up to 5%, pseudomorphically grown on GaAs(113)A and GaAs(001) substrates by low-temperature molecular-beam epitaxy, have been studied by high resolution X-ray diffraction (HRXRD) measurements. Rocking curves reveal a triclinic distortion of the (113)A layers with a shear direction towards the [001] crystallographic axis, whereas the (001) layers are tetragonally distorted along [001]. The relaxed lattice constants were derived from {omega}-2{theta} scans for the symmetric (113) and (004) Bragg reflections, taking the elastic anisotropy of the cubic system into account. The increase of the lattice constant with Mn content has been found to be smaller for the (113)A layers than for the (001) layers, presumably due to the enhanced amount of excess As in the (113)A layers.

  4. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  5. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical "yield" value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In the Appendix, we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations. © 2012 American Institute of Physics.

  6. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  7. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  8. Ideal shear strength and deformation behaviours of L10 TiAl from ...

    Indian Academy of Sciences (India)

    Guangxi Teachers Education University, Nanning 530023, China. MS received 18 October 2014; accepted 11 April 2016. Abstract. The stress–strain relationships for four different shear processes of L10 TiAl have been .... aThis work; bRef.

  9. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Science.gov (United States)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  10. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.

    2010-01-01

    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  11. Development of Shear Deformable Laminated Shell Element and Its Application to ANCF Tire Model

    Science.gov (United States)

    2015-04-24

    Sharp, R. S. and Crocombe, A. D., 2012, "Normal and Shear Forces in the Contact Patch of a Braked Racing Tyre . Part 2: Development of a Physical Tyre ...The University of Iowa 2312 Seamans Center Iowa City, IA 52242 Paramsothy Jayakumar US Army TARDEC 6501 E. 11 Mile Road Warren, MI 48397-5000...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC,6501 E. 11 Mile Road

  12. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    International Nuclear Information System (INIS)

    Reyes-Ruiz, C.; Figueroa, I.A.; Braham, C.; Cabrera, J.M.; Zanellato, O.; Baiz, S.; Gonzalez, G.

    2016-01-01

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  13. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)

    2016-07-18

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  14. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  15. Advanced testing and characterization of shear modulus and deformation characteristics of oil sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2014-09-01

    Full Text Available and Pressures,” Can. Geotech. J., Vol. 24, 1987, pp. 1–10. [5] Samieh, A.M. and Wong, R.C.K., “Deformation of Athabasca Oil Sand in Triaxial Compression Tests at Low Effective Stresses under Varying Boundary Conditions,” Can. Geotech. J., Vol.34, 1997, pp.... 985– 990. [6] Samieh, A.M. and Wong, R.C.K., “Modeling the Responses of Athabasca Oil Sand in Triaxial Compression Tests at Low Pressure,” Can. Geotech. J., Vol. 35, 1998, pp. 395–406. [7] AASHTO Standard T265, 2009, “Laboratory Determination...

  16. Local parametric instability near elliptic points in vortex flows under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation); Ryzhov, Eugene A., E-mail: ryzhovea@gmail.com [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation)

    2016-08-15

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, the size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.

  17. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  18. Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of melting

    Science.gov (United States)

    Platt, J. D.; Rice, J. R.

    2013-12-01

    Prior work in our group has shown how micron-scale strain rate localization can be explained using models for thermal pressurization and thermal decomposition in fluid-saturated gouge materials. Using parameters modeling a typical centroidal depth for a crustal seismogenic zone we predicted localized zone thicknesses in line with laboratory (Brantut et al., 2008; Kitajima et al., 2010) and field (Chester and Chester, 1998; Heermance et al., 2003; De Paola et al., 2008) observations. Further work has shown that the localized zone need not remain in a single location and may migrate across the gouge layer, in agreement with laboratory observations that show a thickening of the highly localized material with slip, and a distinct banded structure within the highly localized material (T. Mitchell, priv. comm.; Kitajima et al., 2010). We have identified two mechanisms that could cause migration. The first is a combination of thermal diffusion, hydraulic diffusion and thermal pressurization, which leads to the location of maximum pore pressure moving away from its initial position [Rice, 2006]. Since the maximum strain rate coincides with the maximum pore pressure, this causes the deforming zone to move across the gouge layer. The second mechanism is reactant depletion in a material undergoing thermal decomposition. Fluid pressurization and strain rate are slaved to the reaction, so as the reactant depletes the deforming zone will migrate towards fresh reactant. An additional symmetry breaking instability exists but is not discussed here. We have also explored how spatial variations in fault gouge properties may control the distribution of seismic shear. Since at seismic slip rates localization in a fluid-saturated material is controlled largely by pore pressure generation and hydraulic diffusion, regions that generate or trap pore pressures more efficiently will attract straining. Numerical simulations show that the deforming zone moves towards regions of low hydraulic

  19. Determination of Shear Deformation Potentials from the Free-Carrier Piezobirefringence in Germanium and Silicon

    DEFF Research Database (Denmark)

    Riskaer, Sven

    1966-01-01

    The present investigations of the free-carrier piezobirefringence phenomenon verify that in n-type germanium and silicon as well as in p-type silicon this effect can be ascribed to intraband transitions of the carriers. It is demonstrated how a combined investigation of the low-stress and high......-stress piezobirefringence in these materials provides a direct and independent method for determining deformation-potential constants. For n-type germanium we obtain Ξu=18.0±0.5 eV, for n-type silicon Ξu=8.5±0.4 eV; for p-type silicon a rather crude analytical approximation yields b=-3.1 eV and d=-8.3 eV. Finally...

  20. What Actually Happens When Granular Materials Deform Under Shear: A Look Within

    Science.gov (United States)

    Viggiani, C.

    2012-12-01

    We all know that geomaterials (soil and rock) are composed of particles. However, when dealing with them, we often use continuum models, which ignore particles and make use of abstract variables such stress and strain. Continuum mechanics is the classical tool that geotechnical engineers have always used for their everyday calculations: estimating settlements of an embankment, the deformation of a sheet pile wall, the stability of a dam or a foundation, etc. History tells us that, in general, this works fine. While we are happily ignoring particles, they will at times come back to haunt us. This happens when deformation is localized in regions so small that the detail of the soil's (or rock's) particular structure cannot safely be ignored. Failure is the perfect example of this. Researchers in geomechanics (and more generally in solid mechanics) have long since known that all classical continuum models typically break down when trying to model failure. All sorts of numerical troubles ensue - all of them pointing to a fundamental deficiency of the model: the lack of microstructure. N.B.: the term microstructure doesn't prescribe a dimension (e.g., microns), but rather a scale - the scale of the mechanisms responsible for failure. A possible remedy to this deficiency is represented by the so-called "double scale" models, in which the small scale (the microstructure) is explicitly taken into account. Typically, two numerical problems are defined and solved - one at the large (continuum) scale, and the other at the small scale. This sort of approach requires a link between the two scales, to complete the picture. Imagine we are solving at the small scale a simulation of an assembly of a few grains, for example using the Discrete Element Method, whose results are in turn fed back to the large scale Finite Element simulation. The key feature of a double scale model is that one can inject the relevant physics at the appropriate scale. The success of such a model crucially

  1. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...

  2. Sound radiated by the interaction of non-homogeneous turbulence on a transversely sheared flow with leading and trailing edges of semi-infinite flat plate

    Science.gov (United States)

    Afsar, Mohammed; Sassanis, Vasilis

    2017-11-01

    The small amplitude unsteady motion on a transversely sheared mean flow is determined by two arbitrary convected quantities with a particular choice of gauge in which the Fourier transform of the pressure is linearly-related to a scalar potential whose integral solution can be written in terms of one of these convected quantities. This formulation becomes very useful for studying Rapid-distortion theory problems involving solid surface interaction. Recent work by Goldstein et al. (JFM, 2017) has shown that the convected quantities are related to the turbulence by exact conservation laws, which allow the upstream boundary conditions for interaction of a turbulent shear flow with a solid-surface (for example) to be derived self-consistently with appropriate asymptotic separation of scales. This result requires the imposition of causality on an intermediate variable within the conservation laws that represents the local particle displacement. In this talk, we use the model derived in Goldstein et al. for trailing edge noise and compare it to leading edge noise on a semi-infinite flat plate positioned parallel to the level curves of the mean flow. Since the latter represents the leading order solution for the aerofoil interaction problem, these results are expected to be generic. M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellor's Fellowship.

  3. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  4. Evaluation of filler effects on SBR in large shearing deformations 1. Utility of differential dynamic modulus as predictor for wet skid resistance

    International Nuclear Information System (INIS)

    Isono, Y.; Oyama, T.; Kawahara, S.

    2003-01-01

    Now the use of silica in tire tread applications is increasing. This is because of not so different rolling resistance for silica (Si) filled and carbon black (CB) filled rubbers, and of higher wet skid resistance for the former than the latter. Such difference should be attributed to the variation in viscoelasticity. It is, however, still unknown what viscoelastic function should be used as a predictor. At the place in contact with the road, a tire tread rubber undergoes a large deformation on which small oscillations are superposed. Hence differential dynamic modulus measured by intermittently superposing small oscillations on a large deformation may provide useful information. In this work, nonlinear viscoelastic properties of CB and Si (with coupling agent) filled SBR vulcanizates were studied in cycles of large shearing deformation (γ = 2) and recovery (γ = 0) on which small shear oscillations (γ osc = 0.005) were superposed. CB filled SBR showed different responses in deformed and recovered states: Values of tanδ are lower in deformed state than in recovered state. However, Si filled one showed no change in tanδ in the two states. In the deformed state, Si system showed higher tanδ than CB system. The results agree with our experience of higher wet skid resistance for Si than for CB, showing validity of differential loss tangent as the predictor. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Steady State Droplet Deformation and Orientation during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modeling and Simulations

    Science.gov (United States)

    Verhulst, Kristof; Cardinaels, Ruth; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The steady deformation and orientation of droplets in shear flow, both under bulk and confined conditions, is microscopically studied for blends with one viscoelastic phase and a viscosity ratio of 1.5. The experiments are performed with a Linkam shearing cell and a counter rotating setup, based on a Paar Physica MCR300. For bulk shear flow, it is shown that matrix viscoelasticity suppresses droplet deformation and promotes droplet orientation towards the flow direction. Interestingly, these effects saturate at Deborah numbers above 2. For ellipsoidal droplets, viscoelasticity of the droplet fluid hardly affects the droplet deformation and droplet orientation, even up to Deborah numbers as high as 16. When the droplet is confined between two plates, the droplet deformation and the orientation towards the flow direction increase with confinement ratio, as in fully Newtonian systems. At a Deborah number of 1, the effect of component viscoelasticity under confined conditions remains qualitatively the same as under bulk conditions, at least up to a confinement ratio 2R/H of 0.6. The experiments under bulk conditions are compared with the predictions of phenomenological models, such as the Maffettone-Minale model, for droplet deformation. The Shapira-Haber model, which analytically describes the effects of the walls on the droplet deformation for fully Newtonian systems, is used to describe the experimental results under confinement. Here, this model is combined with the bulk phenomenological models to include bulk viscoelasticity effects. Under the present conditions, the adapted Shapira-Haber model describes the steady droplet deformation under confinement rather well. Finally, the experimentally obtained droplet shapes are compared with the results of 3D simulations, performed with a volume-of-fluid algorithm.

  6. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics: a study utilizing deformation volume analysis.

    Science.gov (United States)

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith; Oxborough, David

    2018-03-01

    Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function; however, the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume loops (deformation volume analysis - DVA). There was a leftward shift of the ε-volume loop from supine to 1 min and 5 min of HUT ( P  transverse thickening from supine to 1 min, which was further augmented at 5 min ( P  = 0.018). Preload reduction occurs within 1 min of HUT but does not further reduce at 5 min. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. © 2018 The authors.

