WorldWideScience

Sample records for transverse flow deflections

  1. Transverse instability excited by rf deflecting modes for PEP

    International Nuclear Information System (INIS)

    Chao, A.W.; Yao, C.Y.

    1979-11-01

    We have looked at the possible transverse instability effects which are caused by the deflecting modes of the rf cavities in PEP. The results are obtained by applying the expression of the instability damping rate. We have assumed that there equal bunches equally spaced in PEP. We have worked out the equivalent for a single bunch beam. The effect of chromaticity ξ is included as a frequency shift in the bunch mode spectra. We rewrite this result in terms of the transverse wake field instead of the impedance. We include an application of the Sacherer formalism to the case of resistive wall. The resulting expression of the damping rate contains two terms. The first term corresponds to the effect of the short wake fields; it agrees with the result of the head-tail instability as derived by Sands. A numerical estimate of this resistive-wall head tail case for PEP is given. It re-confirms that the resistive wall instability is not a serious problem for PEP. The second term gives the effect of long wake fields and it agrees with the result of Courant and Sessler. 10 refs., 2 figs

  2. Deflection

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-08-01

    Full Text Available In this paper, deflection prediction of a cantilever beam subjected to static co-planar loading is investigated using the Differential Transformation Method (DTM and the Homotopy Perturbation Method (HPM. An axial compressive force, FA, and a transverse force, QA, are applied to the beam. It is considered that these forces are follower forces, i.e., they will rotate with the end section of the beam during the deformation, and they will remain tangential and perpendicular at all times, respectively. Comparison between DTM and HPM through numerical results demonstrates that DTM can be an exact and highly efficient procedure for solving these kind of problems. Also the influence of the effect of some parameters appeared in mathematical formulations such as area moment of inertia (I, Young’s modulus (E, transverse force (QA and compressive force (FA on slope variation are investigated in the present study. The results show that slope parameter as well as compressive force increases. By increasing the QA, slope parameter is increased significantly. By increasing the E, due to stiffness of the material, slope variation is decreased. It is evident that when the size of the beam section increases, the area moment of inertia (I will be increased and so the slope variation will be decreased.

  3. Transverse deflections of an elastic spherical shell as a function of transverse and tangential loads

    DEFF Research Database (Denmark)

    Niordson, Christian F.; Nielsen, S.B.

    2006-01-01

    of the transverse deflection is modified by in-plane tectonic forces originating e.g. at plate boundaries. However, geoscience applications of the coupling between transverse deflections and boundary conditions have been restricted to the one-dimensional thin-plate model. In this paper we extend the model...... to a spherical thin elastic shell. This configuration is required when geoscience studies move from local scenarios, where the flat-Earth approximation holds, to plate-scale or global scenarios, where the correct application of far-field boundary conditions and the spherical geometry becomes of primary...

  4. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt

    KAUST Repository

    Hu, Youfan

    2009-07-08

    We demonstrate the first electric field induced transverse deflection of a single-crystal, free-standing ZnO microbelt as a result of converse piezoelectric effect. For a microbelt growing along the c-axis, a shear stress in the a-c plane can be induced when an electric field E is applied along the a-axis of the wurtzite structure. As amplified by the large aspect ratio of the microbelt that grows along the c-axis, the strain localized near the root can be detected via the transverse deflection perpendicular to the ZnO microbelt. After an experimental approach was carefully designed and possible artifacts were ruled out, the experimentally observed degree of deflection of the microbelt agrees well with the theoretically expected result. The device demonstrated has potential applications as transverse actuators/sensors/switches and electric field induced mechanical deflectors. © 2009 American Chemical Society.

  5. Transverse correlation: An efficient transverse flow estimator - initial results

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Henze, Lasse; Kortbek, Jacob

    2008-01-01

    Color flow mapping has become an important clinical tool, for diagnosing a wide range of vascular diseases. Only the velocity component along the ultrasonic beam is estimated, so to find the actual blood velocity, the beam to flow angle has to be known. Because of the unpredictable nature...... for estimating the transverse velocity component. The method measures the transverse velocity component by estimating the transit time of the blood between two parallel lines beamformed in receive. The method has been investigated using simulations performed with Field II. Using 15 emissions per estimate...

  6. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....

  7. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    Science.gov (United States)

    2016-05-01

    testing, digital filtering of flight test data , nonlinear optimisation, and spectral analysis. His recent work has been in the areas of structural shape...formula [2]: = 4 8 (26) 3.3 Nonlinear FEA solution for tension force T ≥ 0 case The Abaqus 6.14-2 finite element analysis code...accurately determine the peak deflection and its location along the span of the beam. The Abaqus beam element type B23 was used, which corresponds to a 2

  8. Flow shapes and higher harmonics in anisotropic transverse collective flow

    Energy Technology Data Exchange (ETDEWEB)

    Argintaru, Danut; Baban, Valerica [Constanta Maritime University, Faculty of Navigation and Naval Transport, Constanta (Romania); Besliu, Calin; Jipa, Alexandru; Grossu, Valeriu [University of Bucharest, Faculty of Physics, Bucharest (Romania); Esanu, Tiberiu; Cherciu, Madalin [Institute of Space Sciences Bucharest-Magurele, Bucharest (Romania)

    2017-01-15

    In this paper we show that by using a jet-finder algorithm (the Anti-k{sub T} one) on UrQMD/C simulated (Au+Au at 4, 10 and 15A GeV) collisions, we can identify different flow shape structures (single flow stream events, two flow streams events, three flow streams events, etc.) and order the bulk of events in equivalence flow shape classes. Considering these flow streams as the main directions of anisotropic transverse flow, we show that the Fourier coefficients v{sub n} of anisotropic flow are better emphasized when we analyze the different event flow shape classes than when the events are mixed. Also, if we do not know the real orientation of the reaction plane, we can use as reference the Flow stream 1 - the main particle flow stream - orientation (Ψ{sub Flowstream} {sub 1}) to highlight the initial shape of the participant nuclear matter in a central to peripheral collision, and the orientation of the participant plane of order n. (orig.)

  9. Transverse deflections in a cavity due to the short-range longitudinal wake

    International Nuclear Information System (INIS)

    Bane, K

    2003-01-01

    Consider an ultra-relativistic electron bunch passing through a (cylindrically symmetric) multi-cell linac cavity that is filled with fundamental mode rf. It is well known that this bunch--on entering the cavity--experiences a focusing kick, and--on exiting the cavity--a defocusing kick, even though the mode is cylindrically symmetric. The effects of these kicks in linacs tend to be significant only in low energy regions. Tracking computer programs such as MAD [1] and LIAR [2] include a simple model of these kicks, one based on calculations of W.H. Panofsky [3]. According to this model the effect is represented by two thin lenses positioned at the ends of the cavity, with the strength of the lenses dependent on the accelerating gradient in the cavity. However, a beam will itself excite wakefields that modify its energy gain in a cavity, a modification that depends also on longitudinal position within the bunch. The program LIAR extends Panofsky's rf kick model to include this modification to the effective gradient experienced by different parts of the beam. In this report we investigate how the wakefields affect the rf cavity kicks. In particular, we are interested in the case when the wakefields are a significant perturbation to the problem, such as when, for example, the beam traverses an empty cavity (one with no rf). In this report we have shown that one can calculate the transverse kicks when one knows the time-dependent variation of the longitudinal wake forces on axis. The variation in gradient due to wakefields, however, will in general differ from that due to normal rf acceleration. In particular, transients at the ends of structures, and--for constant gradient structures--an increase in gradient amplitude from beginning to end of the cavity, will mean that the model of focusing/defocusing edges, used for rf acceleration, will be inaccurate. Finally, we conclude that the method LIAR uses to treat the effect of rf focusing in the presence of wakefields on

  10. Operational characteristics and power scaling of a transverse flow ...

    Indian Academy of Sciences (India)

    Abstract. Transverse flow transversely excited (TFTE) CO2 lasers are easily scalable to multi- kilowatt level. The laser power can be scaled up by increasing the volumetric gas flow and discharge volume. It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser ...

  11. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...

  12. Elliptic flow coefficients from transverse momentum conservation

    Science.gov (United States)

    Bzdak, Adam; Ma, Guo-Liang

    2018-01-01

    We calculate the k -particle (k =2 ,4 ,6 ,8 ) azimuthal cumulants resulting from the conservation of transverse momentum. We find that c2{k } >0 and, depending on the transverse momenta, c2{k } can reach substantial values even for a relatively large number of particles. The impact of our results on the understanding of the onset of collectivity in small systems is emphasized.

  13. Transverse oscillation vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Bradway, David; Lindskov Hansen, Kristoffer; Nielsen, Michael Bachmann

    2015-01-01

    This work presents the development and first results of in vivo transthoracic cardiac imaging using an implementation of Vector Flow Imaging (VFI) via the Transverse Oscillation (TO) method on a phased-array transducer. Optimal selection of the lateral wavelength of the transversely-oscillating r...

  14. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  15. Numerical simulation of transverse jet flow field under supersonic inflow

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-01-01

    Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.

  16. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation......, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...... the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques....

  17. Transverse flow imaging using synthetic aperture directional beamforming

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2002-01-01

    during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow was determined using 16 groups of 8 emissions and the relative standard deviation was 0.36 % (0.65 mm/s). Using the same setup for the purely transverse flow gave a std...

  18. Tube bundle vibrations in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Sagner, M.

    1978-01-01

    This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity

  19. An In-vivo investigation of transverse flow estimation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2004-01-01

    , and 1.4 seconds of data is acquired. Using 2 parallel receive beamformers a transverse oscillation is introduced with an oscillation period 1.2 mm. The velocity estimation is performed using an extended autocorrelation algorithm. The volume flow can be estimated with a relative standard deviation of 13...

  20. Transverse Flow of Gluon Fields in Heavy Ion Collision

    Science.gov (United States)

    Chen, Guangyao; Fries, Rainer J.

    2014-09-01

    We describe the dynamics of initial gluon fields in heavy ion collision using a formal recursive solution of the Yang Mills equations and solving for the energy momentum tensor analytically in a boost-invariant setup. We generalize the original McLerran-Venugopalan (MV) model in order to allow for realistic nuclear profiles. This leads to a transverse flow of gluon fields. This flow pattern is inherited by the quark gluon plasma fluid after thermalization. Its most interesting aspect is a rapidity-odd flow component. We show that this rapidity-odd flow does not break boost invariance and that it emerges naturally from the Yang Mills equations. It leads to directed flow of particles and introduces angular momentum to the system.

  1. Frequencies of Transverse and Longitudinal Oscillations in Supersonic Cavity Flows

    Directory of Open Access Journals (Sweden)

    Taro Handa

    2015-01-01

    Full Text Available A supersonic flow over a rectangular cavity is known to oscillate at certain predominant frequencies. The present study focuses on the effect of the cavity length-to-depth (L/D ratio on the frequency for a free-stream Mach number of 1.7. The pressure oscillations are measured by changing the L/D ratio from 0.5 to 3.0, and the power spectral density is calculated from the temporal pressure signals for each L/D ratio. The results demonstrate that the spectral peaks for an L/D ratio of less than ~1 and greater than ~2 are accounted for by the feedback mechanisms of the transverse and longitudinal oscillations, respectively. The results also demonstrate that the spectral peaks in the transition (1 <~ L/D <~ 2 are accounted for by either of the two feedback mechanisms of transverse and longitudinal oscillations; that is, the flows under the transition regime oscillate both transversely and longitudinally.

  2. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  3. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  4. Flow past two tandem square cylinders vibrating transversely in phase

    International Nuclear Information System (INIS)

    Mithun, M G; Tiwari, Shaligram

    2014-01-01

    Numerical investigations have been carried out to study the wake characteristics of flow past two tandem square cylinders vibrating in phase. Both the cylinders vibrate in a transverse direction, i.e., perpendicular to the incoming flow with the same frequency and amplitude. The frequency of vibration of the cylinders and the inter-cylinder spacing are varied for fixed values of the Reynolds number (Re = 100) and the amplitude ratio (A/D = 0.4). The synchronous or lock-in regime for the oscillatory wake of the vibrating cylinders has been identified by varying the frequency of the vibration from f e  = 0.4 f 0 to 1.6 f 0 (f 0 being the frequency of vortex shedding behind a stationary square cylinder). The characteristics of lift and drag and the mechanism of vortex shedding are studied by varying the excitation frequency within the lock-in range for each value of inter-cylinder spacing. The complex interaction of flow between the cylinders gives rise to a variety of characteristically different shedding patterns in their wake. For values of inter-cylinder spacing equal to 2D and 3D, periodic, as well as quasi-periodic, lock-in behaviors are observed in the synchronous range. (paper)

  5. Quantitative beam-deflection optical tomographic imaging of fluid flows and flames

    International Nuclear Information System (INIS)

    Faris, G.W.; Byer, R.L.

    1987-01-01

    The authors previously described the application of beam-deflection optical tomography to density measurements in a supersonic jet. They showed that the technique can give very accurate quantitative 2-D images of density. In this work they describe extension of this technique to 3-D measurements in a flame, supersonic jet, and subsonic jet. Near-diffraction-limited measurements also are reported. The experiment apparatus is discussed

  6. Comparative study of methods for blood flow measurement within transverse sinuses by using MR

    International Nuclear Information System (INIS)

    Gao Gejun; Feng Xiaoyuan; Yang Bojie; Geng Daoying

    2003-01-01

    Objective: To assess the accuracy of two-dimensional phase contrast (2D-PC) MR method for blood flow measurement within transverse sinuses by comparing this method with cine phase contrast (cine-PC) MR and Doppler in volunteers and patients. Methods: (1) A total of 12 transverse sinuses were examined in 8 healthy volunteers. 2D-PC MR and cine-PC MR were used respectively to measure the transverse area of flow, the flow velocities, and the volumetric flow rates in the same position in every transverse sinus. Paired t-test was used for comparison between the results determined by 2D-PC MR and that determined by cine-PC MR. (2) A total of 6 transverse sinuses were examined in 5 patients who needed operation. 2D-PC MR was used to determine the blood flow velocity of transverse sinus before operation, and Doppler was used to determine the blood flow velocity of the same transverse sinus during operation. The linear regression analysis was used for statistical analysis. Results: (1) Statistical analysis indicated that there were no significant difference among the transverse area of flow (t = -1.106, P = 0.293), the flow velocities (t = 0.262, P = 0.798), and the volumetric flow rates (t = 0.439, P = 0.669) measured by using 2D-PC MR and cine PC MR, respectively. (2) The correlation between flow velocities determined by 2D-PC MR imaging before operation and that determined by Doppler during operation was in excellent agreement (Y-circumflex = 1.303 x + 0.62, r 2 = 0.88). Conclusion: 2D-PC MR may be a practical convenient method for blood flow measurement within transverse sinuses system

  7. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows

    Science.gov (United States)

    Rubin, David M.; Ikeda, Hiroshi

    1990-01-01

    For more than a century geologists have wondered why some bedforms are orientated roughly transverse to flow, whereas others are parallel or oblique to flow. This problem of bedform alignment was studied experimentally using subaqueous dunes on a 3–6-m-diameter sand-covered turntable on the floor of a 4-m-wide flume.

  8. Flow separation on transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 13, - (2009), s. 218-220 ISSN 1335-2938. [Stretnutie katedier mechaniky tekutín a termomechaniky. Jasná, Demanovská dolina, 24.06.2009-26.06.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : free-surface flow * supercritical flow over ribs * numerical and experimental modelling Subject RIV: BK - Fluid Dynamics

  9. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  10. Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    Science.gov (United States)

    Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.

    2013-01-01

    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.

  11. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available to the incident radiation (transverse flow). The gap between the window and slab 1 has been removed, so the bed is held in place by the sidewalls, the floor and the window, allowing arbitrary orientation and dispensing with the need for beam-down operation...

  12. Model for transversal turbulent mixing in axial flow in rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.

    1990-01-01

    The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)

  13. Forward $\\pi^{0}$ Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kropivnitskaya, A.; Kroseberg, J.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, Ch.; Woehrling, E.E.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2004-01-01

    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \\approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.

  14. Particle beam and crabbing and deflecting structure

    Science.gov (United States)

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  15. Nonlinear dynamic behavior of an assembly of tubes under transverse fluid flow

    International Nuclear Information System (INIS)

    Beaufils, B.; Axisa, F.; Antunes, J.

    1989-01-01

    The mechanical vibrations induced by a transverse fluid flow passing through an assembly of cylindrical tubes is investigated. Studies on the numerical modeling of such phenomena are presented. The purpose of the work is to allow the evaluation of the risks induced by the vibrations in industrial heat exchangers. The methods for the analysis of nonlinear problems and numerical calculations of the nonlinear dynamic behavior are performed [fr

  16. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    Science.gov (United States)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  17. Inviscid instabilities of non-planar transversely sheared flows governed by the generalized Rayleigh pressure equation

    Science.gov (United States)

    Afsar, Mohammed; Sescu, Adrian

    2014-11-01

    Transition in boundary layer flow over flat/curved surfaces and at moderate to high freestream disturbances or under the influence of various surface roughness elements often involves inviscid secondary instability. This stage in transition can be pictured as being a parametric resonance-type phenomena where a unstable primary flow saturates to a more-or-less steady-state, susceptible to infinitesimal three-dimensional wave-like instability modes that grow much faster than the primary. In decades of research on boundary layers, experimenters have relied upon an inflection point in the wall normal y and/or spanwise directions z of the primary as a pre-cursor to transition. This assertion, based on Rayleigh's theorem, does not however apply in transversely sheared flows. In this talk, we show that an alternative local criterion for inviscid secondary instability - sharing similarities to the original one-dimensional Rayleigh criterion - exists for a class of non-planar transversely sheared flows at long streamwise wavelength. Our general stability criterion is, remarkably, given by necessity of the surface U y , z possessing at least one saddle point in the plane. We analyze this saddle-point criterion numerically show its relevance to secondary instabilities. M.Z.A. would like to anknowledge financial support from Laminar Flow Control (LFC-UK) Research Program at Imperial College London and would like to thank Professor Philip Hall for motivating his interest in this problem.

  18. Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC.

    Science.gov (United States)

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crkovská, J; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Mishra, T; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-04-21

    We present the first measurement of the two-particle transverse momentum differential correlation function, P_{2}≡⟨Δp_{T}Δp_{T}⟩/⟨p_{T}⟩^{2}, in Pb-Pb collisions at sqrt[s_{NN}]=2.76  TeV. Results for P_{2} are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δϕ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P_{2}, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.

  19. Beam-deflection technique for the measurement of electron density in laser-produced plasmas

    International Nuclear Information System (INIS)

    Faris, G.W.; Bergstrom, H.

    1988-01-01

    Beam-deflection techniques have been shown to perform well for measurements in fluid flows and flames. Because of the growing interest in laser-produced plasmas, the authors have investigated the capability of beam-deflection techniques for plasma measurement. While other techniques including interferometry and schlieren techniques are well established for measuring electron density in laser-produced plasmas, they show that a beam-deflection technique is simple to implement and has advantages over current techniques. They describe a two-wavelength beam-deflection technique for temporally and spatially resolved electron density measurements in a laser-produced plasma. Deflection of a laser beam in a plasma or other system arises from gradients in the index of refraction. Measurement of beam deflections is quantitative in that the deflection angle is proportional to the integrated transverse gradient of the index of refraction. Techniques such as Abel inversion or tomography may be applied to such measurements to reconstruct spatially resolved values of the index of refraction. From measurements of the index of refraction at two wave-lengths, the electron density may be calculated

  20. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  1. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    Directory of Open Access Journals (Sweden)

    Bansal Rajni

    2014-04-01

    Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.

  2. An Experimental Study of Flow Separation over a Flat Plate with Transverse Grooves

    Science.gov (United States)

    Jones, Emily; Lang, Amy

    2012-11-01

    A shark's scales help to reduce drag over its body by controlling boundary layer separation over its skin. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 mm, square 2-D transverse grooves and sinusoidal grooves of the same size. The results were compared to tripped, turbulent boundary layer separation occurring over a flat plate without grooves using DPIV. The strength of the adverse pressure gradient was varied, and the observed delay in flow separation and other effects upon the boundary layer are discussed. Funding received by NSF REU grant 1062611.

  3. Blood flow velocity in the Popliteal Vein using Transverse Oscillation Ultrasound

    DEFF Research Database (Denmark)

    Bechsgaard, Thor; Lindskov Hansen, Kristoffer; Brandt, Andreas Hjelm

    2016-01-01

    Chronic venous disease is a common condition leading to varicose veins, leg edema, post-thrombotic syndrome and venous ulcerations. Ultrasound (US) is the main modality for examination of venous disease. Color Doppler and occasionally spectral Doppler US (SDUS) are used for evaluation of the venous...... flow. Peak velocities measured by SDUS are rarely used in a clinical setting for evaluating chronic venous disease due to inadequate reproducibility mainly caused by the angle dependency of the estimate. However, estimations of blood velocities are of importance in characterizing venous disease....... Transverse Oscillation US (TOUS), a non-invasive angle independent method, has been implemented on a commercial scanner. TOUS’s advantage compared to SDUS is a more elaborate visualization of complex flow. The aim of this study was to evaluate, whether TOUS perform equal to SDUS for recording velocities...

  4. Transverse-flow quasi-cw HF chemical laser: design and preliminary performance

    International Nuclear Information System (INIS)

    Gagne, J.M.; Mah, S.Q.; Conturie, Y.

    1974-01-01

    A small transverse-flow HF chemical laser has been constructed using a large volume microwave plasma generator for the production of F atoms. The F atoms react with hydrogen to form the lasing HF molecules. The active medium is about 5 cm long, and the maximum average laser power was found to be 560 mW for all lines. Three laser lines with wavelengths 2.61 μm, 2.64 μm, and 2.73 μm were observed. The time-varying laser transition profile closely resembles the density profile of the excited fluorine atoms in the plasma. Both profiles are greatly affected by changes in flow conditions

  5. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    Directory of Open Access Journals (Sweden)

    Erinc Erdem

    2014-12-01

    Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  6. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  7. Mixing liquid-liquid stratified flows using transverse jets in cross flows

    Science.gov (United States)

    Wright, Stuart; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.

  8. An Experimental Study of Flow Separation over a Flat Plate with 2D Transverse Grooves

    Science.gov (United States)

    Jones, Emily; Lang, Amy; Afroz, Farhana; Wheelus, Jennifer; Smith, Drew

    2010-11-01

    It has been hypothesized that flexible shark scales may aid in controlling boundary layer separation in that the scales bristle when encountering a localized flow reversal, thereby forming cavities within the skin that trap vortices between the scales. The formation of the embedded vortices can lead to the creation of a partial slip condition over the surface as well as turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects on flow separation, a simplified model of the shark skin consisting of a plate with square 2D transverse grooves was utilized. Separation over the plate was induced via the placement of a rotating cylinder above the surface, and the experiments were carried out in a water tunnel with a tripped turbulent boundary layer. Using DPIV to analyze the flow, the results were compared to separation occurring over a flat plate. The effects on the location of separation and length of the separated flow region were all analyzed as a function of the Reynolds number and strength of the adverse pressure gradient induced by the rotating cylinder.

  9. Flow of liquid metals with a transversely applied magnetic field, (8)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou

    1977-01-01

    As one of the researches of liquid metal flow in transversely applied magnetic field concerning the flow in MHD pipes, the influences of the electrical property of channel side walls, aspect ratio, Reynolds number and Hartmann number on laminar and transition flows investigated experimentally are reported in this paper. Mercury flowed in the rectangular ducts, one of which was made with four insulated walls, and another with insulated top and bottom walls and two conductive side walls, with the aspect ratio varying from 8 to 1/8, in the region of relatively low Hartmann number and Reynolds number. The facility, procedure and results of the experiment are explained, and many experimental curves showing the relations among pipe friction coefficient, Hartmann number, Reynolds number, aspect ratio and the property of walls are given. The experimental results show that the Hartmann effect and the aspect ratio effect are evident as the magnetic field is intensified, but the influence by the electric property of walls is little, and three shapes of the curves representing the relation of friction coefficient and Reynolds number are confirmed by this experiment. (auth.)

  10. Turbulence modeling of transverse flow on ship hulls in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Ken-Robert Gjelstad

    2010-09-15

    The hydrodynamic forces acting on a ship that travels in restricted water vary greatly with water depth and the geometry of the ship hull. This will affect the ship maneuverability in terms of various flow effects like for instance squat, when the ship is sucked down towards the seabed due to a pressure drop on the hull at forward speed. It is, thus, important to gain detailed knowledge on these aspects of marine engineering. The problem is in the present work addressed through a numerical investigation of turbulent transverse flow on two-dimensional ship sections in shallow water. The numerical code is validated against traditional flow problems in the literature. Namely, the Backward-facing step (BFS) and the Smoothly-contoured ramp (SCR). 2D and 3D laminar flows and 2D low Reynolds number turbulent flows are calculated, and the results are found to be in good agreement with the previous numerical and experimental comparison data. The turbulence model used in the calculations is the one-equation Spalart-Allmaras model. The overall goal of achieving more efficient and accurate numerical schemes will always be in focus of code development. Adaptive mesh refinement (AMR) is then a very helpful tool to save both time for grid generation prior to the calculations in question and the CPU hours needed to solve the governing equations. The latter is even more evident in a parallel environment. These aspects are included in the present investigation as part of the process to adapt and investigate a CFD tool suitable to handle turbulent flows on a ship hull in shallow water. Several physical and numerical parameters are included in the present study and the Plackett-Burman screening design is utilized to efficiently analyze the results. With the latter method, a simple function for calculating the drag force on a two-dimensional ship section as function of the given parameters has been obtained. (Author)

  11. An Experimental Study of Flow Separation over 2D Transverse Grooves

    Science.gov (United States)

    Jones, Emily; Lang, Amy; Afroz, Farhana; Wheelus, Jennifer; Smith, Drew

    2011-11-01

    A shark's scales help to reduce drag over its body by controlling boundary layer separation over its skin. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 millimeter square 2D transverse grooves. The results were compared to separation occurring over a flat plate without grooves using DPIV. The angular speed of the cylinder was varied. The observed delays in separation, changes in separation bubble shedding frequency and other effects upon the boundary layer are discussed.

  12. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    Science.gov (United States)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  13. Stability of plane Poiseuille flow of viscoelastic fluids in the presence of a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    Hifdi Ahmed

    2012-07-01

    Full Text Available The linear stability of plan Poiseuille flow of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field is investigated numerically. The fourth-order Sommerfeld equation governing the stability analysis is solved by spectral method with expansions in lagrange’s polynomials, based on collocation points of Gauss-Lobatto. The critical values of Reynolds number, wave number and wave speed are computed. The results are shown through the neutral curve. The main purpose of this work is to check the combined effect of magnetic field and fluid’s elasticity on the stability of the plane Poiseuille flow. Based on the results obtained in this work, the magnetic field is predicted to have a stabilizing effect on the Poiseuille flow of viscoelastic fluids. Hence, it will be shown that for second-order fluids (K 0 is that the critical Reynolds numbers Rec increase when the Hartman number M increases for certain value of elasticity number K and decrease for others. The latter result is in contrast to previous studies.

  14. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  15. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    Science.gov (United States)

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  16. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Directory of Open Access Journals (Sweden)

    Andrew N. Guarendi

    2013-01-01

    Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  17. The transverse dynamics of flow in a tidal channel within a greater strait

    Science.gov (United States)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  18. The transverse dynamics of flow in a tidal channel within a greater strait

    Science.gov (United States)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2017-12-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  19. Transversally enriched pipe element method (TEPEM): An effective numerical approach for blood flow modeling.

    Science.gov (United States)

    Mansilla Alvarez, Luis; Blanco, Pablo; Bulant, Carlos; Dari, Enzo; Veneziani, Alessandro; Feijóo, Raúl

    2017-04-01

    In this work, we present a novel approach tailored to approximate the Navier-Stokes equations to simulate fluid flow in three-dimensional tubular domains of arbitrary cross-sectional shape. The proposed methodology is aimed at filling the gap between (cheap) one-dimensional and (expensive) three-dimensional models, featuring descriptive capabilities comparable with the full and accurate 3D description of the problem at a low computational cost. In addition, this methodology can easily be tuned or even adapted to address local features demanding more accuracy. The numerical strategy employs finite (pipe-type) elements that take advantage of the pipe structure of the spatial domain under analysis. While low order approximation is used for the longitudinal description of the physical fields, transverse approximation is enriched using high order polynomials. Although our application of interest is computational hemodynamics and its relevance to pathological dynamics like atherosclerosis, the approach is quite general and can be applied in any internal fluid dynamics problem in pipe-like domains. Numerical examples covering academic cases as well as patient-specific coronary arterial geometries demonstrate the potentialities of the developed methodology and its performance when compared against traditional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Longitudinal and transverse flows of protons in 2-8 AxGeV Au-Au collisions

    International Nuclear Information System (INIS)

    Liu, F.H.