  7. Free Vibration Analysis of Functionally Graded Porous Doubly-Curved Shells Based on the First-Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Farajollah Zare Jouneghani

    2017-12-01

    Full Text Available Due to some technical issues that can appear during the manufacturing process of Functionally Graded Materials (FGMs, it can be extremely difficult to produce perfect materials. Indeed, one of the biggest problems is the presence of porosities. For this purpose, the vibrational behavior of doubly-curved shells made of FGM including porosities is investigated in this paper. With respect to previous research, the porosity has been added to the mechanical model that characterizes the through-the-thickness distribution of the graded constituents and applied to doubly-curved shell structures. Few papers have been published on this topic. In fact, it is easier to find works related to one-dimensional structures and beam models that take account the effect of porosities. The First-order Shear Deformation Theory (FSDT is considered as the theoretical framework. In addition, the mechanical properties of the constituents vary along the thickness direction. For this purpose, two power-law distributions are employed to characterize their volume fraction. Strain components are established in an orthogonal curvilinear coordinate system and the governing equations are derived according to the Hamilton’s principle. Finally, Navier’s solution method is used and the numerical results concerning three different types of shell structures are presented.

  8. TRANSVERSAL ANALYSIS OF THE FREQUENCY OF LORDOTIC DEFORMITIES IN THE THE TELVE-YEAR OLD BOYS AND GIRLS

    Directory of Open Access Journals (Sweden)

    Veselin Jovović

    2007-05-01

    Full Text Available of lordotic spinal deformities were determined. The sample was drawn from the population of pupils of fi fth grade from the primary school «L. Simonović» in Nikšić. The state and the structure of lordotic deformities were determined by use of combined measuring methods and techniques, applicable to the mass research in schools. The research proved that lordotic deformities are represented by a considerable percentage in the given population. The highest percentage of the deformities are mild, functional disruptions which can be successfully removed by an appropriate corrective treatment. Our sample proved that lordotic deformities appear most frequently in the lumbal area of the spinal chord.

  9. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  10. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.

    2011-01-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....

  11. Joint model to simulate inelastic shear behavior of poorly detailed exterior and interior beam-column connections reinforced with deformed bars under seismic excitations

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Eligehausen, Rolf

    2009-12-01

    A model for predicting the nonlinear shear behaviour of reinforced concrete beam column joints based on principal stresses reaching limits is proposed. The joint model proposes shear springs for the column region and rotational spring for the beam region of the joint. This is based on the actual displacement behaviour of the shear buildings. The spring characteristics are calculated based on well-known principal of mechanics using the principal stresses as the failure criteria. The model reasonably accurately predicts the shear behaviour of the joint and also can consider the effect of axial loads on the column. The model does not need any special element or special program for implementation and can be used for nonlinear static pushover analysis of RC framed structures giving due consideration to joint deformations. The model is therefore extremely useful for practical displacement based analysis of old RC buildings where the joints were not designed and detailed as per current codal requirements, invariably making them the weakest link in the structure. The background theory, assumptions followed and the complete formulations for generating the joint characteristics are given in this report. The model is validated with experimental results of tests on exterior and interior beam-column connections given in the published literature having substandard detailing using deformed bars. (author)

  12. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  13. Metodologia para o cálculo dos módulos de elasticidade longitudinal e transversal em vigas de madeira de dimensões estruturais Methodology used to determine the shear and longitudinal modulus of elasticity in timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2013-04-01

    Full Text Available Este trabalhou objetiva apresentar uma metodologia analítica para o cálculo dos módulos de elasticidade longitudinal (E e transversal (G em vigas de madeira de dimensões estruturais, segundo o emprego das teorias de vigas de Euler Bernoulli e Timoshenko, sendo utilizado o ensaio de flexão estática a três pontos. As madeiras testadas foram o Pinus elliottii e a Corymbia citriodora. Os resultados encontrados relevaram ser o módulo de elasticidade longitudinal 18,70 vezes superior ao módulo transversal do Pinus elliottii e 21,2 superior ao módulo transversal do Corymbia citriodora, sendo estes compatíveis quando comparada a relação entre E e G estabelecida pela norma Brasileira ABNT NBR 7190:1997 (Projeto de Estruturas de Madeira, que define ser o módulo de elasticidade longitudinal vinte vezes superior ao transversal.This paper proposed a test method to obtain the shear (G and longitudinal (E modulus of elasticity in timber beams with structural dimensions, based on the static three-points bending tests and the Euler Bernoulli and Timoshenko beams theories. The woods tested were the Corymbia citriodora and Pinus elliottii. The results revealed that the longitudinal modulus of elasticity of Pinus elliottii is 18.70 greater than the shear modulus, and 21.16 greater than the shear modulus of Corymbia citriodora, being consistent this results when compared to the proposed by the Brazilian standard ABNT NBR 7190:1997 (Design of Wood Structures, being the longitudinal modulus of elasticity twenty times greater than the shear modulus.

  14. Deformation behavior of Cu bicrystals with the Σ9(110)(221) symmetric tilt grain boundary under pure shear studied by atomistic simulation method

    International Nuclear Information System (INIS)

    Wan Liang; Wang Shaoqing

    2010-01-01

    The deformation behavior of Cu bicrystals with the symmetric tilt grain boundary (STGB) under pure shear has been studied by atomistic simulation method with the embedded atom method (EAM) interatomic potentials. By using an energy minimization method, it shows that there are two optimized structures of this grain boundary (GB) which correspond to two local energy minima on the potential energy surface of the GB. The structure with lower energy is the stable one while the other is a metastable structure. The pure shear process of the bicrystals at ambient temperature has been studied by molecular dynamics (MD) simulation method. The simulated results indicate that there are three structure transformation modes of this GB depending on the shear direction: (1) pure GB sliding; (2) GB atomic shuffling accompanied by dislocation emission from GB; (3) GB migration coupled GB sliding, namely, GB coupling motion. In addition, an analysis of the structure evolution of the GB shows that, there are two mechanisms for GB coupling motion depending on the shear direction. One is the collective motion of GB atoms and the other is structure transformation realized by uncorrelated atomic shuffling processes. The former mechanism can induce structure transition of GB between the stable one and the metastable one, while the latter introduces faceting of the GB. (authors)

  15. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  16. Shear wave splitting and upper mantle deformation in French Polynesia: Evidence for small-scale heterogeneity related to the Society hotspot

    Science.gov (United States)

    Russo, R. M.; Okal, E. A.

    1998-07-01

    We determined shear wave splitting parameters at four island sites in French Polynesia: Tiputa (TPT) on Rangiroa in the Tuamotu archipelago; Papeete (PPT) on Tahiti in the Society Islands; Tubuai (TBI) in the Cook-Austral island chain; and Rikitea (RKT) on Mangareva in the Gambier Islands. We also examined splitting at Pitcairn (PTCN) on Pitcairn Island; because of the short time of operation of PTCN, our results there are preliminary. We find substantial differences in splitting, most likely caused by variable upper mantle deformation beneath the five stations. At TPT the fast split shear wave (ϕ) direction is N66°W±4°, parallel to the current Pacific-hotspots relative motion (APM) vector; the delay time between fast and slow waves is 1.3±0.2 s. At PPT, on Tahiti, we could detect no splitting despite many clear SKS observations. At TBI, on Tubuai we detected splitting with a delay time of 1.1±0.1 s and a ϕ direction midway between the local APM direction and the fossil spreading direction (N86°W±2°), as locally indicated by the nearby Austral Fracture Zone. At RKT in the Gambier Islands, ϕ trends N53°W±6°, 16° clockwise of the local APM azimuth, and delay time at RKT is 1.1±0.1 s. Results at PTCN include ϕ near N38°W±9° and a delay time of 1.1±0.3 s. These different results imply variable upper mantle deformation beneath the five sites. We interpret splitting at TPT and, possibly, RKT as indicative of asthenospheric flow or shear in the APM direction beneath the stations. At PPT, azimuthal isotropy indicates deformed upper mantle with a vertical symmetry axis, or absence of strong or consistently oriented mantle deformation fabric beneath Tahiti. Either effect could be related to recent hotspot magmatism on Tahiti. At TBI, splitting may be complicated by juxtaposition of different lithospheric thicknesses along the nearby Austral Fracture Zone, resulting in perturbation of asthenospheric flow. The absence of splitting related to fossil

  17. On the formation of an ultrafine-duplex structure facilitated by severe shear deformation in a Ti–20Mo β-type titanium alloy

    International Nuclear Information System (INIS)

    Xu, W.; Wu, X.; Stoica, M.; Calin, M.; Kühn, U.; Eckert, J.; Xia, K.

    2012-01-01

    Severe plastic deformation in the form of equal channel angular pressing (ECAP) has been adopted to introduce severe shear strain into a Ti–20 wt.% Mo β-type titanium alloy to elucidate the aging response of the severely deformed β matrix. Upon isothermal aging in the (α + β) phase field, selective heterogeneous α nucleation and growth resulted in a mixed precipitation microstructure. An ultrafine-duplex (α + β) structure composed of equiaxed α precipitates formed inside the shear bands (SBs) created during ECAP, whereas acicular α precipitates were favoured outside the SBs. This distinct precipitation structure has been correlated to the structural characteristics of the SBs: high disorder with dislocation cells characteristic of low-angle boundaries and enhanced atomic diffusivity. The highly disordered structure results in a weak variant selection and thereby promotes randomly orientated α precipitation without obeying the Burgers orientation relationship. Furthermore, the enhanced atomic diffusivity facilitates rapid growth of the α nuclei to form the ultrafine-duplex (α + β) structure.

  18. Hydrodynamic of a deformed bubble in linear shear flow; Hydrodynamique d'une bulle deformee dans un ecoulement cisaille

    Energy Technology Data Exchange (ETDEWEB)

    Adoua, S.R

    2007-07-15

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  19. Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2016-01-01

    For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)

  20. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  1. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.

    1987-01-01

    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  2. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    Science.gov (United States)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  3. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Science.gov (United States)

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  4. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    Science.gov (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  5. A Mesoscopic Analytical Model to Predict the Onset of Wrinkling in Plain Woven Preforms under Bias Extension Shear Deformation

    Directory of Open Access Journals (Sweden)

    Abbas Hosseini

    2017-10-01

    Full Text Available A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs under the bias extension test is presented, based on a new instability analysis. The analysis is aimed to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and an equivalent structure composed of bars and different types of springs is proposed, mimicking the behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent structure are derived based on geometric and mechanical characteristics of the PWCP. The principle of minimum total potential energy is employed to formluate the model, and experimental validation is carried out to reveal the effectiveness of the derived wrinkling prediction equation.

  6. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    International Nuclear Information System (INIS)

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-01-01

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  7. Brittle deformation in Southern Granulite Terrane (SGT): A study of pseudotachylyte bearing fractures along Gangavalli Shear Zone (GSZ), Tamil Nadu, India.

    Science.gov (United States)

    mohan Behera, Bhuban; Thirukumaran, Venugopal; Biswal, Tapas kumar

    2016-04-01

    High grade metamorphism and intense deformation have given a well recognition to the Southern Granulite Terrane (SGT) in India. TTG-Charnockite and basic granulites constitute the dominant lithoassociation of the area. Dunite-peridotite-anorthosite-shonkinite and syenites are the intrusives. TTG-charnockite-basic granulite have undergone F1 (isoclinal recumbent), F2 (NE-SW) and F3 (NW-SE) folds producing several interference pattern. E-W trending Neoarchean and Palaeoproterozoic Salem-Attur Shear Zone exhibits a low angle ductile thrust as well as some foot print of late stage brittle deformation near Gangavalli area of Tamil Nadu. The thrust causes exhumation of basic granulites to upper crust. Thrusting along the decollement has retrograded the granulite into amphibolite rock. Subsequently, deformation pattern of Gangavalli area has distinctly marked by numerous vertical to sub-vertical fractures mostly dominating along 0-15 and 270-300 degree within charnockite hills that creates a maximum stress (σ1) along NNW and minimum stress (σ3) along ENE. However, emplacement of pseudotachylyte vein along N-S dominating fracture indicates a post deformational seismic event. Extensive fractures produce anastomose vein with varying thickness from few millimeters to 10 centimeters on the outcrop. ICP-AES study results an isochemical composition of pseudotachylyte vein that derived from the host charnockitic rock where it occurs. But still some noticeable variation in FeO-MgO and Na2O-CaO are obtained from different parts within the single vein showing heterogeneity melt. Electron probe micro analysis of thin sections reveals the existence of melt immiscibility during its solidification. Under dry melting condition, albitic rich melts are considered to be the most favorable composition for microlites (e.g. sheaf and acicular micro crystal) re-crystallization. Especially, acicular microlites preserved tachylite texture that suggest its formation before the final coagulation

  8. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  9. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    Science.gov (United States)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  10. A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Shi-Chao Yi

    2017-01-01

    Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.