    2003-01-01

    Longitudinal and transverse flows extracted from the rapidity and azimuthal distributions of protons produced in Au-Au collisions in the energy range from 2 to 8 AxGeV at the Brookhaven Alternating-Gradient Synchrotron (AGS) are investigated by a simple model. The elliptic and directed flow characteristics extracted from the azimuthal distribution at the AGS energies are described by a simple formula. The Monte Carlo calculated results are compared and found to be in agreement with the experimental data of the E895 Collaboration. (author)

  1. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field

    Science.gov (United States)

    Rossow, Vernon J

    1958-01-01

    The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.

  2. Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Lavička, R.; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2017-01-01

    Roč. 118, č. 16 (2017), č. článku 162302. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * two particle transverse momentum Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) OBOR OECD: Nuclear physics; Particles and field physics (FZU-D) Impact factor: 8.462, year: 2016

  3. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    Science.gov (United States)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  4. Flow of liquid metals in curved channels under a transversely applied magnetic field, (3)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou.

    1979-01-01

    With the development of electromagnetic pumps in nuclear, metallurgical and casting industries, investigations of not only laminar flow but also transient and turbulent flows in magnetohydrodynamic (MHD) channels are the matters of much concern. However, it is no exaggeration to say that there was no investigation of transient and turbulent flows in curved MHD channels. In this report, the influences of Reynolds number, Hartmann number, radius of curvature and aspect ratio on the coefficient of friction in transient and turbulent flow channels are discussed. In transient flow region, the curve representing the product of the coefficient of channel friction in curved channels and Reynolds number has no clear transition point in the flow of comparatively small Hartmann number. However, as the intensity of magnetic field is increased, the curve transfers to the transition due to the effect of suppressing secondary flow, and if the magnetic field is further increased, it was found that it approached the crisis-free type transition. In turbulent flow region, the coefficient of channel friction can be expressed approximately by the empirical equation given first in this report. Also the effect of magnetic field on the turbulent flow in curved channels can be explained by using Hartmann effect, turbulence suppression effect, and the effect of suppressing secondary flow based on Lorentz's force. (Wakatsuki, Y.)

  5. Proton and pion transverse spectra at the BNL Relativistic Heavy Ion Collider from radial flow and finite size effects

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Cuautle, Eleazar; Magnin, J.; Montano, Luis Manuel

    2006-01-01

    We show that the proton and pion transverse momentum distributions measured at BNL Relativistic Heavy Ion Collider (RHIC), for all collision centralities for pions and most of the collision centralities for protons, can be simultaneously described in terms of a thermal model with common values for the radial flow and temperature, when accounting for the finite size of the interaction region at the time of decoupling. We show that this description is obtained in terms of a simple scaling law of the size of the interaction region with the number of participants in the collision. The behavior of the proton to pion ratio at mid-rapidity can also be understood as a consequence of the strength of the radial flow and system size reached at RHIC energies

  6. Modelling of supercritical turbulent flow over transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 16, č. 1 (2009), s. 65-74 ISSN 1802-1484 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow in open channels * flow over obstacles Subject RIV: BK - Fluid Dynamics

  7. Real-Time GPU Implementation of Transverse Oscillation Vector Velocity Flow Imaging

    DEFF Research Database (Denmark)

    Bradway, David; Pihl, Michael Johannes; Krebs, Andreas

    2014-01-01

    Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work...... vector flow acquisition takes 2.3 milliseconds seconds on an Advanced Micro Devices Radeon HD 7850 GPU card. The detected velocities are accurate to within the precision limit of the output format of the display routine. Because this tool was developed as a module external to the scanner’s built...

  8. French experimental facilities for measurements of transverse flows and assessment of the corresponding risk of vibrations in heterogeneous cores

    International Nuclear Information System (INIS)

    Le Borgne, E.; Mattei, A.; Oceraies, Y.; Fardeau, P.

    1994-01-01

    Due to insertion of a limited number of new assemblies at each cycle, the cores in Pressurized Water Reactors are not homogeneous. Referring only to the impact on coolant flow, these differences can range from variable hydraulic resistances in the assembly, which depend on the geometric changes occurring during preceding cycles, to coexistence of assemblies with new design structures. Deviations in resistance between neighboring fuel assemblies causes the flow rates to be distributed differently between the assembly rods. This results in development of transverse flows from the main axial flow, and changes in the axial velocity gradients. These particularities of coolant flow have an effect on both vibration levels and cooling of the fuel rods, and also on the axial forces exerted on the assemblies in the core cavity. Since 1985, French Atomic Energy Commission (CEA) has gradually acquired experimental and measuring facilities that have allowed it to engage in research and development programs in these areas, in cooperation with industry partners in the nuclear field. Two complementary test loops have been constructed, called ARIANE and HERMES T. Use of these experimental facilities allows to obtain complete and detailed information on the hydraulic and vibratory phenomena specific to heterogeneous cores. In particular it is possible to establish a direct assessment of the actual compatibility between two different assemblies. By making a few specific changes, these facilities can also be used as a unique tool for assembly behaviour studies under seismic conditions with simulation of the flow effects. Also, a source of information in thus made available for qualification of computation codes for vibratory mechanics and multidimensional fluid mechanics under development at CEA and also used in the field of nuclear fuel. (authors). 6 figs., 1 ref

  9. Investigation of film flow of a conducting fluid in a transverse magnetic field, (1)

    International Nuclear Information System (INIS)

    Oshima, Shuzo; Yamane, Ryuichiro; Mochimaru, Yoshihiro; Sudo, Kouzo.

    1985-01-01

    Accompanying the development of large electromagnetic pumps transporting liquid metals used as the heat transfer media for nuclear power plants and the electromagnetic flow meters of large capacity, many researches have been carried out on the flow of liquid metals under the action of magnetic field. The utilization of electromagnetic force for continuous casting facilities seems very effective for the total processes from refining to solidification. Hereafter, it will be a technologically important problem to clarify the behavior of electro-conductive fluid with free surface under the action of magnetic field concerning the non-contact control of the interface form of molten metals as well as the cooling problem in nuclear fusion reactors. In this study, first the flow phenomena of MHD liquid film flow in a magnetic field with intensity gradient was analytically examined, and the effect of magnetic field gradient exerted on liquid film thickness and liquid surface form was clarified. Next, the experiment using mercury was carried out. For liquid film flow, magnetic field gradient acted as a kind of non-contact weir. (Kako, I.)

  10. Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters

    Directory of Open Access Journals (Sweden)

    Zhong Tang

    2014-11-01

    Full Text Available The thorough investigation of both grain threshing and grain separating processes is a crucial consideration for effective structural design and variable optimization of the tangential flow threshing cylinder and longitudinal axial flow threshing cylinder composite units (TLFC unit of small and medium-sized (SME combine harvesters. The objective of this paper was to obtain the structural variables of a TLFC unit by theoretical modeling and experimentation on a tangential flow threshing cylinder unit (TFC unit and longitudinal axial flow threshing cylinder unit (LFC unit. Threshing and separation equations for five types of threshing teeth (knife bar, trapezoidal tooth, spike tooth, rasp bar, and rectangular bar, were obtained using probability theory. Results demonstrate that the threshing and separation capacity of the knife bar TFC unit was stronger than the other threshing teeth. The length of the LFC unit was divided into four sections, with helical blades on the first section (0-0.17 m, the spike tooth on the second section (0.17-1.48 m, the trapezoidal tooth on the third section (1.48-2.91 m, and the discharge plate on the fourth section (2.91-3.35 m. Test results showed an un-threshed grain rate of 0.243%, un-separated grain rate of 0.346%, and broken grain rate of 0.184%. Evidenced by these results, threshing and separation performance is significantly improved by analyzing and optimizing the structure and variables of a TLFC unit. The results of this research can be used to successfully design the TLFC unit of small and medium-sized (SME combine harvesters.

  11. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  12. Contribution at the vibrations study of tube bundles in a transversal flow

    International Nuclear Information System (INIS)

    Antunes, J.

    1986-03-01

    The steam generators tubes bundles attended vibratory risks under flow. In this work we present the experimental and theoretical analysis which shows the necessary to approach this problem with taking into account the non-linear dynamic interaction between tubes and supports. An entirety of experiences put in clearness the importance of little clearance between the tubes and their supports. Methods for numerical simulation of the tubes vibratory response are proposed. Parametric analysis are presented, which permit to find simple laws concerning the influence of system parameters on its vibratory behaviour. This work is completed by analytical study of two unstable oscillators [fr

  13. Relativistic gravitational deflection of photons

    CERN Document Server

    Saca, J M

    2002-01-01

    A relativistic analysis of the deflection of a light ray due to a massive attractive centre is here developed by solving a differential equation of the orbit of photons. Results are compared with a widely known approximate formula for the deflection obtained by Einstein in 1916. Finally, it is concluded that the results here obtained, although very close to Einstein's values, could stand out as a conclusive reference for comparison with future direct measurements of the deflection.

  14. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo

    2017-01-01

    -DB method estimates the angle with a bias and standard deviation (SD) less than 2, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2 to 17 and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger...... only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle......, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross-correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared to TO, and with a beamforming...

  15. Magnetohydrodynamic flow in a rectangular duct under a uniform transverse magnetic field at high Hartmann number

    International Nuclear Information System (INIS)

    Temperley, D.J.

    1976-01-01

    In this paper we consider fully developed, laminar, unidirectional flow of uniformly conducting, incompressible fluid through a rectangular duct of uniform cross-section. An externally applied magnetic field acts parallel to one pair of opposite walls and induced velocity and magnetic fields are generated in a direction parallel to the axis of the duct. The governing equations and boundary conditions for the latter fields are introduced and study is then concentrated on the special case of a duct having all walls non-conducting. For values of the Hartmann number M>>1, classical asymptotic analysis reveals the leading terms in the expansions of the induced fields in all key regions, with the exception of certain boundary layers near the corners of the duct. The order of magnitude of the affect of the latter layers on the flow-rate is discussed and closed-form solutions are obtained for the induced fields near the corners of the duct. Attempts were made to formulate a concise Principle of Minimum Singularity to enable the correct choice of eigen functions for the various field components in the boundary layers on the walls parallel to the applied field. It was found, however, that these components are best found by taking the outer expansion of the closed-form solution in those boundary-layers near the corners of the duct where classical asymptotic analysis is not applicable. (author)

  16. Mechanical vibrations of tubes bundles under transversal flow; Vibration des faisceaux de tubes sous ecoulement trasversal

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Sadok, C. [ENSTA - Laboratoire de Mecanique Groupe Structure et Proprietes des Materiaux, 91 Palaiseau (France)

    1997-07-01

    Flow-induced vibrations have been a major cause of tube failure in heat exchangers. Among the various fluid excitation mechanisms, fluid-elastic coupling can cause dynamic instability and induce rapid deterioration of tubes. We present in this paper a methodology to determine fluid-elastic forces in tube bundles vibrating freely under-induced excitation. Computations of the response of loosely supported tube to fluid-elastic forces and turbulence are performed. The fluid-elastic forces were modelled as reduced velocity dependent fluid-stiffness and fluid-damping coefficients. A corrective methodology is proposed to account for the frequency dependence associated with fluid-stiffness and fluid-damping coefficients. (author). 40 refs.

  17. Large Eddy simulations of jet in cross flow; Simulations aux grandes echelles: application au jet transverse

    Energy Technology Data Exchange (ETDEWEB)

    Priere, C.

    2005-01-15

    Nowadays, environmental and economic constraints require considerable research efforts from the gas turbine industry. Objectives aim at lowering pollutants emissions and fuel consumption. These efforts take a primary importance to satisfy a continue growth of energy production and to obey to stringent environmental legislations. Recorded progresses are linked to mixing enhancement in combustors running at lean premixed operating point. Indeed, industry shows itself to be attentive in the mixing enhancement and during the last years, efforts are concentrated on fresh and burned gas dilution. The Jet In Cross Flow (JICF), which constitutes a representative case to further the research effort. It has been to be widely studied both in experimentally and numerically, and is particularly well suited for the evaluation of Large Eddy Simulations (LES). This approach, where large scale phenomena are naturally taken into account in the governing equation while the small scales are modelled, offers the means to well-predict such flows. The main objective of this work is to gauge and to enhance the quality of the LES predictions in JICF configurations by means of numerical tools developed in the compressible AVBP code. Physical and numerical parameters considered in the JICF modelization are taken into account and strategies that are able to enhance quality of LES results are proposed. Configurations studied in this work are the following: - Influences of the boundary conditions and jet injection system on a free JICF - Study of static mixing device in an industrial gas turbine chamber. - Study of a JICF configuration represented a dilution zone in low emissions combustors. (author)

  18. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    unity, the deflection simply equals the product of the refractive power n − 1 and the base-to-height ratio of the prism ... Over three centuries ago, Isaac Newton used a glass prism to separate constituent colours in a beam of sunlight. ... governs deflections produced by prisms of refractive index n. The refractive power, n − 1, of ...

  19. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    Science.gov (United States)

    Holtschlag, David J.

    2009-01-01

    variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency

  20. Electromagnetic deflection of spinning particles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1991-09-01

    Many applications use uniform magnetic fields to deflect charged particles into accurately known orbits. It is shown that particles with a magnetic dipole moment will also suffer an anomalous deflection in such fields if their energy is higher than a certain threshold. The closeness of the electron's g-factor to 2 leads to a sizeable decrease in its threshold energy, to such an extent that the effect could play a significant role in current high-energy accelerators. 18 refs

  1. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  2. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  3. MHD accelerated motion on a body placed symmetrical to the flow in the presence of transverse magnetic field fixed relative to the body

    International Nuclear Information System (INIS)

    Goyal, Mamta; Bansal, J.L.

    1993-01-01

    The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs

  4. Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and ϕ Meson in Au +Au Collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, W.; Li, X.; Li, X.; Li, C.; Li, Y.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, H.; Yang, Q.; Yang, Y.; Yang, Y.; Yang, S.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, Y.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-02-01

    We present high precision measurements of elliptic flow near midrapidity (|y |<1.0 ) for multistrange hadrons and ϕ meson as a function of centrality and transverse momentum in Au +Au collisions at center of mass energy √{sN N}=200 GeV . We observe that the transverse momentum dependence of ϕ and Ω v2 is similar to that of π and p , respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0%-30% and 30%-80% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and proton v2 at low transverse momentum in the 0%-30% centrality range, possibly indicating late hadronic interactions affecting the proton v2.

  5. Study of the incident pion deflection in passing through atomic nucleus

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Pluta, J.

    1982-01-01

    Pion-xenon nucleus collision events at 3.5 GeV/c momentum are studied in which the incident pion is deflected only, without particle production; the deflection is accompanied by emission of nucleons. The multiplicity of the protons emitted is a measure of the nuclear matter layer thickness passed by the pion. It can be concluded that: a) a definite simple relation exists between the pion deflection angle and the thickness of the nuclear matter layer traversed by this pion; b) the deflection angle of the incident pion increases in a definite manner with increasing the thickness of the nuclear matter layer traversed by this pion; c) the average kinetic energy, average longitudinal momentum and average transverse momentum of the protons emitted do not depend on the pion deflection angle

  6. Flow of visco-elastic fluid of Rivlin-Ericksen type between two inclined parallel planes in presence of gravity and uniform transverse magnetic field

    International Nuclear Information System (INIS)

    Sengupta, P.R.; Sadat, Khondokar Anowarus; Kundu, Shyamal Kumar

    2003-01-01

    In this paper, an attempt has been made to study the flow of Rivlin-Ericksen visco-elastic fluid between two inclined parallel planes in presence of gravity and uniform transverse magnetic field. It has been assumed that the lower plane is at rest and the upper plane is moving with a transient velocity in the first case, while in the second case it is moving longitudinally with a periodic velocity. In both cases the fluid velocity and flux of fluid have been obtained by variable separation technique. These results are then deduced for the case of visco-elastic Maxwell fluid taking the fluid to be electrically conducting and placed in presence of a uniform transverse magnetic field. Further, when the magnetic field is absent the corresponding results are obtained by passing to the limit as uniform magnetic field tending to zero. Moreover, the titled problem has also been solved in case of inviscid fluid in both cases of hydromagnetic flow and flow in absence of magnetic field. Thus the present problem is focused to a wide range of flow problems of different types of fluid models. (author)

  7. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  8. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the ...

  9. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  10. Transversity 2005

    Science.gov (United States)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I

  11. Deflecting modes of the side-coupled cavity structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000

  12. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  13. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    Science.gov (United States)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  14. Shunt resistance for deflecting magnets

    International Nuclear Information System (INIS)

    Sato, Shigeru

    1981-01-01

    The SOR-RING main magnet system consists of 8 deflecting magnets and 4 sets of three quadrupole magnets, each. The stability of magnet current is about 0.02 percent per day. The currents of magnets are adjustable simultaneously. The current-magnetic field relation for a deflecting magnet was measured. The magnetic field of 11.4 kG was obtained at the current of 470 A. This field corresponds to the electron energy of 376 MeV for the present SOR-RING. For the fine adjustment of the field of deflecting magnets, shunt resistors were equipped parallel to the magnet coils. The magnet current is adjustable by varying the value of resistance. The maximum adjustable range of the current is 1 percent. The field intensity was measured in relation to shunt resistance with a rotating coil flux meter. A slight difference was observed between the designed and the measured values. However this difference did not affect on the practical operation of SOR-RING. (Kato, T.)

  15. [Transversal problems].

    Science.gov (United States)

    Mendoza Mendoza, A; Solano Reina, E

    1990-04-01

    In this worn we introduce the alterations of the occlusion in the horizontal level or transversal problems, in which lateral crossed bites appear, either with or without a deviation of the medium line, underlying its differential diagnostic and guide lines treatment through several different clinic cases.

  16. Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-10-21

    Measurements of azimuthal angular correlations are presented for high-multiplicity pPb collisions at $\\sqrt{s_\\mathrm{NN}}=$ 5.02 TeV and peripheral PbPb collisions at $\\sqrt{s_\\mathrm{NN}}=$ 2.76 TeV. The data used in this work were collected with the CMS detector at the CERN LHC. Fourier coefficients as functions of transverse momentum and pseudorapidity are studied using the scalar product method, 4-, 6-, and 8-particle cumulants, and the Lee-Yang zeros technique. The influence of event plane decorrelation is evaluated using the scalar product method and found to account for most of the observed pseudorapidity dependence.

  17. Accounting the mechanical resistance of testing device for straight-flow branch pipe in the transverse direction

    Science.gov (United States)

    Sitnikov, D. V.; Klishin, S. V.; Zubarev, A. V.; Shvarts, A. A.

    2017-06-01

    The flexible inserts as a rubber-cord branch pipe are used to reduce the vibrations distributed from units of a hydraulic system through the pipelines. The device with completely rigid elements is used for the experimental determination of the stiffness characteristics of the branch pipes that determine their anti-vibration properties. In the paper the study of the mechanical resistances of an experimental device construction is carried out by method of the harmonic analysis in a frequency range of 1 Hz to 1000 Hz. Then these mechanical resistances are compared with the mechanical resistance of the branch pipe with diameter 100 mm obtained experimentally. It is found as a result it is necessary to take into account the value of the device mechanical resistance when the stiffness characteristics of the rubber-cord branch pipes with diameter 100 mm in the transverse direction at frequencies above 735 Hz are determined experimentally.

  18. Experimental study of heat transfer in a transverse flow around the heat exchanger tubes bank by lead

    International Nuclear Information System (INIS)

    Berezin, A.N.; Grabezhnaya, V.A.; Mikheev, A.S.; Parfenov, A.S.

    2014-01-01

    The results of the work to determine the heat transfer coefficient in crossflow by lead of pipes are presented. The study was conducted at supercritical pressure in the water circuit. There was a significant inequality in the distribution of the heat flow in different rows of the bundle of heat exchange tubes of corridor location at crossflow their lead. The experimentally determined heat transfer coefficients from the lead differ substantially from those generally accepted recommendations for the calculation of heat transfer at cross flow of rod bundle by liquid metal. The experimental results are close to those obtained earlier on the model with cross flow of heat exchanger tubes bundle by lead alloy with bismuth [ru

  19. Transverse myelitis

    International Nuclear Information System (INIS)

    Black, M.J.; Motaghedi, B.; Robitaille, Y.

    1980-01-01

    Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented

  20. Influence of a distribution of deflecting-mode frequencies on the transient dynamics of cumulative beam breakup

    International Nuclear Information System (INIS)

    Bohn, C.L.; Delayen, J.R.

    1992-01-01

    A distribution of deflecting-mode frequencies in the constituent cavities of a linear accelerator can lead to Q-independent damping of cumulative beam breakup. A probability density for the deflecting-mode frequencies generates an effective transverse wake function. The effective wake function can be used to calculate the transient dynamics of cumulative beam breakup within the framework of a continuum approximation provided the transverse beam displacement changes little over the correlation length of the deflecting-mode frequencies as the beam moves down the linac. We adopt this approach to show that the damping induced by the effective wake function causes the rate of approach to the steady state to depend strongly on the operative probability density for the deflecting-mode frequencies

  1. Study of topological properties of point-shaped photon interactions by means of energy flows in hadronic final states at large transverse momenta

    International Nuclear Information System (INIS)

    Gapp, C.

    1990-03-01

    The pointlike γ-parton interactions in γ-proton reactions are evaluated in terms of energy-flows. Only charged particles in the forward hemisphere of the overall CM-system (i.e. χ F >> 0) are used. The pointlike processes should exhibit '2-jetlike' structures. To disentangle the pointlike component from hadronlike photon interactions hadron and photon induced interactions have been studied. The experiment was carried out by the WA69 collaboration using the facilities of the CERN-Ω spectrometer. Both datasets were recorded with identical detector setups in order to minimize systematic effects. A tagged photon beam with energies between 65 and 175 GeV and mixed hadron beams (π + /K + , π - /K - ) at fixed energies of 80 and 140 GeV were used. For high transverse momenta the pointlike interactions are calculable in QCD at lowest order (α.α s ). Since energy-flows depend on all final state particles a collective measure for the hardness of an event has been introduced (Σip 2 perpendicular to in eventplane ). Only the energy-flows from photoproduction give evidence for the presence of 2-jetlike processes. The hadron induced distributions are scaled in order to emulate the behaviour of a hadronlike photon. The difference between the photon and scaled hadroninduced distributions is compared to a Monte Carlo calculation of the pointlike processes. (orig.) [de

  2. Sound radiated by the interaction of non-homogeneous turbulence on a transversely sheared flow with leading and trailing edges of semi-infinite flat plate

    Science.gov (United States)

    Afsar, Mohammed; Sassanis, Vasilis

    2017-11-01

    The small amplitude unsteady motion on a transversely sheared mean flow is determined by two arbitrary convected quantities with a particular choice of gauge in which the Fourier transform of the pressure is linearly-related to a scalar potential whose integral solution can be written in terms of one of these convected quantities. This formulation becomes very useful for studying Rapid-distortion theory problems involving solid surface interaction. Recent work by Goldstein et al. (JFM, 2017) has shown that the convected quantities are related to the turbulence by exact conservation laws, which allow the upstream boundary conditions for interaction of a turbulent shear flow with a solid-surface (for example) to be derived self-consistently with appropriate asymptotic separation of scales. This result requires the imposition of causality on an intermediate variable within the conservation laws that represents the local particle displacement. In this talk, we use the model derived in Goldstein et al. for trailing edge noise and compare it to leading edge noise on a semi-infinite flat plate positioned parallel to the level curves of the mean flow. Since the latter represents the leading order solution for the aerofoil interaction problem, these results are expected to be generic. M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellor's Fellowship.

  3. Field distribution analysis in deflecting structures

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V.V. [Joint Inst. for Nuclear Research, Moscow (Russian Federation)

    2013-02-15

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE{sub 1} and HM{sub 1}. The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  4. Measurement of Deflection Line on Bridges

    Science.gov (United States)

    Urban, Rudolf; Štroner, Martin

    2013-12-01

    Prestressed concrete bridges are very sensitive to the increase in long-term deflections. Reliable forecasts of deflections of bridge structures during construction and durability are crucial for achieving good durability. The main results of measurements are the changes of the deflection line of the bridge structures, which places special demands on the measurement procedure. Results from measurements are very useful for the improvement of mathematical prediction methods of behaviour of long span prestressed concrete structures.

  5. Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

    NARCIS (Netherlands)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Sorkine-Hornung, Olga; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.-S.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal’Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Khan, M. Mohisin; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, Linda; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, Shui

    2017-01-01

    The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at √sNN=2.76 TeV and p-Pb collisions at √sNN=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the

  6. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate.

    Science.gov (United States)

    Yadav, Anil Singh; Bhagoria, J L

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  7. Transverse feedback

    CERN Document Server

    Cornelis, K; Sladen, Jonathan P H; CERN. Geneva. SPS and LEP Division

    1997-01-01

    The aim of these MD's was to set up the transverse feedback for damping in both planes, and to test the charge normalization and gain compensation. The latter is intended to reduce the gain of the feedback for small oscillations in order to improve compatibility with the Q loop. All work was done with 2 x 4 bunches, family A. In the first two MD's the feedback was set up for damping in both planes with charge normalization. In the third, gain compensation was commissioned in the vertical plane with Qv' set to -2. It was found either to increase the level of the m = 0 mode or to leave it unchanged. Under these conditions 6mA total current was accumulated.

  8. Transverse damper

    CERN Document Server

    Höfle, W

    2012-01-01

    Plans for the operation of the transverse damper in 2012 at bunch spacings of 50 ns and 25 ns and at increased collision energy will be reviewed. The increased energy and the experience that will be gained at 25 ns are very important to define any upgrades that may be necessary for the high luminosity operation at 7 TeV after LS1. This means that the available parameter space must be probed in 2012 which in particular includes a higher feedback gain in the ramp and with colliding beams. Limits for the feedback gain for the current system will be outlined. The potential benefits of running with higher feedback gain for a better emittance preservation will be stressed and weighed against the operational difficulties and the potential impact of noise in the damper system. A plan for re-commissiong at 50 ns and 25 ns for operation at 4 TeV will be outlined.

  9. Comparison of laser fiber passage in ureteroscopic maximum deflection and their influence on deflection and irrigation: Do we really need the ball tip concept?

    Science.gov (United States)

    Baghdadi, Mohammed; Emiliani, Esteban; Talso, Michele; Servián, Pol; Barreiro, Aaron; Orosa, Andrea; Proietti, Silvia; Traxer, Olivier

    2017-02-01

    To examine laser fiber passage capabilities through flexible ureterorenoscopes (fURSs) and to measure deflections and flow characteristics. For this in vitro study, eight fURSs were examined (Olympus ® URF-P6, URF-P6, URF-V, URF-V2; Storz ® Xc and Flex-X2; Richard Wolf ® Cobra Vision; and Lithovue). Four laser fibers standard 200- and 273-μm (uncleaved and cleaved), sheath-coated and ball-tip fibers were attempted to pass through each fURS while deflected at 120°, 180°, maximum deflection, and maximum deflection with reduced 9-mm radius. Measurements included maximal (up/down) deflections and irrigation flow rates achieved with each fiber. Wolf Cobra Vision demonstrated minimal loss of deflections with mean differences of -2°/0° (p > 0.05) when loaded with the 200-μm fiber. The 273-μm fiber provoked utmost deflections that decline when loaded in Olympus URF-P5: mean differences of -52°/-35° (p  0.05), while standard 273-μm fiber incited maximum degradation (p irrigation through all fURSs was significantly impaired (p < 0.00001). fURS deflection was least affected by sheath-coated fibers and most affected by the 273-μm fiber. Uncleaved 200- and 273-μm fibers showed least passage capabilities; while removing the ends, the fibers greatly facilitated their passage capabilities as much as the other fibers tested.

  10. SECONDARY POPULATION OF INTERSTELLAR NEUTRALS seems deflected to the side

    Science.gov (United States)

    Nakagawa, H.; Bzowski, M.; Yamazaki, A.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.

    Recently the neutral hydrogen flow in the inner heliosphere was found to be deflected relative to the helium flow by about 4 degrees Lallement et al 2005 The explanation of this delfection offered was a distortion of the heliosphere under the action of an ambient interstellar magnetic field In a separate study a number of data sets pertaining to interstellar neutral atoms obtained with various techniques were compiled and interpreted as due to an inflow of interstellar gas from an ecliptic longitude shifted by 10 - 40 degrees from the canonical upstream interstellar neutral flow direction at 254 degrees Collier et al 2004 The origin and properties of such a flow is still under debate We have performed a cross-experiment analysis of the heliospheric hydrogen and helium photometric observations performed simltaneously by the Nozomi spacecraft between the Earth and Mars orbit and explored possible deflection of hydrogen and helium flows with respect to the canonical upwind direction For the interpretation we used predictions of a state of the art 3D and fully time-dependent model of the neutral gas in the heliosphere with the boundary conditions ionization rates and radiation pressure taken from literature The model includes two populations of the thermal interstellar hydrogen predicted by the highly-reputed Moscow Monte Carlo model of the heliosphere The agreement between the data and simulations is not satifactory when one assumes that the upwind direction is the same for both populations and identical with the direction derived from inerstellar helium

  11. Influence of deflection hole angle on effusion cooling in a real combustion chamber condition

    Directory of Open Access Journals (Sweden)

    Liu Xiao

    2015-01-01

    Full Text Available Fluid-solid coupling simulation is conducted to investigate the performance of effusion cooling in the real combustion chamber condition of strong rotation and primary holes. The wall temperature and film cooling effectiveness of different deflection angle is analyzed. From the results, it is concluded that the performance of effusion is better than conventional film cooling. The wall temperature and gradient is lower, the cooling efficiency is higher and the coolant is reduced by 20%, but pressure loss is slightly increased. The cooling effectiveness decreases behind primary holes because of local combustion. Comparison with the effect of deflection angle, the cooling performance of 60 deg deflection angle is best. The coolant is better attached to the wall downstream when the deflection angle is same as the rotating mainstream. In addition, the effect of deflection angle is not so significant on the coolant flow rate, but a large negative impact on the pressure loss. Although the cooling effectiveness of 60 deg deflection angle is highest, the total pressure recovery coefficient is lower. The maximum temperature drops about 70K and the outlet temperature distribution trends more consistent. So various factors should be taken into consideration when designing of deflection angle.

  12. Mexico North-South Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  13. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  14. Mexico East-West Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  15. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  16. ULYSSES JUPITER HISCALE DEFLECTED ELECTRONS COUNTS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of HISCALE Deflected Electron (DE) measurements taken during the Ulysses Jupiter encounter 1991-12-31 to 1992-02-16. This includes 1 hour...

  17. Optical measurement of unducted fan blade deflections

    Science.gov (United States)

    Kurkov, A. P.

    1990-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  18. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  19. Internal torsion resistance in deflected shafts

    Directory of Open Access Journals (Sweden)

    Mahmoud T. El-Sayed

    2017-06-01

    The objective of the present work was to estimate the effect of internal torsional resistance in shafts which is caused by deflection, for the reason that it has the upper hand on misalignment problem. With the aim of fulfilling this objective, an experimental rig has been constructed to verify the existence of the torsional resistance in deflected shafts and its variation with the rotation angle.

  20. Light deflection in gadolinium molybdate ferroelastic crystals

    International Nuclear Information System (INIS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-01-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle α i on the sample at room temperature. The A and B deflected beams do not cross each other during the α i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction. (author)

  1. Fan Blade Deflection Measurement and Analyses Correlation

    Science.gov (United States)

    Mehmed, Oral; Janetzke, David C.

    1997-01-01

    Steady deflection measurements were taken of two identical NASA/Pratt & Whitney-designed fan blades while they were rotating in a vacuum in NASA Lewis Research Center's Dynamic Spin Facility. The one-fifth-scale fan blades, which have a tip diameter of 22 in. and a pinroot retention, are of sparshell construction and were unducted for this test. The purpose of the test was to measure the change of the radial deflection of the blade tip and blade angle at selected radial stations along the blade span with respect to rotational speed. The procedure for radial deflection measurement had no precedent and was newly developed for this test. Radial deflection measurements were made to assure adequate tip clearance existed between the fan blades and the duct for a follow-on wind tunnel test. Also, blade angle deflection measurements were desired before pitchsetting parts for the wind tunnel test were finish machined. During the test, laser beams were aimed across the blade path into photodiodes to give signals that were used to determine blade angle change or tip radial deflection. These laser beams were set parallel to the spin axis at selected radial stations.

  2. Anisotropic photoconductivity and current deflection induced in Bi12SiO20 by high contrast interference pattern

    DEFF Research Database (Denmark)

    Kukhtarev, N.V.; Lyuksyutov, S; Buchhave, Preben

    1996-01-01

    We have predicted and observed an anisotropic photocurrent induced in the cubic crystal Bi/sub 12/SiO/sub 20/ by a high-contrast interference pattern. The transverse current detected when the interference pattern is tilted is caused by deflection of the direct current generated by an external vol...

  3. Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-16

    This paper describes the measurement of elliptic flow of charged particles in lead-lead collisions at sqrt(s_NN) = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC). The results are based on an integrated luminosity of approximately 7 ub^-1. Elliptic flow is measured over a wide region in pseudorapidity, |eta| < 2.5, and over a broad range in transverse momentum, 0.5 < p_T < 20 GeV. The elliptic flow parameter v_2 is obtained by correlating individual tracks with the event plane measured using energy deposited in the forward calorimeters. As a function of transverse momentum, v_2(p_T) reaches a maximum at p_T of about 3 GeV, then decreases and becomes weakly dependent on p_T above 7 - 8 GeV. Over the measured pseudorapidity region, v_2 is found to be approximately independent of |eta| for all collision centralities and particle transverse momenta, something not observed in lower energy collisions. The results are discussed in the context of previous measurements at lower collision ...

  4. Transverse permeability of woven fabrics

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.

    2008-01-01

    The transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver

  5. Calibration of optical cantilever deflection readers

    International Nuclear Information System (INIS)

    Hu Zhiyu; Seeley, Tim; Kossek, Sebastian; Thundat, Thomas

    2004-01-01

    Because of its ultrahigh sensitivity, the optical lever detection method similar to that used in the atomic force microscope (AFM) has been widely employed as a standard technique for measuring microcantilever deflection. Along with the increasing interest in using the microcantilever as a sensing platform, there is also a requirement for a reliable calibration technique. Many researchers have used the concept of optical lever detection to construct microcantilever deflection readout instruments for chemical, physical, and biological detection. However, without an AFM piezo z scanner, it is very difficult to precisely calibrate these instruments. Here, we present a step-by-step method to conveniently calibrate an instrument using commercially available piezoresistive cantilevers. The experimental results closely match the theoretical calculation. Following this procedure, one can easily calibrate any optical cantilever deflection detection system with high reproducibility, precision, and reliability. A detailed discussion of the optical lever readout system design has been addressed in this article

  6. Characterisation of a Mechanical Deflection Sensor

    CSIR Research Space (South Africa)

    Miyambo, M

    2012-10-01

    Full Text Available -time duration, which is integrated over time to provide the total measured impulse of a shallow-buried explosive charge near-field blast (Snyman et al, 2006). The Mechanical Deflection Sensor (MDS) was developed by the CSIR LS, in conjunction with Conical...? to measure the positive dynamic deformation response over time of the vehicle?s hull. The MDS captures the response of the centre of the plate by breaking the PC board in the Teflon housing. APPARATUS AND METHODS The Mechanical Deflection Sensor Figure 1...

  7. Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and ϕ Meson in Au+Au Collisions at √[sNN]=200  GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bairathi, V; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, Z M; Li, W; Li, X; Li, X; Li, C; Li, Y; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, Y; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, F; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Wu, Y; Xiao, Z G; Xie, W; Xin, K; Xu, N; Xu, Z; Xu, Q H; Xu, Y F; Xu, H; Yang, Q; Yang, Y; Yang, Y; Yang, S; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, Z; Zhang, Y; Zhang, J B; Zhang, J; Zhang, S; Zhang, J; Zhang, X P; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-02-12

    We present high precision measurements of elliptic flow near midrapidity (|y|<1.0) for multistrange hadrons and ϕ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy √[sNN]=200  GeV. We observe that the transverse momentum dependence of ϕ and Ω v2 is similar to that of π and p, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0%-30% and 30%-80% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and proton v2 at low transverse momentum in the 0%-30% centrality range, possibly indicating late hadronic interactions affecting the proton v2.

  8. Determining large deflections in rectangular combined loaded ...

    Indian Academy of Sciences (India)

    Abstract. In this study, large deflection of cantilever beams of Ludwick type material subjected to a combined loading consisting of a uniformly distributed load and one vertical concentrated load at the free end was investigated. In calcula- tions, both material and geometrical non-linearity have been considered. Horizon-.

  9. Protecting a Ball-Bearing-Deflection Monitor

    Science.gov (United States)

    Kuhr, George A.

    1987-01-01

    Deflectometer probe monitors deflection of ball-bearing race in liquid oxygen with aid of small window or diaphragm. Diaphragm or window isolates optical deflectometer from liquid oxygen or other fluid in ball bearing. At high pressures, diaphragm integral part of housing preferable to window, since there would be no leakage.

  10. Determining large deflections in rectangular combined loaded ...

    Indian Academy of Sciences (India)

    (Bisshopp & Drucker 1945; Scott et al 1955; Lau 1982; Rao & Rao 1986; Baker 1993; Lee et al 1993; Frisch-Fay 1962; Fertis 1999). Prathap and Varadan (1976) had calculated large deflections in cantilever beams made of non-linear Ramberg–Osgood type material on which concentrated load effected on the free end.

  11. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton

    2013-01-01

    . In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...

  12. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    CERN Document Server

    Blais, A; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...

  13. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse oscillat......Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  14. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  15. A Three-Cell Superconducting Deflecting Cavity Design for the ALS at LBNL

    CERN Document Server

    Shi, Jiaru; Chen Huai Bi; Li, Derun; Zheng, Shuxin

    2005-01-01

    Deflecting RF cavities can be used to generate sub-pico-second x-rays by creating correlations between longitudinal and transverse phase space of electron bunches in radiation devices. Up to 2-MV defecting voltage at 1.5-GHz is required for 1.9-GeV electron beam at the Advanced Light Source (ALS) at LBNL. We present a conceptual design for a 1.5-GHz three-cell superconducting RF cavity and its coupler. The cavity geometry and deflecting shunt impedance are optimized using MAFIA code. The cavity impedance from lower and higher order modes (LOM and HOM) are computed. Possible schemes for damping most harmful LOM and HOM modes are discussed and simulated.

  16. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  17. Effect of canard deflection on close-coupled canard-wing-body aerodynamics

    Science.gov (United States)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  18. Deflection of a liquid metal jet/drop in a tokamak environment

    Energy Technology Data Exchange (ETDEWEB)

    Pelekasis, Nikos, E-mail: pel@uth.gr [Department of Mechanical Engineering, University of Thessaly, Volos 38334 (Greece); Benos, Lefteris [Department of Mechanical Engineering, University of Thessaly, Volos 38334 (Greece); Gomes, Rui [Associação EURATOM/IST, Centro de Fusão Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2014-12-15

    Highlights: • We model steady flow of a liquid metal jet inside an electromagnetic field in the presence of inertia and capillary forces. • Similar analysis is performed for the motion of a liquid metal spherical drop. • The deflection of the trajectory is predicted as a function of the intensity of the externally imposed magnetic and electric fields. • The analysis is used as a proof of principle study in reference to experimental observations of jet/drop deflection due to j{sup →}×B{sup →} effects in the ISTTOK tokamak. • We discuss the possibility of using liquid metal flows as an alternative approach toward enhancing power exhaust in tokamak facilities. - Abstract: The interaction of a liquid gallium jet with plasma has been investigated in the ISTTOK tokamak. The jet was observed to remain intact during its interaction with plasma, within a certain length beyond which drop formation was observed. Significant deflection of the jet was detected as soon as plasma production was started. Furthermore, a strong dependency of the deflection magnitude on plasma position was observed that could be correlated with plasma potential gradients. As a means to capture and, possibly, quantify this effect, a preliminary magnetohydrodynamic analysis was performed in order to predict the trajectory of a jet that is traveling inside an electromagnetic field. The effect of Lorentz forces, gravity and pressure drop are accounted for in a unidirectional model that assumes a small jet radius in comparison with the trajectory length. The effect of external electric potential gradients on jet deflection was ascertained in conjunction with the importance of electric stresses in modulating the jet speed and radius. Analysis of the results reported in the ISTTOK experiments identifies the process of jet break-up as a capillary instability. The trajectory of the ensuing droplets is modeled and intensification of the deflection process is predicted in the presence of Lorentz

  19. Measurements of rope elongation or deflection in impact destructive testing

    Directory of Open Access Journals (Sweden)

    Adam Szade

    2015-01-01

    Full Text Available The computation of energy dissipation in mechanical protective systems and the corresponding determination of their safe use in mine shafts, requires a precise description of their bending and elongation, for instance, in conditions of dynamic, transverse loading induced by the falling of mass. The task aimed to apply a fast parallactic rangefinder and then to mount it on a test stand, which is an original development of the Central Mining Institute's Laboratory of Rope Testing in Katowice. In the solution presented in this paper, the measuring method and equipment in which the parallactic laser rangefinder, provided with a fast converter and recording system, ensures non-contact measurement of elongation, deflection or deformation of the sample (construction during impact loading. The structure of the unit, and metrological parameters are also presented. Additionally, the method of calibration and examples of the application in the impact tests of steel wire ropes are presented. The measurement data obtained will provide a basis for analysis, the prediction of the energy of events and for applying the necessary means to maintain explosion-proofness in the case of destructive damage to mechanical elements in the mine atmosphere. What makes these measurements novel is the application of a fast and accurate laser rangefinder to the non-contact measurement of crucial impact parameters of dynamic events that result in the destruction of the sample. In addition, the method introduces a laser scanning vibrometer with the aim of evaluating the parameters of the samples before and after destruction.

  20. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  1. Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    Full Text Available In this article, the deflections of a circular cross-section beam presenting a transverse crack of different depths, due to different loads (bending, torsion, shear, and axial loads, are analyzed with the aid of a rather refined 3-D model, which takes into account the nonlinear contact forces in the cracked area. The bending and shear loads are applied in several different angular positions, in order to simulate a rotating load on a fixed beam, or, by changing the reference system, a fixed load on a rotating beam. Torsion and axial loads are instead fixed with respect to the beam.

  2. Deflections and Strains in Cracked Shafts Due to Rotating Loads: A Numerical and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Nicolò Bachschmid

    2003-01-01

    Full Text Available In this article the deflections of a circular cross-section beam presenting a transverse crack of varying depths caused by various loads (bending, torsion, shear, and axial loads are analyzed with the aid of a rather refined three-dimensional model that takes into account the nonlinear contact forces in the cracked area. The bending and shear loads are applied in several different angular positions in order to simulate a rotating load on a fixed beam or, by changing the reference system, a fixed load on a rotating beam. Torsion and axial loads are fixed with respect to the beam.

  3. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    Science.gov (United States)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar–Gross–Krook–Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  4. Centrality and Pseudorapidity Dependence of the Transverse Energy Flow in pPb collisions at Center of Mass Energy 5.02 TeV

    Science.gov (United States)

    Bruner, Christopher Ryan Edwards

    The almost hermitic coverage of CMS is used to measure the distribution of transverse energy as a function of pseudorapidity for pPb collisions at center of mass energy of 5:02 TeV. For minimum bias collisions (1/N) dET/deta reaches 25 GeV which implies an energy density comparable to that of PbPb collisions at TeV energies. The centrality dependence of transverse energy dependence has been studied using centrality measures defined in three different angular regions. The correlations between which events are selected by are much wider than they were in PbPb collisions and are not reproduced by either the EPOS-LHC or HIJING event generators. Each centrality class was divided by the most central events in order to measure the auto-correlations induced by a centrality definition and reduce the systematic error. This variable is called SPC and the effect of the auto-correlation persists over a much wider pseudo-rapidity range than predicted by either of the event generators.

  5. Deflecting RF cavity design for a recirculating linac based facility for ultrafast X-ray science (LUX)

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.N.

    2003-01-01

    We report on superconducting deflecting RF cavity designs for a Recirculating Linac Based Facility for Ultrafast X-ray Science (LUX) at Lawrence Berkeley National Laboratory. The deflecting cavities operate in the lowest dipole mode and are required to produce a temporal correlation within flat electron bunches, as needed for x-ray compression in crystal optics. Deflecting voltage of up to 8.5-MV is required at 3.9-GHz. We present a 7-cell cavity design in this paper. Seven such cavities are required to generate the 8.5 MV deflecting voltage. Longitudinal and transverse impedance from LOM (lower order mode) and HOM (higher order mode) are simulated using the MAFIA code. Short-range and long-range wakefield excited through these impedances are calculated. Beam loading effects of the deflecting mode and LOM modes are estimated. Q values of the LOM monopole modes in the cavity may need to be damped to be below 10 4 -10 5 levels in order to maintain the required energy spread

  6. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  7. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  8. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  9. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  10. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    Science.gov (United States)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  11. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  12. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  13. Transverse beam dynamics

    CERN Document Server

    Wilson, Edmund J N

    2006-01-01

    This contribution describes the transverse dynamics of particles in a synchrotron. It builds on other contributions to the General Accelerator School for definitions of transport matrices and lattice functions. After a discussion of the conservation laws which govern emittance, the effects of closed orbit distortion and other field errors are treated. A number of practical methods of measuring the transverse behaviour of particles are outlined.

  14. Normal planar undulators doubling as transverse gradient undulators

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2017-02-01

    Full Text Available The transverse gradient undulator (TGU has important application in the short-wavelength high-gain free electron lasers (FELs driven by laser-plasma accelerators. However, the usual transversely tapered TGUs need special design and manufacture, and the transverse gradient cannot be tuned arbitrarily. In this paper we explore a new and simple method of using the natural transverse gradient of a normal planar undulator to compensate the beam energy spread effect. In this method, a vertical dispersion on the electron beam is introduced, then the dispersed beam passes through a normal undulator with a vertical off-axis orbit where the vertical field gradient is selected properly related to the dispersion strength and the beam energy spread. Theoretical analysis and numerical simulations for self-amplified spontaneous emission FELs based on laser plasma accelerators are presented, and indicate that this method can greatly reduce the effect of the beam energy spread, leading to a similar enhancement on FEL performance as the usual transversely tapered TGU, but with the advantages of economy, tunable transverse gradient and no demand of extra field for correcting the orbit deflection induced by the field gradient.

  15. Transverse magnetization and giant magnetoimpedance in amorphous ribbons

    International Nuclear Information System (INIS)

    Orue, I.; Garcia-Arribas, A.; Saad, A.; Cos, D. de; Barandiaran, J.M.

    2005-01-01

    In the classical approach giant magnetoimpedance (GMI) is driven by the transverse permeability of the sample, as excited by the current flowing through it. Transverse permeability is usually taken as a constant, while detailed magnetization processes are important for the interpretation of GMI data. In most cases the transverse permeability (or magnetization) is only guessed by looking at the longitudinal magnetization curve and direct determinations of such parameter are scarce in the literature. In this work we report on the operation of a simple setup which provides the transverse magnetization of amorphous ribbons as a function of the current intensity flowing through it, by means of the magnetooptical kerr effect (MOKE). The system has been tested on low magnetostriction amorphous ribbons of very soft character with both longitudinal and transverse anisotropy. The transverse magnetization as a function of both the current and a DC longitudinal field applied, was compared with magneto impedance measurements

  16. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  17. Intelligent deflection routing in buffer-less networks.

    Science.gov (United States)

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  18. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  19. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  20. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  1. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  2. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  3. On lateral deflection of the SOL plasma in tokamaks during giant ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2000-06-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma leaving the scrape-off layer and striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation, because of enlarging the irradiated area. A simplified MHD model of the vapor shield plasma and of the hot plasma initially formed at time t → -∞ is analyzed. At t = -∞ both plasmas are assumed to stay on rest and to be separated by a boundary, which is parallel to the plate surface. The interaction between plasmas is assumed to develop gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∝ 10 2 μs the ELM duration time. Electrical insulation of the core tokamak plasma is assumed everywhere except for the contact with the divertor. Electric currents are flowing only in the toroidal direction. These currents developing in the interaction zone of the hot plasma and the rather cold target plasma are calculated for inclined impact of the magnetized hot plasma. At such conditions the J x B force in the lateral direction accelerates the interacting plasmas. The motion of the cold plasma and the gradual increase of the plasma interaction intensity are shown to be important for the appropriate deflection magnitude. Adiabatically responding against the increase of the interaction intensity the cold plasma motion compensates significantly the currents thus decreasing the deflection compared to motionless approach. The calculated magnitude of the hot plasma deflection is comparable to the observed one. The results of the modeling are discussed in relation to the experiments. It is shown that sudden switching on of the interaction produces Alfven oscillations of large amplitudes causing much larger amplitudes of the magnetic field induced by the currents than in the adiabatic case. (orig.)

  4. Spectral Velocity Estimation in the Transverse Direction

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for estimating the velocity spectrum for a fully transverse flow at a beam-to-flow angle of 90is described. The approach is based on the transverse oscillation (TO) method, where an oscillation across the ultrasound beam is made during receive processing. A fourth-order estimator based...... on the correlation of the received signal is derived. A Fourier transform of the correlation signal yields the velocity spectrum. Performing the estimation for short data segments gives the velocity spectrum as a function of time as for ordinary spectrograms, and it also works for a beam-to-flow angle of 90...... estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...

  5. Rapid communication: Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    Samyobrata Mukherjee

    2017-07-25

    Jul 25, 2017 ... spline interpolation from the data of Johnson and Christy. [31]. But first, we have to deal with normalization in order to make our comparisons of the transverse spin for different wavelengths and metal film thicknesses d meaningful. We normalize the power flow into the sys- tem at x = 0 to unity. ∫ ∞. −∞.

  6. EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING

    African Journals Online (AJOL)

    user

    2017-06-05

    Jun 5, 2017 ... dy, where d is the flow depth, was found to vary laterally in all cross-sections. As the spiral motion due to the second bend develops it displaces the residual spiral motion from the first bend towards the outer bend causing it to decay completely around the middle of this bend. Transverse Tracer Distribution.

  7. Synthesis of focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Szilagyi, M.; Mui, P.H.

    1995-01-01

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a ±2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. copyright 1995 American Vacuum Society

  8. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  9. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  10. Wet-snow avalanche interaction with a deflecting dam: field observations and numerical simulations in a case study

    Directory of Open Access Journals (Sweden)

    B. Sovilla

    2012-05-01

    Full Text Available In avalanche-prone areas, deflecting dams are widely used to divert avalanches away from endangered objects. In recent years, their effectiveness has been questioned when several large and multiple avalanches have overrun such dams.

    In 2008, we were able to observe a large wet-snow avalanche, characterized by an high water content, that interacted with a deflecting dam and overflowed it at its lower end. To evaluate the dam's performance, we carried out an airborne laser scanning campaign immediately after the avalanche. This data, together with a video sequence made during the avalanche descent, provided a unique data set to study the dynamics of a wet dense snow avalanche and its flow behavior along a deflecting dam.

    To evaluate the effect of the complex flow field of the avalanche along the dam and to provide a basis for discussion of the residual risk, we performed numerical simulations using a two-dimensional dense snow avalanche dynamics model with entrainment.

    In comparison to dry dense snow avalanches, we found that wet-snow avalanches, with high water content, seem to be differently influenced by the local small-scale topography roughness. Rough terrain close to the dam deflected the flow to produce abrupt impacts with the dam. At the impact sites, instability waves were generated and increased the already large flow depths. The complex flow dynamics around the dam may produce large, local snow deposits. Furthermore, the high water content in the snow may decrease the avalanche internal friction angle, inducing wet-snow avalanches to spread further laterally than dry-snow avalanches.

    Based on our analysis, we made recommendations for designing deflecting dams and for residual risk analysis to take into account the effects of wet-snow avalanche flow.

  11. The transverse spin

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, IN2P3-CNRS, Universite Claude Bernard, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2002-07-01

    The aim of this introduction, which is far from exhaustive, was to give an overview on the richness of transverse spin quantity and its differences in comparison with helicity. From the experimental point of view, the physics of quark transversity in deep inelastic reaction is still practically unexplored. This situation will certainly change rapidly, with planned experiments at DESY (HERMES), Brookhaven (RHIC) and CERN (COMPAS), but there is a long way before knowing the transversity distribution, {delta}q(x), as precisely as the helicity distribution, {delta}q(x), now. Unless polarized anti-proton beams become feasible, experiments probing quark transversity will rely mainly on 'quark polarimeters', like {lambda}'s or the Collins effect. These polarimeters will have to be calibrated at e{sup +}e{sup -} colliders. The Collins polarimeter will by the way allow the flavor decomposition of {delta}q(x), using mesons of various charging and strangeness. Quark polarimetry is by itself an interesting topic of non-perturbative QCD, and may teach us something about the breaking of chiral symmetry. Let us recall that, if chiral symmetry were unbroken, transversity would be undefined. The transversity physics program is not at all a 'remake' of the helicity one. Helicity and transversity probe rather different aspects of the hadron structure. Differences between {delta}q(x) and {delta}q(x) will reveal non-relativistic effects in the baryon wave function. Also {delta}q(x) does not couples to gluon distributions, thus it is free from anomaly. In that respect it is a more clean probe than {delta}q(x). In fact, the combination of helicity and transversity measurements will perhaps be the most interesting. Polarized parton densities taking only the helicity degree of freedom are almost 'classical'. Quantum aspects of spin correlations, like violation of Bell's inequality, can be found only when varying the spin quantification axis

  12. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Z. Hashemi

    2011-09-01

    Full Text Available Objective: Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitrostudy was to compare the transverse strength of composite resin bars reinforced with preimpregnated and non-impregnated fibers.Materials and Methods: Thirty six bar type composite resin specimens (3×2×25 mmwere constructed in three groups. The first group was the control group (C without any fiber reinforcement. The specimens in the second group (P were reinforced with preimpregnatedfibers and the third group (N with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength.Data were statistically analyzed with one way ANOVA and Tukey's tests.Results: There was a significant difference among the mean primary transverse strength in the three groups (P<0.001. The post-hoc (Tukey test showed that there was a significant difference between the pre-impregnated and control groups in their primary transversestrength (P<0.001. Regarding deflection, there was also a significant difference among the three groups (P=0.001. There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004, but there was no significant difference between the non- and pre-impregnated groups (PN&P=.813.Conclusion: Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnationof the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  13. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  14. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    International Nuclear Information System (INIS)

    Wang, Zhong-Min; Liu, Yan-Zhuang

    2016-01-01

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  15. Strategy to prevent surface deflections for automotive sheet metal parts

    Science.gov (United States)

    Weinschenk, A.; Volk, W.

    2017-09-01

    Surface deflections are undesirable in automotive outer panels because they disturb their visual appearance. As a consequence, the geometry of the deep drawing tool is manually adjusted during tryout until the produced parts do not display any surface deflections. The aim of this paper is to reduce this time-consuming and cost-intensive tryout by slightly changing the geometry of the tool in an early state of the product development process to lower the risk of surface deflections. Therefore, this paper shows the influence of geometrical parameters of the deep drawing tool on the occurrence of surface deflections. A multiple curved outer panel with a door handle depression is chosen for the investigation. Typically, so-called “teddy bear ears” occur around the depression. The sheet metal material AA6016 with a sheet thickness of 1.0 mm is used. Numerical simulations of the draw operation and springback are performed in AutoForm. An analysis of the curvature before and after springback is used to detect surface deflections. The influence of the stresses and curvatures on the appearance of surface deflections is analyzed. For the experimental validation, stoning is used to detect surface deflections on a physical part. A very good agreement between the numerical and experimental results was obtained. The results show that the existence of surface deflections strongly depends on the initial curvature of the part and the appearance depends on the distribution of minor stresses. It is possible to reduce the risk of surface deflections during the design phase by changing the geometry.

  16. Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection

    International Nuclear Information System (INIS)

    Vries, H.S.M. de; Harren, F.J.M.; Wyers, G.P.; Otjes, R.P.; Slanina, J.; Reuss, J.