  11. Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory

    International Nuclear Information System (INIS)

    Ebrahimi, Farzad; Salari, Erfan

    2015-01-01

    In this study, the thermal effect on the free vibration characteristics of embedded Single-walled carbon nanotubes (SWCNTs) based on the size-dependent Reddy higher order shear deformation beam theory subjected to in-plane thermal loading is investigated by presenting a Navier-type solution and employing a semi-analytical Differential transform method (DTM) for the first time. In addition, the exact nonlocal Reddy beam theory solution presented here should be useful to engineers designing nanoelectromechanical devices. The small scale effect is considered based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle, and they are solved by applying DTM. Numerical results reveal that the proposed modeling and semi-analytical approach can provide more accurate frequency results of the SWCNTs compared to analytical results and some cases in the literature. The detailed mathematical derivations are presented, and numerical investigations are performed, whereas emphasis is placed on investigating the effect of several parameters such as small-scale effects, boundary conditions, mode number, thickness ratio, temperature change, and Winkler spring modulus on the natural frequencies of the SWCNTs in detail. The vibration behavior of SWCNTs is significantly influenced by these effects. Results indicate that the inclusion of size effect results in a decrease in nanobeam stiffness and leads to a decrease in natural frequency. Numerical results are presented to serve as benchmarks for future analyses of SWCNTs.

  12. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  13. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  14. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Huang, Xiaoxu

    2010-01-01

    dislocation structure (DDS) into a nano-sized (sub)grain structure (NGS). On the two sides of a core region, two transition layers (TRLs) exist where the T/M lamellae experienced much less shear strain. The interface boundaries separating the core region and the TRLs are characterized by very large shear...

  15. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Comparison between predicted and observed shear behavior using a graphical method

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B.

    1993-09-01

    Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff from Yucca Mountain to test the graphical load-displacement analysis method proposed by Saeb (1989) and Amadei and Saeb (1990). Based on the results of shear tests conducted on several joint replicas under different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN), the shear behavior of joint replicas under constant normal stiffness ranging between 14.8 and 187.5 kips/in. (25.9 and 328.1 kN/cm) was predicted by using the graphical method. The predictions were compared to the results of actual shear tests conducted for the same range of constant normal stiffness. In general, a good agreement was found between the predicted and the observed shear behavior

  16. The transverse creep deformation and failure characteristics of SCS-6/Ti-6Al-4V metal matrix composites at 482 C

    International Nuclear Information System (INIS)

    Eggleston, M.R.; Ritter, A.M.

    1995-01-01

    While continuous fiber, unidirectional composites are primarily evaluated for their longitudinal properties, the behavior transverse to the fibers often limits their application. In this study, the tensile and creep behaviors of SCS-6/Ti-6Al-4V composites in the transverse direction at 482 C were evaluated. Creep tests were performed in air and argon environments over the stress range of 103 to 276 MPa. The composite was less creep resistant than the matrix when tested at stress values larger than 150 MPa. Below 150 MPa, the composite was ore creep resistant than the unreinforced matrix. Failure of the composite occurred by the ductile propagation of racks emanating from separated fiber interfaces. The environment in which the test was performed affected the creep behavior. At 103 MPa, the creep rate in argon was 4 times slower than the creep rate in air. The SCS-6 silicon-carbide fiber's graphite coating oxidized in the air environment and encouraged the separation of the fiber-matrix interface. However, at high stress levels, the difference in behavior between air- and argon-tested specimens was small. At these stresses, separation of the interface occurred during the initial loading of the composite and the subsequent degradation of the interface did not affect the creep behavior. Finally, the enrichment of the composite's surface by molybdenum during fabrication resulted in an alloyed surface layer that failed in a brittle fashion during specimen elongation. Although this embrittled layer did not appear to degrade the properties of the composite, the existence of a similar layer on a composite with a more brittle matrix might be very detrimental

  17. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  18. Kinematics and significance of a poly-deformed crustal-scale shear zone in central to south-eastern Madagascar: the Itremo-Ikalamavony thrust

    Science.gov (United States)

    Giese, Jörg; Schreurs, Guido; Berger, Alfons; Herwegh, Marco

    2017-09-01

    Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly metasedimentary units of the Ikalamavony and Itremo Groups of the Southwest Madagascar Block. The generally west-dipping tectonic contact can be traced for more than 750 km from NW to SE and is referred to here as the Itremo-Ikalamavony thrust. The basal units of the SW Madagascar Block comprise metasedimentary quartzites with the potential to preserve a multistage deformation history in their microstructures. Previous studies suggest contrasting structural evolutions for this contact, including eastward thrusting, top-to-the-west directed extension and right-lateral strike-slip deformation during the late Neoproterozoic/Ediacaran. In this study, we integrate remote sensing analyses, structural and petrological fieldwork, as well as microstructural investigations of predominantly quartz mylonites from the central southern segment of the contact between Ankaramena and Maropaika. In this area, two major phases of ductile deformation under high-grade metamorphic conditions occurred in latest Neoproterozoic/early Phanerozoic times. A first (Andreaba) phase produces a penetrative foliation, which is parallel to the contact between the two blocks and contemporaneous with widespread magmatism. A second (Ihosy) phase of deformation folds Andreaba-related structures. The investigated (micro-)structures indicate that (a) juxtaposition of both blocks possibly already occurred prior to the Andreaba phase, (b) (re-)activation with top-to-the-east thrusting took place during the latest stages of the Andreaba phase, (c) the Ihosy phase resulted in regional-scale open folding of the tectonic contact and (d) reactivation of parts of the contact took place at distinctively lower temperatures post-dating the major ductile deformations.

  19. Transverse myelitis

    International Nuclear Information System (INIS)

    Black, M.J.; Motaghedi, B.; Robitaille, Y.

    1980-01-01

    Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented

  20. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  1. Finite Element Analysis of Reinforced Concrete Beam-Column Connections with Governing Joint Shear Failure Mode

    Directory of Open Access Journals (Sweden)

    M.A. Najafgholipour

    Full Text Available Abstract Reinforced concrete (RC beam-column connections especially those without transverse reinforcement in joint region can exhibit brittle behavior when intensive damage is concentrated in the joint region during an earthquake event. Brittle behavior in the joint region can compromise the ductile design philosophy and the expected overall performance of structure when subjected to seismic loading. Considering the importance of joint shear failure influences on strength, ductility and stability of RC moment resisting frames, a finite element modeling which focuses on joint shear behavior is presented in this article. Nonlinear finite element analysis (FEA of RC beam-column connections is performed in order to investigate the joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern. A 3D finite element model capable of appropriately modeling the concrete stress-strain behavior, tensile cracking and compressive damage of concrete and indirect modeling of steel-concrete bond is used. In order to define nonlinear behavior of concrete material, the concrete damage plasticity is applied to the numerical model as a distributed plasticity over the whole geometry. Finite element model is then verified against experimental results of two non-ductile beam-column connections (one exterior and one interior which are vulnerable to joint shear failure. The comparison between experimental and numerical results indicates that the FE model is able to simulate the performance of the beam-column connections and is able to capture the joint shear failure in RC beam-column connections.

  2. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  3. Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field

    International Nuclear Information System (INIS)

    Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan

    2007-01-01

    In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases

  4. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  5. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  6. Flow behavior at different shear rates for dry powders

    NARCIS (Netherlands)

    Singh, A.; Singh, A.; Luding, Stefan; Nürnberg Messe GmbH,

    2010-01-01

    Using Discrete Element Simulations (DEM), an effort is made to study the so called “Split bottom ring shear cell” where a slow, quasi-static deformation leads to wide shear bands. Density, velocity and deformation gradients as well as structure and stress tensors, can be computed by a single

  7. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  8. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  9. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  10. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  11. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  12. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  13. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  14. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  15. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  16. Transversity: Theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    D' Alesio, Umberto [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, and Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C. P. 170, I-09042 Monserrato (Italy)

    2013-04-15

    The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.

  17. Transversity: Theory and phenomenology

    International Nuclear Information System (INIS)

    D'Alesio, Umberto

    2013-01-01

    The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.

  18. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  19. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  20. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  1. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    Science.gov (United States)

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  2. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  3. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  4. Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel

    International Nuclear Information System (INIS)

    Yanushkevich, Z; Belyakov, A; Kaibyshev, R; Molodov, D

    2014-01-01

    The effect of cold rolling on the microstructure evolution and mechanical properties of a cold rolled Fe-0.3C-17Mn-1.5AI TWIP steel was studied. The plate samples were cold rolled with reductions of 20, 40, 60 and 80%. The structural changes were associated with the development of deformation twinning and shear bands. The average spacing between twin boundaries in the transverse section of the rolled plates decreased from ∼190 to 36 nm with an increase in the rolling reduction from 20 to 40%. Upon further rolling to 80% reduction the twin spacing remained at about 30 nm. The cold rolling resulted in significant increase in strength as revealed by tensile tests at an ambient temperature. The offset yield stress approached 1440 MPa, and the ultimate tensile strength increased to 1630 MPa after rolling reduction of 80%. Such significant strengthening was attributed to the development of specific structure consisting of deformation nanotwins with high dislocation density

  5. Opportunities for shear energy scaling in bulk acoustic wave resonators

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart

    2014-01-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots

  6. Free vibration analysis of beams by using a third-order shear ...

    Indian Academy of Sciences (India)

    Free vibrations of beams; the third-order shear deformation theory; ... Thus, a shear correction factor is required to compensate for the error because of ...... Wang C M, Kitipornchai S 2003 Vibration of Timoshenko beams with internal hinge.

  7. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  8. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  9. Failure in lithium-ion batteries under transverse indentation loading

    Science.gov (United States)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  10. Design and experimental analysis of a new shear connector for steel and concrete composite structures

    OpenAIRE

    Veríssimo, G. S.; Paes, J. L. R.; Valente, Isabel; Cruz, Paulo J. S.; Fakury, R. H.

    2006-01-01

    This work presents the design of a new shear connector and the corresponding results obtained on push-out tests. This new shear connector consists on a steel rib with indented cut shape that provides resistance to longitudinal shear and prevents transversal separation between the concrete slab and the steel profile (uplift). Adding to this, the connector openings cut makes easier the arrangement of transversal reinforcement bars. The installation of the connectors is simple and requires only ...

  11. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  12. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  13. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  14. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  15. Transverse Localization of Light

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad; Vries, Pedro de

    1989-01-01

    We study the propagation of light through a semi-infinite medium with transverse disorder (that is, disorder in two directions only). We show that such a system exhibits strong two-dimensional localization by demonstrating that on propagation a beam expands until the transverse localization length

  16. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  17. Punching shear strength of transversely prestressed concrete decks

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.

    2012-01-01

    In the Netherlands, there is a need to determine the capacity of bridge decks as a large number of them were built back in the 60’s and 70’s. Since then, not only a lot of additional safety requirements have been incorporated into the modern codes but the traffic flow has also increased drastically.

  18. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  19. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim; Feng, Bobo; Nordé n, Bengt; Rocha, Sandra; Beke-Somfai, Tamá s

    2014-01-01

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We

  20. Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Somani, M.C. [Center for Advanced Steels Research, The University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Wang, Z.D. [State Key Laboratory for Rolling and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819 (China)

    2016-04-20

    Nanograined/ultrafine-grained (NG/UFG) materials characterized by high strength-high ductility combination are excellent vehicles to obtain an unambiguous understanding of deformation mechanisms vis-à-vis their coarse-grained counterparts. In this context, the innovative concept of phase reversion-induced NG/UFG structure enabled achieving high strength besides comparable ductility, for instance, in metastable austenitic stainless steels. In the phase reversion process, severe deformation of austenite at room temperature (typically ~60–80%) transforms face-centered cubic austenite (γ) to body centered cubic martensite (α′). Upon annealing, martensite reverts to austenite leading to extensive grain refinement. The objective of the present study to fundamentally understand the deformation mechanisms in NG/UFG structure in relation to that of the coarse-grained (CG) structure was accomplished by combining depth-sensing nanoscale experiments on an Fe-16Cr-10Ni model austenitic alloy conducted at different strain rates, followed by the study of structural evolution in the deformed zone using transmission electron microscopy (TEM). In the high strength NG/UFG steel (YS~585 MPa), stacking faults and nanotwins contributed to the enhanced ductility (El~35%), while in the case of low strength (YS~260 MPa) coarse-grained (CG) counterpart, ductility was also high (El~40%), but chiefly due to strain-induced martensite, which points to a clear case of grain size effect (and the corresponding level of strength). The distinct change in the deformation mechanism from stacking faults and twinning-induced plasticity (TWIP) in the NG structure to transformation-induced plasticity (TRIP) in the CG structure is elucidated in terms of austenite stability-strain energy relationship. The insights on the relationship between grain structure (and strength) and deformation mechanisms are envisaged to be important in providing a new direction for the futuristic design of high strength

  1. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  2. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  3. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  4. A New Accurate yet Simple Shear Flexible Triangular Plate Element with Linear Bending Strains

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2010-01-01

    The paper describes a new shear flexible triangular element. The formulation is based on displacement interpolation of the transverse displacement of the midsurface and the rotations of the cross-sections, and the element is fully compatible. The basic principle is to use a so-called balanced...... interpolation so that the part of the shear strains that relates to the transverse displacement has the same polynomial variation as the part of the shear strains that relates to the rotations of the cross-section. This balanced interpolation in combination with complete polynomial interpolations prevents shear...... are virtually the same. The slightly incompatible formulation can be implemented directly into commercial codes....