    1995-01-01

    A recently developed non-intrusive photothermal deflection (PTD) instrument allows sensitive, rapid and quantitative detection of local ammonia concentrations in the air. Ammonia is vibrationally excited by an infrared CO 2 laser in an intracavity configuration. A HeNe beam passing over the CO 2 laser beam (multipass arrangement) is deflected by the induced refractive index gradient. The detection limit for ammonia in ambient air is 0.5 ppbv with a spatial resolution of a few mm 3 . The time resolution is 0.1 s (single line) or 15 s (multi line). The system is fully automated and suited for non-stop measuring periods of at least one week. Results were compared to those obtained with a continuous-flow denuder (CFD). (author)

  17. Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisionsDifferential flow harmonics v_n in pPb and PbPb collisions

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Krammer, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rabady, Dinyar; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Strauss, Josef; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Shopova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mahmoud, Mohammed; Mahrous, Ayman; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Bhawandeep, Bhawandeep; Chawla, Ridhi; Dhingra, Nitish; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Philippov, Dmitry; Polikarpov, Sergey; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bianco, Michele; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Shchutska, Lesya; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zagozdzinska, Agnieszka; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Donato, Silvio; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Boran, Fatma; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Perry, Thomas; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Benaglia, Andrea; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-01-01

    Measurements of azimuthal angular correlations are presented for high-multiplicity pPb collisions at $\\sqrt{s_{\\mathrm{NN}}} = $ 5.02 TeV and peripheral PbPb collisions at $\\sqrt{s_{\\mathrm{NN}}} = $ 2.76 TeV. The data used in this work were collected with the CMS detector at the CERN LHC. Fourier coefficients as functions of transverse momentum and pseudorapidity are studied using the scalar product method, 4-, 6-, and 8-particle cumulants, and the Lee-Yang zeros technique. The influence of event plane decorrelation is evaluated using the scalar product method and found to account for most of the observed pseudorapidity dependence.

  18. Noninterceptive transverse beam diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.

    1981-01-01

    The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project

  19. Experimental investigation of transverse velocity estimation using cross-correlation

    DEFF Research Database (Denmark)

    Bjerngaard, Rasmus; Jensen, Jørgen Arendt

    2001-01-01

    A technique for estimating the full flow velocity vector has previously been presented by our group. Unlike conventional estimators, that only detect the axial component of the flow, this new method is capable of estimating the transverse velocity component. The method uses focusing along the flow....... A mean parabolic velocity profile was obtained for purely transverse flow with a mean bias to the true profile of -2.5% relative to the peak velocity and a standard deviation of 13.3% relative to the peak velocity. Twenty pulse-echo lines were used for each estimate and 18 profiles were obtained...... and the flow at an angle of 701 was successfully estimated....

  20. Finite-layer method: a unified approach to a numerical analysis of interlaminar stresses, large deflections, and delamination stability of composites paragraph>Please check captured article title, if appropriate.paragraph>->. Part 2. Nonlinear behavior**

    Science.gov (United States)

    Timonin, A. M.

    2013-09-01

    A square-law version of the geometrically nonlinear theory of bending of laminated composites with account of transverse normal and transverse shear strains is developed. The finite-layer method is used to analyze the effect of geometric nonlinearity on the stresses and deflections of an adhesively bonded joint and to reveal and estimate the stability of various equilibrium forms of a laminated plate with delaminations under compression.

  1. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  2. Hawaiian Islands East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  3. PR/VI North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  4. Hawaiian Islands North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  5. High bandwidth deflection readout for atomic force microscopes.

    Science.gov (United States)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  6. PR/VI East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  7. Deflection routing scheme for GMPLS-based OBS networks

    DEFF Research Database (Denmark)

    Eid, Arafat; Mahmood, Waqar; Alomar, Anwar

    2010-01-01

    is not applicable in such an integrated solution. This is due to the existence of already established Label Switched Paths (LSPs) between edge nodes in a GMPLS-based OBS network which guide the Data Burst Headers (DBHs) through the network. In this paper we propose a novel deflection routing scheme which can...... be implemented in GMPLS-based OBS Control Plane. In this scheme, deflection routes or LSPs are designed and pre-established for the whole network. The ingress nodes are responsible for enabling DBHs for deflection at contending core ports prior to DBHs transmission. Moreover, we propose an object extension...... for Path and Resv messages of the RSVP-TE protocol to be able to utilize both messages for deflection labels dissemination. The scheme simulation results show reduction in data bursts blocking probability....

  8. U.S. North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  9. U.S. East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  10. Measurement of vertical track deflection from a moving rail car.

    Science.gov (United States)

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  11. A New Possibility for Production of Sub-picosecond X-ray Pulses using a Time Dependent Radio Frequency Orbit Deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches while keeping the majority of the electron bunches unaffected. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulses are then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  12. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  13. New compact TEM-type deflecting and crabbing rf structure

    Directory of Open Access Journals (Sweden)

    J. R. Delayen

    2009-06-01

    Full Text Available A new type of rf structure for the deflection and crabbing of particle beams is presented. The structure is comprised of a number of parallel TEM resonant lines operating in opposing phase from each other. One of its advantages is its compactness compared to conventional crabbing cavities operating in the TM_{110} mode, thus allowing low frequency designs. This geometry would also be effective for the deflection of beams propagating at velocities substantially less than that of light.

  14. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    Science.gov (United States)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  15. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  16. Large transverse momentum phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1977-09-01

    It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references

  17. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  18. Vibrations of tube arrays in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Doyen, R.

    1981-08-01

    In this study the local forces per unit length acting in a tube in a single row and in bundle have been measured. Their modification by a given harmonic motion of the tube itself or of an adjacent tube has been particularly studied. Some complementary experiments have been performed to extend the whirling coefficient tabulation and also to precise the effect of the upstream velocity profile on the whirling critical velocities [fr

  19. Effect of 180 days of water storage on the transverse strength of acetal resin denture base material.

    Science.gov (United States)

    Arikan, Ayla; Ozkan, Yasemin Kulak; Arda, Tugberk; Akalin, Buket

    2010-01-01

    Acetal resin has been used as an alternative denture base and clasp material since 1986. The manufacturers claim that acetal resin has superior physical properties when compared to conventional denture base acrylic resins. Limited information is available about transverse strengths of acetal resin. The purpose of this investigation was to compare transverse strengths of pink and white acetal resins to transverse strengths of conventional heat-polymerized polymethylmethacrylate (PMMA) resin in increasing durations of water storage. A transverse strength test was performed in accordance with International Standards Organization (ISO) specification No 1567. Twenty 65 x 10 x 2.5 mm(3) specimens of each resin were prepared; five specimens of each resin group were subjected to three-point bending test after 50 hours, 30 days, 60 days, and 180 days of water storage in distilled water at 37 degrees C. Experimental groups' transverse strengths were compared by three-way ANOVA and Duncan's multiple range tests. Transverse strength of PMMA denture base material was found to be in accordance with the requirements of ISO specification No 1567. Transverse strengths of white and pink acetal resin could not be calculated in this study, as white and pink acetal resin specimens did not break at the maximum applied force in the three-point bending test. Flexural strength of acetal resin was found to be within the ISO specification limits. As the water storage time increased, the deflection values of PMMA showed no significant difference (p > 0.05). Both the white and pink acetal resin showed significant increase in deflection as the water storage time was increased from 50 hours to 180 days (p resin suffered from permanent deformation, but did not break in the three-point bending test. Acetal resin showed significant increase in deflection as the water storage time was increased from 50 hours to 180 days. All materials tested demonstrated deflection values in compliance with ISO

  20. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    This paper presents a study on different methods of analysis that are currently used by design codes to predict the short-term and long-term deflection of reinforced concrete slab systems and compares the predicted deflections with measured deflections. The experimental work to measure deflections involved the testing of ...

  1. Deflection load characteristics of laser-welded orthodontic wires.

    Science.gov (United States)

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  2. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  3. Creep deflection analysis of fuel channels in CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Lambert, S.B.

    1980-01-01

    This paper presents an analysis of the creep deflection of fuel channel assemblies. The analysis considers the following factors: anisotropy of zirconium alloys; non-uniform creep rates due to the neutron flux distribution; asymmetry due to temperature gradients along the tube; effect of possible axial forces; effect of nominal slopes at the rolled joints; and, non-linearities due to nominal assembly clearances. Furthermore the problem is statically indeterminate and time dependent since, as creep deflection occurs, the reaction forces at the support points and the bending moment distribution change with time. The relations between bending creep and the creep behaviour of the material are first established. The deflection is obtained by double integration of both the elastic and creep components of the tube curvature. Simultaneous equations for deformation at each support point are formulated. These are solved exactly for each discrete time interval yielding the reaction forces and the bending moment distribution. The process is repeated until the design life is reached. The creep component of deformation is integrated with time. The analysis is implemented in a dedicated computer code which is easy to use and very efficient. The analysis is illustrated by examples. The effects of several parameters such as number of spacer supports, axial loading, temperature asymmetry and assembly tolerance are presented. It is concluded that creep deflection is not a major problem in fuel channels. By proper analysis, the channels can be designed so that their life is not limited by creep deflection. (auth)

  4. Figures of transversality

    DEFF Research Database (Denmark)

    Gammeltoft, Tine

    2008-01-01

    In this article, I explore how prenatal screening is imbricated within state agendas, aspirations, and imaginings in contemporary Vietnam. In an effort to develop new ethnographic tropes for understanding the formation called "the state," I argue for a phenomenological take that emphasizes its...... affective and embodied aspects. Seeing the anomalous fetus as a "figure of transversality," as a critical focus for powerful imaginings and desires, I show how state–society relations in Vietnam are suffused by visceral affectivity and moral engagement. In the realm of reproduction, intense sentiments...... of anxiety, dread, desire, ambition, and hope tie together the state and its citizens, animating individual aspirations as well as national population policies....

  5. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.

    Science.gov (United States)

    Anderson, Ryan R; Hu, Weisheng; Noh, Jong Wook; Dahlquist, William C; Ness, Stanley J; Gustafson, Timothy M; Richards, Danny C; Kim, Seunghyun; Mazzeo, Brian A; Woolley, Adam T; Nordin, Gregory P

    2011-06-21

    We report the integration of a nanomechanical sensor consisting of 16 silicon microcantilevers with polydimethylsiloxane (PDMS) microfluidics. For microcantilevers positioned near the bottom of a microfluidic flow channel, a transient differential analyte concentration for the top versus bottom surface of each microcantilever is created when an analyte-bearing fluid is introduced into the flow channel (which is initially filled with a non-analyte containing solution). We use this effect to characterize a bare (nonfunctionalized) microcantilever array in which the microcantilevers are simultaneously read out with our recently developed high sensitivity in-plane photonic transduction method. We first examine the case of non-specific binding of bovine serum albumin (BSA) to silicon. The average maximum transient microcantilever deflection in the array is -1.6 nm, which corresponds to a differential surface stress of only -0.23 mN m(-1). This is in excellent agreement with the maximum differential surface stress calculated based on a modified rate equation in conjunction with finite element simulation. Following BSA adsorption, buffer solutions with different pH are introduced to further study microcantilever array transient response. Deflections of 20-100 nm are observed (2-14 mN m(-1) differential surface stress). At a flow rate of 5 μL min(-1), the average measured temporal width (FWHM) of the transient response is 5.3 s for BSA non-specific binding and 0.74 s for pH changes.

  6. The Asteroid Impact Mission - Deflection Demonstration (AIM - D2)

    Science.gov (United States)

    Küppers, M.; Michel, P.; Carnelli, I.

    2017-09-01

    The Asteroid Impact Mission (AIM) is ESA's contribution to the international Asteroid Impact Deflection Assessment (AIDA) cooperation, targeting the demonstration of deflection of a hazardous near-earth asteroid. AIM will also be the first in-depth investigation of a binary asteroid and make measurements that are relevant for the preparation of asteroid resource utilisation. AIM is foreseen to rendezvous with the binary near-Earth asteroid (65803) Didymos and to observe the system before, during, and after the impact of NASA's Double Asteroid Redirection Test (DART) spacecraft. Here we describe the observations to be done by the simplified version Asteroid Impact Mission - Deflection Demonstration (AIM-D2) and show that most of the original AIM objectives can still be achieved.

  7. New photothermal deflection technique to discriminate between heating and cooling

    Science.gov (United States)

    Fontenot, Ross S.; Mathur, Veerendra K.; Barkyoumb, John H.

    2018-01-01

    Photothermal deflection spectroscopy (PDS) is a highly sensitive and precise technique that is used to measure the optical absorption and thermal characteristics of a sample. While most applications of PDS utilize a heating beam, laser cooling of solids, or optical refrigeration as it is sometimes called, use this technique to determine if a laser is cooling or heating a sample. Current PDS methods for laser cooling require multiple laser wavelengths in both the Stokes and anti-Stokes region to ensure that cooling is occurring. This can cause problems if lasers must be changed or no lasers in the desired wavelength are available. Herein, we present a photothermal deflection technique that uses the deflection of the probe laser to determine if microcooling is occurring inside a sample.

  8. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  9. Large deflection of viscoelastic beams using fractional derivative model

    International Nuclear Information System (INIS)

    Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad

    2013-01-01

    This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.

  10. Novel deflecting cavity design for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  11. Optical caliper with compensation for specimen deflection and method

    Science.gov (United States)

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  12. Effective Natural Supersymmetry from the Yukawa Deflected Mediations

    Directory of Open Access Journals (Sweden)

    Tai-ran Liang

    2017-01-01

    Full Text Available The natural supersymmetry (SUSY requires light (≤1 TeV stop quarks, light sbottom quark, and gluinos. The first generation of squarks can be effectively larger than several TeV which does not introduce any hierarchy problem in order to escape the constraints from LHC. In this paper we consider a Yukawa deflected mediation to realize the effective natural supersymmetry where the interactions between squarks and messengers are made natural under certain Froggatt-Nielsen U(1X charges. The first generation squarks obtain large and positive contribution from the Yukawa deflected mediation. The corresponding phenomenology and sparticle spectra are discussed in detail.

  13. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  14. Evaluation of nanoindentation load-depth curve of MEMS bridge structures by calculating the critical elastic-plastic bending deflections

    Science.gov (United States)

    Ma, Zhichao; Zhao, Hongwei; Du, Xijie; Zhou, Mingxing; Ma, Xiaoxi; Liu, Changyi; Ren, Luquan

    2018-03-01

    This paper proposes a correction method to accurately evaluate the nanoindentation load-depth (P-h) curve of MEMS double clamped micro bridge structures. Critical elastic and plastic deflections of the bent bridge are extracted from the overall elastic-plastic deflection, respectively. Through subtracting the elastic-plastic deflection of the micro bridge from the total displacement of the Berkovich indenter's tip, the effect of constraint condition (double clamped) on the P-h curve of micro bridge is corrected. Nanoindentation P-h curves of routine and micro bridge C11000 Cu specimens are respectively obtained and compared with each other through both finite element analysis and experiments. Meanwhile, cross-sectional profiles along the symmetry axis of local indentation locations respectively obtained from the nodal deformations and scanned images of routine and micro bridge specimens are also compared and explained. Furthermore, a theoretical model is proposed to analyze the effect of the equivalent flow area induced by the elastic-plastic deflection on maximum indentation depth, the corrected values of Young's modulus, maximum and residual depths of micro bridge specimens are essentially in agreement with that of routine fixed specimens.

  15. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  16. Effect of Channel Bends on Transverse Mixing | Engmann | Nigerian ...

    African Journals Online (AJOL)

    Velocity and tracer concentration measurements made in a meandering channel are used to discuss the effect of bends on the transverse mixing of a conservative tracer introduced into the flow. It is shown that bend induced spiral motion greatly enhance the mixing potential of meandering channel flows; The magnitude of ...

  17. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  18. Static Force-Deflection Properties of Automobile Steering Components

    Science.gov (United States)

    1987-06-01

    This report provides the static force-deflection test results for 28 steering columns and 24 steering wheels used in domestic and import passener cars from model year 1975 to 1985. The steering columns and wheels tested include approzimately 90 perce...

  19. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  20. Techniques based on genetic algorithms for large deflection ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    with 'exact' solutions, if available, are provided. Keywords. Genetic algorithms; large deflection analysis; analysis of beams. 1. Introduction. The beam is one of the most common structural elements used in a variety of aerospace, civil and mechanical engineering structures. Linear beam theories based on a linear moment-.

  1. Analysis of a High Speed Electron Beam Deflection System

    Czech Academy of Sciences Publication Activity Database

    Zobač, Martin

    2009-01-01

    Roč. 44, 5-6 (2009), s. 59-63 ISSN 0861-4717 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam deflection * transfer function * eddy - current * hysteresis * instability Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Science.gov (United States)

    2010-03-18

    ... production of flats that we are reliably able to process efficiently; however even these commenters stated... deflection standards for six more months and enlist the assistance of a Lean Six-Sigma group. Response to...-size pieces. For most mailers, these prices can be avoided by changing the design or production of...

  3. Application of the mechanical deflection sensor in blast research

    CSIR Research Space (South Africa)

    Pandelani, T

    2013-10-01

    Full Text Available the occupants. To enable the development of protection solutions for occupants inside military vehicles, the occupant loading must be thoroughly understood. The aim is to show the capability to measure the positive dynamic deflection of the hull plate using...

  4. Molecular beam magnetic deflection behavior of sodium trimers

    International Nuclear Information System (INIS)

    George, A.R.

    1983-01-01

    The observation and characterization of the Stern-Gerlach magnetic deflection behavior of sodium trimers in a supersonic molecular beam is reported. As part of a program to apply molecular beam technique to the study of metal clusters, a molecular beam apparatus designed for magnetic deflection and resonance experiments on selected alkali metal cluster species has been developed and is described. Clusters are produced in a supersonic expansion of a pure metal vapor, and are detected mass selectively by photoionization, quadrupole mass analysis, and an ion counting detector. The deflection profiles reveal peaks corresponding to the one Bohr magneton of magnetic moment of the unpaired electron, but in addition show evidence of a distribution of effective magnetic moments extending the full range between the positive and negative one Bohr magneton peaks. In addition, experiments utilizing multiple magnets and trajectory selecting collimators show evidence for magnetic moment and molecular state changes during traversal through the apparatus. Information from time of flight velocity analysis is used in conjunction with the deflection data and with computer simulations to rule out experimental artifacts and to establish that the observed phenomena can be the result of magnetic moment changes and molecular state changes caused by adiabatic and non-adiabatic traversals of avoided level crossings in the Zeeman energy diagram of these molecules. The phenomena have implications for the application of molecular beam Electron Spin Resonance technique to polyatomic molecules

  5. Large deflection analysis of skew plates under uniformly distributed ...

    African Journals Online (AJOL)

    The present paper deals with large deflection static behaviour of thin isotropic skew plates under uniformly distributed load for various mixed flexural boundary conditions. A variational method based on the principle of minimization of total potential energy has been used through assumed displacement fields. The results are ...

  6. Reliability Analysis of Bending, Shear and Deflection Criteria of ...

    African Journals Online (AJOL)

    Reliability analysis of the safety levels of the criteria for bending, shear and deflection of singly reinforced, concrete slabs, have been evaluated over the practical range of thicknesses 100mm to 250mm. The First Order Reliability Method was employed in the evaluation procedure for continuous slabs of equal spans as a ...

  7. Deflection range of water in heterogeneous permeable media | Alabi ...

    African Journals Online (AJOL)

    Knowledge of mode of transport of fluid in soil is the basis for soil environmental engineering especially in transport of contaminants in groundwater. The study investigates the possible minimum and maximum angle of deflection of water through media of different porosities for the purpose of environmental pollution control.

  8. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  9. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  10. A novel spectral analysis algorithm to obtain local scalar field statistics from line-of-sight measurements in turbulent flows

    International Nuclear Information System (INIS)

    Kolhe, Pankaj S; Agrawal, Ajay K

    2009-01-01

    Statistical tomography to obtain local field variables from non-intrusive line-of-sight measurements in turbulent flows has been an intriguing subject for some time. In this study, a novel algorithm is presented to obtain statistical information on the local scalar field in axisymmetric turbulent flows. The algorithm uses line-of-sight transverse deflection angle measurements in only one view direction to greatly simplify the optical configuration. The validity of the algorithm is examined using noise-free synthetically generated scalar data that simulate the concentration field of a turbulent helium jet. Results show that the proposed algorithm provides excellent reconstruction of integral length scale and variance of refractive index difference, which can be related to scalar physical properties such as density, temperature and/or species concentrations. Good reconstruction accuracy and the need for a simple optical configuration make the proposed algorithm a promising method to characterize the scalar field in turbulent flows using path-integrated measurements

  11. Delays of Interconnected Flows

    Science.gov (United States)

    Sorger, U.; Suchanecki, Z.

    2011-07-01

    A rigorous approach to flows of particles in networks is presented. Under the assumption of independence of the transversal flows the asymptotic distributions of inter-delay times between particles are shown to be log-normal. In the case of dependent transversal traffic the ARCH and GARCH time series models, as well as martingale approach, have been applied.

  12. Calculating the momentum enhancement factor for asteroid deflection studies

    International Nuclear Information System (INIS)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert

    2017-01-01

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.

  13. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  14. Effect of layer length on deflection in sandwich beams

    Science.gov (United States)

    Abbu, Muthanna A.; AL-Ameri, Riyadh

    2017-09-01

    A theoretical study has been carried out on sandwich beams strengthened mechanically by two external steel plates attached to their tension and compression sides with so-called "shear connectors ". This study is based on the individual behaviour of each component of the composite sandwich section (i.e. reinforced concrete beam and upper steel plate and lower steel plate). The approach has been developed to simulate the behaviour of such beams, and is based on neglecting the separation between the three layers; i.e., the deflections are equal in each element through the same section. The differential equations reached were solved analytically. Deflection was calculated by using the approach for several beams, tested in two series, and close agreements were obtained with the experimental values. Furthermore, the interaction efficiency between the three elements in a composite sandwich beam has been considered thoroughly, from which the effect of some parameters, such as plate length upon the behaviour of such beams, were studied.

  15. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Kim, Ian-Woo

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  16. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  17. 30 CFR 7.47 - Deflection temperature test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65 °F−80...

  18. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...

  19. A Semianalytical Approach to Large Deflections in Compliant Beams under Point Load

    NARCIS (Netherlands)

    Tolou, N.; Herder, J.L.

    2009-01-01

    The deflection of compliant mechanism (CM) which involves geometrical nonlinearity due to large deflection of members continues to be an interesting problem in mechanical systems. This paper deals with an analytical investigation of large deflections in compliant mechanisms. The main objective is to

  20. Angular deflection of rotary nickel titanium files: a comparative study

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2009-12-01

    Full Text Available A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF, Profile, K3 and M2 (NRT. All instruments tested had the same dimensions (taper 0.06 and tip size 25. Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05, than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files.

  1. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, James D. [Univ. of California, Berkeley, CA (United States); McLarnon, Frank R. [Univ. of California, Berkeley, CA (United States); Cairns, Elton J. [Univ. of California, Berkeley, CA (United States)

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  2. First observation of the exchange of transverse and longitudinal emittances

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Thurman-Keup, R.; Edwards, H.; Fliller, R.P.; Koeth, T.; Sun, Y.-E; /Fermilab

    2011-02-01

    An experimental program to demonstrate a novel phase space manipulation in which the horizontal and longitudinal emittances of a particle beam are exchanged has been completed at the Fermilab A0 Photoinjector. A new beamline, consisting of a TM{sub 110} deflecting mode cavity flanked by two horizontally dispersive doglegs has been installed. We report on the first direct observation of transverse and longitudinal emittance exchange: {l_brace}{var_epsilon}{sub x}{sup n}, {var_epsilon}{sub y}{sup n}, {var_epsilon}{sub z}{sup n}{r_brace} = {l_brace} 2.9 {+-} 0.1, 2.4 {+-} 0.1, 13.1 {+-} 1.3{r_brace} {yields} {l_brace}11.3 {+-} 1.1, 2.9 {+-} 0.5, 3.1 {+-} 0.3{r_brace} mm-mrad.

  3. Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Khuntia, Arvind; Tiwari, Swatantra Kumar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India)

    2017-05-15

    In the continuation of our previous work, the transverse-momentum (p{sub T}) spectra and nuclear modification factor (R{sub AA}) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial p{sub T}-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the p{sub T}-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, K{sup *0} and φ. It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in p{sub T} for all these particles except for protons. R{sub AA} is found to be independent of the degree of non-extensivity, q{sub pp} after p{sub T} ∝ 8 GeV/c. (orig.)

  4. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  5. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  6. Fuel assembly stress and deflection analysis for loss-of-coolant accident and seismic excitation

    International Nuclear Information System (INIS)

    DeMars, R.V.; Steinke, R.R.

    1975-01-01

    Babcock and Wilcox has evaluated the capability of the fuel assemblies to withstand the effects of a loss-of-coolant accident (LOCA) blowdown, the operational basis earthquake (OBE) and design basis earthquake (DBE), and the simultaneous occurrence of the DBE and LOCA. This method of analysis is applicable to all of B and W's nuclear steam system contracts that specify the skirt-supported pressure vessel. Loads during the saturated and subcooled phases of blowdown following a loss-of-coolant accident were calculated. The maximum loads on the fuel assemblies were found to be below allowable limits, and the maximum deflections of the fuel assemblies were found to be less than those that could prevent the insertion of control rods or the flow of coolant through the core. (U.S.)

  7. Energy and momentum transfer to 3He, 4He and nitrogen clusters subject to transverse molecular beams

    International Nuclear Information System (INIS)

    Vollmar, H.

    1977-01-01

    Detailed account of a method to determine the linear momentum and energy transfer to He clusters subject to transverse molecular Te or CO 2 beams using deflection and mass loss values and comparing the results with those obtained for N 2 clusters. For this purpose, 3 He cluster beams have been generated for the first time and have been taken into account in the investigation. (orig.) [de

  8. Transverse permeability of woven fabrics (CD-rom)

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.; Boisse, P.

    2008-01-01

    transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver

  9. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    Science.gov (United States)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  10. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  11. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  12. Calculation of deflection for cross laminated timber floor panel

    Directory of Open Access Journals (Sweden)

    Kozarić Ljiljana M.

    2016-01-01

    Full Text Available In this paper analytically calculated values of effective flexural stiffness and deflections of five-layer CLT panels height 14 cm due to the payload defined in Eurocode 1 for floors in residential buildings are compared. Effective flexural stiffness was calculated using Gamma method, K-method and Kreuzinger's analogy. Three floor panels with identical height but with different combinations of lamination thicknesses in cross-layers were analyzed. The panels are 4.5 meters long and 1 meter wide. Lamination thicknesses in cross-sections of panels are 33,4 cm+21,9 cm, then 33 cm+22,5 cm and 52,8 cm.

  13. Wind Turbine Blade Deflection Sensing System Based on UWB Technology

    DEFF Research Database (Denmark)

    Franek, Ondrej; Zhang, Shuai; Jensen, Tobias Lindstrøm

    2016-01-01

    A microwave sensing system for estimating deflection of a wind turbine blade is presented. The system measures distances at two ultrawideband (UWB) wireless links between one antenna at the tip and two antennas at the root of the blade, which allows for determination of the tip position...... by triangulation. An experimental setup with corner reflector antenna mounted at the tip and horn antennas at the root of a 37.3 m long blade is described. Analyzing the data from the experiment, special attention is given to the propagation aspects of the UWB links, with focus on the multipath effects caused...

  14. Spin Rate and Deflection Ratio of a Ping Pong Ball

    Directory of Open Access Journals (Sweden)

    Byung Joon Ahn

    2013-12-01

    Full Text Available To investigate the effects of a spherical object’s spin rate on the curvature of its flight, Ping Pong balls, of varying spin rates, were hit horizontally and recorded from above with a high-speed camera. It was shown that there was a proportional relationship between the ball’s spin rate and deflection ratio. Additionally, using the results of the analyzed data, a coefficient of skin friction of the Ping Pong ball was found to be approximately 0.2 under the specific conditions of this investigation.

  15. Spin Rate and Deflection Ratio of a Ping Pong Ball

    Directory of Open Access Journals (Sweden)

    Byung Joon Ahn

    2013-01-01

    Full Text Available To investigate the effects of a spherical object’s spin rate on the curvature of its flight, Ping Pong balls, of varying spin rates, were hit horizontally and recorded from above with a high-speed camera. It was shown that there was a proportional relationship between the ball’s spin rate and deflection ratio. Additionally, using the results of the analyzed data, a coefficient of skin friction of the Ping Pong ball was found to be approximately 0.2 under the specific conditions of this investigation.

  16. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider

  17. Transverse dispersion: From laboratory experiments to field applications

    Science.gov (United States)

    Grathwohl, Peter; Rügner, Hermann

    2016-04-01

    Transverse dispersion is relevant for dilution of contaminant plumes in groundwater and in many cases controls the length of steady state plumes during natural attenuation. Also dissolution kinetics of NAPLs in porous media and mass transfer of vapor phase compounds across the capillary fringe (e.g. supply of oxygen) is limited by transverse dispersion. In bench scale laboratory experiments typically very small dispersion coefficients are observed. Transverse dispersivities determined in DNAPL pool dissolution experiments in coarse sands are less than 0.1 mm which agrees with results from lab experiments on dilution of tracers and transfer of oxygen across the capillary fringe. Such low dispersivities lead to long-term persistence of DNAPL pools of many decades to centuries which is confirmed e.g. for chlorinated solvents and coal tars by observations at contaminated sites. However, larger scale investigations, e.g. determination of the length of steady state plumes or reduction of mass fluxes of biodegradable compounds suggest that transverse dispersivities at field scale are up to 3 orders of magnitude higher (1 -10 cm). Reasons for this discrepancy are still unclear, but may be partly explained by processes enhancing transverse mixing such as flow focusing due to aquifer geometries or high permeability inclusions and helical groundwater flow induced by herringbone structures in sediments.

  18. Distributed ion pump related transverse instability in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T.; Holmquist, T. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

    1996-08-01

    An anomalous damping or growth of transverse coupled bunch modes is observed in the Cornell Electron Storage Ring (CESR). The growth rates and tune shifts of these modes are a highly nonlinear function of current. Unlike an instability produced by the coupling impedance of the vacuum chamber, the magnitude of the growth rate first increases, then declines, as the beam current is increased. The effect is known to be related to the operation of the distributed ion pumps, as it disappears when the pumps are not powered. We review the observations of this effect, and show that it can be explained by the presence of electrons trapped in the CESR chamber by the field of the dipole magnets and the electrostatic leakage field of the distributed ion pumps. Photoelectrons are introduced into the chamber by synchrotron radiation and can be captured in or ejected from the chamber by the passage of the beam. The transverse position of the beam thus modulates the trapped photoelectron charge density, which in turn deflects the beam, creating growth or damping and a tune shift for each coupled bunch mode. Predictions of the dependence of growth rate and tune shift on bunch current and bunch pattern by a numerical model of this process are in approximate agreement with observations. (author)

  19. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  20. Deflection of resilient materials for reduction of floor impact sound.

    Science.gov (United States)

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  1. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  2. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-02-12

    The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |$\\eta$|8 GeV/c. The small $p_T$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_T$ =8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_T$ =8 GeV/c indicating that the particle type dependence persists out to high $p_T$.

  3. Torsion and transverse bending of cantilever plates

    Science.gov (United States)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  4. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations.

    Science.gov (United States)

    Lee, Hyoung-In; Mok, Jinsik

    2014-01-01

    This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  5. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

    Directory of Open Access Journals (Sweden)

    Hyoung-In Lee

    2014-10-01

    Full Text Available This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE and transverse magnetic (TM waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  6. Transversal expansion study in the Landau hydrodynamic

    International Nuclear Information System (INIS)

    Pottag, F.W.

    1984-01-01

    The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt

  7. Transversal Dirac families in Riemannian foliations

    International Nuclear Information System (INIS)

    Glazebrook, J.F.; Kamber, F.W.

    1991-01-01

    We describe a family of differential operators parametrized by the transversal vector potentials of a Riemannian foliation relative to the Clifford algebra of the foliation. This family is non-elliptic but in certain ways behaves like a standard Dirac family in the absolute case as a result of its elliptic-like regularity properties. The analytic and topological indices of this family are defined as elements of K-theory in the parameter space. We indicate how the cohomology of the parameter space is described via suitable maps to Fredholm operators. We outline the proof of a theorem of Vafa-Witten type on uniform bounds for the eigenvalues of this family using a spectral flow argument. A determinant operator is also defined with the appropriate zeta function regularization dependent on the codimension of the foliation. With respect to a generalized coupled Dirac-Yang-Mills system, we indicate how chiral anomalies are located relative to the foliation. (orig.)

  8. Micropipette Deflection Measurements of Agar-Glass Adhesion

    Science.gov (United States)

    Parg, Richard; Shelton, Erin; Dutcher, John

    Micropipette deflection experiments were used to study the adhesive strength at an agar-glass interface. Agar is a hydrogel commonly used in biological research; however, many of the mechanical properties of this hydrogel are not well characterized. By measuring the peak force required to slide an agar puck supported by a Teflon ring across a clean glass slide, we are able to compare the adhesive strength of 1 % w/w and 1.5 % w/w agar. On average, the force required to break the agar-glass interface was approximately a factor of 2 larger for 1.5 % w/w agar than for 1 % w/w agar. We discuss this result within the context of a simple model of agar adhesion. Additional experiments were performed to measure the kinetic friction between agar and glass to obtain insight into its dependence on agar concentration.

  9. Periodic Relativity: Deflection of Light, Acceleration, Rotation Curves

    Directory of Open Access Journals (Sweden)

    Zaveri V. H.

    2015-01-01

    Full Text Available Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear acceleration is distinguished from the Newtonian polar conic acceleration. The dif- ference between the two is due to the curvature term. Lorentz invariant expression for acceleration is derived. A physical theory of rotation curves of galaxies based on second solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31, NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods of stars in a galaxy. Deviation factor in the line element of t he theory happens to be the ratio of the Newtonian gravitational acceleration to th e measured acceleration of the star in the galaxy. Therefore this deviation factor can replace the MOND function.

  10. Modified method for registration of particle deflection by bent crystal

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Kovalenko, A.D.; Kuznetsov, V.N.; Romanov, S.V.; Sajfulin, Sh.Z.; Taratin, A.M.; Volkov, V.I.; Voevodin, M.A.; Bojko, V.V.

    2003-01-01

    The modified method for registration of particle deflection by a bent crystal was proposed and studied at the external proton beam of the Nuclotron. The telescope of scintillation counters was placed at the angle that was smaller than a crystal bending angle. The count dependence of the telescope on the crystal orientation was formed by the particles, which passed in channeling states only some part of the crystal length. Two maximums were observed in the dependencies due to particles captured into the channeling states on the crystal surface and in the crystal volume. This allows one to obtain, using the telescope and high-intensity beams, useful data about the particle channeling and the crystal, which usually demands more complicated registration by means of the coordinate detectors

  11. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar......Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  12. Current deflection NDE for pipeline inspection and monitoring

    Science.gov (United States)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  13. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    Science.gov (United States)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the

  14. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    Science.gov (United States)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  15. Introduction to Transverse Beam Dynamics

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  16. Transversal Lines of the Debates

    Directory of Open Access Journals (Sweden)

    Yolanda Onghena

    1998-12-01

    Full Text Available The Transversal Lines of the Debates gathers for publication the presentations of the scholars invited to the seminar. In the papers, Yolanda Onghena observes that the evolution from the cultural to the inter-cultural travels along four axes: the relations between cultureand society; the processes of change within identity-based dynamics; the representations of the Other; and, interculturality. Throughout the presentations and subsequent debates, whenever the different participants referred to aspects of the cultural identity problematic--”angst”, “obsession”, “deficit”, manipulation”, and others, these same participants in the Transversal Lines of the Debates also showed that, in certain areas, an optimistic viewpoint is not out of the question.

  17. TRANSVERSALITY AND INTERDISCIPLINARY DISCUSSION IN ...

    African Journals Online (AJOL)

    2010-07-19

    Jul 19, 2010 ... e o lo g ic a l S tu d ie s http://www.hts.org.za. HTS. Original Research. A rtic le #. 9. 1. 0. (page number not for citation purposes). TRANSVERSALITY ... mentorship. An interview with a mentor and mentee was used as a local, real narrative in the process. In the final section, the author reflected upon his own ...

  18. Transverse vertical dispersion in groundwater and the capillary fringe.

    Science.gov (United States)

    Klenk, I D; Grathwohl, P

    2002-09-01

    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were < 1 mm. The new measurements and the literature values indicate that alpha(tv) apparently declines with increasing flow velocity. The latter is attributed to incomplete diffusive mixing at the pore scale (pore throats). A simple conceptual model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  19. Effects of the combined action of axial and transversal loads on the failure time of a wooden beam under fire

    International Nuclear Information System (INIS)

    Nubissie, A.; Kingne Talla, E.; Woafo, P.

    2012-01-01

    Highlights: ► A wooden beam submitted to fire and axial and transversal loads is considered. ► The failure time is found to increase with the intensity of the loads. ► Implication for safety consideration is indicated. -- Abstract: This paper presents the variations of the failure time of a wooden beam (Baillonella toxisperma also called Moabi) in fire subjected to the combined effect of axial and transversal loads. Using the recommendation of the structural Eurocodes that the failure can occur when the deflection attains 1/300 of the length of the beam or when the bending moment attains the resistant moment, the partial differential equation describing the beam dynamics is solved numerically and the failure time calculated. It is found that the failure time decreases when either the axial or transversal loads increases.

  20. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...

  1. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    -section of soils in deflecting contaminated fluid from septic tank to different directions from the source of water within the same small portion of land. It was observed that angle of inclination does not have a significant effect on the deflection of ...

  2. The Utrecht 850 kV cascade generator I. Beam deflection and energy control

    NARCIS (Netherlands)

    Braams, C.M.; Smith, P.B.

    The beam deflection magnet and energy control system of the Utrecht cascade generator are described. The uniform-field magnet has entrance and exit slits located outside the magnetic held. Since the cascade generator produces a vertical beam, the most convenient choice for the angle of deflection

  3. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth of the insta......The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  4. Transversals in non-discrete groups

    Indian Academy of Sciences (India)

    Abstract. The concept of 'topological right transversal' is introduced to study right transversals in topological groups. Given any right quasigroup S with a Tychonoff topol- ogy T , it is proved that there exists a Hausdorff topological group in which S can be embedded algebraically and topologically as a right transversal of a ...

  5. Appraisal of transverse nasal groove: A study

    Directory of Open Access Journals (Sweden)

    Belagola D Sathyanarayana

    2012-01-01

    Full Text Available Background: Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. Aims: We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. Methods: We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. Results: One hundred patients were recruited in the study. Females (80% predominated over males. Most patients were of 15-45 years age group (70%. Majority of the transverse nasal lesions were classical transverse nasal groove (39% and others included transverse nasal line (28%, strip (28%, ridge (4% and loop (1%. Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Conclusions: Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.

  6. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon's properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd ...

  7. Determination of angle of light deflection in higher-derivative gravity theories

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  8. A simulation methodology of spacer grid residual spring deflection for predictive and interpretative purposes

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, H. K.; Yoon, K. H.

    1994-01-01

    The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by spacer grid residual spring deflection. In order to predict the spacer grid residual spring deflection as a function of burnup for various spring designs, a simulation methodology of spacer grid residual spring deflection has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key parameters affecting the residual spring deflection. The simulation methodology developed in this study can be utilized as an effective tool in evaluating the capability of a newly designed spacer grid spring to prevent the fretting wear-induced damage

  9. Matching Relationship between Precisions of Gravity Anomaly and Vertical Deflections in terms of Spherical Harmonic Function

    Directory of Open Access Journals (Sweden)

    WAN Xiaoyun

    2017-06-01

    Full Text Available Gravity anomalies and vertical deflections are important products of altimetry satellites. The precision indexes of them are essential for the design of future altimetry satellites. In this paper, the spherical harmonic function is used to discuss the precisions of gravity anomaly and vertical deflections. Firstly, the approximate matching relationship between gravity anomaly and vertical deflection error is deduced theoretically. Then, six ultra-high degree gravity field models are used to verify the correctness of the conclusions. The results of numerical experiments show that the errors of vertical defections and gravity anomaly satisfy the approximate proportional relation, that is, if the precision of vertical deflection is 1 μ rad, the precision of gravity anomaly is about 1.4 mGal. Conversely, if the precision of the gravity anomaly is 1 mGal, the precision of the corresponding vertical deflection is about 0.7 μ rad.

  10. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  11. Behavior of grid-stiffened composite structures under transverse loading

    Science.gov (United States)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  12. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    Science.gov (United States)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  13. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  14. Velocity Estimation of the Main Portal Vein with Transverse Oscillation

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann

    2015-01-01

    This study evaluates if Transverse Oscillation (TO) can provide reliable and accurate peak velocity estimates of blood flow the main portal vein. TO was evaluated against the recommended and most widely used technique for portal flow estimation, Spectral Doppler Ultrasound (SDU). The main portal...... vein delivers blood from the bowls to the liver, and patients with certain liver diseases have decreased flow in the portal vein. Errors in velocity estimation with SDU are well described, when the beam-to-flow angle is >70 degrees. TO estimates the flow angle independently and is not limited...... and subcostal were significantly different (intercostal mean SDU=0.202m/s, subcostal mean SDU=0.320m/s, pestimation...

  15. Noninterceptive transverse-beam measurements

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Mottershead, C.T.

    1981-01-01

    Totally noninterceptive techniques for accurate measurement of transverse beam distributions are required for high-current continuous wave (cw) linacs, such as the Fusion Materials Irradiation Test (FMIT) accelerator. Sensors responding to visible radiation from beam interactions with residual gas and computer algorithms reconstructing spatial and phase space distributions have been implemented. This paper reports on early measurements of the beam from the injector of the prototype FMIT facility at Los Alamos. The first section indicates hardware setup and performance whereas the second section describes the data-processing software. The third section outlines the resultant measurements and further developments are discussed in the fourth section

  16. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  17. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    Science.gov (United States)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  18. String formulation of space charge forces in a deflecting bunch

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2004-10-01

    Full Text Available The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. A 417, 158 (1998.NIMAER0168-900210.1016/S0168-9002(9800623-8

  19. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-01-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  20. Transverse and Longitudinal proximity effect

    Science.gov (United States)

    Jalan, Pryianka; Chand, Hum; Srianand, Raghunathan

    2018-04-01

    With close pairs (˜1.5arcmin) of quasars (QSOs), absorption in the spectra of a background quasar in the vicinity of a foreground quasar can be used to study the environment of the latter quasar at kpc-Mpc scales. For this we used a sample of 205 quasar pairs from the Sloan Digital Sky-Survey Data Release 12 (SDSS DR12) in the redshift range of 2.5 to 3.5 by studying their H I Ly-α absorption. We study the environment of QSOs both in the longitudinal as well as in the transverse direction by carrying out a statistical comparison of the Ly-α absorption lines in the quasar vicinity to that of the absorption lines caused by the inter-galactic medium (IGM). This comparison was done with IGM, matched in absorption redshift and signal-to-noise ratio (SNR) to that of the proximity region. In contrast to the measurements along the line-of-sight, the regions transverse to the quasars exhibit enhanced H I Ly-α absorption. This discrepancy can either be interpreted as due to an anisotropic emission from the quasars or as a consequence of their finite lifetime.

  1. Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors

    Science.gov (United States)

    Hong, Wan; Lv, Kui; Li, Bing; Jiang, Yuchen; Hu, Xiamin; Qu, Qizhong

    2017-10-01

    Deflection determination of concrete structures using distributed long-gauge strain sensors is investigated in this paper. Firstly, the relationship between deflection and distributed long-gauge strain of concrete beams is presented, and the method is independent of external load and takes account of structural nonlinearity. The deflection distribution along the span of a beam-like structure can be predicted from strain response for the whole process of loading (elastic stage, concrete cracking stage and steel yielding stage). Secondly, experiment of a reinforced concrete beam has been conducted to verify the accuracy of the method. Experimental results show that the relative error between the estimated and actual deflection can be controlled within about 5% while the error can reach up to about 70% if structural nonlinearity is not considered. Finally, the influence of error of material parameters and sensor gauge length on deflection estimation has been analyzed. The error of concrete compression strength has a limited influence on deflection prediction while the contribution of tensile concrete should be considered before concrete cracking. The error of area of tensile bars will affect the deflection accuracy after concrete cracking.

  2. Reliability analysis to resolve difficulty in choosing from alternative deflection models of RC beams

    Science.gov (United States)

    Kim, Jung J.; Reda Taha, Mahmoud M.; Noh, Hyuk-Chun; Ross, Timothy J.

    2013-05-01

    The probability of failure in reliability analysis depends on the integration of the joint probability density function (PDF) of uncertain variables at the violation regions of limit state functions corresponding to these variables. There might exist uncertainty in choosing computational models of resultants, which includes uncertain variables, and are incorporated in the limit state function. This uncertainty is not random, but can be considered as an epistemic uncertainty, since this uncertainty represents ambiguity in choosing from among alternative computational models; such an uncertainty is known as "non-specificity". In this study, non-specificity of computational models is implemented in reliability analysis for determining the deflections of reinforced concrete (RC) beams. A methodology to quantify this non-specificity is presented using possibility theory. Three deflection computational models, which accounts for the rigidity of concrete under tension using an effective moment of inertia, are selected. A limit state for a deflection limit is formulated for each deflection model and the probability of exceeding the deflection limits is calculated for each. Using possibility distributions, the three probabilities of exceeding a deflection limit are integrated and a new set of probabilities of exceeding a deflection limit are determined, where each probability is associated with a new metric that describes model non-specificity called the degree of confirmation. A case study illustrating the new reliability analysis to compute the non-specificity of a computational model is presented.

  3. Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating

    Science.gov (United States)

    Mehmood, R.; Rana, S.; Nadeem, S.

    2018-03-01

    Hydromagnetic transverse flow of an Oldroyd-B type fluid with suspension of nanoparticles and Newtonian heating effects is conferred in this article. Relaxation and Retardation time effects are taken into consideration. Using suitable transformations physical problem is converted into non-linear ordinary differential equations which are tackled numerically via Runge-Kutta Fehlberg integration scheme. Illustration of embedded constraints on flow characteristics are extracted through graphs. The physical response of velocity, temperature and concentration are investigated computationally. Momentum boundary layer thickness decreases but local heat and mass flux rises for Deborah number and Hartman number. The results provide interesting insights into certain applicable transport phenomena involving hydromagnetic rheological fluids.

  4. Flexible endoscope deflectability: changes using a variety of working instruments and laser fibers.

    Science.gov (United States)

    Poon, M; Beaghler, M; Baldwin, D

    1997-08-01

    To measure the effects of different working instruments and holmium laser fibers on the deflectability in a variety of actively deflectable flexible endoscopes, a benchtop study was performed. The endoscopes studied were the Storz 7.5 flexible ureteroscope, the AUR-7 and AUR-9 flexible ureteroscopes (Circon-ACMI), a prototype Mitsubishi flexible ureteroscope (Mitsubishi Optics, Inc.), the ACN flexible cystoscope (Circon-ACMI), and the Storz flexible cystoscope. Working instruments included 1.6F (Wolf) and 1.9F (Microvasive) electrohydraulic lithotripsy (EHL) probes, 1.9F two-prong graspers and Bagley baskets, 2.4F Segura and helical baskets (Microvasive), 3.0F Segura basket, and 200- and 365-micron holmium laser fibers (Xintec). In ureteroscopes, the effect of 1.6F and 1.9F EHL probes ranged from having no effect in the Xintec 6,000, to decreasing deflection by 30 degrees in the AUR-7. Working instruments that were 2.4F or greater reduced deflection from 33 degrees to 93 degrees. Better deflectability was noted with the 200-micron holmium laser fiber than with the 365-micron fiber. The diameter of the working instrument did not affect deflectability as severely in cystoscopes. No significant differences in deflection existed between the 365-micron and 200-micron fibers in the flexible nephroscopes tested. In general, working instruments less than 2.4F and the 200-micron laser fiber have little effect on deflectability compared with working instruments 2.4F or larger and the 365-micron fiber. Flexible cystoscopes, with their larger working channels and stronger deflection cables, are affected less by working instrument diameter than are flexible ureteroscopes.

  5. Deflection system of a high-speed streak camera in the form of a delay line

    International Nuclear Information System (INIS)

    Korzhenevich, I.M.; Fel'dman, G.G.

    1993-01-01

    This paper presents an analysis of the operation of a meander deflection system, well-known in oscillography, when it is used to scan the image in a streak-camera tube. Effects that are specific to high-speed photography are considered. It is shown that such a deflection system imposes reduced requirements both on the steepness and on the duration of the linear leading edges of the pulses of the spark gaps that generate the sweep voltage. An example of the design of a meander deflection system whose sensitivity is a factor of two higher than for a conventional system is considered. 5 refs., 3 figs

  6. Comparative study on the wake deflection behind yawed wind turbine models

    Science.gov (United States)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  7. Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.

    Science.gov (United States)

    Brumbelow, Matthew L; Farmer, Charles M

    2013-01-01

    This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater

  8. Contact interaction of flexible Timoshenko beams with small deflections

    Science.gov (United States)

    Papkova, I. V.; Krysko, A. V.; Saltykova, O. A.; Zakharova, A. A.; Krysko, V. A.

    2018-01-01

    In this work chaotic dynamics contact interaction of two flexible Tymoshenko beams, under the action of a transversal alternating load is investigated. The contact interaction of the beams is taken into account by the Kantor model. The geometric nonlinearity is taken into account by the model of T. von Karman. The system of partial differential equations of the twelfth order reduces to the system of ordinary differential equations by the method of finite differences of the second order. The resulting system by methods of Runge-Kutta type of the second, fourth and eighth orders was solved. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations. Chaotic vibrations of two flexible beams of Timoshenko were investigated and the optimal step values over the spatial coordinate and the time steps for the numerical experiment were found. Convergence for all applicable numerical methods have been achieved and shown that chaotic signals are true.

  9. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  10. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  11. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  12. Laparoscopic colectomy for transverse colon carcinoma.

    Science.gov (United States)

    Zmora, O; Bar-Dayan, A; Khaikin, M; Lebeydev, A; Shabtai, M; Ayalon, A; Rosin, D

    2010-03-01

    Laparoscopic resection of transverse colon carcinoma is technically demanding and was excluded from most of the large trials of laparoscopic colectomy. The aim of this study was to assess the safety, feasibility, and outcome of laparoscopic resection of carcinoma of the transverse colon. A retrospective review was performed to identify patients who underwent laparoscopic resection of transverse colon carcinoma. These patients were compared to patients who had laparoscopic resection for right and sigmoid colon carcinoma. In addition, they were compared to a historical series of patients who underwent open resection for transverse colon cancer. A total of 22 patients underwent laparoscopic resection for transverse colon carcinoma. Sixty-eight patients operated for right colon cancer and 64 operated for sigmoid colon cancer served as comparison groups. Twenty-four patients were identified for the historical open group. Intraoperative complications occurred in 4.5% of patients with transverse colon cancer compared to 5.9% (P = 1.0) and 7.8% (P = 1.0) of patients with right and sigmoid colon cancer, respectively. The early postoperative complication rate was 45, 50 (P = 1.0), and 37.5% (P = 0.22) in the three groups, respectively. Conversion was required in 1 (5%) patient in the laparoscopic transverse colon group. The conversion rate and late complications were not significantly different in the three groups. There was no significant difference in the number of lymph nodes harvested in the laparoscopic and open groups. Operative time was significantly longer in the laparoscopic transverse colectomy group when compared to all other groups (P = 0.001, 0.008, and transverse colectomy, respectively). The results of laparoscopic colon resection for transverse colon carcinoma are comparable to the results of laparoscopic resection of right or sigmoid colon cancer and open resection of transverse colon carcinoma. These results suggest that laparoscopic resection of transverse

  13. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  14. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  15. Analysis for lateral deflection of railroad track under quasi-static loading

    Science.gov (United States)

    2013-10-15

    This paper describes analyses to examine the lateral : deflection of railroad track subjected to quasi-static loading. : Rails are assumed to behave as beams in bending. Movement : of the track in the lateral plane is constrained by idealized : resis...

  16. Measuring Time-Dependent Pavement Deflection Profiles Under Drive-by Conditions with a Portable System

    National Research Council Canada - National Science Library

    Peekna, Andres

    2002-01-01

    .... The investigation showed that in order to credibly extrapolate from sensors away from the tires to deflection underneath the tires, a laterally separated pair of sensors at each longitudinal location would be necessary...

  17. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  18. Development of a laser-based sensor to measure true road surface deflection.

    Science.gov (United States)

    2017-04-01

    The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...

  19. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  20. Assessment of continuous deflection measurement devices in Louisiana - rolling wheel deflectometer : final report 581.

    Science.gov (United States)

    2017-09-01

    The use of the Rolling Wheel Deflectometer (RWD), which measures deflections at highway speeds, offers the potential to characterize the structural capacity of pavements without delays and in a cost-effective way. The objective of this study was twof...

  1. Directed flow of charged particles at mid-rapidity relative to the spectator plane in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Friederike Bock; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Czopowicz, Tobiasz Roman; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Elwood, Brian Gerard; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Goerlich, Lidia; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohisin Mohammed; Khan, Palash; Khan, Kamal Hussain; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Jin Sook; Kim, Beomkyu; Kim, Taesoo; Kim, Dong Jo; Kim, Se Yong; Kim, Mimae; Kim, Do Won; Kim, Jonghyun; Kim, Minwoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Sung Chul; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nasar, Mahmoud; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Tinku; Sinha, Bikash; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yaping; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wielanek, Daniel; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy; Williams, Crispin; Winn, Michael Winn; Windelband, Bernd Stefan; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yang, Ping; Yano, Satoshi; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Yonghong; Zhang, Xiaoming; Zhang, Fan; Zhang, Haitao; Zhou, You; Zhou, Fengchu; Zhou, Daicui; Zhu, Hongsheng; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-12-06

    The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV relative to the collision plane defined by the spectator nucleons. Both, the rapidity odd ($v_1^{odd}$) and even ($v_1^{even}$) directed flow components are reported. The $v_1^{odd}$ component has a negative slope as a function of pseudorapidity similar to that observed at the highest RHIC energy, but with about a three times smaller magnitude. The $v_1^{even}$ component is found to be non-zero and independent of pseudorapidity. Both components show little dependence on the collision centrality and change sign at transverse momenta around 1.2-1.7 GeV/c for midcentral collisions. The shape of $v_1^{even}$ as a function of transverse momentum and a vanishing transverse momentum shift along the spectator deflection for $v_1^{even}$ are consistent with dipole-like initial density fluctuations in the overlap zone of the nuclei.

  2. Applicability valuation for evaluation of surface deflection in automotive outer panels

    OpenAIRE

    D.H. Park; W.R. Bae; H.J. Jeong; B.S. So; T.J. Ko; P.K.D.V. Yarlagadda

    2008-01-01

    Purpose: Upon unloading in a forming process there is elastic recovery, which is the release of the elasticstrains and the redistribution of the residual stresses through the thickness direction, thus producing surfacedeflection. It causes changes in shape and dimensions that can create major problem in the external appearanceof outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Manyfactors could affect surface deflection in the process, su...

  3. MEMS Capacitive Micro Thermometer Based on Tip Deflection of Bimetallic Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Shahriar Kouravand

    2006-08-01

    Full Text Available Thermometry is an interested field in physics and metrology. A capacitive micro thermometer based on the tip deflection of bimetallic cantilever beam was designed and described in this paper. The governing thermo mechanical equations were derived and solved analytically. The temperature rising was expressed with respect to capacitance change of a comb drive. The results of beam deflection were compared well with the existing results.

  4. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    Nellessen, J.; Sengstock, K.; Muller, J.H.; Ertmer, W.; Wallis, H.

    1989-01-01

    This paper reports on a sodium atomic beam with a density of approx. 10 5 at cm 3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  5. The Effect of Material and Side Walls on Hull Deflection during a Blast Event

    Science.gov (United States)

    2017-12-13

    ARL-CR-0822 ● DEC 2017 US Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event...Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event prepared by Danielle Abell SURVICE...2. REPORT TYPE Contractor Report 3. DATES COVERED (From - To) June 2016–September 2017 4. TITLE AND SUBTITLE The Effect of Material and Side

  6. Beam instability induced by rf deflectors in the combiner ring of the CLIC test facility and mitigation by damped deflecting structures

    Directory of Open Access Journals (Sweden)

    David Alesini

    2011-02-01

    Full Text Available In the CTF3 (CLIC test facility 3 run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increased, changing the position of the rods inside the cells, and special antennas have been inserted to absorb the power released by the beam to the modes. The deflectors have been made in aluminum to reduce the costs and delivery time and have been successfully tested and installed in the ring. The design, the realization procedures, and the rf test results are illustrated.