  5. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  6. Failure modes of low-rise shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Reed, J.W.; Salmon, M.W.

    1993-01-01

    A summary of available data concerning the structural response of low-rise shear walls is presented. These data will be used to address two failure modes associated with shear wall structures. First, the data concerning the seismic capacity of the shear walls are examined, with emphasis on excessive deformations that can cause equipment failure. Second, the data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary for computing the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional

  7. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  8. Transverse spin physics

    CERN Document Server

    Barone, Vicenzo

    2001-01-01

    This book is devoted to the theory and phenomenology of transverse-spin effects in high-energy hadronic physics. Contrary to common past belief, it is now rather clear that such effects are far from irrelevant. A decade or so of intense theoretical work has shed much light on the subject and brought to surface an entire class of new phenomena, which now await thorough experimental investigation. Over the next few years a number of experiments world-wide (at BNL, CERN, DESY and JLAB) will run with transversely polarised beams and targets, providing data that will enrich our knowledge of the tra

  9. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  10. Nonlinear transverse vibrations of elastic beams under tension

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Konno, Kimiaki; Wadati, Miki.

    1980-02-01

    Nonlinear transverse vibrations of elastic beams under end-thrust have been examined with full account of the rigorous nonlinear relation of curvature and deformation of elastic beams. When the beams are subject to tension, the derived equation is shown to be reduced to one of the new integrable evolution equations discovered by us. (author)

  11. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-01-01

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse

  12. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  13. Hypereosinophilic Atopic Transverse Myelitis

    African Journals Online (AJOL)

    2018-06-11

    4 days ago ... Atopic transverse myelitis is a rare disorder that is defined as a ... was commenced on prednisolone and had good response to treatment. .... Atopic myelitis is more common in male sex such as .... their identity, but anonymity cannot be guaranteed. ... useful diagnostic clue in surgical neuropathology.

  14. Noninterceptive transverse beam diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.

    1981-01-01

    The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project

  15. Transversally extended string

    International Nuclear Information System (INIS)

    Akama, Keiichi

    1988-01-01

    Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)

  16. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    Science.gov (United States)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  17. TWITCH PARAMETERS IN TRANSVERSAL AND LONGITUDINAL BICEPS BRACHII RESPONSE

    Directory of Open Access Journals (Sweden)

    Boštjan Šimunič

    2010-01-01

    Full Text Available Assessment of the contractile properties of skeletal muscles is continuing to be an important issue and a difficult task methodologically. Longitudinal direction of skeletal muscle contraction blurs intrinsic muscle belly contractile properties with many factors. This study evaluates and explains contractile properties such as: delay time (Td, contraction time (Tc, half relaxation time (Tr and maximal amplitude (Dm extracted from twitch transversal response and compare them with torque response. In fifteen healthy males (age 23.7 ± 3.4 years isometric twitch transversal and torque responses were simultaneously recorded during graded electrically elicited contractions in the biceps brachii muscle. The amplitude of electrical stimulation was increased in 5 mA steps from a threshold up to a maximal response. The muscles’ belly transversal response was measured by a high precision mechanical displacement sensor while elbow joint torque was calculated from force readings. Results indicate a parabolic relation between the transversal displacement and the torque Dm. A significantly shorter Tc was found in transversal response without being correlated to torque Tc (r = -0.12; > 0.05. A significant correlation was found between torque Tc and the time occurrence of the second peak in the transversal response (r = 0.83; < 0.001. Electrical stimulation amplitude dependant variation of the Tc was notably different in transversal than in torque response. Td was similar at submaximal and maximal responses but larger in transversal at just above threshold contractions. Tr has a similar linear trend in both responses, however, the magnitude and the slope are much larger in the transversal response. We could conclude that different mechanisms affect longitudinal and transversal twitch skeletal muscle deformations. Contractile properties extracted from the transversal response enable alternative insights into skeletal muscle contraction mechanics.

  18. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  19. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  20. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  1. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  2. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2012-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  3. Shear viscosity of liquid argon and liquid rubidium

    International Nuclear Information System (INIS)

    Chiakwelu, O.

    1978-01-01

    A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon

  4. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  5. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  6. Role of Inelastic Transverse Compressive Behavior and Multiaxial Loading on the Transverse Impact of Kevlar KM2 Single Fiber

    Directory of Open Access Journals (Sweden)

    Subramani Sockalingam

    2017-02-01

    Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.

  7. Plastic deformation of silicon dendritic web ribbons during the growth

    Science.gov (United States)

    Cheng, L. J.; Dumas, K. A.; Su, B. M.; Leipold, M. H.

    1984-01-01

    The distribution of slip dislocations in silicon dendritic web ribbons due to plastic deformation during the cooling phase of the growth was studied. The results show the existence of two distinguishable stress regions across the ribbon formed during the plastic deformation stage, namely, shear stress at the ribbon edges and tensile stress at the middle. In addition, slip dislocations caused by shear stress near the edges appear to originate at the twin plane.

  8. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  9. Transverse Spin Physics: Recent Developments

    International Nuclear Information System (INIS)

    Yuan, Feng

    2008-01-01

    Transverse-spin physics has been very active and rapidly developing in the last few years. In this talk, I will briefly summarize recent theoretical developments, focusing on the associated QCD dynamics in transverse spin physics

  10. Large transverse momentum phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1977-09-01

    It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references

  11. Microfluidic assay of the deformability of primitive erythroblasts.

    Science.gov (United States)

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  12. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  13. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  14. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    Science.gov (United States)

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  15. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  16. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  17. Shear Adhesion of Tapered Nanopillar Arrays.

    Science.gov (United States)

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  18. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  19. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  20. Introduction to the viewpoint set on shear bands

    International Nuclear Information System (INIS)

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  1. The Effects of Isothermal Deformation and Annealing on the Microstructure of Nickel-Aluminum-Bronze Propeller Material

    National Research Council Canada - National Science Library

    Nabach, William A

    2003-01-01

    ... in a combination of frictional and adiabatic heating due to plastic deformation. A stirring effect results in the formation of a zone of severe shear deformation and local temperatures approaching...

  2. Deformation bands in porous carbonate grainstones: Field and laboratory observations

    NARCIS (Netherlands)

    Cilona, A.; Baud, P.; Tondi, E.; Agosta, F.; Vinciguerra, S.; Rustichelli, A.; Spiers, C.J.

    2012-01-01

    Recent field-based studies documented deformation bands in porous carbonates; these structures accommodate volumetric and/or shear strain by means of pore collapse, grain rotation and/or sliding. Microstructural observations of natural deformation bands in carbonates showed that, at advanced stages

  3. κ-deformed Dirac oscillator in an external magnetic field

    Science.gov (United States)

    Chargui, Y.; Dhahbi, A.; Cherif, B.

    2018-04-01

    We study the solutions of the (2 + 1)-dimensional κ-deformed Dirac oscillator in the presence of a constant transverse magnetic field. We demonstrate how the deformation parameter affects the energy eigenvalues of the system and the corresponding eigenfunctions. Our findings suggest that this system could be used to detect experimentally the effect of the deformation. We also show that the hidden supersymmetry of the non-deformed system reduces to a hidden pseudo-supersymmetry having the same algebraic structure as a result of the κ-deformation.

  4. Experimental Study on Shear Performance of Bolt in Roadway Supporting

    Directory of Open Access Journals (Sweden)

    D.J. Li

    2014-09-01

    Full Text Available The corner bolt is proved to be effective in the control of floor deformation of roadway, and the relevant studies on bolting mechanisms are of great significance in improving roadway stability. In this paper, two types of shear tests on six forms of bolts are performed by using self-designed shear test device, the electro-hydraulic servo triaxial testing system. The shear characteristics of different types of bolts are obtained. The results show that different bolt rods or different internal filling conditions result in large differences in shear resistance and different deformation adaptability. We find that the filling materials added can improve the shear performance of bolt significantly, and the bolt with steel not only can improve the strength of bolt body, but also has the bimodal characteristic that makes the bolt have the secondary bearing capacity and withstand larger deformation range during the process of shear, and shows a better support performance. Hoping to provide the experiment basis for support design and field application in the future.

  5. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  6. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  7. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  8. Seismic shear waves as Foucault pendulum

    Science.gov (United States)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  9. Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams

    Directory of Open Access Journals (Sweden)

    Alhamad Siyam

    2017-01-01

    Full Text Available This study investigates the shear behavior of deep concrete beams reinforced with basalt fiber reinforced polymer (BFRP bars for flexure without web reinforcements. The experimental testing performed herein consisted of a total of 4 short beams, three of which were reinforced with BFRP and one beam was reinforced with steel bars. The primary test variable was the shear-span-to-effective-depth ratio (a/d and its influence on the beams’ mid-span deflections, shear capacity, load-deformation relationships and the failure modes.

  10. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  11. Transverse spin effects

    International Nuclear Information System (INIS)

    Ratcliffe, P.G.

    1993-01-01

    A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs

  12. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  13. The andean ophiolitic megastructures on the Buga-Buenaventura transverse (Western Cordillera—Valle Colombia)

    Science.gov (United States)

    Bourgois, Jacques; Calle, Bernardo; Tournon, Jean; Toussaint, Jean-François

    1982-02-01

    A structural study of the Buga-Buenaventura transverse in the central part of the Western Cordillera of Colombia, has shown the presence of three structural units which, from bottom to top and from west to east, are: the Rio Dagua unit, the Rio Calima unit, and the Loboguerrero window unit. All three units comprise strata between 120 and 80 m.y. old overlying a basement of green rocks showing the characteristics of submarine flows. The Bolivar ultrabasic and basic massif is geographically linked to the Rio Calima unit, in which green rocks predominate, and is separated from it by a tectonic contact. The upper part of the massif, on the other hand, shows high-temperature metamorphic rocks formed during its emplacement. The Rio Dagua unit shows two tectonic phases with isoclinal folding and development of schistosity. The first phase is contemporaneous with low-grade metamorphism equivalent to lower greenschist facies conditions. The Loboguerrero window unit shows a large recumbent fold oriented towards the southeast. Deformation in the Rio Calima unit is weaker and appears to correspond to a higher structural level than in the two other units. As the attitudes of the S1, schistosity in the Rio Dagua unit and of the shear zones located at the green rocks-sediments contact in this same unit are similar to that of the overthrust at the base of the Rio Calima unit, we are led to postulate that the overthrust belongs to the first phase of deformation, as also does the recumbent fold in the Loboguerrero window unit. We are thus led to propose a southeastward direction of emplacement for the nappes in the Western Cordillera of Colombia. In conclusion, the authors extend their observations and propose a new structural interpretation of the "Occidente Colombiano".

  14. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    Science.gov (United States)

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH 0 ) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH 0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH 0 transducers have been proposed so far. In this work, an omnidirectional SH 0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d 24 ) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH 0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH 0 wave transmitter or a SH 0 wave receiver. This work may greatly promote the applications of SH 0 waves in NDT and SHM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints

    Science.gov (United States)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing

    2017-08-01

    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  16. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  17. Void coalescence mechanism for combined tension and large amplitude cyclic shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo

    2017-01-01

    Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...