  7. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  8. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  9. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    Science.gov (United States)

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (pWire deflection significantly increased the roughness of the wires S and STC (porthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  10. A novel deflection shape function for rectangular capacitive micromachined ultrasonic transducer diaphragms

    Directory of Open Access Journals (Sweden)

    Zhou Zheng

    2015-09-01

    Full Text Available A highly accurate analytical deflection shape function that describes the deflection profiles of capacitive micromachined ultrasonic transducers (CMUTs with rectangular membranes under electrostatic pressure has been formulated. The rectangular diaphragms have a thickness range of 0.6–1.5 μm and a side length range of 100–1000 μm. The new deflection shape function generates deflection profiles that are in excellent agreement with finite element analysis (FEA results for a wide range of geometry dimensions and loading conditions. The deflection shape function is used to analyze membrane deformations and to calculate the capacitances between the deformed membranes and the fixed back plates. In 50 groups of random tests, compared with FEA results, the calculated capacitance values have a maximum deviation of 1.486% for rectangular membranes. The new analytical deflection function can provide designers with a simple way of gaining insight into the effects of designed parameters for CMUTs and other MEMS-based capacitive type sensors.

  11. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-01-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  12. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  13. Improved Vector Velocity Estimation using Directional Transverse Oscillation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2015-01-01

    emissions at a 90 degrees beam-to-flow angle at a vessel depth of 30 mm. The standard deviation (SD) drops from 9.14% for TO to 5.4%, when using DTO. The bias is -5.05% and the angle is found within +/- 3.93 degrees. At 70 mm a relative SD of 7% is obtained, the bias is -1.74%, and the angle is found within......A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is selfcalibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal......, and a modified TO estimator can be used to find both the lateral and axial velocity. The approach is self-calibrating as the lateral oscillation period directly is estimated from the directional signal through a Fourier transform. The approach was implemented on the SARUS scanner using a BK Medical 8820e...

  14. Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Prokudin, Alexei [JLAB; Bacchetta, Alessandro [INFN-PAVIA

    2013-07-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  15. No generalized transverse momentum dependent factorization in the hadroproduction of high transverse momentum hadrons

    NARCIS (Netherlands)

    Rogers, T.C.; Mulders, P.J.G.

    2010-01-01

    It has by now been established that standard QCD factorization using transverse momentum dependent parton distribution functions fails in hadroproduction of nearly back-to-back hadrons with high transverse momentum. The essential problem is that gauge-invariant transverse momentum dependent parton

  16. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  17. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    These transverse momentum-dependent parton distribution functions are of significance for the analysis of azimuthal asymmetries in semi-inclusive deep inelastic scattering, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized hadrons. In this context we also ...

  18. Average Transverse Momentum Quantities Approaching the Lightfront

    NARCIS (Netherlands)

    Boer, Daniel

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the p (T) broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large

  19. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    Collaboration [2] describes correlations of the intrinsic quark transverse momen- tum and the transverse nucleon ..... These results are in agreement with the large Nc predictions [41], Bag. Model results reported in [42], ..... work is supported by a grant from the US Department of Energy under contract. DE-FG02-07ER41460.

  20. Anaesthetic considerations in patients with transverse myelitis ...

    African Journals Online (AJOL)

    Transverse myelitis is an acute or subacute inflammatory disorder involving the spinal cord. Clinical signs are due to the involvement of the ascending and descending tracts in the transverse plane of the spinal cord. The most common cause is autoimmune. These patients may present with various clinical findings with ...

  1. Coupled analysis of material flow and die deflection in direct aluminum extrusion

    NARCIS (Netherlands)

    Assaad, W.; Geijselaers, Hubertus J.M.

    2010-01-01

    The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion trial and machined several times until it works properly. The die is designed by a trial and error method which is an expensive process in terms of time and

  2. MRI in acute transverse myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Holtaas, S. (Dept. of Diagnostic Radiology, Univ. Hospital Lund (Sweden)); Basibueyuek, N. (Dept. of Diagnostic Radiology, Univ. Hospital Lund (Sweden)); Fredriksson, K. (Dept. of Neurology, Univ. Hospital Lund (Sweden))

    1993-03-01

    The MRI examinations of seven patients with acute transverse myelopathy (ATM) were analysed. The patients were examined 2-5 times during the course of their disease with short and long TR/TE spin-echo sequences in the sagittal projection. A previous history of autoimmune disorder and/or signs of infection at the onset of ATM were present in all cases. Cerebrospinal fluid analysis showed local synthesis of immunoglobulin in the nervours system in three cases and signs of infectious myelitis in one. During the acute phase four patients had local enlargement of the cord and all had increased signal on long TR/TE sequences. The outcome was grave in the majority of patients and there seemed to be a correlation between the degree of cord enlargement, persistence of increased signal intensity and limited recovery. Atrophy and remaining high signal intensity were noted on late MRI patients with poor outcome. In one patient with probable anterior spinal artery occlusion, cavitation of the cord was seen. (orig.)

  3. Transverse spin dependent azimuthal asymmetries at COMPASS

    CERN Document Server

    Parsamyan, Bakur

    2011-01-01

    In semi-inclusive deep inelastic scattering of polarized leptons on a transversely polarized target eight target transverse spin-dependent azimuthal modulations are allowed. In the QCD parton model half of these asymmetries can be interpreted within the leading order approach and the other four are twist-three contributions. The first two leading twist asymmetries extracted by HERMES and COMPASS experiments are related: one to the transversity distribution and the Collins effect, the other to the Sivers distribution function. These results triggered a lot of interest in the past few years and allowed the first extractions of the transversity and the Sivers distribution functions of nucleon. The remaining six asymmetries were obtained by the COMPASS experiment using a 160 GeV/c longitudinally polarized muon beam and transversely polarized deuteron and proton targets. Here we review preliminary results from COMPASS proton data of 2007.

  4. The transverse acetabular ligament: optimizing version.

    Science.gov (United States)

    Beverland, David

    2010-09-07

    In total hip arthroplasty (THA), excessive retroversion is associated with posterior instability, anterior impingement, and resultant groin pain. Excessive anteversion can lead to anterior instability and posterior impingement. The transverse acetabular ligament straddles the inferior limit of the bony acetabulum. It is a strong load-bearing structure and, in the normal hip, in association with the labrum, provides part of the load-bearing surface for the femoral head. It is our hypothesis that the transverse acetabular ligament defines normal version for the acetabulum. In Belfast, we found that using the transverse acetabular ligament helped reduce our primary dislocation rate from 3.7% to 1%. The key is good intraoperative exposure. A grading of 1 to 4 was based on 1000 consecutive cases: (1) normal transverse acetabular ligament easily visible on exposure of the acetabulum, 49%; (2) covered by soft tissue, 35.1%--cleared by blunt dissection; (3) covered by osteophytes, 15.6%--cleared using an acetabular reamer; (4) no transverse acetabular ligament identified, 0.3%. As can be seen, the transverse acetabular ligament is only immediately visible in 49% of cases. In the other 51%, soft tissue or bone must be cleared to define the ligament. The advantages of the transverse acetabular ligament are many. It is independent of patient positioning. The cup version can be individualized by the patient. The surgeon can avoid estimating version angle of 15° to 20° intraoperatively. It is easy to teach and consistently present. It is valuable in minimally invasive surgery. Using the transverse acetabular ligament provides an acceptable dislocation rate with the posterior approach. If the cup is cradled by the transverse acetabular ligament, it helps restore acetabular joint center. However, the transverse acetabular ligament does not help with inclination. We recommend 35° of operative inclination when using the posterior approach. Copyright 2010, SLACK Incorporated.

  5. Measurement of wire deflection on loading may indicate union in Ilizarov constructs, an in vitro model.

    Science.gov (United States)

    Lineham, Beth; Stewart, Todd; Harwood, Paul

    2018-02-02

    No entirely reliable method exists for assessing union during Ilizarov treatment. Premature removal results in potential treatment failure; hence, alternative methods warrant investigation. Wire deflection might provide an indication of fracture site deformation on weight bearing, indicating progress towards union. This study aimed to test a method for assessing wire deflection within an Ilizarov frame. (1) To assess the repeatability of our novel measurement method in measuring wire deflection within an Ilizarov frame in vitro. (2) To compare the amount of wire deflection in an unstable model with that in an intact bone model. (3) To assess accuracy of this method by comparing wire deflection measured with overall machine extension. Tests were performed on clinical grade-tensioned fine wire 4-ring Ilizarov constructs stabilising a simulated fracture, with and without an unstable defect. Models were sequentially loaded to 700 N using an Instron testing machine. A digital depth gauge attached to the superior ring measured relative wire displacement at the ring closest to the fracture. Tests were repeated 3 times. (1) Both unstable and stable bone models produced highly repeatable load deformation curves (R 2  = 0.98 and 0.99). (2) In the unstable model, wires tensioned at 882 and 1274 N produced mean maximum deflections of 2.41 and 2.69 mm compared with 0.05 and 0.04 mm in the intact bone model (significant p measurable difference in wire deflection between stable and unstable situations exists using this method which appears accurate and repeatable, with clear correlation between displacement and load and displacement and machine extension. This approach might be clinically applicable, and further clinical testing is required.

  6. Ultrasound Vector Flow Imaging: Part I: Sequential Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional, sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived vector flow imaging, directional beamforming...

  7. Operational characteristics and power scaling of a transverse flow ...

    Indian Academy of Sciences (India)

    a rooftop mirror for folding the beam and a plane ZnSe output coupler of 50% reflectivity. Laser was operated with three different electrode separations. The optic axis was in the downstream at a distance equal to about one-half of the electrode separation, where the laser power obtained was the maximum. Even though the ...

  8. Operational characteristics and power scaling of a transverse flow ...

    Indian Academy of Sciences (India)

    It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser power was not increasing when the discharge volume and the gas volumetric flow were increased by increasing the electrode separation keeping the gas flow velocity constant. The discharge voltage too ...

  9. INFLUENCE OF CYCLIC LOADING ON THE DEFLECTION DEVELOPMENT OF CONCRETE SPECIMENS

    Directory of Open Access Journals (Sweden)

    Marek Foglar

    2015-12-01

    Full Text Available Durability of the structures is one of the most discussed issues of last decades. It is one of the most easily measured properties for analysis during the structural lifetime. Concrete deflections increase over time due to rheological effects (creep and shrinkage in addition cyclic creep can be observed on the cyclically loaded structures. The deflection increase due to the cyclic creep is not properly quantified. The fatigue damage function presented in this paper provides an analytical solution for the deflection development due to cyclic loading. The evaluation of the deflection is based on the reduction of the initial modulus of elasticity. Main principles of the function are discussed and compared with the standardized approaches for the fatigue assessment. Experimental verification of the fatigue damage function was carried out on reinforced concrete specimens and on prestressed concrete slab. To improve the standardized approaches, the real stress distribution was considered with the use of newly- developed method of partial integration over the height of the specimen compressive zone. The deflection increase due to cyclic loading was measured regularly with inductive displacement transducer. Comparison of the measured values and the values calculated using the presented function shows good agreement. The fatigue damage function can be used easily in “in- hand” calculations, or can be inserted into FEM-based software and used in practical applications for assessing the increase in the deformations of concrete structural elements caused by cyclic loading.

  10. The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development

    Science.gov (United States)

    Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2018-05-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  11. Measurement and production of electron deflection using a sweeping magnetic device in radiotherapy

    International Nuclear Information System (INIS)

    Damrongkijudom, N.; Oborn, B.; Rosenfeld, A.; Butson, M.

    2006-01-01

    The deflection and removal of high energy electrons produced by a medical linear accelerator has been attained by a Neodymium Iron Boron (NdFeB) permanent magnetic deflector device. This work was performed in an attempt to confirm the theoretical amount of electron deflection which could be produced by a magnetic field for removal of electrons from a clinical x-ray beam. This was performed by monitoring the paths of mostly monoenergetic clinical electron beams (6MeV to 20MeV) swept by the magnetic fields using radiographic film and comparing to first order deflection models. Results show that the measured deflection distance for 6 MeV electrons was 18 ± 6 cm and the calculated deflection distance was 21.3 cm. For 20 MeV electrons, this value was 5 ± 2 cm for measurement and 5.1 cm for calculation. The magnetic fields produced can thus reduce surface dose in treatment regions of a patient under irradiation by photon beams and we can predict the removal of all electron contaminations up to 6 MeV from a 6 MV photon beam with the radiation field size up to 10 x 10 cm 2 . The model can also estimate electron contamination still present in the treatment beam at larger field sizes

  12. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    Science.gov (United States)

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P wires increased their load deflection rates.

  13. Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods

    Science.gov (United States)

    Thiry, Nicolas; Vasile, Massimiliano

    2017-11-01

    In this paper we assess and compare the effectiveness of four classes of non-nuclear asteroid deflection methods applied to a wide range of virtual collision scenarios. We consider the kinetic impactor, laser ablation, the ion beaming technique and two variants of the gravity tractor. A simple but realistic model of each deflection method was integrated within a systematic approach to size the spacecraft and predict the achievable deflection for a given mission and a given maximum mass at launch. A sample of 100 synthetic asteroids was then created from the current distribution of NEAs and global optimisation methods were used to identify the optimal solution in each case according to two criteria: the minimum duration between the departure date and the time of virtual impact required to deflect the NEA by more than two Earth radii and the maximum miss-distance achieved within a total duration of 10 years. Our results provide an interesting insight into the range of applicability of individual deflection methods and argue the need to develop multiple methods in parallel for a global mitigation of all possible threats.

  14. The Deflector Selector: A Machine Learning Framework for Prioritizing Hazardous Object Deflection Technology Development

    Science.gov (United States)

    Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck

    2018-01-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  15. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  16. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  17. Scaling properties of the transverse mass spectra

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.

    2002-01-01

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's relativistic heavy-ion collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m t . The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m t -scaling is also present in proton-antiproton collider data and compare it to m t -scaling at RHIC. (orig.)

  18. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  19. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  20. Transverse steering of two-component beams

    International Nuclear Information System (INIS)

    Murin, B.P.; Bondarev, B.U.; Durkin, A.P.; Lomize, L.G.; Soloviev, L.Yu.; Fedotov, A.P.

    Coherent transverse oscillations are considered which occur during simultaneous acceleration of proton and H - beams due to arbitrary displacements in elements of the focusing channel. To suppress these oscillations, a beam adjustment station is proposed, in which each quadrupole lens of two doublets is provided with a special dipole component of the magnetic field. These steering elements, together with the beam transverse position monitors, permit steering the transverse position of beams of opposite signs in both transverse planes. The number of steering stations needed is chosen, and some algorithms for control are discussed. It is shown that some of the control algorithms will permit not only the suppression of coherent oscillations, but a decrease in the radius and emittance of the beam

  1. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    Science.gov (United States)

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  2. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  3. Investigation of UWB Wind Turbine Blade Deflection Sensing with a Tip Antenna inside a Blade

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2016-01-01

    An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections...... are tracked via two radio links using delay-based distance estimation and triangulation. In order to build reliable radio links, time-domain pulse field distributions are simulated to optimize the in-blade tip antenna polarization and the locations of the two root antennas around the root surface. Full......-blade time-domain measurements are proposed to verify the simulations and realize the blade deflection sensing with an in-blade tip antenna. With the optimized in-blade tip antenna polarization and two root antenna locations, an accuracy of 2 cm is achieved for the tip-root antenna distance estimation...

  4. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions

    Science.gov (United States)

    Zhang, Yin

    2016-02-01

    A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.

  5. Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali; Banerjee, Ayan

    2017-10-01

    In this paper, we study the deflection of light by a class of charged wormholes within the context of the Einstein-Maxwell-dilaton theory. The primordial wormholes are predicted to exist in the early universe, where inflation is driven by the dilaton field. We perform our analysis through optical geometry using the Gibbons-Werner method (GW) by adopting the Gauss-Bonnet theorem and the standard geodesics approach. We report an interesting result for the deflection angle in leading-order terms—namely, the deflection angle increases due to the electric charge Q and the magnetic charge P , whereas it decreases due to the dilaton charge Σ . Finally, we confirm our findings by means of geodesics equations. Our computations show that the GW method gives an exact result in leading-order terms.

  6. Origin of light-deflection in lithium niobate and lithium tantalate under electric field.

    Science.gov (United States)

    Guilbert, Laurent

    2009-06-22

    The deflection of light reported by Müller et al. in lithium niobate [Appl. Phys. B 78, 367-370] and lithium tantalate [Appl. Optics 43 (34), 6344-6347] under electric field originates from refraction at domain-walls, like in ferroelastics. In ferroelectrics the optical discontinuity takes place at domain-walls as a consequence of the electro-optic effect. The theoretical deflection angle calculated from Snell's law is proportional to the square root of the electric field and matches the experimental results reported by Müller et al. for lithium niobate. The finite domain-wall thickness mentioned by the authors is not involved in the deflection phenomenon.

  7. Analysis of crack and deflection states of high performance reinforced fiber concrete deep beams with openings

    Directory of Open Access Journals (Sweden)

    Piotr Smarzewski

    2014-08-01

    Full Text Available The article presents the crack and deflection states analysis of the reinforced deep beams with openings made of high performance steel and polypropylene fibre concrete. Research was carried out with regard to quantity and the type of reinforcement. The deep beam T1 was constructed conventionally with steel rods reinforcement. As regards deep beams T2 and T3, instead of the steel wire mesh, fibre reinforcement of variable fibre volume percentage was applied. The analysis of the behaviour of the deep beams under static load was based on the measurements of cracks and deflections.[b]Keywords[/b]: reinforced concrete deep beams with openings, high performance concrete, steel fibre, polypropylene fibre, crack state, deflections

  8. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  9. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  10. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  11. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  12. An innovating method to measure bridge deflection using interference-based sensors

    Science.gov (United States)

    Kung, Peter; Wang, Lutang; Comanici, Maria Iulia

    2012-04-01

    The Vibrofiber sensor is a Fabry-Perot cavity formed between two broad band fiber gratings creating interference fringes. It was introduced three years ago to monitor the vibration and temperature rise of the stator end winding in a power generator.(1) This paper will discuss the use of Vibrofiber to monitor the deflection of the bridge under adverse conditions: wide temperature swings, excess load, strong winds, earth quake, etc. The fringes in these cavity sensors have features like peaks and valleys which are sensitive to temperature and strain. When the bridge becomes overloaded, we are interested in knowing the extent of the deflection. In addition, we might want to locate the cause of the overload. A simple Sagnac FBG interferometer has been invented to provide such diagnostics. A pair of long fibers with such cavity sensors can be installed on the underside of the target bridge segment between two supporting columns. The objective is to monitor the deflection together with any distortion of the bridge deck. Each of the 2 long fiber segments has a pair of cavity sensors, one measures the deflection as a result of the excess strain, and the other measures temperature and provides compensation for the deflection data. An array of cavity sensors with different center wavelengths will be used to support the typical multi-segment bridge structure. The interrogation unit is based on a tunable laser that can hop to different ITU grids. A separate DFB laser will run a grating based Sagnac interferometer, measuring weight in motion, identifying the speed and the make of vehicle in traffic and provide deflection diagnostics. Overloaded trucks and speeding vehicles can be captured and tagged for corrective actions. The interrogation unit is equipped with wireless Ethernet communication enabling the monitoring of many bridges from a central location and similarly warning can be initiated to alert the central traffic control ahead of any problems.

  13. Transverse structure of the QCD string

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2010-01-01

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.

  14. Evaluation of the photocathode laser transverse distribution

    Energy Technology Data Exchange (ETDEWEB)

    Saisa-ard, Chaipattana [DESY, Zeuthen (Germany); Chiang Mai Univ., Chiang Mai (Thailand); Krasilnikov, Mikhail; Vashchenko, Grygorii [DESY, Zeuthen (Germany)

    2016-07-01

    Many years experience of electron source developments at the photo injector test facility at DESY in Zeuthen (PITZ) show that the photocathode laser is the one of major tools to produce high brightness electron beams. The transverse distribution of the laser on the photocathode plays a significant role in the high brightness photo injector optimization. However, the imperfections in the laser beam profile according to the deviation from a radially homogeneous profile directly result in transversely distorted charged particle distributions. This includes inhomogeneous core as well as transverse halo which is due to not sharp edges around the core. The laser transverse distribution is measured at PITZ using a virtual cathode:this is a CCD camera located at the position which is optically equivalent to the photocathode position (so called virtual cathode). An algorithm is developed for the evaluation of the experimentally obtained transverse profiles. It fits a flat-top or an inhomogeneous rotational symmetric core with exponentially decaying tails to an experimental distribution. The MATLAB script with implemented algorithm is applied to a set of measured transverse laser distributions. Results of the analysis will be presented.

  15. An analytical solution to proton Bragg peak deflection in a magnetic field

    International Nuclear Information System (INIS)

    Wolf, Russell; Bortfeld, Thomas

    2012-01-01

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  16. Tip position control of a two-link flexible robot manipulator based on nonlinear deflection feedback

    CERN Document Server

    Oke, G

    2003-01-01

    The control of flexible link manipulators has gained an increasing importance in robotics, in recent years. To control the tip of a flexible manipulator, the joint angles should converge to the desired positions fast and elastic deflections must be effectively suppressed. In this study, a two-link flexible manipulator is controlled by three methods and the results are compared. These methods are, Pd control, PD control augmented by a nonlinear correction term feedback, where the correction term is a function of the deflection of each link, and an adaptive fuzzy controller with the nonlinear correction term feedback. Simulations have been carried out to compare the performances of all three methods.

  17. Large deflection analysis of cantilever beam under end point and distributed load

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Tolou, N; Barari, Amin

    2014-01-01

    distributed loads. Direct nonlinear solution by use of homotopy analysis method was implemented to drive the semi-exact solution of trajectory position of any point along the beam length. For the purpose of comparison, the deflections were calculated and compared to those of finite element method which...... requires numerical solution of simultaneous equations which is a significant drawback for optimization or reliability analysis. This paper is motivated to overcome these shortcomings by presenting an analytical solution for the large deflection analysis of a cantilever beam under free end point and uniform...

  18. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  19. Phased-array vector velocity estimation using transverse oscillations

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Marcher, Jønne; Jensen, Jørgen Arendt

    2012-01-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicabil......A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical...... of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process......, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm....

  20. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  1. High Frame Rate Vector Velocity Estimation using Plane Waves and Transverse Oscillation

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    This paper presents a method for estimating 2-D vector velocities using plane waves and transverse oscillation. The approach uses emission of a low number of steered plane waves, which result in a high frame rate and continuous acquisition of data for the whole image. A transverse oscillating field...... in a flow rig phantom is scanned at beam-to-flow angles of 90, 75, and 60◦ . The relative bias is between -1.4 % and -5.8 % and the relative std. between 5 % and 8.2 % for the lateral velocity component at the measured beam-to-flow angles. The estimated flow angle is 73.4◦± 3.6◦ for the measurement at 75...

  2. New Developments in Vector Velocity Imaging using the Transverse Oscillation Approach

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Pihl, Michael Johannes; Olesen, Jacob Bjerring

    2013-01-01

    Vector velocity imaging using the Transverse Oscillation (TO) approach has recently been FDA approved for linear array transducers on a commercial platform. It can now be used clinically for studying the complex flow at e.g. bifurcations, valves, and the heart in real time. Several clinical...

  3. Comparison of Vector Velocity Imaging using Directional Beamforming and Transverse Oscillation for a Convex Array Transducer

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    Vector velocity imaging can reveal both the magnitude and direction of the blood velocity. Several techniques have been suggested for estimating the velocity, and this paper compares the performance for directional beamforming and transverse oscillation (TO) vector flow imaging (VFI). Data have b...

  4. Variable deflection response of sensitive CNT-on-fiber artificial hair sensors from CNT synthesis in high aspect ratio microcavities

    Science.gov (United States)

    Slinker, Keith; Maschmann, Matthew R.; Kondash, Corey; Severin, Benjamin; Phillips, David; Dickinson, Benjamin T.; Reich, Gregory; Baur, Jeff

    2015-03-01

    Crickets, locusts, bats, and many other animals detect changes in their environment with distributed arrays of flow-sensitive hairs. Here we discuss the fabrication and characterization of a relatively new class of pore-based, artificial hair sensors that take advantage of the mechanical properties of structural microfibers and the electromechanical properties of self-aligned carbon nanotube arrays to rapidly transduce changes in low speed air flow. The radially aligned nanotubes are able to be synthesized along the length of the fibers inside the high aspect ratio cavity between the fiber surface and the wall of a microcapillary pore. The growth self-positions the fibers within the capillary and forms a conductive path between detection electrodes. As the hair is deflected, nanotubes are compressed to produce a typical resistance change of 1-5% per m/s of air speed which we believe are the highest sensitivities reported for air velocities less than 10 m/s. The quasi-static response of the sensors to point loads is compared to that from the distributed loads of air flow. A plane wave tube is used to measure their dynamic response when perturbed at acoustic frequencies. Correlation of the nanotube height profile inside the capillary to a diffusion transport model suggests that the nanotube arrays can be controllably tapered along the fiber. Like their biological counterparts, many applications can be envisioned for artificial hair sensors by tailoring their individual response and incorporating them into arrays for detecting spatio-temporal flow patterns over rigid surfaces such as aircraft.

  5. Deflection monitoring for a box girder based on a modified conjugate beam method

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  6. Retrolensing by a wormhole at deflection angles π and 3 π

    Science.gov (United States)

    Tsukamoto, Naoki

    2017-04-01

    The deflection angle of a light ray can be arbitrarily large near a light sphere. The time-symmetrical shape of light curves of a pair of light rays reflected by a light sphere of a lens object does not depend on the details of the lens object. We consider retrolensing light curves of sunlight with deflection angles π and 3 π by an Ellis wormhole, which is the simplest Morris-Thorne wormhole. If an Ellis wormhole with a throat parameter a =1011 km is 100 pc away from an observer and if the Ellis wormhole, the observer, and the Sun are aligned perfectly in this order, the apparent magnitudes of a pair of light rays with deflection angles π and 3 π become 11 and 18, respectively. The two pairs of light rays make a superposed light curve with two separable peaks and they break down time symmetry of a retrolensing light curve. The observation of the two separated peaks of the light curves gives us information on the details of the lens object. If the observer can also separate the pair of the images with the deflection angle π into a double image, he or she can say whether the retrolensing is caused by an Ellis wormhole or a Schwarzschild black hole.

  7. Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields

    International Nuclear Information System (INIS)

    O'Donoghue, Kilian; Cantillon-Murphy, Pádraig

    2013-01-01

    This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory

  8. New method for the detection of light deflection by solar gravity.

    Science.gov (United States)

    Shapiro, I I

    1967-08-18

    The prediction of Einstein's theory of general relativity that light will be deflected by the sun may be tested by sending radio waves from the earth to Venus or Mercury when either passes behind the sun and detecting the echoes with a radar interferometer.

  9. Astrometric Light Deflection Test of General Relativity for Non-spherical Bodies: Close Approach to Jupiter

    Science.gov (United States)

    Casertano, Stefano

    2016-10-01

    Einstein's theory of General Relativity is a key component of our understanding of cosmology, underlying the interpretation of cosmic acceleration in terms of Dark Energy. Gravitational lensing is a major element of modern observational cosmology, used both in reconstructing the mass distribution of galaxies and clusters of galaxies, and in predicting the magnification of sources behind massive clusters. An astrometric verification of gravitational lensing was historically the first experimental test of General Relativity, yet there has been to date no verification of the deflection predicted for a non-spherical source. We propose to use the astrometric capabilities of WFC3 in spatial scan mode to observe the apparent shift in position of several stars in three separate fields during their near-occultation by Jupiter. These measurements will provide two fundamental tests of General Relativity: (1) one of the most precise light-deflection tests ever conducted, and the most precise in the visible, verifying the GR prediction with a precision of 0.04%, and (2) the first measurement of the differential deflection due to the flattening of Jupiter's gravitational potential, verifying the GR prediction of deflection by a *non-spherical* mass with a precision of 5%.