  18. Shear structuring as a new method to make anisotropic structures from soy-gluten blends

    NARCIS (Netherlands)

    Grabowska, K.J.; Tekidou, S.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    The concept of shear-induced structuring was applied to concentrated blends of soy protein isolate (SPI) and wheat gluten (WG) to create novel semi-solid food textures. Concurrent simple shear deformation and heating (95 °C) of the protein blends generated original structures consisting of fibers or

  19. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  20. The possible mass region for shears bands and chiral doublets

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S

    1998-03-01

    The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)

  1. Importance of physical vs. chemical interactions in surface shear rheology

    NARCIS (Netherlands)

    Wierenga, P.A.; Kosters, H.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, de H.H.J.

    2006-01-01

    The stability of adsorbed protein layers against deformation has in literature been attributed to the formation of a continuous gel-like network. This hypothesis is mostly based on measurements of the increase of the surface shear elasticity with time. For several proteins this increase has been

  2. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  3. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  4. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  5. Magnetic properties of cyclically deformed austenite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  6. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  7. Shear-driven phase transformation in silicon nanowires.

    Science.gov (United States)

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  8. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  9. Numerical limit analysis of keyed shear joints in concrete structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    This paper concerns the shear capacity of keyed joints, which are transversely reinforced with overlapping U-bar loops. It is known from experimental studies that the discontinuity of the transverse reinforcement affects the capacity as well as the failure mode; however, to the best knowledge...... theorem and uses the modified Mohr-Coulomb yield criterion, which is formulated for second-order cone programming. The model provides a statically admissible stress field as well as the failure mode. Twenty-four different test specimens are modelled and the calculations are compared to the experimental...

  10. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  11. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  12. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  13. The Application Research of Inverse Finite Element Method for Frame Deformation Estimation

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2017-01-01

    Full Text Available A frame deformation estimation algorithm is investigated for the purpose of real-time control and health monitoring of flexible lightweight aerospace structures. The inverse finite element method (iFEM for beam deformation estimation was recently proposed by Gherlone and his collaborators. The methodology uses a least squares principle involving section strains of Timoshenko theory for stretching, torsion, bending, and transverse shearing. The proposed methodology is based on stain-displacement relations only, without invoking force equilibrium. Thus, the displacement fields can be reconstructed without the knowledge of structural mode shapes, material properties, and applied loading. In this paper, the number of the locations where the section strains are evaluated in the iFEM is discussed firstly, and the algorithm is subsequently investigated through a simple supplied beam and an experimental aluminum wing-like frame model in the loading case of end-node force. The estimation results from the iFEM are compared with reference displacements from optical measurement and computational analysis, and the accuracy of the algorithm estimation is quantified by the root-mean-square error and percentage difference error.

  14. Adiabatic shear localization in a near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Sun, Jieying; Wang, Xiaoyan; Fu, Ao [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China)

    2015-07-15

    Adiabatic shear localization plays an important role in the deformation and failure of near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy used in aircraft's gear at high rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of an adiabatic shear band under controlled shock-loading experiments. When the nominal shear strain is about 0.68, unstable shear deformation of the alloy emerges after the true flow stress reaches 1100 MPa, the first vibration peak during the split Hopkinson pressure bar testing, and the whole process lasts about 62 μs. The microstructures within the shear band in the Ti–5Al–5Mo–5V–1Cr–1Fe alloy are investigated by means of optical microscopy, scanning electron microscopy and transmission electron microscopy. Phase transformation occurs in the shear band when the nominal shear strain increases to 0.68. A number of equiaxed grains with sizes 50–200 nm and alpha″-phase are in the center of the shear band. Kinetic calculations indicate that during the deformation process, the recrystallized nanosized grains can be formed in the shear band by way of the subgrain boundaries rotation, and the alpha″ phase transformation start after the subgrain boundaries rotated to 30°.

  15. Kinesthetic Transverse Wave Demonstration

    Science.gov (United States)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  16. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  17. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  18. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    Science.gov (United States)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  19. FRP-RC Beam in Shear: Mechanical Model and Assessment Procedure for Pseudo-Ductile Behavior

    Directory of Open Access Journals (Sweden)

    Floriana Petrone

    2014-07-01

    Full Text Available This work deals with the development of a mechanics-based shear model for reinforced concrete (RC elements strengthened in shear with fiber-reinforced polymer (FRP and a design/assessment procedure capable of predicting the failure sequence of resisting elements: the yielding of existing transverse steel ties and the debonding of FRP sheets/strips, while checking the corresponding compressive stress in concrete. The research aims at the definition of an accurate capacity equation, consistent with the requirement of the pseudo-ductile shear behavior of structural elements, that is, transverse steel ties yield before FRP debonding and concrete crushing. For the purpose of validating the proposed model, an extended parametric study and a comparison against experimental results have been conducted: it is proven that the common accepted rule of assuming the shear capacity of RC members strengthened in shear with FRP as the sum of the maximum contribution of both FRP and stirrups can lead to an unsafe overestimation of the shear capacity. This issue has been pointed out by some authors, when comparing experimental shear capacity values with the theoretical ones, but without giving a convincing explanation of that. In this sense, the proposed model represents also a valid instrument to better understand the mechanical behavior of FRP-RC beams in shear and to calculate their actual shear capacity.

  20. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  1. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  2. A simplified four-unknown shear and normal deformation theory

    Indian Academy of Sciences (India)

    The in-plane longitudinal stress ¯σ1 versus the side-to-thickness ratio a/h of a ..... in which Ei are Young's moduli in the material principal directions, vij are Poisson's ratios, ..... drical shells integrated with piezoelectric fiber reinforced composite ...

  3. Deformation in D″ Beneath North America From Anisotropy

    Science.gov (United States)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The

  4. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt

    KAUST Repository

    Hu, Youfan; Gao, Yifan; Singamaneni, Srikanth; Tsukruk, Vladimir V.; Wang, Zhong Lin

    2009-01-01

    We demonstrate the first electric field induced transverse deflection of a single-crystal, free-standing ZnO microbelt as a result of converse piezoelectric effect. For a microbelt growing along the c-axis, a shear stress in the a-c plane can

  5. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  6. Higgs boson transverse momentum distribution

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will review  the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.

  7. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  8. The theoretical shear strength of fcc crystals under superimposed triaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, M., E-mail: cerny.m@fme.vutbr.cz [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Pokluda, J. [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic)

    2010-05-15

    The influence of a triaxial stress applied normally to shear planes and shear direction during affine shear deformation of face-centered cubic crystals on the theoretical shear strength is studied for the <112-bar >{l_brace}111{r_brace} shear system using first-principles methods. The applied relaxation procedure guarantees that the modeled system is subjected to a superposition of shear, normal and in-plane stresses with individually adjustable in-plane and normal stress values. The theoretical shear strengths of individual elements prove to be qualitatively different functions of the superimposed stresses. In the special case of hydrostatic loading, however, these functions are qualitatively uniform. This behavior is discussed in terms of the electronic structure.

  9. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  10. Shear-wave splitting measurements – Problems and solutions

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav

    2008-01-01

    Roč. 462, č. 1-4 (2008), s. 178-196 ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross- correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008

  11. Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    T.S. Viswanathan

    2014-09-01

    Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.

  12. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  13. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  14. Real-time deformation measurement using a transportable shearography system

    Science.gov (United States)

    Weijers, A. L.; van Brug, Hedser H.; Frankena, Hans J.

    1997-03-01

    A new system for deformation visualization has been developed, being a real time phase stepped shearing speckle interferometer. This system provides the possibility to measure quantitatively deformations of diffusely reflecting objects in an industrial environment. The main characteristics of this interferometer are its speed of operation and its reduced sensitivity to external disturbances. Apart from its semiconductor laser source, this system has a shoe-box size and is mounted on a tripod for easy handling during inspection. This paper describes the shearing speckle interferometry set-up, as it is developed at our laboratory and its potential for detecting defects.

  15. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  16. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  17. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  18. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  19. Shear bands as growing instabilities in viscoanelastic media with memory

    Directory of Open Access Journals (Sweden)

    Marina Dolfin

    2013-09-01

    Full Text Available In this paper we investigate the critical conditions under which a small perturbation in an homogeneous continuum can possibly grows into a shear band instability. In particular, we analyze from a thermodynamical viewpoint the phenomenon of shear bands in viscoanelastic media with memory. It is emphasized, in the scientific literature, that the specific adopted rheology strongly affects the results so that a special attention has to be paid, also for engineering purposes, to the accuracy of the rheological model. Several well-known rheological model (for instance the so called Maxwell or Jeffreys media are particular cases of the general model we adopt in the paper to analyze shear bands. Instability conditions, giving rise to shear bands formation, are obtained by introducing small perturbations around an homogeneous deformation into the system of differential equations governing the problem of homogeneous deformations in the considered continuous medium; as a result a non-homogeneous linear dynamical system is obtained whose stability is analyzed. A research perspective in view of a possible comparison with experimental results is proposed; in particular the simple methodology proposed in the paper should be applied in view of using the phenomenon of the initiation of shear bands to calculate the thermomechanical coefficients of real materials.

  20. Deformation structure analysis of material at fatigue on the basis of the vector field

    Science.gov (United States)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  1. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  2. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  3. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  4. Transversal lightlike submanifolds of indefinite sasakian manifolds

    OpenAIRE

    YILDIRIM, Cumali; Yıldırım, Cumali; Şahin, Bayram

    2014-01-01

    We study both radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds. We give examples, investigate the geometry of distributions and obtain necessary and sufficient conditions for the induced connection on these submanifolds to be metric connection. We also study totally contact umbilical radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds and obtain a classification theorem for totally contact umbilical tr...

  5. Transversal lightlike submanifolds of indefinite sasakian manifolds

    OpenAIRE

    YILDIRIM, Cumali

    2010-01-01

    We study both radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds. We give examples, investigate the geometry of distributions and obtain necessary and sufficient conditions for the induced connection on these submanifolds to be metric connection. We also study totally contact umbilical radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds and obtain a classification theorem for totally contact umbilical tr...

  6. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    Grady, D.E.; Asav, J.R.; Rohde, R.W.; Wise, J.L.

    1983-01-01

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  7. The strain accommodation in Ti–28Nb–12Ta–5Zr alloy during warm deformation

    International Nuclear Information System (INIS)

    Farghadany, E.; Zarei-Hanzaki, A.; Abedi, H.R.; Dietrich, D.; Lampke, T.

    2014-01-01

    The warm deformation behavior of a β-type Ti alloys, composing of Ti–27.96Nb–11.97Ta–5.02Zr %wt, (so called TNTZ alloy), has been investigated in the present work in a warm deformation temperature. A variety of deformation features are characterized in the material microstructure after applied warm deformation scheme. The XRD analysis confirms an enhancement in martensite volume fraction. The electron back scatter diffractometry (EBSD) elucidates that the martensite has been mainly formed by laterally at the vicinity of different types of deformation bands. Both the well-known twining systems in TNTZ series have been occurred during deformation. The micro-shear bands, which are defined as highly concentrated plastic strain regions, are characterized in the deformed microstructure. The micro-shear bands are severely formed in the regions, which accommodate the most amount of applied strain

  8. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  9. Pseudoscalar Meson Electroproduction and Transversity

    International Nuclear Information System (INIS)

    Goldstein, G.; Liuti, S.

    2011-01-01

    Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, J PC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.

  10. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  11. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  12. Transverse facial cleft: A series of 17 cases

    Directory of Open Access Journals (Sweden)

    L K Makhija

    2011-01-01

    Full Text Available Introduction: Transverse facial cleft (Tessier type 7 or congenital macrostomia is a rare congenital anomaly seldom occurring alone and is frequently associated with deformities of the structures developing from the first and second branchial arches. The reported incidence of No. 7 cleft varies from 1 in 60,000 to 1 in 300,000 live births. Material and Methods: Seventeen patients of transeverse facial cleft who presented to us in last 5 years were included in the study. Their history regarding familial and environmental predispositions was recorded. The cases were analysed on basis of sex, laterality, severity, associated anomalies and were graded according to severity. They were operated by z plasty technique and were followed up for 2 years to look for effectiveness of the technique and its complications. Result: Out of the seventeen patients of transverse cleft, none had familial predilection or any environmental etiology like antenatal radiological exposure or intake of drugs of teratogenic potential. Most of the patients (9/17 were associated with hemifacial microsomia and 1 patient was associated with Treacher Colin′s Syndrome. Out of the 6 cases of Grade I clefts, 4 were isolated transverse clefts and of the 10 patients of Grade II clefts, 7 were associated with hemifacial microsomia. We encountered only one case of Grade III Transverse Cleft which was not only associated with hemifacial microsomia but also had cardiac anomaly. Out of the17 cases, 15 were operated and in most of them the outcome was satisfactory.