  10. Comparative research on the methods for measuring the mode deflection angle of cylindrical resonator gyroscope

    Science.gov (United States)

    Wang, Kai; Fan, Zhenfang; Wang, Dongya; Wang, Yanyan; Pan, Yao; Qu, Tianliang; Xu, Guangming

    2016-10-01

    The existence of mode deflection angle in the cylindrical resonator gyroscope (CRG) leads to the signal drift on the detecting nodes of the gyro vibration and significantly decreases the performance of the CRG. Measuring the mode deflection angle efficiently is the foundation of tuning for the imperfect cylindrical shell resonator. In this paper, an optical method based on the measuring gyroscopic resonator's vibration amplitude with the laser Doppler vibrometer and an electrical method based on measuring the output voltage of the electrodes on the resonator are both presented to measure the mode deflection angle. Comparative experiments were implemented to verify the methodology and the results show that both of the two methods could recognize the mode deflection angle efficiently. The precision of the optical method relies on the number and position of testing points distributed on the resonator. The electrical method with simple circuit shows high accuracy of measuring in a less time compared to the optical method and its error source arises from the influence of circuit noise as well as the inconsistent distribution of the piezoelectric electrodes.

  11. Cold beam of isotopically pure Yb atoms by deflection using 1D ...

    Indian Academy of Sciences (India)

    We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK. Keywords. Laser cooling; cold atoms; atomic beam; optical molasses. PACS Nos 37.10.De; 42.50.

  12. A deformation analysis method of stepwise regression for bridge deflection prediction

    Science.gov (United States)

    Shen, Yueqian; Zeng, Ying; Zhu, Lei; Huang, Teng

    2015-12-01

    Large-scale bridges are among the most important infrastructures whose safe conditions concern people's daily activities and life safety. Monitoring of large-scale bridges is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions are the key and difficult problems in bridge deformation monitoring field. Deflection is the important index for evaluation of bridge safety. This paper proposes a forecasting modeling of stepwise regression analysis. Based on the deflection monitoring data of Yangtze River Bridge, the main factors influenced deflection deformation is chiefly studied. Authors use the monitoring data to forecast the deformation value of a bridge deflection at different time from the perspective of non-bridge structure, and compared to the forecasting of gray relational analysis based on linear regression. The result show that the accuracy and reliability of stepwise regression analysis is high, which provides the scientific basis to the bridge operation management. And above all, the ideas of this research provide and effective method for bridge deformation analysis.

  13. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  14. Evaluation of deflection forces of orthodontic wires with different ligation types

    Directory of Open Access Journals (Sweden)

    José Fernando Castanha HENRIQUES

    2017-07-01

    Full Text Available Abstract The aim of this study was to evaluate deflection forces of orthodontic wires of different alloys engaged into conventional brackets using several ligation types. Stainless steel, conventional superelastic nickel-titanium and thermally activated nickel-titanium archwires tied into conventional brackets by a ring-shaped elastomeric ligature (RSEL, a 8-shaped elastomeric ligature (8SEL and a metal ligature (ML were tested. A clinical simulation device was created especially for this study and forces were measured with an Instron Universal Testing Machine. For the testing procedure, the block representing the maxillary right central incisor was moved 0.5 and 1 mm bucco-lingually at a constant speed of 2 mm/min, and the forces released by the wires were recorded, in accordance with the ISO 15841 guidelines. In general, the RSEL showed lighter forces, while 8SEL and ML showed higher values. At the 0.5 mm deflection, the 8SEL presented the greatest force, but at the 1.0 mm deflection the ML had a statistically similar force. Based on our evaluations, to obtain lighter forces, the thermally activated nickel-titanium wire with the RSEL are recommended, while the steel wire with the 8SEL or the ML are recommended when larger forces are desired. The ML exhibited the highest force increase with increased deflections, compared with the elastomeric ligatures.

  15. Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor.

    Science.gov (United States)

    Khadem, Mohsen; Rossa, Carlos; Usmani, Nawaid; Sloboda, Ron S; Tavakoli, Mahdi

    2017-04-01

    The performance of needle-based interventions depends on the accuracy of needle tip positioning. Here, a novel needle steering strategy is proposed that enhances accuracy of needle steering. In our approach the surgeon is in charge of needle insertion to ensure the safety of operation, while the needle tip bevel location is robotically controlled to minimize the targeting error. The system has two main components: (1) a real-time predictor for estimating future needle deflection as it is steered inside soft tissue, and (2) an online motion planner that calculates control decisions and steers the needle toward the target by iterative optimization of the needle deflection predictions. The predictor uses the ultrasound-based curvature information to estimate the needle deflection. Given the specification of anatomical obstacles and a target from preoperative images, the motion planner uses the deflection predictions to estimate control actions, i.e., the depth(s) at which the needle should be rotated to reach the target. Ex-vivo needle insertions are performed with and without obstacle to validate our approach. The results demonstrate the needle steering strategy guides the needle to the targets with a maximum error of 1.22 mm.

  16. Two Heat Source Models to Simulate Welding Processes with Magnetic Deflection

    Directory of Open Access Journals (Sweden)

    Fernanda Mazuco Clain

    Full Text Available Abstract The technique of weaving by magnetic arc deflection was developed a few years ago to enable the oscillation of the weld pool, thus, causing grain refinement and improving the properties on the welded joint. This paper aims to propose two heat source models that include effects of magnetic arc deflection on a bead-on-plate GTAW process in numerical simulations by using the finite element method. Two cases are studied. In the first case, non-deflected arc and straigth magnectic deflected arc along the torch movement are carried out and compared to numerical simulations. Temperatures at three different points on the backside of the plates (two away from the welding center line and one in its center and weld pools of SAE 1020 3.2 mm and 6 mm thick steel plates are analyzed. Results obtained by numerical simulations are close to the experimental ones. In the second case, welding with weaving (frequency of 1Hz on 3 mm thick steel plates is analyzed. The bead width and its visual presentation are compared to experimental results, which show good agreement with both proposed models.

  17. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Ahuett-Garza, H.; Choudhury, A.K.; Dedhia, S.

    1998-05-01

    This report summarizes two years of research intended to develop methods to model and predict the deflection patterns in die casting dies. No comprehensive analysis of this type had previously been completed. The die casting process is complex and involves numerous mechanical and thermal phenomena that effect the mechanical behavior of the die. A critical activity in this work was sorting out and evaluating the relative contributions of the various mechanisms to die deflections. This evaluation was accomplished through a series of simple engineering analyses based primarily on the order of magnitude of the influence of each load considered on die deflections. A modeling approach incorporating commercially available finite element analysis software was developed and tested. The model evolved by testing simple models against more comprehensive models and against the limited experimental data that is available. The development of the modeling approach lead to consideration of the die casting machine in more detail than was originally anticipated. The machine is critical and cannot be ignored. A simplified model described as a spring/platen model was developed to account for the machine platens, tie bars, and toggles. The characteristics of this model are described and predictions based on this model are compared against full machine models and measured deflections of machine platens. Details of the modeling approach and the various case studies are provided in the report and in several publications that have resulted from the work.

  18. A deflectable guiding catheter for real-time MRI-guided interventions

    Science.gov (United States)

    Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur

    2011-01-01

    Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071

  19. Hydroelastic analysis of a very large floating plate with large deflections in stochastic seaway

    DEFF Research Database (Denmark)

    Chen, Xu-jun; Jensen, Jørgen Juncher; Cui, Wei-cheng

    2004-01-01

    The hydroelasticity of a very large floating plate with large deflections in multidirectional irregular waves is discussed. After a brief introduction on wave loads on a flexible structure, the paper derives the generalised fluid force acting on a floating structure in multidirectional irregular ...

  20. The Influence of Shear Effects on the Deflections of Steel Box Girder Bridges

    Czech Academy of Sciences Publication Activity Database

    Křístek, V.; Škaloud, Miroslav

    2000-01-01

    Roč. 40, č. 2 (2000), s. 78-80 ISSN 1210-2709. [First International Conference on Advanced Engineering Design . Praha, 31.05.1999-02.06.1999] R&D Projects: GA ČR GA103/97/0074 Keywords : steel bridges * box girder * shear effects * deflections * design Subject RIV: JM - Building Engineering

  1. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    Science.gov (United States)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  2. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    Science.gov (United States)

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin restorative for class II MOD cavities resulted in reduced cuspal deflection in comparison to the two other bulk-fill composite resins tested. The silorane-based Filtek LS restorative resulted in the least cuspal deflection in

  3. Comparative analysis of load/deflection ratios of conventional and heat-activated rectangular NiTi wires

    Directory of Open Access Journals (Sweden)

    Fabio Schemann-Miguel

    2012-06-01

    Full Text Available OBJECTIVE: This study compared the load-deflection ratios between 0.019 x 0.025-in rectangular orthodontic wires using 5 conventional preformed nickel-titanium (NiTi and 5 heat-activated NiTi archwires from four different manufacturers (Abzil, Morelli, 3M Unitek and Ormco, totaling 40 archwires. The archwires were placed in typodonts without tooth # 11 and tested using a universal testing machine connected to a computer. RESULTS: The comparisons of mean load-deflection values of conventional NiTi wires revealed that the lowest mean-deflection ratio was found for 3M Unitek, followed by Ormco, Morelli and Abzil. Regarding the heat-activated wires, the lowest load-deflection ratio was found for Ormco, followed by 3M Unitek, Abzil, and Morelli. CONCLUSION: The comparison of mean load-deflection ratios revealed that the heat-activated wires had lowest mean load-deflection ratios, and this trend was seen during all the study. However, at 2-mm deflection, mean load-deflection ratios for heat-activated Morelli and conventional 3M Unitek wires were very similar, and this difference was not statistically significant.

  4. DETERMINATION OF THE ABSOLUTE EXCITED-STATE DENSITY OF A SODIUM TARGET BY MEANS OF BEAM DEFLECTION MEASUREMENTS

    NARCIS (Netherlands)

    WIERSEMA, WP; SCHLATMANN, AR; MORGENSTERN, R

    1994-01-01

    The average deflection of a laser excited, divergent sodium beam with a broad velocity distribution is measured by means of a Langmuir-Taylor detector and exploited for determining the absolute density of the excited state in the interaction area. Simulations of the excitation and deflection process

  5. Comparison of the Load Deflection Characteristics of Esthetic and Metal Orthodontic Wires on Ceramic Brackets using Three Point Bending Test

    Directory of Open Access Journals (Sweden)

    Umal Hiralal Doshi

    2013-01-01

    Conclusion: Steel wires showed highest strength values, requiring the incorporation of loops and folds to reduce the load/deflection. NiTi and GFRPC wires produced more deflection at low levels of force, however the esthetic wire was shown to fracture and break.

  6. Comparison of extended hemicolectomy versus transverse colectomy in patients with cancer of the transverse colon.

    Science.gov (United States)

    van Rongen, I; Damhuis, R A M; van der Hoeven, J A B; Plaisier, P W

    2013-01-01

    Cancer of the transverse colon is rare and postoperative mortality tends to be high. Standard surgical treatment involves either extended hemicolectomy or transverse colectomy, depending on the location of the tumour. The aim of the present study was to compare postoperative mortality and five-year survival between these types of surgery. For this observational study, data on patients with a tumour of the transverse colon, treated by open resection in the Dordrecht Hospital from 1989 through 2003, were derived from the database of the regional cancer registry. Information on type of resection, tumour stage, complications, postoperative mortality (30-day) and survival was abstracted from the medical files. Patients with multi-organ surgery, (sub)total colectomy or stage IV disease were excluded from the analysis, leaving a total series of 103 patients. Transverse colectomy comprised one third of operations, predominantly involving partial resections. Postoperative mortality was 6% (2/34) after transverse colectomy and 7% (5/69) after extended hemicolectomy. Five-year survival was slightly higher for the hemicolectomy group (61% versus 50%), but this difference did not reach statistical significance (p = 0.34). Our results confirm the high postoperative risk after surgery for cancer of the transverse colon and show that this risk does not depend on the type of surgery. Considering the satisfactory results after partial transverse colectomy, segmental resections may be considered as an option for the treatment of localised tumours of the transverse colon.

  7. Load-deflection characteristics of superelastic and thermal nickel-titanium wires.

    Science.gov (United States)

    Gatto, Elda; Matarese, Giovanni; Di Bella, Guido; Nucera, Riccardo; Borsellino, Chiara; Cordasco, Giancarlo

    2013-02-01

    The aim of this study was to investigate the mechanical properties of superelastic and thermal nickel-titanium (NiTi) archwires for correct selection of orthodontic wires. Seven different NiTi wires of two different sizes (0.014 and 0.016 inches), commonly used during the alignment phase, were tested. A three-point bending test was carried out to evaluate the load-deflection characteristics. The archwires were subjected to bending at a constant temperature of 37°C and deflections of 2 and 4 mm. Analysis of variance showed that thermal NiTi wires exerted significantly lower working forces than superelastic wires of the same size in all experimental tests (P Wire size had a significant effect on the forces produced: with an increase in archwire dimension, the released strength increased for both thermal and superelastic wires. Superelastic wires showed, at a deflection of 2 mm, narrow and steep hysteresis curves in comparison with the corresponding thermal wires, which presented a wide interval between loading and unloading forces. During unloading at 4 mm of deflection, all wires showed curves with a wider plateau when compared with 2 mm deflection. Such a difference for the superelastic wires was caused by the martensite stress induced at higher deformation levels. A comprehensive understanding of mechanical characteristics of orthodontic wires is essential and selection should be undertaken in accordance with the behaviour of the different wires. It is also necessary to take into account the biomechanics used. In low-friction mechanics, thermal NiTi wires are to be preferred to superelastic wires, during the alignment phase due to their lower working forces. In conventional straightwire mechanics, a low force archwire would be unable to overcome the resistance to sliding.

  8. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  9. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-01-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm −2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm −2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm −2 . The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  10. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  11. Dynamical chaos and stochastic mechanism of high-energy negatively charged particle deflection by bent crystals

    International Nuclear Information System (INIS)

    Shul'ga, N.F.; Kirillin, I.V.; Truten', V.I.

    2011-01-01

    Deflection of high-energy negatively charged particles in straight and bent crystals through multiple scattering by crystal atomic strings was considered for the case in which the initial angle between the particle momentum and one of the main crystallographic axes was approximately four critical angles of axial channeling. It was shown that in a bent crystal with a small crystal thickness, when the crystal bend was less than the beam incidence angle, the beam deflected in the direction opposite to the direction of the crystal bend. At larger crystal thicknesses, the large part of the beam starts to deflect in the direction of the crystal bend. In addition, there is a group of particles that follow the crystal axis bend in the angular region of approximately the critical angle of axial channeling with respect to the current direction of the crystal axis. It was shown that in all of these deflection processes, the periodicity of the location of atomic strings in the crystal does not influence the angular distributions of scattered particles. This fact is connected with the effect of dynamical chaos in particle motion in the periodical field of bent crystal atomic strings. It was also shown that observed in a recent CERN experiment effect of beam deflection, when the angle between the initial particle momentum and the crystal axis was approximately four critical angles of axial channeling, is due to peculiarities of the stochastic multiple scattering of particles by bent crystal atomic strings. These peculiarities are connected with the effect of dynamical chaos in particle motion in crystals.

  12. Possibilities for reduction of transverse projected emittances by partial removal of transverse to longitudinal beam correlations

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2014-09-01

    We show that if in the particle beam there are linear correlations between energy of particles and their transverse positions and momenta (linear beam dispersions), then the transverse projected emittances always can be reduced by letting the beam to pass through magnetostatic system with specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice dispersions required for that are completely defined by the values of the beam dispersions and the beam rms energy spread and are independent from any other second-order central beam moments. Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear correlations between longitudinal positions of particles and their transverse coordinates (linear beam tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the transverse projected emittances is not guaranteed.

  13. String Electron and Three-ring Quarked Nucleons' Transverse Interlocks Build Atoms, Vindicate Schr"odinger

    Science.gov (United States)

    McLeod, David; McLeod, Roger David

    2008-05-01

    Flatland electron loop strings have transversely vibrating neutrino strings. Traveling waves TWs alternately become upwardly deflecting standing waves SWs along each half-wave segment between non-vibrating node pairs. Descending SWs revert to TWs at flatland, proceeding to the next adjacent nodal pair; folding continues. New SWs descend, then ascend; repetition follows to a three dimensional object. Broken ``linear'' electron string and spring constant compress within stars so linear mass density allows incorporation into stable three-ring proton string, creating neutron of two down quarks, one up. It is unstable; it lacks overpass-underpass interlocks of proton that merged linear charge density of two up quarks and one down quark with the electron, becoming neutral. Any transversely aligned neutron notch pushed into acceptor notch of proton is ionized deuterium; tritium follows. Alpha particle is a stable ``tic-tac-toe'' grid. Atom building proceeds routinely, nucleon attachment follows chemical and physical property requirements. Models require vindication of Schr"odinger's actual, but incomplete, wave model of electron with physical extent over his wave, and question Heisenberg's uncertainty proposal.

  14. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  15. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...

  16. Associated transverse energy in hadronic jet production

    International Nuclear Information System (INIS)

    Marchesini, G.; Webber, B.R.

    1988-01-01

    We present a theoretical study of the ''pedestal height'' in hadronic jet production, i.e., the mean transverse energy per unit of rapidity accompanying a high-transverse-energy jet. We find that perturbative QCD, supplemented by a Monte Carlo estimate of higher-order corrections and a soft underlying event structure similar to that of minimum-bias collisions, can account for the observed pedestal height and its dependence on jet transverse energy. We propose a way of separating the hard pedestal contribution from that of the underlying event by measuring the quantity , which is one-half the absolute difference of the pedestal heights on the two sides of the jet. This quantity is dominated by the hard QCD component, whereas = - is dominated by the soft underlying event. We also discuss the differential distribution of pedestal height and the charged multiplicity in the pedestal

  17. Analysis on the uniformly loaded rectangular cross-section cantilever by a modified load-deflection model

    Science.gov (United States)

    Tsai, Shang-Hsi; Wang, Yeng-Tseng; Kan, Heng-Chuan

    2009-02-01

    The load-deflection relationship of the uniformly loaded rectangular cross-section cantilever is analysed by a modified mechanical model, which exhibits its conformity to the physical situation by considering both the tangential and normal surface stresses. The analytical solution of the modelling equation is solved and presented in terms of the first and the second kinds of the Airy functions in association with Scorer's function. The resultant deflection profile contains an inflection point due to the restoring bending moment contributed by the critical surface loadings. The relationships of the tip deflection and the loading scenario are investigated, which reveal the fact that various loading scenarios can result in different deflection profiles, albeit with the same tip deflection. A numerical algorithm is given in the appendix to solve the loading scenario, by which the surface loadings can formally be determined for the designated applications for the devices utilizing the cantilever structure.

  18. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    Two different wake structures (reverse Kármán shedding and deflected vortex shedding) are observed over this parameter range. The vorticity decreases substantially over a distance of two chord-lengths. The velocity profile indicates a jet-like flow downstream of the airfoil. It is shown that the jet-like flow downstream of the ...

  19. Operative Method for Transverse Colon Carcinoma: Transverse Colectomy Versus Extended Colectomy.

    Science.gov (United States)

    Chong, Choon Seng; Huh, Jung Wook; Oh, Bo Young; Park, Yoon Ah; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2016-07-01

    The type of surgery performed for primary transverse colon cancer varies based on tumor characteristics and surgeon perspective. The optimal oncological outcome following different surgical options has not been clearly established, and transverse colectomy has shown oncological equivalence only in small cohort studies. Our aim was to compare long-term oncological outcomes after transverse colectomy versus extended resection for transverse colon cancer. This study is a retrospective review of prospectively collected data. This study was conducted at a tertiary care hospital. All patients treated for transverse colon cancer at the Samsung Medical Center between 1995 and 2013 were included. Oncological outcomes were compared between 2 groups of patients: a transverse colectomy group and an extended colectomy group (which included extended right hemicolectomy and left hemicolectomy). A total of 1066 patients were included, of whom 750 (70.4%) underwent extended right hemicolectomy, 127 (11.9%) underwent transverse colectomy, and 189 (17.7%) underwent left hemicolectomy. According to univariate analysis, surgical approach, histological type, tumor morphology, cancer T and N stage, cancer size, and lymphovascular invasion were significant factors contributing to disease-free survival (DFS). However, as seen in multivariate analysis, only node-positive disease (HR = 2.035 (1.188-3.484)), tumors with ulcerative morphology (HR = 3.643 (1.132-11.725)), and the presence of vascular invasion (HR = 2.569 (1.455-4.538)) were significant factors for DFS. Further analysis with a propensity-matched cohort between the transverse and extended colectomy groups demonstrated no significant differences in DFS and overall survival. This study was limited because it was performed at a single institution and it was retrospective in nature. In terms of perioperative and oncological outcomes, transverse colectomy and extended colectomy did not differ despite a shorter specimen length and

  20. Inclusive eta production at large transverse momenta

    International Nuclear Information System (INIS)

    Donaldson, G.J.; Gordon, H.A.; Lai, K.; Stumer, I.; Barnes, A.V.; Mellema, D.J.; Tollestrup, A.V.; Walker, R.L.; Dahl, O.; Johnson, R.; Ogawa, A.; Pripstein, M.; Shannon, S.

    1978-01-01

    We have measured the ratio of inclusive production of eta to π 0 at transverse momenta above 1.5 GeV/c. Results are presented for various meson and proton beams with momenta of 100, 200, and 300 GeV/c incident upon a hydrogen target. The eta/π 0 production ratio is found to be independent of incident beam momentum and of the transverse and longitudinal momenta of production. The ratio for pion- and proton-induced reactions is 0.44 +- 0.05; for kaons, it is 0.74 +- 0.12

  1. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  2. Results on large transverse momentum phenomena

    CERN Document Server

    Büsser, F W; Blumenfeld, B; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E

    1973-01-01

    Preliminary results of an experiment on large transverse momentum phenomena performed at the CERN-ISR at centre-of-mass energies of 52.7 and 44.8 GeV are presented. The topics studied were the inclusive reaction p+p to pi /sup 0/+'anything', where the pi /sup 0/ was emitted around 90 degrees in the centre- of-mass system, ( pi /sup 0/ pi /sup 0/) correlations, and the charged multiplicity associated with large transverse momentum pi /sup 0/'s. In addition, results of a search for electrons and electron pairs are included. (4 refs).

  3. [The transversality and health promotion schools].

    Science.gov (United States)

    Gavidia Catalán, V

    2001-01-01

    The following article shows the evolution of the schools contribution to the Health Education of children and young people. Moving on from the traditional concept of health, today, Health Education has a general and global meaning, which encompasses all of the physical, psychological and social aspects of health. These aspects define the characteristics of the "Healthy School". The need to broach the "transversal subject" offers schools the possibility of developing "transversality" in the Health Education. Finally, the concept of promoting health defines, together with the other subjects, that which we understand by "the heath promotion schools", which attempts to progress the full integration of schools in the society in which they are located.

  4. Instability of periodic MHD shear flows

    International Nuclear Information System (INIS)

    Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.

    2004-01-01

    The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations

  5. Flow characteristics around a deformable stenosis under pulsatile flow condition

    Science.gov (United States)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  6. Directed flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    Science.gov (United States)

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, F; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Czopowicz, T R; Dainese, A; Dang, R; Danu, A; Das, D; Das, I; Das, S; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Elwood, B G; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; Ferreiro, E G; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, M M; Khan, P; Khan, K H; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, J S; Kim, B; Kim, T; Kim, D J; Kim, S; Kim, M; Kim, D W; Kim, J H; Kim, M; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, G R; Lee, S C; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nasar, M; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, V; Nikulin, S; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, J; Song, M; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, A; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, M; Wang, Y; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wielanek, D; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Winn, M; Windelband, B; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yang, P; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, Y; Zhang, X; Zhang, F; Zhang, H; Zhou, Y; Zhou, F; Zhou, D; Zhu, H; Zhu, X; Zhu, J; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-12-06

    The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at √(s(NN))=2.76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta p(T) between 1.2 and 1.7  GeV/c. Combined with the observation of a vanishing rapidity-even p(T) shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.

  7. Optimal Surgery for Mid-Transverse Colon Cancer: Laparoscopic Extended Right Hemicolectomy Versus Laparoscopic Transverse Colectomy.

    Science.gov (United States)

    Matsuda, Takeru; Sumi, Yasuo; Yamashita, Kimihiro; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Kanaji, Shingo; Oshikiri, Taro; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro

    2018-04-02

    Although the feasibility and safety of laparoscopic surgery for transverse colon cancer have been shown by the recent studies, the optimal laparoscopic approach for mid-transverse colon cancer is controversial. We retrospectively analyzed the data of patients with the mid-transverse colon cancer at our institutions between January 2007 and April 2017. Thirty-eight and 34 patients who received extended right hemicolectomy and transverse colectomy, respectively, were enrolled. There were no significant differences in operating time, blood loss, and hospital stay between the two groups. Postoperative complications developed in 10 of 34 patients (29.4%; wound infection: 2 cases, anastomotic leakage: 2 cases, bowel obstruction: 1 case, incisional hernia: 2 cases, others: 3 cases) for the transverse colectomy group and in 4 of 38 patients (10.5%; wound infection: 1 case, anastomotic leakage: 0 case, bowel obstruction: 2 cases, incisional hernia: 0 case, others: 1 case) for the extended right hemicolectomy group (P = 0.014). Although the median number of harvested #221 and #222 LNs was similar between the two groups (6 vs. 8, P = 0.710, and 3 vs. 2, P = 0.256, respectively), that of #223 was significantly larger in extended right hemicolectomy than in transverse colectomy (3 vs. 1, P = 0.038). The 5-year disease-free and overall survival rates were 92.4 and 90.3% for the extended right hemicolectomy group, and 95.7 and 79.6% for the transverse colectomy group (P = 0.593 and P = 0.638, respectively). Laparoscopic extended right hemicolectomy and laparoscopic transverse colectomy offer similar oncological outcomes for mid-transverse colon cancer. Laparoscopic extended right hemicolectomy might be associated with fewer postoperative complications.

  8. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  9. Longitudinal Evaluation of Foetal Transverse Lie using ...

    African Journals Online (AJOL)

    Erah

    , lower segment fibroids in 2.7%, and ectopic kidney in 0.7%. In conclusion, transverse lie detected early in pregnancy is transient, and majority would convert to a longitudinal lie at term. Potential predisposing factors highlighted above ...

  10. Rapid communication: Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses, we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the ...

  11. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    ... sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an exponential form. The modelling results are compared and found to be in agreement with the experimental data at high energies.

  12. Sex Education as a Transversal Subject

    Science.gov (United States)

    Rabelo, Amanda Oliveira; Pereira, Graziela Raupp; Reis, Maria Amélia; Ferreira, António G.

    2015-01-01

    Currently, sex education is in many countries a transversal subject, in which the school becomes a privileged place for the implementation of policies that aim at promoting "public health." Its design as a cross-cutting subject envisages fostering the dissemination of these subjects in all pedagogical and curricular fields; however, we…

  13. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    (SSAs) in hard scattering processes when transverse momentum scales are on the order of quarks in hadrons, ... are of particular interest as they emerge from the colour gauge invariant definition of the quark-gluon-quark ..... For n ≥ 3, there are enough powers of l+ to eliminate this divergence. f(p2) is a covariant Gaussian ...

  14. TRANSVERSE COLON POUCH: AN ALTERNATIVE TO ...

    African Journals Online (AJOL)

    Objective Urinary diversion after pelvic irradiation is challenging. The use of irradiated bowel is mostly complicated and unsuccessful. Therefore, the use of an exclusively non-irradiated bowel segment, such as the transverse colon, is a good alternative in such situation. Patients and Methods Twenty-nine female patients ...

  15. Transversals in non-discrete groups

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4 ... Given any right quasigroup with a Tychonoff topology , it is proved that there exists a Hausdorff topological group in which can be embedded algebraically and topologically as a right transversal of a subgroup (not necessarily closeed).