  13. Competition between uplift and transverse sedimentation in an experimental delta

    Science.gov (United States)

    Grimaud, Jean-Louis; Paola, Chris; Ellis, Chris

    2017-07-01

    Mass is commonly injected into alluvial systems either laterally by transport from source regions or vertically from below via local uplift. We report results on the competition between these two fundamental processes, using an experimental basin with a deformable substrate. The lateral supply is via two alluvial fans on orthogonal walls of the basin; the uplifting region is downstream of one of the fans (axial) and opposite to the other (transverse). We show that the presence of a transverse sediment input increases the erosion rate of the uplifting region by pushing the mixing zone between the two alluvial sources against the uplifting mass. However, increase in sediment delivery to the transverse fan does not cause a proportional increase in erosion rate of the uplifting region. Instead, the system reaches a steady state balance between uplift and erosion induced by the transverse fan, such that there is no change in the total mass above the active alluvial surface—a lateral analog of the classical steady state between vertical erosion and uplift. We also show that the mixing zone is instrumental in limiting upstream aggradation and funneling sediments to the shore, resulting in limited river lateral mobility and increased shoreline progradation. Hence, the interaction between alluvial sources buffers river erosion and leads to consistent deviations from predictions of the area of influence of each fan based on simple mass-balance arguments. In the Ganges-Brahmaputra-Meghna delta, we suggest that similar dynamics help stabilize the Brahmaputra River course in the Jamuna Valley during Holocene time.

  14. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  15. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial; González, Carlos; Llorca, Javier

    2014-01-01

    The effect of porosity on the transverse mechanical properties of unidirectional fiber-reinforced composites is studied by means of computational micromechanics. The composite behavior is simulated by the finite element analysis of a representative volume element of the composite microstructure...... that porosity (in the range 1-5%) led to a large reduction in the transverse strength and the influence of both types of voids in the onset and propagation of damage throughout the microstructure was studied under transverse tension and compression. Finally, the failure locus of the composite lamina under...... transverse tension/compression and out-of-plane shear was obtained by means of computational micromechanics and compared with the predictions of Puck's model and with experimental data available in the literature. The results show that the strength of composites is significantly reduced by the presence...

  16. Transverse momentum distributions inside the nucleon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Musch, Bernhard Ulrich

    2009-05-29

    Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)

  17. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  18. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  19. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  20. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  1. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  2. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    Science.gov (United States)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  3. Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    The effect of low stress triaxiality on ductile failure is investigated for a material subject to pure shear or to stress states in the vicinity of pure shear. Many recent studies of ductile failure under low hydrostatic tension have focused on shear with superposed tension, which can result...... that the behaviour of a porous ductile material at low stress triaxiality depends a great deal on the mode of deformation....

  4. Shear viscosity of phase-separating polymer blends with viscous asymmetry

    International Nuclear Information System (INIS)

    Jeon, H. S.; Hobbie, E. K.

    2001-01-01

    Rheo-optical measurements of phase separating polymer mixtures under simple shear flow have been used to investigate the influence of domain morphology on the viscosity of emulsionlike polymer blends, in which the morphology under weak shear is droplets of one coexisting phase dispersed in a matrix of the second. The structure and viscosity of low-molecular-weight polybutadiene and polyisoprene mixtures, phase separated by quenching to a temperature inside the coexistence region of the phase diagram, were measured as a function of shear rate and composition. In the weak shear regime, the data are in qualitative agreement with an effective medium model for non-dilute suspensions of slightly deformed interacting droplets. In the strong shear regime, where a stringlike pattern appears en route to a shear-homogenized state, the data are in qualitative agreement with a simple model that accounts for viscous asymmetry in the components

  5. Nonlinear shear wave in a non Newtonian visco-elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

    2012-06-15

    An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.

  6. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...... direction. Also the choice of echo canceling filter affects the performance significantly....

  7. Transverse stability of Kawahara solitons

    DEFF Research Database (Denmark)

    Karpman, V.I.

    1993-01-01

    The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...

  8. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  9. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  10. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  11. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  12. Shear-flow coupling in non-planar rock joints

    International Nuclear Information System (INIS)

    Makurat, A.; Barton, N.

    1985-01-01

    Crystalline rock masses are regarded as a possible host rock for permanent nuclear waste disposal. During the excavation of the required shafts and tunnels, the initial state of stress will be changed and cause a deformation of the rock mass and discontinuities. During the lifetime of the nuclear repository joint apertures may change due to thermally induced stress variations during the heating and cooling phase. As the conductivity of a joint is very sensitive to its aperture, fluid flow from and towards a repository, as well as the potential transport times of radionuclides are highly dependent on the deformability of the joints. Theoretical calculations of coupled flow in rock joints (Barton et al. 1984) predict an increase of conductivity of several orders of magnitude for the first few millimeters for shear displacement. The shear-dilation-conductivity coupling for two block sizes at two effective stress levels is shown

  13. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  14. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  15. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  16. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  17. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  18. Minijet thermalization and diffusion of transverse momentum correlation in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pang Longgang; Wang Qun; Wang Xinnian; Xu Rong

    2010-01-01

    Transverse momentum correlations in the azimuthal angle of hadrons produced owing to minijets are first studied within the HIJING Monte Carlo model in high-energy heavy-ion collisions. Quenching of minijets during thermalization is shown to lead to significant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to this correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. This diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum correlation in azimuthal angle is calculated along the freeze-out hypersurface and is found to be further diffused for higher values of the shear viscosity to entropy density ratio, η/s∼0.2-0.4. Therefore the final transverse momentum correlation in azimuthal angle can be used to study the thermalization of minijets in the early stage of heavy-ion collisions and the viscous effect in the hydrodynamic evolution of strongly coupled quark-gluon plasma.

  19. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  20. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  1. Modeling shockwave deformation via molecular dynamics

    International Nuclear Information System (INIS)

    Holian, B.L.

    1987-01-01

    Molecular dynamics (MD), where the equations of motion of up to thousands of interacting atoms are solved on the computer, has proven to be a powerful tool for investigating a wide variety of nonequilibrium processes from the atomistic viewpoint. Simulations of shock waves in three-dimensional (3D) solids and fluids have shown conclusively that shear-stress relaxation is achieved through atomic rearrangement. In the case of fluids, the transverse motion is viscous, and the constitutive model of Navier-Stokes hydrodynamics has been shown to be accurate - even on the time and distance scales of MD experiments. For strong shocks in solids, the plastic flow that leads to shear-stress relaxation in MD is highly localized near the shock front, involving a slippage along close-packed planes. For shocks of intermediate strength, MD calculations exhibit an elastic precursor running out in front of the steady plastic wave, where slippage similar in character to that in the very strong shocks leads to shear-stress relaxation. An interesting correlation between the maximum shear stress and the Hugoniot pressure jump is observed for both 3D and fluid shockwave calculations, which may have some utility in modeling applications. At low shock strengths, the MD simulations show only elastic compression, with no permanent transverse atomic strains. The result for perfect 3D crystals is also seen in calculations for 1D chains. It is speculated that, if it were practical, a very large MD system containing dislocations could be expected to exhibit more realistic plastic flow for weak shock waves, too

  2. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  3. Computer simulation of plastic deformation in irradiated metals

    International Nuclear Information System (INIS)

    Colak, U.

    1989-01-01

    A computer-based model is developed for the localized plastic deformation in irradiated metals by dislocation channeling, and it is applied to irradiated single crystals of niobium. In the model, the concentrated plastic deformation in the dislocation channels is postulated to occur by virtue of the motion of dislocations in a series of pile-tips on closely spaced parallel slip planes. The dynamics of this dislocation motion is governed by an experimentally determined dependence of dislocation velocity on shear stress. This leads to a set of coupled differential equations for the positions of the individual dislocations in the pile-up as a function of time. Shear displacement in the channel region is calculated from the total distance traveled by the dislocations. The macroscopic shape change in single crystal metal sheet samples is determined by the axial displacement produced by the shear displacements in the dislocation channels. Computer simulations are performed for the plastic deformation up to 20% engineering strain at a constant strain rate. Results of the computer calculations are compared with experimental observations of the shear stress-engineering strain curve obtained in tensile tests described in the literature. Agreement between the calculated and experimental stress-strain curves is obtained for shear displacement of 1.20-1.25 μm and 1000 active slip planes per channel, which is reasonable in the view of experimental observations

  4. Anisotropic plastic deformation by viscous flow in ion tracks

    NARCIS (Netherlands)

    van Dillen, T; Polman, A; Onck, PR; van der Giessen, E

    2005-01-01

    A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed. It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and Ryazanov. Deviatoric (shear) stresses, brought about by the rapid thermal

  5. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  6. Transformation of a Foucault shadowgram into the geometrical model of a shear interferogram by means of isophotometry

    Science.gov (United States)

    Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.

    2014-06-01

    The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.

  7. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  8. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  9. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

    CERN Document Server

    Krüger, Timm

    2012-01-01

    The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are obser...

  10. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  11. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  12. Introduction to Transverse Beam Dynamics

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  13. Introduction to Transverse Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, B J [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  14. Transversal Lines of the Debates

    Directory of Open Access Journals (Sweden)

    Yolanda Onghena

    1998-12-01

    Full Text Available The Transversal Lines of the Debates gathers for publication the presentations of the scholars invited to the seminar. In the papers, Yolanda Onghena observes that the evolution from the cultural to the inter-cultural travels along four axes: the relations between cultureand society; the processes of change within identity-based dynamics; the representations of the Other; and, interculturality. Throughout the presentations and subsequent debates, whenever the different participants referred to aspects of the cultural identity problematic--”angst”, “obsession”, “deficit”, manipulation”, and others, these same participants in the Transversal Lines of the Debates also showed that, in certain areas, an optimistic viewpoint is not out of the question.

  15. Transverse jets and their control

    Energy Technology Data Exchange (ETDEWEB)

    Karagozian, Ann R. [Department of Mechanical and Aerospace Engineering, University of California, 48-121 Engineering IV, Los Angeles, CA 90095 (United States)

    2010-10-15

    The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield, with and without a combustion reaction, and with single or multi-phase flow. The complexities in this flowfield, whether the jet is introduced flush with respect to the injection wall or from an elevated pipe or nozzle, present challenges in accurately interrogating, analyzing, and simulating important jet features. This review article provides a background on these studies and applications as well as detailed features of the transverse jet, and mechanisms for its control via active means. Promising future directions for the understanding, interrogation, simulation, and control of transverse jet flows are also identified and discussed. (author)

  16. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  17. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    Deformation bands are commonly thin tabular zones of crushed or reorganized grains that form in highly porous rocks and sediments. Unlike a fault, typically the slip is negligible in deformation bands. In this dissertation the microstructure and petrophysical properties of deformation bands have been investigated through microscopy and numerical analysis of experimental and natural examples. The experimental work consists of a series of ring-shear experiments performed on porous sand at 5 and 20 MPa normal stresses and followed by microscopic examination of thin sections from the sheared samples. The results of the ring-shear experiments and comparison of them to natural deformation bands reveals that burial depth (level of normal stress in the experiments) and the amount of shear displacement during deformation are the two significant factors influencing the mode in which grains break and the type of shear zone that forms. Two end-member types of experimental shear zones were identified: (a) Shear zones with diffuse boundaries, which formed at low levels of normal stress and/or shear displacement; and (b) Shear zones with sharp boundaries, which formed at higher levels of normal stress and/or shear displacement. Our interpretation is that with increasing burial depth (approximately more than one kilometer, simulated in the experiments by higher levels of normal stress), the predominant mode of grain fracturing changes from flaking to splitting; which facilitates the formation of sharp-boundary shear zones. This change to grain splitting increases the power law dimension of the grain size distribution (D is about 1.5 in sharp boundary shear zones). Based on our observations, initial grain size has no influence in the deformation behavior of the sand at 5 MPa normal stresses. A new type of cataclastic deformation band is described through outcrop and microscopic studies; here termed a 'slipped deformation band'. Whereas previously reported cataclastic

  18. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  19. Average Transverse Momentum Quantities Approaching the Lightfront

    OpenAIRE

    Boer, Daniel

    2015-01-01

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of su...

  20. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  1. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  2. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  3. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Ratchata Theinchai

    2016-01-01

    Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  4. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    OpenAIRE

    Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera

    2016-01-01

    We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  5. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  6. Appraisal of transverse nasal groove: a study.

    Science.gov (United States)

    Sathyanarayana, Belagola D; Basavaraj, Halevoor B; Nischal, Kuchangi C; Swaroop, Mukunda R; Umashankar, Puttagangu N; Agrawal, Dhruv P; Swamy, Suchetha S; Okram, Sarda

    2012-01-01

    Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. One hundred patients were recruited in the study. Females (80%) predominated over males. Most patients were of 15-45 years age group (70%). Majority of the transverse nasal lesions were classical transverse nasal groove (39%) and others included transverse nasal line (28%), strip (28%), ridge (4%) and loop (1%). Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.

  7. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  8. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  10. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  11. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  12. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  13. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  14. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  15. Compressive failure model for fiber composites by kink band initiation from obliquely aligned, shear-dislocated fiber breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics

    2005-04-01

    Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen

  16. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  17. Transverse vorticity measurements using an array of four hot-wire probes

    Science.gov (United States)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  18. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  19. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  20. Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear

    Science.gov (United States)

    Raab, A. G.; Bobruk, E. V.; Raab, G. I.

    2018-05-01

    The paper displays the results of the studies and analysis of a promising severe plastic deformation scheme that implements the conditions of a non-monotonous impact during shear drawing of long-length bulk metal materials. The paper describes the efficiency of the proposed severe plastic deformation technique to form a gradient ultrafine-grained state in rod-shaped billets on the example of commercially pure Ti and its further development for future industrial applications.

  1. Electron shower transverse profile measurement

    International Nuclear Information System (INIS)

    Lednev, A.A.

    1993-01-01

    A method to measure the shower transverse profile is described. Calibration data of the lead-glass spectrometer GAMS collected in a wide electron beam without any additional coordinate detector are used. The method may be used for the measurements in both cellular- and projective-type spectrometers. The results of measuring the 10 GeV electron shower profile in the GAMS spectrometer, without optical grease between the lead-glass radiators and photomultipliers, are approximated with an analytical function. The estimate of the coordinate accuracy is obtained. 5 refs., 8 figs

  2. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  3. Localization in Naturally Deformed Systems - the Default State?

    Science.gov (United States)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  4. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  5. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks

    Science.gov (United States)

    Dinç, Özge; Scholtès, Luc

    2018-05-01

    A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.

  6. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  7. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Satadru Das [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Li, Bing, E-mail: cbli@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Fujikake, Kazunori [Department of Civil and Environmental Engineering, National Defense Academy, Yokosuka 239 8686 (Japan)

    2013-06-15

    Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading.

  8. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt

    KAUST Repository

    Hu, Youfan

    2009-07-08

    We demonstrate the first electric field induced transverse deflection of a single-crystal, free-standing ZnO microbelt as a result of converse piezoelectric effect. For a microbelt growing along the c-axis, a shear stress in the a-c plane can be induced when an electric field E is applied along the a-axis of the wurtzite structure. As amplified by the large aspect ratio of the microbelt that grows along the c-axis, the strain localized near the root can be detected via the transverse deflection perpendicular to the ZnO microbelt. After an experimental approach was carefully designed and possible artifacts were ruled out, the experimentally observed degree of deflection of the microbelt agrees well with the theoretically expected result. The device demonstrated has potential applications as transverse actuators/sensors/switches and electric field induced mechanical deflectors. © 2009 American Chemical Society.

  9. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.; Goriely, Alain

    2013-01-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects

  10. Large transverse momentum hadronic processes

    International Nuclear Information System (INIS)

    Darriulat, P.

    1977-01-01

    The possible relations between deep inelastic leptoproduction and large transverse momentum (psub(t)) processes in hadronic collisions are usually considered in the framework of the quark-parton picture. Experiments observing the structure of the final state in proton-proton collisions producing at least one large transverse momentum particle have led to the following conclusions: a large fraction of produced particles are uneffected by the large psub(t) process. The other products are correlated to the large psub(t) particle. Depending upon the sign of scalar product they can be separated into two groups of ''towards-movers'' and ''away-movers''. The experimental evidence are reviewed favouring such a picture and the properties are discussed of each of three groups (underlying normal event, towards-movers and away-movers). Some phenomenological interpretations are presented. The exact nature of away- and towards-movers must be further investigated. Their apparent jet structure has to be confirmed. Angular correlations between leading away and towards movers are very informative. Quantum number flow, both within the set of away and towards-movers, and between it and the underlying normal event, are predicted to behave very differently in different models

  11. Transverse and Longitudinal proximity effect

    Science.gov (United States)

    Jalan, Pryianka; Chand, Hum; Srianand, Raghunathan

    2018-04-01

    With close pairs (˜1.5arcmin) of quasars (QSOs), absorption in the spectra of a background quasar in the vicinity of a foreground quasar can be used to study the environment of the latter quasar at kpc-Mpc scales. For this we used a sample of 205 quasar pairs from the Sloan Digital Sky-Survey Data Release 12 (SDSS DR12) in the redshift range of 2.5 to 3.5 by studying their H I Ly-α absorption. We study the environment of QSOs both in the longitudinal as well as in the transverse direction by carrying out a statistical comparison of the Ly-α absorption lines in the quasar vicinity to that of the absorption lines caused by the inter-galactic medium (IGM). This comparison was done with IGM, matched in absorption redshift and signal-to-noise ratio (SNR) to that of the proximity region. In contrast to the measurements along the line-of-sight, the regions transverse to the quasars exhibit enhanced H I Ly-α absorption. This discrepancy can either be interpreted as due to an anisotropic emission from the quasars or as a consequence of their finite lifetime.

  12. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  13. Study of laminated anisotropic cylindrical shells sensitive to transverse stresses

    International Nuclear Information System (INIS)

    Massard, Thierry

    1979-01-01

    A variational method for the determination of stresses and displacements in a multilayered cylindrical shell is presented. All included materials are linearly anisotropic (monoclinic) - i.e. directional fibres reinforced materials. This study uses a functional which is derived from the potential energy of the structure. The incoming stresses are σ RR , σ Rθ , σ RZ , and the displacements are u θ and u Z . This mixed group is the main variables of the formulation. It is shown that the stationarity conditions of the functional are the equilibrium equations and the associated boundary conditions. An approximate solution can be found using a finite element method which realizes a tridimensional discretization of the structure. The program issued is a specific mean for studying the transverse shear stresses in laminated cylindrical structures. From the results obtained it can be concluded that it meets all requirements for the purposes of this range of problems. (author) [fr

  14. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....

  15. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  16. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  17. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  18. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  19. Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

    International Nuclear Information System (INIS)

    Zhang, H.Y.; Zheng, G.P.

    2014-01-01

    Highlights: • 3D phase-field modeling is developed to investigate the deformation of MG nanowires. • The surface defects significantly affect the mechanical properties of nanowires. • Multiple shear bands are initiated from the surfaces of nanowires with D < 50 nm. - Abstract: It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces

  20. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  1. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the

  2. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  3. Numerical study of suspensions of deformable particles.

    Science.gov (United States)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  4. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  5. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  6. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  7. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  8. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  9. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  10. Laparoscopic colectomy for transverse colon carcinoma.

    Science.gov (United States)

    Zmora, O; Bar-Dayan, A; Khaikin, M; Lebeydev, A; Shabtai, M; Ayalon, A; Rosin, D

    2010-03-01

    Laparoscopic resection of transverse colon carcinoma is technically demanding and was excluded from most of the large trials of laparoscopic colectomy. The aim of this study was to assess the safety, feasibility, and outcome of laparoscopic resection of carcinoma of the transverse colon. A retrospective review was performed to identify patients who underwent laparoscopic resection of transverse colon carcinoma. These patients were compared to patients who had laparoscopic resection for right and sigmoid colon carcinoma. In addition, they were compared to a historical series of patients who underwent open resection for transverse colon cancer. A total of 22 patients underwent laparoscopic resection for transverse colon carcinoma. Sixty-eight patients operated for right colon cancer and 64 operated for sigmoid colon cancer served as comparison groups. Twenty-four patients were identified for the historical open group. Intraoperative complications occurred in 4.5% of patients with transverse colon cancer compared to 5.9% (P = 1.0) and 7.8% (P = 1.0) of patients with right and sigmoid colon cancer, respectively. The early postoperative complication rate was 45, 50 (P = 1.0), and 37.5% (P = 0.22) in the three groups, respectively. Conversion was required in 1 (5%) patient in the laparoscopic transverse colon group. The conversion rate and late complications were not significantly different in the three groups. There was no significant difference in the number of lymph nodes harvested in the laparoscopic and open groups. Operative time was significantly longer in the laparoscopic transverse colectomy group when compared to all other groups (P = 0.001, 0.008, and transverse colectomy, respectively). The results of laparoscopic colon resection for transverse colon carcinoma are comparable to the results of laparoscopic resection of right or sigmoid colon cancer and open resection of transverse colon carcinoma. These results suggest that laparoscopic resection of transverse

  11. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  12. Transversal light forces in semiconductors

    CERN Document Server

    Lindberg, M

    2003-01-01

    The transversal light force is a well established effect in atomic and molecular systems that are exposed to spatially inhomogeneous light fields. In this paper it is shown theoretically that in an excited semiconductor, containing an electron-hole plasma or excitons, a similar light force exists, if the semiconductor is exposed to an ultrashort spatially inhomogeneous light field. The analysis is based on the equations of motion for the Wigner distribution functions of charge carrier populations and interband polarizations. The results show that, while the light force on the electron-hole plasma or the excitons does exist, its effects on the kinetic behaviour of the electron-hole plasma or the excitons are different compared to the situation in an atomic or molecular system. A detailed analysis presented here traces this difference back to the principal differences between atoms and molecules on the one hand and electron-hole plasmas or excitons on the other hand.

  13. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  14. Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications

    Science.gov (United States)

    García, Helbert; Jiménez, Giovanny

    2016-08-01

    We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.

  15. Granular deformation mechanisms in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  16. Direct observations of blob deformation during a substorm

    Directory of Open Access Journals (Sweden)

    T. Ishida

    2015-05-01

    Full Text Available Ionospheric blobs are localized plasma density enhancements, which are mainly produced by the transportation process of plasma. To understand the deformation process of a blob, observations of plasma parameters with good spatial–temporal resolution are desirable. Thus, we conducted the European Incoherent Scatter radar observations with high-speed meridional scans (60–80 s during October and December 2013, and observed the temporal evolution of a blob during a substorm on 4 December 2013. This paper is the first report of direct observations of blob deformation during a substorm. The blob deformation arose from an enhanced plasma flow shear during the substorm expansion phase, and then the blob split into two smaller-scale blobs, whose scale sizes were more than ~100 km in latitude. Our analysis indicates that the Kelvin–Helmholtz instability and dissociative recombination could have deformed the blob structure.

  17. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example

  18. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  19. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria)

    Science.gov (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard

    2015-01-01

    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  20. Estimation of viscosity based on transverse momentum correlations

    Science.gov (United States)

    Sharma, Monika

    2010-02-01

    The heavy ion program at RHIC created a paradigm shift in the exploration of strongly interacting hot and dense matter. An important milestone achieved is the discovery of the formation of strongly interacting matter which seemingly flows like a perfect liquid at temperatures on the scale of T ˜ 2 x10^12 K [1]. As a next step, we consider measurements of transport coefficients such as kinematic, shear or bulk viscosity? Many calculations based on event anisotropy measurements indicate that the shear viscosity to the entropy density ratio (η/s) of the fluid formed at RHIC is significantly below that of all known fluids including the superfluid ^4He [2]. Precise determination of η/s ratio is currently a subject of extensive study. We present an alternative technique for the determination of medium viscosity proposed by Gavin and Aziz [3]. Preliminary results of measurements of the evolution of the transverse momentum correlation function with collision centrality of Au + Au interactions at √sNN = 200 GeV will be shown. We present results on differential version of the correlation measure and describe its use for the experimental determination of η/s.[4pt] [1] J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757 (2005) 102.[0pt] [2] R. A. Lacey et al., Phys. Rev. Lett. 98 (2007) 092301.[0pt] [3] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  1. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  2. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  3. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  4. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  5. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  6. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  7. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  8. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  9. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  10. The Space-Time Continuum as a Transversely Isotropic Material and the Meaning of the Temporal Coordinate

    International Nuclear Information System (INIS)

    Christov, C. I.