  16. Transverse Ising model with multi-impurity

    International Nuclear Information System (INIS)

    Huang, Xuchu; Yang, Zhihua

    2015-01-01

    We study the transverse Ising spin model with spin-1 impurities under the exact solution. We develop a universal method to deal with the multi-impurity problem by introducing a displacement quantity in the wave function and get a recursive formula to simplify the calculation of the partition function. This allows us to rigorously determine the impurity effects for a specific distribution of impurity in the thermodynamic limit. The low temperature behaviors are governed by the interplay between host and impurity excitations, and the quantum critical fluctuations around the critical point of the transverse Ising model are tuned by the transverse field and the concentration of impurity. However the impurity effects are limited, which depends on the host–impurity exchange interaction and the coupling strength of impurities. - Highlights: • A universal method is proposed to exactly resolve the transverse Ising model with many impurities. • The phase diagram of the ground state is obtained for different impurity concentrations. • The thermodynamic properties can be determined rigorously by a recursive formula in the thermodynamic limit

  17. Transversals in non-discrete groups

    Indian Academy of Sciences (India)

    1963). [7] Lal R, Transversals in groups, J. Alg. 181 (1996) 70–81. [8] Lal R and Shukla R P, Perfectly stable subgroups of finite groups, Comm. Alg. 24(2). (1996) 643–657. [9] Lal R and Shukla R P, A characterization of Tarski monsters, ...

  18. Rapid communication: Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    Samyobrata Mukherjee

    2017-07-25

    Jul 25, 2017 ... Rapid communication: Transverse spin with coupled plasmons. SAMYOBRATA MUKHERJEE1, A V GOPAL2 and S DUTTA GUPTA1,∗. 1School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500 046, India. 2Department of Condensed Matter Physics and Materials Science, Tata Institute of ...

  19. Contribution to the study of transverse turbulent diffusion in streams

    International Nuclear Information System (INIS)

    Masson, Olivier

    1991-01-01

    In this research our objective is to study the turbulent diffusion in a water flow, in particular the transverse diffusion. According to formulae reviewed in literature the diffusion coefficients (K) may be expressed as a function of several velocity parameters. A synthetic formula depending on a macro-scale length of turbulence L x and a turbulent intensity √(u' 2 ) is proposed: K = β.L x .U-bar.(√(u' 2 /U-bar)) 2 . In order to validate this expression we performed two in situ experiments (one in a wide river and the other in an irrigation canal) with a double set of measurements: turbulent velocities and concentrations of a diffusing tracer. The first set gives us usable data in our formula. The results, compared with values available in literature, give a good agreement. Moreover it appears that it is possible to roughly divide the data in two groups according to (1) the cross section shape and (2) the bed roughness. The second set allows us to evaluate a global turbulent mixing coefficient. The coefficients calculated by the two methods are in accordance so our formula is validated. Nevertheless some problems appear because of what is called secondary currents and coherent structures as those seen above bed cracks in the Garonne river. Those phenomenon may play a major part upon turbulent diffusion in real streams. Although they were made conspicuous by an analysis of transverse velocity component, it has not been yet possible to quantify their effects. (author) [fr

  20. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    Science.gov (United States)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  1. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  2. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  3. Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Kamyab Moghadas

    2012-01-01

    Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.

  4. Building a substitute model of a bolster based on experimentally determined deflection

    Science.gov (United States)

    Zgoll, F.; Götze, T.; Volk, W.

    2017-09-01

    The high design requirements in the production of car body parts necessitate an exact closure of the forming tools in deep drawing processes. The tool closure is directly related to the machine elastic behaviour. To significantly reduce efforts and save time during ramp up of new forming tools, knowledge of the expected machine behaviour should be considered during the virtual development process of the tools. A prerequisite for that is building a validated machine-specific substitute model of the forming press composed of bolster, ram and drawing cushion. In this contribution, a substitute model with the help of finite element analysis (FEA) based on experimentally determined deflection is presented. The deflection measurements are performed by means of a multifunctional press measuring system from Volkswagen.

  5. Mechanical Study of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    H. Park, J.R. Delayen, S.U. De Silva

    2011-07-01

    The superconducting parallel-bar deflecting/crabbing cavities have improved properties compared to conventional cavity structures. It is currently being considered for number of applications. The mechanical design analysis is performed on two designs of the 499 MHz parallel-bar deflecting cavity for the Jefferson Lab 12 GeV upgrade. The main purpose of the mechanical study is to examine the structural stability of the cavities under the operating conditions in the accelerators. The study results will suggest the need for additional structural strengthening. Also the study results will help to develop a concept of the tuning method. If the cavity is to be installed in the accelerator it should satisfy a certain design parameters due to the safety requirements (for example, pressure system requirements) which are much severe condition than the actual operating condition.

  6. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  7. Viscoelastic Modelling of Road Deflections for use with the Traffic Speed Deflectometer

    DEFF Research Database (Denmark)

    Pedersen, Louis

    This Ph.D. study is at its core about how asphalt and road structures responds to dynamic loads. Existing models for the deflections under a moving load using beam equations are revisited and it is concluded they leave room for improvement for the particular setup and problem at hand. Then a diff......This Ph.D. study is at its core about how asphalt and road structures responds to dynamic loads. Existing models for the deflections under a moving load using beam equations are revisited and it is concluded they leave room for improvement for the particular setup and problem at hand...... as in the case of using a Traffic Speed Deflectometer. The flexibility of the method also allows for looking into cases excluded by imposing simplifying assumptions such as the structure imagined to be an infinite halfspace....

  8. Deflected Pathways: Becoming Aggressive, Socially Withdrawn, or Prosocial with Peers During the Transition to Adolescence

    Science.gov (United States)

    Monahan, Kathryn C.; Booth-LaForce, Cathryn

    2014-01-01

    Although research has suggested strong continuity in children's adaptive or maladaptive behavior with peers across the transition to adolescence, less is known about deflected developmental pathways of peer social competence across this transition. This study investigates how mother-child and best friend relationship quality predict the deflection of youth from adaptive to maladaptive behavior with peers or the reverse. Using data from the NICHD Study of Early Child Care and Youth Development (N=1055), high-quality friendships were associated with changes in peer social competence from 3rd to 6th grade. More positive and fewer negative interactions with a friend were linked with becoming more prosocial with peers, whereas less positive interactions with a friend were linked to becoming aggressive or withdrawn. PMID:27231420

  9. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)

    2016-04-29

    A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.

  10. Evolution of transverse instability in a hollow cylindrical weakly-ionized plasma column

    International Nuclear Information System (INIS)

    Kuedyan, H.M.

    1978-01-01

    Having observed formation of plasma striations in an Electron Cyclotron Resonance Heating (ECRH) device, we have studied the conditions under which the hollow cylindrical plasma columns would develop into striations. We first present the observed conditions of the hollow cylindrical plasma which would develop into plasma striations, the measured characteristics of the transverse oscillations and a simple small signal model for a transverse instability in a weakly-ionized hollow cylindrical plasma. This linearized model, which assumes flowing cold ion fluid (T/sub i/ approximately < 0.1 eV) in warm electron fluid (T/sub e/ approximately 1 eV) and background neutrals, reveals a transverse flute-type electrostatic instability whose characteristics are in qualitative and quantitative agreement with the measured values of the oscillations in our experiment

  11. Analysis of pulsed laser deposited amorphous chalcogenide film thickness distribution: Plume deflection angle dependence

    OpenAIRE

    Pavlišta , Martin; Zajac , Vit; Nazabal , Virginie; Gutwirth , Jan; Gouttefangeas , Francis; Němec , Petr

    2018-01-01

    International audience; Pulsed laser deposition exploiting a KrF excimer laser was used to fabricate amorphous As-S thin films from bulk As2S3 glass target. Thickness profile of the film was extracted from variable angle spectroscopic ellipsometry data. The dependence of thickness distribution of prepared thin layer on laser beam plume deflection angle was evaluated and corresponding equations were suggested.

  12. Beam-beam deflections as an interaction point diagnostic for the SLC

    International Nuclear Information System (INIS)

    Bambade, P.; Erickson, R.

    1986-05-01

    A technique is described for non-destructive measurement and monitoring of the steering offset of the electron and positron beams at the interaction point of the SLC, based on using stripline beam-position monitors to measure the centroid of one beam as it is deflected by the opposing beam. This technique is also expected to provide diagnostic information related to the spot size of the micron-size beams

  13. Acousto-optic modulation and deflection of terahertz electromagnetic radiation in nonpolar liquids

    Science.gov (United States)

    Nikitin, P. A.; Voloshinov, V. B.; Gerasimov, V. V.; Knyazev, B. A.

    2017-07-01

    The results of a series of experiments on controlled deflection of electromagnetic radiation of a free-electron laser upon diffraction by an acoustic wave in nonpolar liquids are presented. Acoustic and optical properties of liquids that are transparent in the terahertz range are discussed. It is demonstrated that nonpolar liquids may turn out to be a more efficient acousto-optic interaction medium than dielectric crystals or semiconductors.

  14. Photothermal beam deflection calorimetry in solution photochemistry: recent progress and future prospects.

    Science.gov (United States)

    Falvey, D E

    1997-01-01

    Photothermal beam deflection (PBD) calorimetry is a technique that measures changes in the solvent's refractive index that accompanies photothermal heating. This method is capable of extracting both kinetic and thermodynamic information from photochemical reactions. A qualitative description of physical basis of time-resolved PBD is presented. Several recent examples of its application to photochemical and photobiological problems are discussed. Finally, the advantages and limitations of PBD are described.

  15. Deflection measurement system for the hybrid iii six-year-old biofidelic abdomen.

    Science.gov (United States)

    Gregory, T Stan; Howes, Meghan K; Rouhana, Stephen W; Hardy, Warren N

    2012-01-01

    Motor vehicle collisions are the leading cause of death for children ages 5 to 14. Enhancement of child occupant protection is partly dependent on the ability to accurately assess the interaction of child-size occupants with restraint systems. Booster seat design and belt fit are evaluated using child anthropomorphic test devices, such as the Hybrid III 6-year-old dummy., A biofidelic abdomen for the Hybrid III 6-year-old dummy is being developed by the Ford Motor Company to enhance the dummy’s ability to assess injury risk and further quantify submarining risk by measuring abdominal deflection. A practical measurement system for the biofidelic abdominal insert has been developed and demonstrated for three dimensional determination of abdominal deflection. Quantification of insert deflection is achieved via differential signal measurement using electrodes mounted within a conductive medium. Signal amplitude is proportional to the distance between the electrodes. A microcontroller is used to calculate distances between ventral electrodes and a dorsal electrode in three dimensions. This system has been calibrated statically, and its performance demonstrated in a series of sled tests. Deflection measurements from the instrumented abdominal insert indicate performance differences between two booster seat designs, yielding an average peak anterior to posterior displacement of the abdomen of 1.0 ± 3.4 mm and 31.2 ± 7.2 mm for the seats, respectively. Implementation of a 6-year-old abdominal insert with the ability to evaluate submarining potential will likely help safety researchers further enhance booster seat design and interaction with vehicle restraint systems , and help to further understand child occupant injury risk in automobile collisions.

  16. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2014-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  17. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2016-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  18. Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification.

    Science.gov (United States)

    Turner, Matthew D; Hagedorn, Charles A; Schlamminger, Stephan; Gundlach, Jens H

    2011-04-15

    We present an "interferometric quasi-autocollimator" that employs weak value amplification to measure angular deflections of a target mirror. The device has been designed to be insensitive to all translations of the target. We present a conceptual explanation of the amplification effect used by the device. An implementation of the device demonstrates sensitivities better than 10 picoradians per root hertz between 10 and 200 Hz.

  19. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Calculation of the parameter 'deflection' in a new theory of the Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    A. de Paor

    2002-01-01

    Full Text Available In a recent paper on the theory of the Earth's magnetic field and key features of Sunspot activity (de Paor, 2001, a central role in the calculation of secular variations of the geomagnetic field was played by a newly-introduced parameter called the deflection (abbreviated def . In this note, the significance of def is elucidated and the method used to calculate it is explained.

  1. A Hair Ribbon Deflection Model for Low-intrusiveness Measurement of Bow Force in Violin Performance

    OpenAIRE

    Marchini, Marco; Papiotis, Panos; Pérez, Alfonso; Maestre, Esteban

    2011-01-01

    This paper introduces and evaluates a novel methodologyfor the estimation of bow pressing force in violin performance, aiming at a reduced intrusiveness while maintaininghigh accuracy. The technique is based on using a simplifiedphysical model of the hair ribbon deflection, and feeding thismodel solely with position and orientation measurements ofthe bow and violin spatial coordinates. The physical modelis both calibrated and evaluated using real force data acquired by means of a load cell.

  2. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  3. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets

    Directory of Open Access Journals (Sweden)

    Rodrigo Hitoshi Higa

    Full Text Available ABSTRACT Introduction: The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM, active (In-Ovation RTM and passive (Damon 3MXTM self-ligating brackets. Material and Methods: Two brands of stainless steel and nickel-titanium (NiTi wires (MorelliTM and GACTM, in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey’s tests. Results: Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Conclusions: Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  4. Optimal Deflection of Earth-Crossing Object Using a Three-Dimensional Single Impulse

    Directory of Open Access Journals (Sweden)

    Byeong-Hee Mihn

    2005-09-01

    Full Text Available Optimization problems are formulated to calculate optimal impulses for deflecting Earth-Crossing Objects using a Nonlinear Programming. This formulation allows us to analyze the velocity changes in normal direction to the celestial body's orbital plane, which is neglected in many previous studies. The constrained optimization in the three-dimensional space is based on a patched conic method including the Earth's gravitational effects, and yields impulsive Δ V to deflect the target's orbit. The optimal solution is dependent on relative positions and velocities between the Earth and the Earth-crossing objects, and can be represented by optimal magnitude and angle of Δ V as a functions of a impulse time. The perpendicular component of Δ V to the orbit plane can sometimes play un-negligible role as the impulse time approaches the impact time. The optimal Δ V is increased when the original orbit of Earth-crossing object is more similar to the Earth's orbit, and is also exponentially increased as the impulse time reaches to the impact time. The analyses performed in present paper can be used to the deflection missions in the future.

  5. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate

    International Nuclear Information System (INIS)

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    Highlights: • Long-term deformation of recycled aggregate concrete beams was examined. • Three beams were monitored for over 380 days. • Influence of recycled aggregate on the long-term performance. • Comparison of that between normal and recycled aggregate concrete beams. - Abstract: This paper presents experimental results on the long-term deformations of recycled aggregate concrete (RAC) beams for over 1 year (380 days) and flexural behavior of RAC beams after exposure to sustained loading. Three reinforced concrete (RC) beam specimens were fabricated with replacement percentage of aggregate (100% natural aggregate, 100% recycled coarse aggregate, and 50% recycled fine aggregate) and subjected to sustained loading that is 50% of the nominal flexural capacity. During the sustained loading period (380 days), the long-term deflection due to creep and shrinkage was recorded and compared with predicted behavior that was determined based on current specifications (ACI 318 Code). After measuring the long-term deflection for 380 days, four-point bending tests were conducted to investigate the flexural behavior of RC beams after exposure to sustained loading and determine any reduction in flexural capacity. A modified equation to predict the long-term deflection values for RC beams with recycled aggregate is proposed, and the experimental results are compared with the predictions calculated using the ACI 318 Code provisions

  6. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    Science.gov (United States)

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  7. Simultaneous intrinsic and extrinsic calibration of a laser deflecting tilting mirror in the projective voltage space.

    Science.gov (United States)

    Schneider, Adrian; Pezold, Simon; Baek, Kyung-Won; Marinov, Dilyan; Cattin, Philippe C

    2016-09-01

    PURPOSE  : During the past five decades, laser technology emerged and is nowadays part of a great number of scientific and industrial applications. In the medical field, the integration of laser technology is on the rise and has already been widely adopted in contemporary medical applications. However, it is new to use a laser to cut bone and perform general osteotomy surgical tasks with it. In this paper, we describe a method to calibrate a laser deflecting tilting mirror and integrate it into a sophisticated laser osteotome, involving next generation robots and optical tracking. METHODS  : A mathematical model was derived, which describes a controllable deflection mirror by the general projective transformation. This makes the application of well-known camera calibration methods possible. In particular, the direct linear transformation algorithm is applied to calibrate and integrate a laser deflecting tilting mirror into the affine transformation chain of a surgical system. RESULTS  : Experiments were performed on synthetic generated calibration input, and the calibration was tested with real data. The determined target registration errors in a working distance of 150 mm for both simulated input and real data agree at the declared noise level of the applied optical 3D tracking system: The evaluation of the synthetic input showed an error of 0.4 mm, and the error with the real data was 0.3 mm.

  8. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    Science.gov (United States)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  9. Challenges of deflecting an asteroid or comet nucleus with a nuclear burst

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A [Los Alamos National Laboratory; Plesko, Cathy S [Los Alamos National Laboratory; Clement, Ryan R. C. [Los Alamos National Laboratory; Conlon, Le Ann M [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Guzik, Joyce A [Los Alamos National Laboratory; Pritchett - Sheets, Lori A [Los Alamos National Laboratory; Huebner, Walter F [SWRI

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal wilh the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coasl in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NED) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx} 140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper. we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  10. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2016-01-01

    Full Text Available The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached, a nonlinear parameter (k was also considered. This parameter was introduced to reduce the effect of the cracked moment of inertia for the reinforced concrete member, including a lower reinforcement ratio and modulus of elasticity of the GFRP bar. In a comparative study using six equations suggested by others, the proposed model showed better agreement with the experimental test results. It was confirmed that the empirical modification based on Branson’s equation was valid for predicting the effective moment of inertia of R/C beams with GFRP bar in this study. To evaluate the generality of the proposed model, a comparative study using previous test results from the literature and the results from this study was carried out. It was found that the proposed model had better accuracy and was a familiar approach to structural engineers to predict and evaluate the deflection behavior.

  11. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  12. A Two-Dimensional Deflection Sensor Based on Force Sensing Resistors

    Directory of Open Access Journals (Sweden)

    Chuangqiang Guo

    2017-01-01

    Full Text Available A flexible deflection sensor for elastic shaft with the capability of measuring the amplitude and direction of bending is introduced in this paper. A thin force sensing resistors (FSR film is taken as its basic material, which is sandwiched by an elastomer layer and a printed circuit board (PCB with detecting electrode grids. Two fix rings are used to fix the three thin components perpendicularly to the longitudinal direction of the flexible shaft. When the shaft bends under forces, the fix rings will generate a normal pressure on FSR, which will cause the change of the resistance. Therefore, the amplitude of bending can be got based on the value of resistance. The electrode grid on the PCB is divided into four detection areas used to estimate the distribution of normal pressure on the FSR; thus the bending direction of shaft can also be obtained. Test results of a prototype (140 mm in length show that the amplitude of deflection can reach 30 mm and the sensitivities of sensor are 40.37, 32.8, 37.77, and 39.47 mV/mm in the four directions, respectively. The proposed flexible deflection sensor can be applied in continuum robots or other applications, which require rapid measurement of bending amplitude and direction.

  13. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    Science.gov (United States)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  14. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  15. INTRA- AND INTER-OBSERVER RELIABILITY IN SELECTION OF THE HEART RATE DEFLECTION POINT DURING INCREMENTAL EXERCISE: COMPARISON TO A COMPUTER-GENERATED DEFLECTION POINT

    Directory of Open Access Journals (Sweden)

    Bridget A. Duoos

    2002-12-01

    Full Text Available This study was designed to 1 determine the relative frequency of occurrence of a heart rate deflection point (HRDP, when compared to a linear relationship, during progressive exercise, 2 measure the reproducibility of a visual assessment of a heart rate deflection point (HRDP, both within and between observers 3 compare visual and computer-assessed deflection points. Subjects consisted of 73 competitive male cyclists with mean age of 31.4 ± 6.3 years, mean height 178.3 ± 4.8 cm. and weight 74.0 ± 4.4 kg. Tests were conducted on an electrically-braked cycle ergometer beginning at 25 watts and progressing 25 watts per minute to fatigue. Heart Rates were recorded the last 10 seconds of each stage and at fatigue. Scatter plots of heart rate versus watts were computer-generated and given to 3 observers on two different occasions. A computer program was developed to assess if data points were best represented by a single line or two lines. The HRDP represented the intersection of the two lines. Results of this study showed that 1 computer-assessed HRDP showed that 44 of 73 subjects (60.3% had scatter plots best represented by a straight line with no HRDP 2in those subjects having HRDP, all 3 observers showed significant differences(p = 0.048, p = 0.007, p = 0.001 in reproducibility of their HRDP selection. Differences in HRDP selection were significant for two of the three comparisons between observers (p = 0.002, p = 0.305, p = 0.0003 Computer-generated HRDP was significantly different than visual HRDP for 2 of 3 observers (p = 0.0016, p = 0.513, p = 0.0001. It is concluded that 1 HRDP occurs in a minority of subjects 2 significant differences exist, both within and between observers, in selection of HRDP and 3 differences in agreement between visual and computer-generated HRDP would indicate that, when HRDP exists, it should be computer-assessed

  16. Atmospheric Flow Patterns Around the Southern Alps of New Zealand and Implications for Paleoaltimetry

    Science.gov (United States)

    Wheeler, L. B.; Galewsky, J.

    2017-11-01

    The development of relief may generate leeside rain shadows where precipitation δ18O values are lower due to rainout on the windward side. The magnitude of lowering in paleo-δ18O sampled from the leeside of a mountain range should, at least, in principle, be related to the elevation of the mountain range. In order for leeside proxies to record the highest elevations, the majority of air masses need to travel up and over the ridge crest before raining out on the leeside. If atmospheric flow patterns around the mountain range are dominated by flow deflection, air masses that reach the leeside are less likely to record the highest elevations. Using the Weather Research and Forecasting model and Hybrid Single-Particle Lagrangian Integrated Trajectory model, we demonstrate that modern atmospheric flow patterns in the Southern Alps of New Zealand are not dominated by flow deflection. The lack of flow deflection around the Southern Alps and the relatively low relief throughout the uplift history supports the use of leeside isotope records to constrain the timing of uplift, and that uplift likely occurred 5 Ma based on leeside isotope records. In contrast, orogens that are characterized by high elevations and strong flow deflection, like the Sierra Nevada of California, may not be good candidates for leeside isotope-based paleoaltimetry studies. Ideal candidates for such studies should be characterized by relatively low elevations, low atmospheric flow deflection, and relatively low relief throughout the period of uplift.

  17. Interaction of two-dimensional transverse jet with a supersonic mainstream

    Science.gov (United States)

    Kraemer, G. O.; Tiwari, S. N.

    1983-01-01

    The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.

  18. High Transverse Energy Proton - Nuclear Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rice, James Allen [Rice Univ., Houston, TX (United States)

    1983-06-01

    A study of high transverse energy events resulting from 400 GeV protons scattering from targets of hydrogen, carbon, aluminum, copper, tin, and lead has been performed with the E609 apparatus at Fermilab. Wire chambers and a highly segmented calorimeter detect secondary particles. The use of efficient jet collecting triggers and of a beam jet calorimeter have been originally applied to nuclear target studies in this thesis. $A^{\\alpha}$ scaling with hydrogen deviations is observed for $E_T$ and planarity. The data provide evidence that $A^{\\alpha}$ scaling results from multiple scattering.Evidence for hadron jets is seen with a large solid angle calorimeter for all the targets when triggers requiring two high $E_T$ single particles are employed. Jet cross-sections for nuclei are approximately determined herein. Jet event angular distributions possibly indicate that low and high transverse energy particles in jets from nuclei may result, in part, from different types of interactions.

  19. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  20. Borel resummation of transverse momentum distributions

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2009-01-01

    We present a new prescription for the resummation of contributions due to soft gluon emission to the transverse momentum distribution of processes such as Drell-Yan production in hadronic collisions. We show that familiar difficulties in obtaining resummed results as a function of transverse momentum starting from impact-parameter space resummation are related to the divergence of the perturbative expansion of the momentum-space result. We construct a resummed expression by Borel resummation of this divergent series, removing the divergence in the Borel inversion through the inclusion of a suitable higher twist term. The ensuing resummation prescription is free of numerical instabilities, is stable upon the inclusion of subleading terms, and the original divergent perturbative series is asymptotic to it. We compare our results to those obtained using alternative prescriptions, and discuss the ambiguities related to the resummation procedure

  1. Transverse Instability of a Rectangular Bunch

    CERN Document Server

    Balbekov, Valeri

    2005-01-01

    Some results of theoretical investigations of transverse dipole instability of a rectangular bunch are reported in this paper. Such a form is characteristic of the bunch in a rectangular potential wall which is created by a barrier-shaped acceleration field. Similar regime is a major one for accumulating and cooling of antiproton beams in the Fermilab Recycler Ring. In this case, the known theory of transverse instability of a bunched beam is inapplicable directly both because of "unusual" form of phase trajectories and strong dependence of synchrotron frequency on energy. A series of equations, adequately describing the instability is derived in the paper. Exact analytical solution is obtained for space charge dominated impedance, and some approximate methods are proposed for arbitrary impedance. The theory is applied to the Fermilab Recycler Ring including a numerical simulation.

  2. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  3. Antiphospholipid antibody syndrome presenting as transverse myelitis

    Directory of Open Access Journals (Sweden)

    Javvid M Dandroo

    2015-01-01

    Full Text Available The antiphospholipid syndrome (APS is characterized by arterial and/or venous thrombosis and pregnancy morbidity in the presence of anticardiolipin antibodies and/or lupus anticoagulant. APS can occur either as a primary disorder or secondary to a connective tissue disease, most frequently systemic lupus erythematosus. Central nervous system involvement is one of the most prominent clinical manifestations of APS, and includes arterial and venous thrombotic events, psychiatric features, and a variety of other nonthrombotic neurological syndromes. Although the mechanism of neurological involvement in patients with APS is thought to be thrombotic in origin and endothelial dysfunction associated with antiphospholipid antibodies. APS presenting as acute transverse myelitis is very rarely seen with a prevalence rate of 1%. We are describing a foreigner female presenting as acute transverse myelitis which on evaluation proved to be APS induced. So far, very few cases have been reported in literature with APS as etiology.

  4. Nonlinear theory of transverse beam echoes

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; Li, Yuan Shen

    2017-10-04

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough. The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.

  5. Transverse Instabilities in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

  6. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  7. The LHC Transverse Damper (ADT) Performance Specification

    CERN Document Server

    Boussard, Daniel; Linnecar, Trevor Paul R; CERN. Geneva. SPS and LEP Division

    1997-01-01

    The appended document specifies the performance of the transverse damper (ADT) for the LHC. As Annex 1 of the Addendum No.1 to the Protocol of April 18, 1997; it forms part of the 1992 co-operation agreement between CERN and JINR (Dubna, Russia) concerning its participation in the LHC project. The current text is a reprint of the original version. Changes that have been agreed upon are inserted as footnotes.

  8. Sasakian manifolds with purely transversal Bach tensor

    Science.gov (United States)

    Ghosh, Amalendu; Sharma, Ramesh

    2017-10-01

    We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).

  9. Resolution of hydrodynamical equations for transverse expansions

    International Nuclear Information System (INIS)

    Hama, Y.; Pottag, F.W.

    1984-01-01

    The three-dimensional hydrodynamical expansion is treated with a method similar to that of Milekhin, but more explicit. Although in the final stage one have to appeal to numerical calculation, the partial differential equations governing the transverse expansions are treated without transforming them into ordinary equations with an introduction of averaged quantities. It is only concerned with the formalism and the numerical results will be given in the next paper. (Author) [pt

  10. Transversally Lipschitz Harmonic Functions are Lipschitz

    OpenAIRE

    Ravisankar, Sivaguru

    2012-01-01

    Let \\Omega\\subset\\mathbb{R}^n be a bounded domain with C^\\infty boundary. We show that a harmonic function in \\Omega that is Lipschitz along a family of curves transversal to b\\Omega is Lipschitz in \\Omega. The space of Lipschitz functions we consider is defined using the notion of a majorant which is a certain generalization of the power functions t^\\alpha, 0

  11. Nuclear transverse sectional brain function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1982-01-01

    A transverse radionuclide scan field imaging apparatus comprises a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array that surrounds a scan field of interest. Each collimator is moveable relative to its adjacent collimator. Means are provided for imparting travel to the collimators such that the focal point of each uniformly samples at least one half of the scan field

  12. experimental investigation of flow pattern around repelling

    African Journals Online (AJOL)

    A. Mahdieh NajafAbadi and M. M. Bateni

    2017-09-01

    Sep 1, 2017 ... FLOW-3D® software used to simulate flow pattern. The simulation was .... separated into separation zone, shear layer, vortices zone, end point of vorticity zone and primary flow zone. In the figure, b1 and b2 denote ... closer to the wall for the attractive spur dike. For case of the repelling spur dike, transverse.

  13. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    Science.gov (United States)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, t