    2010-01-01

    A transversely isotropic elastic continuum is considered in four dimensions, three of which are isotropic, and the properties of the material change only related to the fourth dimension. The model employs two dilational and three shear Lame coefficients. The isotropic dilational coefficient is assumed to be much larger than the second dilational coefficient, and the three shear coefficients. This amounts to a material that is virtually incompressible in the three isotropic dimensions. The first and third shear coefficients are positive, while the second shear coefficient is assumed to be negative. As a result, in the equations of elastic equilibrium, the second derivatives of the displacement with respect to the fourth coordinate enter with negative sign. This makes the equations hyperbolic, with a fourth dimension opposing to the other three. The hyperbolic nature of the fourth dimension allows to be interpreted as time.

  11. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    the numerical analysis, which is also reflected in published literature. Rather than moving towards very low triaxiality shearing, work has focused on extracting wide-ranging results for moderate stress triaxiality (T ~ 1), in order to achieve sufficient understanding of the influence of initial porosity, void...... significant straining of the matrix material located on the axis of rotation. In particular, the void surface material is severely deformed during shearing and void surface contact is established early in the deformation process. This 3D effect intensifies with decreasing stress triaxiality and complicates...... shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...

  12. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  13. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process

    Science.gov (United States)

    Rong, Guan; Yang, Jie; Cheng, Long; Zhou, Chuangbing

    2016-10-01

    To understand the influence of shear behavior on the transporting properties of fluid through a single fracture, splitting fractures were made in the laboratory and shear flow tests were carried out under constant normal load conditions. The applied normal stress is in the range of 0.5-3.0 MPa. Before the physical test, the fracture's morphology is measured for identification of the roughness. At each shear step, we performed 5-8 high precise hydraulic tests with different hydraulic gradient. The relationship between pressure gradient and volume flow rate demonstrates to be nonlinear and fits very well with Forchheimer's and Izbash's laws. The linear and nonlinear coefficients in Forchheimer's law are quite sensitive to shear deformation (closure or dilation), experienced 1-2 and 1-3 orders of magnitude reduction during shear, respectively. An empirical equation is proposed to quantify the relationship between linear coefficient and nonlinear coefficient based on the experimental observations. The two coefficients in Izbash's law are quantified. The m value is in the range between 1.06 and 1.41 and the λ value experiences a reduction of 1-2 orders of magnitude during shear. In addition, the studied critical Reynolds number exhibits a decreasing and increasing variation corresponding to shear contraction and shear dilation of rock fracture. For all the cases in this study, the critical Reynolds number ranges between 1.5 and 13.0.

  14. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  15. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  16. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  17. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  18. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  19. Early Cretaceous dextral transpressional deformation within the Median Batholith, Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2008-01-01

    The character, timing, and significance of deformation within the Median Batholith has been debated since at least 1967, with allochthonous and autochthonous models proposed to account for internal variations in the character of the batholith. Stewart Island provides excellent exposures of intrabatholithic structures, allowing many aspects of the deformation history within the batholith to be analysed, far removed from the effects of later deformation related to the current plate boundary. Median Batholith rocks in northern and central Stewart Island are deformed by three major structures: the Freshwater Fault System, Escarpment Fault, and Gutter Shear Zone. Lineation orientations, Al in hornblende geobarometry, and Ar-Ar thermochronology indicate up to c. 7 km of NNE-directed uplift of the hanging wall of the Escarpment Fault between c. 110 and 105 Ma. Unlike the Escarpment Fault, a wide range of mineral elongation lineation orientations, including many oblique to the strike and dip of related foliations, characterise both the Gutter Shear Zone and Freshwater Fault System. Lineation and limited sense of shear data indicate dextral-reverse movement on both structures during development of their dominant ductile fabrics. Crosscutting and intrusive relationships indicate movement on the Freshwater Fault System after c. 130 Ma and on the Gutter Shear Zone between 120 and 112 Ma. The amount of movement on the Freshwater Fault System and Gutter Shear Zone remains largely unconstrained. However, the 342 ± 24 Ma age of a granite clast in a Paterson Group lithic tuff horizon at Abrahams Bay overlaps that of Carboniferous plutons in the block immediately south of the Freshwater Fault System, implying that the Paterson Group is little displaced from the basement rocks through which it was erupted. The three structures mapped on Stewart Island form part of a narrow transpressional mobile belt active within the Jurassic-Cretaceous arc on the outboard margin of the Western

  20. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  1. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  2. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  3. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  4. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  5. Synchrotron radiography of direct-shear in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C M; Nagira, T; Nakatsuka, N; Yasuda, H; Dahle, A K; Uesugi, K

    2012-01-01

    Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

  6. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  7. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  8. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  9. Electromigration-induced plastic deformation in passivated metal lines

    Science.gov (United States)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  10. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with and without Transverse Acoustic Excitation

    Science.gov (United States)

    2012-01-01

    node, there is no droplet deflection, but there is limited evidence for this. Recent studies at UCLA and at NASA Glenn Research Center by Dattarajan et...generator supplied continuous sine wave signals, which were amplified via Trek PZD2000A high-voltage amplifiers, to each piezo-siren. The waveform...1.3. Verify the wire on Channel 1 of the Tenma oscilloscope (Model No. 72-6800) comes from the output voltage monitor on the Trek -1 amplifier and the

  11. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    Science.gov (United States)

    2012-06-01

    for this. Recent studies at UCLA and at NASA Glenn Research Center by Dattarajan et al. [20, 21] have focused on methanol droplet combustion...via Trek PZD2000A high-voltage amplifiers, to each piezo-siren. The waveform generators output signals were locked in frequency. However, their phase...1.3. Verify the wire on Channel 1 of the Tenma oscilloscope (Model No. 72-6800) comes from the output voltage monitor on the Trek -1 amplifier

  12. Anaesthetic considerations in patients with transverse myelitis ...

    African Journals Online (AJOL)

    Transverse myelitis is an acute or subacute inflammatory disorder involving the spinal cord. Clinical signs are due to the involvement of the ascending and descending tracts in the transverse plane of the spinal cord. The most common cause is autoimmune. These patients may present with various clinical findings with ...

  13. Transversals in non-discrete groups

    Indian Academy of Sciences (India)

    Transversals in non-discrete groups. RAMJI LAL and R P SHUKLA. Department of Mathematics, University of Allahabad, Allahabad 211 002, India. E-mail: ramjilal@mri.ernet.in; rps@mri.ernet.in. MS received 2 August 2004; revised 4 August 2005. Abstract. The concept of 'topological right transversal' is introduced to study ...

  14. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  15. Cladding For Transversely-Pumped Laser Rod

    Science.gov (United States)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  16. Shape oscillations of elastic particles in shear flow.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Gee, David J

    2016-09-01

    Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  18. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass

    International Nuclear Information System (INIS)

    Cao, Q.P.; Liu, J.W.; Yang, K.J.; Xu, F.; Yao, Z.Q.; Minkow, A.; Fecht, H.J.; Ivanisenko, J.; Chen, L.Y.; Wang, X.D.; Qu, S.X.; Jiang, J.Z.

    2010-01-01

    Bulk Zr 64.13 Cu 15.75 Ni 10.12 Al 10 metallic glass has been rolled at room temperature in two different directions, and the dependences of microstructure and tensile mechanical property on the degree of deformation and rolling directions have been investigated. No deformation-induced crystallization occurs except for shear bands. Shear band formation in conjugated directions is achieved in the specimen rolled in two directions, while rolling in one direction induces shear band formation only in a single direction. Pre-existing properly spaced soft inhomogeneities can stabilize shear bands and lead to tensile plastic strain, and the efficient intersection of shear bands in conjugated directions results in work-hardening behavior, which is further confirmed by in situ tensile scanning electron microscopic observation. Based on the experimental results obtained in two different specimen geometries and finite element analysis, it is deduced that a normal-stress-modified maximum shear stress criterion rather than a shear plane criterion can describe the conditions for the formation of shear bands in uniaxial tension.

  19. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  20. Growth of transverse coherence in SASE FELs

    International Nuclear Information System (INIS)

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  1. Transverse excitations of 19F

    International Nuclear Information System (INIS)

    Donne, A.J.H.

    1985-01-01

    In this thesis aspects of the structure of the nucleus 19 F are discussed as a result of transverse electron-scattering experiments, with emphasis on the ground state. The magnetization distribution of this state has been obtained from the measurement of electrons scattered from 19 F at backward angles. An introduction to the electron-scattering formalism is presented briefly together with the interpretation of electron-scattering results in terms of the nuclear shell model. The experimental apparatus for the measurement of electron scattering through an angle of 180 0 is described. This instrumentation has been installed in the low-energy facility (LEF) at NIKHEF-K. Simultaneously with the study of the magnetic ground state distribution of 19 F, also excited states of this nucleus up to an energy of 4.4 MeV have been investigated, mainly from data obtained in the EMIN station. Also for these states, the shell-model calculations have been the guide to determine their structure. (Auth.)

  2. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  3. Different Rols of Modified Organoclay in Deformation Mechanism Control of Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Babak Akbari

    2014-04-01

    Full Text Available The effect of organically modified clay on the structure and deformation mechanism of polymeric matrices was investigated. For this purpose, the role of organoclay in deformation control of polymeric matrices, with different deformation mechanisms, has been studied methodically in order to determine a relationship between the structure and deformation mechanisms. In this respect polypropylene and polystyrene composites systems were designed using montmorillonite through melt intercalation technique using a twin, co-rotating extruder with starve feeding system. Also an epoxy was employed to design a nanocomposite system prepared by in-situ polymerization technique. The structure and deformation mechanism of nanocomposites were investigated using appropriate techniques. X-Ray diffraction and transmission electron microscopy were used to explore the structure of various systems while, the reflection and transmission optical microscopy were used in order to study their corresponding deformation mechanisms. The bulk polymer was also studied for its deformation mechanism by reflection optical microscopy and the notch tip of the samples were examined by transmission optical microscopy. The results of experiments showed that organoclays acted as initiator sites for shear yielding mechanism as the dominant deformation mechanism in epoxies. It may be noted that, these particles may act as initiator sites for crazing, the dominant deformation mechanism of polystyrene, and alter the mechanism from local to massive. In polypropylene systems, which may exhibit both shear yielding and crazing organoclays can facilitate or postpone both mechanisms in different conditions, related to PP morphology and other conditions.

  4. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  5. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    Science.gov (United States)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  6. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  7. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation

    Science.gov (United States)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2015-12-01

    Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.

  8. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  9. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  10. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  11. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  12. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  13. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  14. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  15. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  16. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  17. Transverse jet-cavity interactions with the influence of an impinging shock

    International Nuclear Information System (INIS)

    Zare-Behtash, H.; Lo, K.H.; Kontis, K.; Ukai, T.; Obayashi, S.

    2015-01-01

    Highlights: • Experimental study of shock-jet-cavity in a supersonic freestream is conducted. • Shock impingement at the cavity leading edge lifts the shear layer, encouraging momentum transfer. • Shock impingement close to the jet location increases the number of smaller turbulent structures. - Abstract: For high-speed air breathing engines, fuel injection and subsequent mixing with air is paramount for combustion. The high freestream velocity poses a great challenge to efficient mixing both in macroscale and microscale. Utilising cavities downstream of fuel injection locations, as a means to hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods: schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity

  18. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle

    International Nuclear Information System (INIS)

    Zhao, Pinghui; Liu, Jiaming; Ge, Zhihao; Wang, Xi; Cheng, Xu

    2017-01-01

    Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed

  19. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Liu, Jiaming; Ge, Zhihao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Wang, Xi; Cheng, Xu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technologies, Kaiserstrasse 12, Karlsruhe (Germany)

    2017-06-15

    Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed

  20. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.